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A GAME OF D. GALE IN WHICH ONE 
OF THE PLAYERS HAS LIMITED MEMORY 

K. CIESIELSKI (Morgentown) and R. LAVER (Boulder) 

0. Introduction 

For an infinite set X, let Q(X) stand for the following game: at the n-th 
move Player I chooses a finite non-empty set X, c X and Player II an element 
Z~ from his pile P, = X, U . . . U X,\{z,,, . . . , z,,-~}. Define A, = X, U 

U . . . U X, and B,, = {z,,, . . . ,z~} and let A = i A, and B = i B,. 
n=O n-0 

The game is a win for Player II if A = B, otherwise Player I wins. 
Obviously if Player II remembers at stage n what the previous plays 

x,, zo, Xl, q, * - . , X”-l, X, were, then he has an easy winning strategy: at 
the n-th step he first chooses the smallest i < n such that P, fl Xi f 0 and 
then plays the smallest element (under some fixed linear order of X) from 
this set. But what if Player II has a bad memory and he remembers at stage 
n only the position (P,, B,) or even only his own pile P, = A, \ B,,-,? We 
will examine these problems and some other related to them. Those questions 
have been posed by David Gale in [l]. 

1. Positive result8 

PROPOSITION 1.1. If X is countable then Player II bus a winning strategy 
f depending only on his pile P,,. 

PROOF. If < is a well order of X in order type o then it is enough to 
put f(P) = min (P). 

Thus we will assume from now on that X is uncountable. 
The first theorem tells us that if we allow Player II to remember the 

last discard element snV1 and his own pile P,, then he has a winning strategy. 
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THEOREM 1 .l . There exists a function f (P, x) E P which yields a winning 
strategy for Player II. 

PROOB. Let < be a fixed well order of X. For a finite non-empty set 
P c X and an z 4 P we define f(P, 5) f P by: 

f(P, 4 = max{pCP: p<x} when {p C P: p < x} f 0 max (p) otherwise 

To prove that f describes a winning strategy for Player II let the 
sequence X,, zO, Xi, pi, . . . represent the game played aocording to f, i.e., 
Z~ = f(P,, x~-& for n > 0 and x0 = max (P,,). Choose 1: E A and let i be such 
that x E Xi. We have to prove that x = xj for some j 2 i. 

Firt notice that 
(1) for every natural number m there exists n > m such that x,, < X~ + i. 

By the definition of f we have also 
(2) for every natural number n > 0 if x E P, and x < %,,--I then x < 

12, <"n-l. 

Now let n > i be as in (l), i.e., such that X~ < x~+~. 
If xn+l = xthenput j=n+l. 
If x”+l = max (P,,+J < x then x 4 P,,+l = A,+,\B,, i.e., 
x E B, = {x0, . . . ) xn}. 

If %+1> x then we are in situation (2). Moreover the sequence 
X n+l, %n+2,"'3 xj is decreasing as long as xjel > x. So, by (1) and (2), 
there exists j > n + 1 such that x = xj. 

The next theorem tells us that Player II also has a winning strategy 
when he does not remember what his last move was but he is given the position 
(P,, B,). The proof of this theorem generalizes the technique of the proof of 
Theorem 1 .l . 

THEOREM 1.2. There exists a function g(P, B) = x r$ P yielding a winning 
strategy for Player II. 

PROOF. Let 00 be a symbol such that 00 4 X and let us fix a well order < 
of X U {-} such that x < 00 for all z E X. For a natural number n > 0, 
write n = 2’(“) + k(n) with 0 < k(n) < 2’@). 

If B is an (n - 1)-element subset of X then we define 

t(B) = 
b 
LkCn) 

for k(n) > 0 
for /qn) = 0 

where b,, . . . , b,-, is a decreasing enumeration of B,. 
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Finally for a non-empty finite set P c X and finite B c X\ P we define 

g(P, B) = m t(B)) 

where f is a8 in Theorem 1 .l. 
To prove that g gives a winning strategy for Player II, let a sequence 

x0, G3, Xl, x1:1, . . * represent the game played according to g, i.e., Z~ = 
= g(P,,, B,,) for all n. We are supposed to prove that for every element x E 

< A = E A,, there exists n such that x = x~. 
n=O 

By way of contradiction let us assume that for some z E A there is no 
n such that x = xn. Let j be such that x E X,. Thus x E P, for all m > j. 

First we prove that for every n 2 j, n = 2’(“), that 
(*) if b E B, and b > x then there exists m such that n < m < 2 * n 

and b > x,,, > x. 
So let b E B,, and n = 2’(“). Then 

00 = t(B,) > t(B,+J > . . . > t(&.n-1) = min (JLn-Ja 

and hence t(B,) > b 2 t(Bz.,-l). 
Let 

m=max{k: n<k<2-n & t(B,J>b}. 

AE x E Pm and x < b < t(B,) then, by definition of f, we conclude that 

x < x,,, < t(B,J. 
To prove (*) it is enough to show that b > x,,,. But if b < x, then, by 

maximality of m, t(B, +1) < b < X~ < t(B,,J and b, x, E B,,, +i. This contra- 
dicts the fact that there is at most one element y in B,,, +i such that t(B,, I) < 

-=I Y -=c wn). 
So (*) is proved. 
Now to obtain a contradiction with the assumption that x E A\ B we 

will define by induction an infinite sequence xnO > xnl > xn, > . . . such that 
xn4 > x for all i. 

Choose no = 2k > j. Thus xn, = max (P,,) > x. 
If for some i 2 0 we have already defined xn, > xn, > . . . > xnc > z 

choose n = 2k > ni. Then xn6 E B,, and, by (*), there exists ni+i > n > n1 
such that x,,~ > xnt+, > x. 

Therefore A = B. This finishes the proof of Theorem 1.2. 

2. Negative results 

In this section we prove that Player II does not have a winning strategy 
depending only on his pile P, (according to [I] this result seems to have been 
firat proved by Martin Fiirer) and that the situation does not change when 
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we also allow Player II to remember how many movee have been made in 
the game (a result which was also proved by R. McKenzie). 

We start with the following definitions. 
Let Fin (X) be the collection of finite non-empty subsets of X. For a 

function f: Fin (X) -+ X such that f(P) E P and an a E X let 

f-w = (z E x\ {a}: f({a, x}) = + * 
LEMMA 2.1. The set F = {a < X: f<(a) is a finite set} is at most countable. 

L 

PROOF. By way of contradiction assume that F is uncountable, and le’ 
F’ c F be countably infinite. Put F” = F’ U U (f<(a): a c F’}. The set 
F” is countable; choose z E P\P”. But then 2 cf f’(a) for all a E F’, i.e., 
F’ c f<(z). Thus the set j<(z) is not finite contradicting the definition of F. 

THEOREM 2.1. There do@ not exist a function f(P,, n) = x,, E P, giving 
a winning strategy for Player II. 

PROOF. Let f be a function defined for all pairs (P, n) where P E Fin (X) 
and n 2 0 such that f(P, n) E P. It is enough to show that there exists a game 
x,, 50’ Xl, $1, - * * played according to f (i.e., with So = g (P,, n) for all n) 
such that A\B #Go. 

Define f,: Fin (X) 4 X by f,(P) = f(P, n). Then, by Lemma 2.1, the 
sets F,, = {a E X: f>(a) is a finite set} are at most countable. 

Choose y E X \ G F,,. So the sets Y, = f:(y) are infinite. 

Let us define nTI = {y, yo) where y. E Y, and, for n > 0, X, = (yn} 
where y,, E Y,\ {zo, . . . , q,+}. It is easy to see that P,, = {y, y,} and zn = 
= f,(P,J = y,,. Hence A\ B = (y} f fl. 

3. Without the Axiom of Choice 

In Theorem 1.1 and 1.2 we used the Axiom of Choice to well order X. 
can these results be proved without the Axiom of Choice? We give a negative. 
answer in the case X = R. This follows from the next theorem, by invoking 
the consistency ([S], [4]) of 28 + DC + “Every subset of R has the Bake 
Property”, ( w h ere DC stands for the Axiom of Dependent Choice) relative 
to the consietency of ZF. 

THEOREM 3.1. (ZF + DC + “Every subset of R has the Bake Property”) 
Player II does not have a winning &utegy. 
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PROOF. Let us assume that Player II plays according to some strategy 
f(P, B) E P where P + 0 and B are finite disjoint subsets of R. We will find 
a sequence a, zO, zl, x,, 2$, . . . of different real numbers such that f( { a, z,,} ,0) = 
= x0, f({a, xl}, {x0}) = xl, and, in general, f({a, qJ, {x0, x1, . . . , x,&) = xn. 
This means that the game (X,, 5, X1, zl, X,, zzS, . . .) = ({a, x0}, s+,, {zr) , s,, 

{x2>, x2, * - .) is played according to the strategy f, however Player I wins 
as A \ B = {a} f 0. This will show that Player II does not have a winning 
strategy. 

We will need the following lemma. 

LEEWA 3.1. Let T = {x0, xl, . . . , x,,:,-~} c R and let ua define 
f&t, 4 = f({y, x}, (x0, xl, . . . , cc,-,}) f (y, z) for all y, x E R\ T. Then there 
aiete a first category set M an& a ww-&ble subset B of R such that 
if 0, = {YE R\T: y fx & fT(y,z) =x} then 

(1) R\M c U {U,: x E B}, 
(2) U,\M is non-empty and open in R\M for every x from B. 

PROOF. Let M, = {x: x E R\T $ U, is of first category}. As R\N, is a 
separable metric space there exists a countable subset B of R\T such that 
the set J& = (R\M,,)\U {U,: x E B} is of first category. Let M, be a set of 
first category such that l.J,\M, is open in R\Mz for every x from B. Put 
M = M,, U Ml U Mz. Obviously M and B satisfy (1) and (2). Thus it is enough 
to show that M, is of first category. 

By way of contradiction, assume that there exists a non-empty interval 
I such that I\ MO is of first category. We may also assume that 1 and T me 
disjoint. 

Define a function P: I2 +{O, 1) by 

F(y, 5) = 0 if and only if f&, x) < max {y, x}. 

This function has the Baire property, so there exists a comeager set C c I2 
such that the restriction of F to C is continuous. Without loss of generality 
we can also assume that Cc (I fl MO)2 and, by the Kuratowski-Ulam theorem 
(see [3] or [2 J p. 246), that every section of C is corneager in 1. 

Choose (yO, x,,) from C such that y0 # x0. By symmetry we may assume 
that f,(y,, x,,) = x0. Then the set Ux, contains 

{Y: Fly, ~0) = WY 0, x,1) = {Y: (Y, ~0) E F-l(F(yo, x,1)) 

which is an open section of C given by z,,. Thus Uxo is of second c&,egory 
contradicting the fact that x0 E MO. 

This finishes the proof of the Lemma. 
Now we are ready to construct a sequence a, x0, x1, x2, . . . as described 

above. 
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Let us define for every finite sequence s of natural numbers a real number 
b, and a set B, of second category in R by induction on the length k of S. 

For a given sequence s of length k let 5?‘(s) = {bS,,: 1 < m < k}. We 
define {b,.,: n E N} as an enumeration, possibly with repetitions, of the 
set B from Lemma 3.1 used for T = T(s). 

Put 

%, = Be n ub,*m = B, n {Y E R\Tk%: Y f b, $ fT(san)(Y5 bsAn) = %-n). 

It is easy to see that for every II: the set lJ {B,: s has length k} is comea- 
ger. Thus choose a 6 n {lJ {B,: s has length n}: n E N}. This means that for 
every n there exists s, of length n such that a E B,, i.e., a E (7 {B,: n 6 N}. 
Put zn = b,. By our construction if s = S’ are sequences of the same length 
then B,.n B,, = 0 implies that b, = b,. Hence T(s,): {x0, x1, . . . , xnV1} and 
f({e zn}, {% 21, * * * 3 x,-~}) = fTCS,,) (a, 5,) = z,, as desired. 

Note that the proof of Theorem 3.1 gives the stronger statement that, 
assuming DC + “Every subset of R has the Baire Property”, Player II does 
not have a winning strategy f(P, (z,,, zl, . . . , CZ~-~)) E P depending of his pile 
and the sequence of his previous moves. 
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