Forum Math. 2 (1990), 265-275

Forum Mathematicum © de Gruyter 1990

Density Continuity versus Continuity

Krzysztof Ciesielski, Lee Larson and Krzysztof Ostaszewski*

(Communicated by Karl H. Hofmann)

Abstract. Real-valued functions of a real variable which are continuous with respect to the density topology on both the domain and the range are called density continuous. A typical continuous function is nowhere density continuous. The same is true of a typical homeomorphism of the real line. A subset of the real line is the set of points of discontinuity of a density continuous function if and only if it is a nowhere dense F_{σ} set. The corresponding characterization for the approximately continuous functions is a first category F_{σ} set. An alternative proof of that result is given. Density continuous functions belong to the class Baire*1, unlike the approximately continuous functions.

1980 Mathematics Subject Classification (1985 Revision): 26A21.

1. Introduction

The density topology is a completely regular refinement of the natural topology on the real line. It consists of all measurable subsets A of \mathbb{R} such that, for every $x \in A$, x is a density point of A. Ostaszewski [7, 8] studied the class of functions $f: \mathbb{R} \to \mathbb{R}$ which are continuous with respect to the density topology on the domain and the range. These are termed *density continuous*. Bijections of the real line whose inverses are density continuous were investigated by Bruckner [2] and Niewiarowski [5]. Ostaszewski [9] considered the class as a semigroup with composition as the operation, and showed that the semigroup, and three of its subsemigroups, have the inner automorphism property. Ciesielski and Larson [4], and Burke [3] showed that real-analytic functions are density continuous, and that the class of density continuous functions is not a linear space. Furthermore, there exist C^{∞} functions which are not density continuous.

^{*} This author was partially supported by a University of Louisville research grant.

In this work we are concerned with the relationship between the classes of continuous and density continuous functions.

We will use the following notation:

 \mathbb{R} – the set of real numbers;

N – the set of natural numbers;

 \mathscr{C} – the space of continuous functions $f: [0,1] \rightarrow \mathbb{R}$;

||f|| - the norm of an $f \in \mathscr{C}$, $||f|| = \sup_{x \in [0,1]} |f(x)|$;

C(f) – the set of points at which f is continuous;

Z(f) – the set of points at which f is not continuous;

 $\omega(f, x)$ – the oscillation of f at x;

 $\operatorname{supp}(f) = \{x : f(x) \neq 0\} - \text{the support of } f;$

 \mathcal{H} – the space of all automorphisms of [0, 1] equipped with the metric

$$\sigma(g,h) = \|g-h\| + \|g^{-1} - h^{-1}\|$$

for $g, h \in \mathcal{H}$;

|A| – the Lebesgue measure of a measurable set $A \subset \mathbb{R}$;

 A^{c} - the complement of the set A;

int(A) – the interior of the set A;

 $\overline{d}(A, x), \underline{d}(A, x), d(A, x)$ - the upper, lower, and ordinary (respectively) densities of a set $A \subset \mathbb{R}$ at a point $x \in \mathbb{R}$.

2. Typical continuous functions

In this section we prove that a typical continuous function is nowhere density continuous. The same is true of a typical homeomorphism of the real line. To do this, some preliminary definitions and lemmas must be presented.

Let $\{J_n\}$ be a sequence of intervals and let $\{I_n\}$ be a sequence of closed intervals such that I_n and J_n have the same center and $I_n \subset J_n$, for each n. We say that the sequence J_n *captures* the sequence I_n . This relationship between the sequences is denoted $I_n \triangleleft J_n$.

If $I_n \triangleleft J_n$, as above, we define

$$J_x = \bigcup_{\{n: x \notin J_n\}} I_n.$$

The properties of captured sequences which are useful in what follows are contained in the following two propositions.

Lemma 1. If $\{I_n\}$ and $\{J_n\}$ are sequences of intervals such that $I_n \triangleleft J_n$ and

$$\sum_{n\in\mathbb{N}}\frac{|I_n|}{|J_n|}<\infty\,,$$

then $d(J_x, x) = 0, \forall x \in \mathbb{R}$.

Proof. Without loss of generality, we may assume that $x \notin \bigcup_{n \in \mathbb{N}} J_n$. Let $\varepsilon \in (0, 1)$ and choose n_0 and $\delta_0 > 0$ such that

(1)
$$\sum_{n \ge n_0} \frac{|I_n|}{|J_n|} < \varepsilon/3 \quad \text{and} \quad (x - \delta_0, x + \delta_0) \cap I_n = \emptyset, \ \forall n \le n_0.$$

Observe that the choice of $\varepsilon \in (0, 1)$ and (1) guarantees that for all $n \ge n_0$, it is true that if $(x - \delta, x + \delta) \cap I_n \neq \emptyset$, then $J_n \subset (x - 3\delta, x + 3\delta)$. Let

$$S_{\delta} = \{n : (x - \delta, x + \delta) \cap I_n \neq \emptyset\}$$
 and $M_{\delta} = \sup_{n \in S_{\delta}} |J_n|$

If $\delta \in (0, \delta_0)$, the observation and (1) show

$$\begin{aligned} \frac{|(x-\delta,x+\delta)\cap J_x|}{2\delta} &\leq \frac{|\bigcup_{n\in S_{\delta}}I_n|}{2\delta} \\ &\leq 3\frac{\sum_{n\in S_{\delta}}|I_n|}{|(x-3\delta,x+3\delta)|} \\ &\leq 3\frac{\sum_{n\in S_{\delta}}|J_n||I_n|/|J_n|}{\bigcup_{n\in S_{\delta}}|J_n|} \\ &\leq 3\frac{M_{\delta}\sum_{n\in S_{\delta}}|I_n|/|J_n|}{M_{\delta}} \\ &\leq \varepsilon. \end{aligned}$$

From this, Lemma 1 follows at once.

It is interesting to note that the following can be proved in much the same way as Lemma 1.

Corollary 1. If I_n and J_n are sequences of intervals such that $I_n \triangleleft J_n$, $J_i \cap J_j = \emptyset$ when $i \neq j$ and $|I_n|/|J_n| \rightarrow 0$, then $\bigcup_{n=1}^{\infty} I_n$ is density closed.

Lemma 2. Let $x \in \mathbb{R}$ and let $\{L_n\}$ be a sequence of intervals such that $x \in \bigcap_{n \ge 1} L_n$ and $\lim_{n \to \infty} |L_n| = 0$. If K_n is a subinterval of L_n for every n and

$$\limsup_{n\to\infty}|K_n|/|L_n|>0,$$

then $\overline{d}(\bigcup_{n\geq 1}K_n, x) > 0.$

Proof. Let

$$\limsup_{n\to\infty}|K_n|/|L_n|=a>0.$$

It will be shown that

$$\overline{d}(\bigcup_{n\in\mathbb{N}}K_n,x)=\limsup_{\delta\to 0+}\frac{|(x-\delta,x+\delta)\cap\bigcup_{n\in\mathbb{N}}K_n|}{2\delta}\geq a/4.$$

To do this, it is enough to show that for every $\delta_0 > 0$ there is a $\delta \in (0, \delta_0]$ and a number

 $n \ge 1$ such that

$$|K_n \cap (x-\delta, x+\delta)|/2\delta \ge a/4.$$

Let *n* be such that $|L_n| < \delta_0$ and $|K_n|/|L_n| > a/2$. Set $\delta = \inf\{t : L_n \subset (x - t, x + t)\}$. Then $0 < \delta < \delta_0$, $L_n \subset [x - \delta, x + \delta]$ and $|L_n|/2\delta \ge 1/2$. Hence,

$$\frac{|K_n \cap (x-\delta, x+\delta)|}{2\delta} = \frac{|K_n|}{2\delta} = \frac{|K_n|}{|L_n|} \frac{|L_n|}{2\delta} \ge \frac{a}{2} \frac{1}{2} = \frac{a}{4}$$

and the lemma is proved.

Here is the main result of this section.

Theorem 1. If $\mathscr{C}_{\mathscr{D}}$ denotes the subset of \mathscr{C} consisting of all functions which have at least one point of density continuity, then $\mathscr{C}_{\mathscr{D}}$ is a first category subset of \mathscr{C} .

Proof. We will show that there exists a dense G_{δ} subset E of \mathscr{C} such that every $f \in E$ is nowhere density continuous.

For every $n \in \mathbb{N}$ denote by D_n the set of all $f \in \mathcal{C}$ such that for every $i = 1, 2, ..., 2^n, f$ is linear and nonconstant on each interval $[(i-1)2^{-n}, i2^{-n}]$. Notice that $D_{n+1} \subset D_n$ for every $n \in \mathbb{N}$ and $D = \bigcup_{n \in \mathbb{N}} D_n$ is a dense subset of \mathcal{C} .

For $f \in \mathscr{C}$ define

(2)
$$||f||_n = \max_{i=1,2,\ldots,2^n} |f(i2^{-n}) - f((i-1)2^{-n})|.$$

We claim that for each open set U in \mathscr{C} , there exists an $n \in \mathbb{N}$ and a function $f \in D_n$ such that the ball in \mathscr{C} centered at f of radius $||f||_n$ is entirely contained in U. To see this, first find an $m \in \mathbb{N}$ and an $f \in D_m$ such that $f \in U$. Since U is open, there is a $\delta > 0$ such that the open ball of radius δ centered at f is contained in U. Using the uniform continuity of f, we can find an n > m such that whenever $|x - y| < 2^{-n}$, then $|f(x) - f(y)| < \delta$. From this it is clear that $f \in D_n$ and $||f||_n < \delta$. The claim is evident.

We will now start the construction of the promised G_{δ} set E as an intersection of dense open sets, W_k .

Let $k \ge 1$ and U be a nonempty open subset of \mathscr{C} , and choose f and n as above. For $j = 0, 1, 2, ..., 2^{n+1}$, define

$$g\left(\frac{j}{2^{n+1}}\right) = f\left(\frac{j}{2^{n+1}}\right)$$

If $i2^{-n} \le j2^{-n-1} < (j+1)2^{-n-1} \le (i+1)2^{-n}$, where $i \in \{0, 1, 2, ..., 2^n - 1\}$, put $L_i = (i2^{-n}, (i+1)2^{-n})$, $M_j = (j2^{-n-1}, (j+1)2^{-n-1})$ and let $K_j = [a_j, b_j]$ be centered in M_i such that

$$\frac{|K_j|}{|M_j|} = 1 - \frac{1}{2^n} = \frac{2|K_j|}{|L_i|}.$$

Let us choose $I_i^0 = [c_i, d_i]$ centered in the interval $f(M_i)$ and such that

$$\frac{|I_j^0|}{|f(M_j)|} = \frac{1}{2^n}.$$

Define g to be linear on each of the intervals

$$[j2^{-n-1}, a_i], [a_i, b_i]$$
 and $[b_i, (j+1)2^{-n-1}],$

such that $g([a_j, b_j]) = [c_j, d_j] = I_j^0$. Thus, if $J_j = f(M_j) = g(M_j)$, then

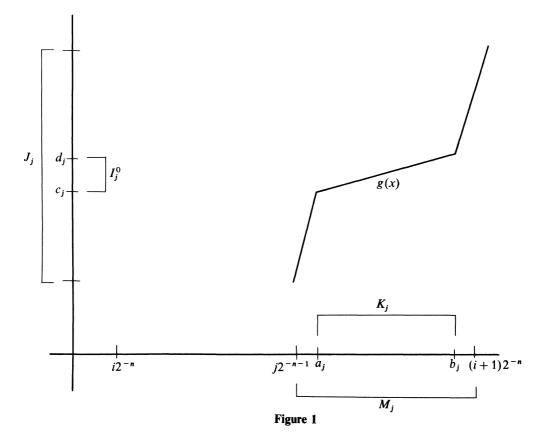
$$\frac{|g(K_j)|}{|g(M_j)|} = \frac{|I_j^0|}{|J_j|} = \frac{1}{2^n}$$
$$|g^{-1}(I_i^0)| = |K_j| \qquad 4$$

and

$$\frac{|g^{-1}(I_j^0)|}{|g^{-1}(J_j)|} = \frac{|K_j|}{|M_j|} = 1 - \frac{1}{2^n}.$$

Notice that g is contained in the open ball centered at f of radius $||f||_n$. Thus, $g \in U$. Let W_U^k be the open ball centered at g of radius

(3)
$$\varepsilon_k = 2^{-n-1} \min_{i=1,2,\ldots,2^n} \left| f\left(\frac{i}{2^n}\right) - f\left(\frac{i-1}{2^n}\right) \right| > 0.$$



Obviously $W_k = \bigcup \{ W_U^k : U \text{ is open and nonempty in } \mathscr{C} \}$ is open and dense in \mathscr{C} , so that $E = \bigcap_{k \in \mathbb{N}} W_k$ is a residual set in \mathscr{C} . We will show that if $h \in E$ then h is nowhere density continuous.

Now let x be an arbitrary point of [0, 1]. We will choose intervals $I_m, m \in \mathbb{N}$ such that

$$d\left(\bigcup_{m\in\mathbb{N}}I_m,h(x)\right)=0,$$

$$\overline{d}\left(h^{-1}\left(\bigcup_{m\in\mathbb{N}}I_m\right),x\right)>0.$$

This will prove that h is not density continuous at x.

Let $m \in \mathbb{N}$. We have $h \in W_m$ so there exists a set U, open in \mathscr{C} , such that $h \in W_U^m$. Let g be the center of W_U^m . Let $n \ge m$ be the number given in the construction of W_U^m . Let $i \in \{0, 1, 2, ..., 2^n - 1\}$ be such that $x \in [i2^{-n}, (i+1)2^{-n}]$.

 $i \in \{0, 1, 2, ..., 2^n - 1\}$ be such that $x \in [i2^{-n}, (i+1)2^{-n}]$. Put $L_m = [i2^{-n}, (i+1)2^{-n}]$. Let $M^1 = (2i2^{-n-1}, (2i+1)2^{-n-1}), M^2 = ((2i+1)2^{-n-1}, 2(i+1)2^{-n-1})$ and $M_m \in \{M^1, M^2\}$ such that $h(x) \notin g(M_m)$. Put $J_m = g(M_m)$ and let $I_m^0 = [c_j, d_j]$ and $K_m = [a_j, b_j]$ be as in the construction of g. Thus

$$\frac{|I_m^0|}{|J_m|} = 1/2^n \le 1/2^m$$
 and $\frac{|K_m|}{|M_m|} = 1 - 1/2^n \ge 1 - 1/2^m$.

Put $I_m = [c_j - \varepsilon_m, d_j + \varepsilon_m]$. As $h(x) \notin J_m$ for every m and

$$\sum_{n=1}^{\infty} \frac{|I_m|}{|J_m|} \le \sum_{m=1}^{\infty} \frac{3|I_m^0|}{|J_m|} \le 3 \sum_{m=1}^{\infty} \frac{1}{2^m} = 3,$$

Lemma 1 yields $d(\bigcup_{m=1}^{\infty} I_m, h(x)) = 0.$

On the other hand, by the choice of ε_m , $K_m \subset h^{-1}(I_m)$. Thus, by Lemma 2, the fact that $x \in L_m$ for every *m* and using

$$\lim_{m \to \infty} \frac{|K_m|}{|L_m|} = \lim_{m \to \infty} \frac{|K_m|}{2|M_m|} = 1/2 > 0$$

we have

$$\overline{d}\left(h^{-1}\left(\bigcup_{m=1}^{\infty}I_{m}\right),x\right)\geq\overline{d}\left(\bigcup_{m=1}^{\infty}K_{m},x\right)>0.$$

Therefore, h is not density continuous at x.

Theorem 2. If $\mathscr{H}_{\mathscr{D}}$ denotes the class of all elements of \mathscr{H} which have at least one point of density continuity, then $\mathscr{H}_{\mathscr{D}}$ is a first category subset of \mathscr{H} .

Proof. As discussed in [10, page 50], \mathcal{H} is a G_{δ} subset of \mathscr{C} . It is actually complete with the metric σ defined in the introduction of this work.

Let W be the dense G_{δ} subset of \mathscr{C} constructed in the proof of Theorem 1. It is

270

and

obvious that $W \cap \mathscr{H}$ is a G_{δ} subset of \mathscr{H} . Thus, it would be sufficient to show that $W \cap \mathscr{H}$ is dense in \mathscr{H} in order to prove Theorem 2.

Unfortunately, in general, this is not the case. However, the set $D \cap \mathcal{H}$ is dense in \mathcal{H} . Thus, if in the choice of f in the proof of Theorem 1, we assume additionally that for nonempty $U \cap \mathcal{H}$ we choose $f \in U \cap \mathcal{H} \cap D$, then the corresponding function g will be also in \mathcal{H} . $\mathcal{H} \cap W$ will be dense in W. This proves Theorem 2.

Let us note that the fact that a typical homeomorphism is not density continuous is mentioned in [7], but without a detailed proof.

3. Continuity of density continuous functions

In this section, the set on which a density continuous function can be continuous is characterized as any nowhere dense F_{σ} set.

A function $f: \mathbb{R} \to \mathbb{R}$ is in the class Baire*1 if for each perfect set P, there is a portion Q of P such that $f|_Q$ is continuous. In other words, f is continuous on a relative subinterval of each closed set. This class was introduced by Richard O'Malley [6], who studied the Baire*1 functions having the Darboux property.

Theorem 3. If f is a density continuous function, then f is in Baire*1.

Proof. We assume the theorem is not true. Then there is a nonempty perfect set P such that

 $Z = \{x \in P : f|_P \text{ is not continuous at } x\}$

is dense in P. We will show that this assumption assures that there is an $x \in P$ such that f is not density continuous at x. The proof uses induction to find a sequence $x_n \in P$ a sequence of open intervals (a_n, b_n) and two sequences of compact intervals, I_n and J_n such that $x_n \in I_n \subset J_n$, $I_n \triangleleft J_n$ and $x_n \rightarrow x$.

To start, let $x_0 \in Z$, $J_0 = I_0 = \emptyset$ and $(a_0, b_0) = (x_0 - 1, x_0 + 1)$. Assume that x_i , closed intervals J_i and I_i , and an open interval (a_i, b_i) have been chosen for $1 \le i \le n$ to satisfy the following properties:

- (a) $f(x_i) \in I_i \subset J_i$;
- (b) $J_{i-1} \cap J_i = \emptyset$;
- (c) $0 < |I_i| \le |J_i|/2^i$ and $|J_i| < \omega(f|_P, x_i);$
- (d) $x_i \in (a_i, b_i) \cap Z \subset [a_i, b_i] \subset (a_{i-1}, b_{i-1});$
- (e) $b_i a_i < 1/2^i$; and,
- (f) $|f^{-1}(I_i) \cap (a_i, b_i)| > (1 2^{-i})(b_i a_i).$

To continue with the inductive step, we note that from (c), we are able to choose

 $y \in P \cap f^{-1}(J_n^c) \cap (a_n, b_n).$

If $y \in Z$, then let $x_{n+1} = y$. Otherwise, $f|_P$ is continuous at y. In this case, the fact that

Z is dense in P guarantees the existence of

$$x_{n+1} \in P \cap f^{-1}(J_n^c) \cap (a_n, b_n) \cap Z.$$

Because J_n is closed and $x_{n+1} \in Z$, there is a closed interval J_{n+1} centered at $f(x_{n+1})$ such that $J_{n+1} \cap J_n = \emptyset$ and $0 < |J_{n+1}| < \omega(f|_P, x_{n+1})$. Setting I_{n+1} to be the closed interval centered at $f(x_{n+1})$ with length $|J_{n+1}|/2^{n+1}$, it follows that (a), (b) and (c) are true with i = n + 1. Next, use the approximate continuity of f at x_{n+1} to find an interval $(a_{n+1}, b_{n+1}) \subset (a_n, b_n)$ containing x_{n+1} such that (d), (e) and (f) are satisfied. The induction is complete.

From (d) and (e) we see that there is an $x \in \bigcap_{n=1}^{\infty} [a_n, b_n] \cap P$. We claim that there is a subsequence J_{n_m} of J_n such that $f(x) \notin J_{n_m}$ for every *m*. Otherwise, f(x) is contained in all but a finite number of the J_n , which is easily seen to violate (b). From (c) and the construction, it follows that

$$\sum_{m=1}^{\infty} \frac{|I_{n_m}|}{|J_{n_m}|} < \infty \quad \text{and} \quad I_{n_m} \triangleleft J_{n_m},$$

so Lemma 1 implies that $d(\bigcup_{m=1}^{\infty} I_{n_m}, f(x)) = 0$. The density continuity of f now implies that

(4)
$$d\left(f^{-1}\left(\bigcup_{m=1}^{\infty}I_{n_m}\right),x\right)=0.$$

On the other hand, $x \in (a_{n_m}, b_{n_m})$ for all *m*, so (f) implies

(5)
$$\overline{d}\left(f^{-1}\left(\bigcup_{m=1}^{\infty}J_{n_m}\right),x\right) \ge \lim_{m\to\infty}\frac{|f^{-1}(I_{n_m})\cap(a_{n_m},b_{n_m})|}{|(a_{n_m},b_{n_m})|} = 1.$$

But, (4) and (5) contradict each other, so we are forced to conclude that Z cannot be dense in P, which finishes the proof.

It is evident from the definition of Baire*1 that if f is in Baire*1, then C(f) contains a dense open set. Because C(f) is a G_{δ} set, we have proved that a density continuous function can be discontinuous on at most a nowhere dense F_{σ} set. The converse to this statement is also true.

Theorem 4. If $\mathscr{Z} = \{Z(f) : f \text{ is density continuous}\}$, then

 $\mathscr{Z} = \{F: F \text{ is a nowhere dense } F_{\sigma} \text{ set}\}.$

In order to prove this theorem, it suffices to show that given an arbitrary nowhere dense F_{σ} set F, a density continuous function f can be constructed such that Z(f) = F. In order to do this, two lemmas are needed.

Lemma 3. If F is a nowhere dense F_{σ} set, then there exist sequences of pairwise disjoint compact intervals, I_n and J_n with $I_n \triangleleft J_n$ such that

$$F \subset \bigcup_{n \in \mathbb{N}} \overline{I_n} \setminus \bigcup_{n \in \mathbb{N}} J_n.$$

Moreover, if $F = \bigcup_{n \in \mathbb{N}} F_n$, where F_n is closed for each n, then there are disjoint subsequences m_k^n from \mathbb{N} such that

$$F_n = \overline{\bigcup_{k \in \mathbb{N}} I_{m_k^n}} \setminus \bigcup_{k \in \mathbb{N}} J_{m_k^n}.$$

Proof. Let $\{(a_n, b_n) : n \in \mathbb{N}\}$ be the components of \overline{F}^c . For each *n*, choose a decreasing sequence $\{x_i^n\} \subset (a_n, b_n)$ such that $\lim_{i\to\infty} x_i^n = a_n$. The set $\{x_i^n : i, n \in \mathbb{N}\}$ is discrete, so it can be enumerated as a sequence y_i . Let J_i be a sequence of pairwise disjoint closed intervals such that J_i is centered at y_i and let I_i be a closed interval centered in J_i such that $|I_i|/|J_i| = 2^{-i}$. Then $I_n \triangleleft J_n$ and

$$F \subset \overline{F} = \overline{\{a_i : i \in \mathbb{N}\}} = \overline{\{y_i : i \in \mathbb{N}\}} \setminus \{y_i : i \in \mathbb{N}\} = \overline{\bigcup_{i \in \mathbb{N}} I_i} \setminus \bigcup_{i \in \mathbb{N}} J_i$$

The second part of the lemma follows easily by choosing appropriate subsequences of y_i .

Lemma 4. Let F be a closed nowhere dense set, $\lambda > 0$ and suppose that I_n and J_n are sequences of compact intervals such that $I_n \triangleleft J_n$ and the J_n are pairwise disjoint. If $F = \bigcup_{n \in \mathbb{N}} I_n \setminus \bigcup_{n \in \mathbb{N}} J_n$, then there exists a density continuous function $f : \mathbb{R} \to [0, \lambda]$ such that

(a) Z(f) = F, (b) $\omega(f, x) = \lambda, \forall x \in F$, and (c) $f^{-1}((0, \lambda]) = \bigcup_{n \in N} \operatorname{int}(I_n)$.

Proof. Let

$$f_n(x) = \begin{cases} 0 & x \notin I_n \\ 2\lambda \operatorname{dist}(x, I_n^c) / |I_n| & x \in I_n \end{cases}$$

and

$$f(x) = \sum_{n \in \mathbb{N}} f_n.$$

The disjointness of the J_n and the fact that $I_n \subset \operatorname{int} (J_n)$ for all *n* guarantees that (a), (b) and (c) are true. To see that *f* is density continuous, there are two cases to consider. First, suppose that $x \in I_n$, for some *n*. In this case, the definitions of f_n and the fact that the J_n are pairwise disjoint guarantee that *f* is piecewise linear on some neighborhood of *x*. So, *f* is density continuous at *x*. Second, if *x* is in no I_n , then (c) implies that f(x) = 0. Using (c) again, along with Corollary 1, it follows that f = 0 on a density open neighborhood of *x*. This implies that *f* is density continuous at *x*.

We now proceed with the proof of Theorem 4.

Let F be as in the statement of the theorem. Suppose $F = \bigcup_{n \in \mathbb{N}} F_n$, where F_n is closed and $F_n \subset F_{n+1}$ for $n \ge 1$. Let $I_n \triangleleft J_n$ and the sequences m_k^n be as in Lemma 3. For each n, use Lemma 4 with $\lambda = 3^{-n}$ and the pair of intervals $I_{m_k^n} \triangleleft J_{m_k^n}$ to construct a function f_n . Define

(6)
$$f = \sum_{n \in \mathbb{N}} f_n$$
.

We see that (6) converges uniformly. Because of this, part (a) of Lemma 4 yields $Z(f) \subset F$. On the other hand, if $x_0 \in F$, then $f(x_0) = 0$ and $x \in F_n$ for some *n*. It follows that

(7)
$$\limsup_{x \to x_0} f(x) \ge \limsup_{x \to x_0} f_n(x) = 3^{-n} > f(x),$$

so F = Z(f).

Since f = 0 on $(\bigcup_{n \in \mathbb{N}} I_n)^c$, Corollary 1 implies that f is density continuous on that set. If $x \in I_n$ for some n, then the fact that $\sup(f_n) \cap \sup(f_m) = \emptyset$ whenever $m \neq n$ shows that there is a neighborhood G of x such that $f = f_n$ on G. The density continuity of f_n at x implies the density continuity of f at x. Therefore, f is a density continuous function.

The structure of Z(f) for an approximately continuous function f is well-known. (See, e. g. Bruckner [2, page 48].) But, the proof of Theorem 4 can be used to give an alternative proof of this characterization.

Theorem 5. If $Z = \{Z(f) : f \text{ is approximately continuous} \}$ then $Z = \{F : F \text{ is } F_{\sigma} \text{ and first category} \}$.

Proof. Since approximately continuous functions are continuous on a dense G_{δ} set, we see

 $Z \subset \{F: F_{\sigma} \text{ and first category}\}.$

Let F be a first category F_{σ} set and suppose $F = \bigcup_{n \in \mathbb{N}} F_n$, where each F_n is closed and nowhere dense with $F_n \subset F_{n+1}$, $\forall n \in \mathbb{N}$. The functions f_n and f can be defined as in the proof of Theorem 4. Density continuous functions are approximately continuous and the uniform limit of approximately continuous functions is approximately continuous. Therefore, f is approximately continuous.

As before, it is clear that $Z(f) \subset F$. To establish the opposite containment, we note that if $x \in F_{n+1} \setminus F_n$, then

$$\omega(f_{n+1}, x) = \omega\left(\sum_{i \le n+1} f_i, x\right) = 1/3^{n+1} > \sum_{i > n+1} f_i,$$

so $x \in Z(f)$ and the theorem follows.

References

- Bruckner, A. M.: Density-preserving homeomorphism and the theorem of Maximoff. Quart. J. Math. Oxford (2) 21 (1970), 337-347
- [2] Bruckner, A. M.: Differentiation of Real Functions. Lecture Notes in Mathematics 659. Springer-Verlag, 1978
- [3] Burke, M.: Some remarks on density-continuous functions. Real Anal. Exchange 14 (1) (1988-89), 235-242

- [4] Ciesielski, K., Larson, L.: The space of density continuous functions. Acta Math. Hung., to appear
- [5] Niewiarowski, J.: Density-preserving homeomorphisms. Fund. Math. 106 (1980), 77-87
- [6] O'Malley, R.J.: Baire*1 Darboux functions. Proc. Amer. Math. Soc. 60 (1976), 187-192
- [7] Ostaszewski, K.: Continuity in the density topology. Real Anal. Exchange 7 (2) (1982), 259-270
- [8] Ostaszewski, K.: Continuity in the density topology II. Rend. Circ. Mat. Palermo (2) 32 (1983), 398-414
- [9] Ostaszewski, K.: Semigroups of density-continuous functions. Real Anal. Exch. 14 (1) (1988-89), 104-114
- [10] Oxtoby, J.C.: Measure and Category. Springer, 1971

Received May 21, 1989. Revised August 22, 1989

- Krzysztof Ciesielski, Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA
- Lee Larson, Department of Mathematics, University of Louisville, Louisville, KY 40292, USA

Krzysztof Ostaszewski, Department of Mathematics, University of Louisville, Louisville, KY 40292, USA