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Abstract
Consider the setRR of all functions fromR toR as a vector space overR. A family G ⊂ R

R is
κ-lineable provided there exists a κ-dimensional linear subspace of R

R contained in G ∪{0}.
The goal of this work is to show 2c-lineability of all non-empty classes of functions in the
algebra A(D) of Darboux-like maps that are contained in the family D\Conn of Darboux
functions that have disconnected graphs. The arguments for these classes stand apart from
the proofs of 2c-lineability of other classes in the algebraA(D): the proofs we present below
are considerably more delicate and heavily rely on the existence of algebraically independent
subsets of R having different structures. The presented results generalize recently published
proof of 2c-lineability of the class D\Conn.

Keywords Lineability · Darboux-like maps · Algebraically independent sets

Mathematics Subject Classification 46B87 · 26A15 · 12F20 · 54C08 · 15A03

1 Introduction

The theory of lineability of different subfamilies of vector spaces has become a noticeable
trend in mathematical research of early 21st century, as can be seen in a 2014 survey [7], a
2016 monograph [6], and the literature cited therein. A more recent work in this direction
includes [5, 8, 19]. The roots of this subject can be traced to a 1966 paper [23] of Vladimir
Gurariı̆ where it is shown that the set of continuous nowhere differentiable functions on [0, 1],
together with the constant 0 function, contains an infinite dimensional vector space, that is, it
isω-lineable. Of course, for the families G ⊂ R

R the best possible κ-lineability is for κ = 2c,
the dimension of R

R.
The term Darboux-like functions refers to several classes of generalized continuous maps

and their study goes back at least to 1875 paper [20] of Jean-Gaston Darboux who first
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systematically investigated functions from R to R that have the intermediate value property,
that is, thatmap every connected subset ofR (i.e., an interval) onto a connected set. Nowadays
we refer to such maps as Darboux functions and the class of all such functions is denoted by
a symbolD. Another family of functions that are among Darboux-like is that of connectivity
functions Conn, that is, maps whose graphs are connected subsets of R

2. This notion can be
traced to a 1956 problem [28] stated by John Forbes Nash. (See also 1950s papers [25, 30].)
It is easy to see that Conn ⊂ D.

The other three classes of Darboux-like maps that we will investigate here are defined as
follows.

PR of all functions f ∈ R
R with perfect road, that is, such that for every x ∈ R there

exists a perfect P ⊂ R having x as a bilateral limit point (i.e., with x being a limit
point of (−∞, x) ∩ P and of (x,∞) ∩ P) such that f � P is continuous at x . This
class was introduced in a 1936 paper [27] of Isaie Maximoff, where he proved that
D ∩ B1 = PR∩B1, where B1 is the class of Baire class 1 functions.

CIVP of all functions f ∈ R
R with Cantor Intermediate Value Property, that is, such that

for all p, q ∈ R with f (p) < f (q) and for every perfect set K ⊂ ( f (p), f (q))

there exists a perfect set P between p and q such that f [P] ⊂ K . This class was
first introduced in a 1982 paper [22] of Richard G. Gibson and Fred William Roush.

SCIVP of all functions f ∈ R
R with StrongCantor Intermediate Value Property, that is, such

that for all p, q ∈ R with f (p) < f (q) and for every perfect K ⊂ ( f (p), f (q))

there exists a perfect set P between p and q such that f [P] ⊂ K and f � P
is continuous. This notion was introduced in a 1992 paper [29] of Harvey Rosen,
R. Gibson, and F. Roush.

Clearly SCIVP ⊂ CIVP ⊂ PR.
Beside these five classes, usually the following three classes of functions, not studied in

this article, are listed as Darboux-like: PC of peripherally continuous functions, AC of almost
continuous functions (in the sense of Stallings), and Ext of extendable functions. All eight
of these classes, that is, the elements of D = {Ext,AC,Conn,D,PC,SCIVP,CIVP,PR},
were extensively studied in the late 20th century, see surveys [9, 14, 21] and the literature
cited therein. In particular, it is known that Ext � AC � Conn � D � PC, Ext � SCIVP �

CIVP � PR � PC, and that these are all inclusions among these classes. In particular, the
algebra A(D) of subsets of PC ⊂ R

R generated by these eight classes has 17 non-empty
minimal subclasses (atoms), four of which are the subject of our study: the intersection of
D\Conn with the classes R

R\PR, PR \CIVP, CIVP \ SCIVP, and SCIVP. More precisely,
using notation ¬G := R

R\G for G ∈ D, the four classes in A(D) we are interested in can be
written as

D ∩ ¬Conn ∩ ¬PR D ∩ SCIVP ∩ ¬Conn
D ∩ PR ∩ ¬Conn ∩ ¬CIVP D ∩ CIVP ∩ ¬Conn ∩ ¬SCIVP

(1)

The systematic study of the properties of the atoms in A(D) was initiated in the recent
paper [16], though its traces can be found earlier, see e.g. [18] or [17]. The lineabilities of
the classes in D have been previously studied—they are all maximally—(i.e., 2c-) lineable,
see [7, 13]. The systematic study of the lineabilities of the atoms of A(D) is the subject of
a Ph.D. dissertation of the first author, written under the supervision of the second author,
and this paper constitutes the final part of this project. (Though, some unanswered questions
remain.) The lineabilities of the other atoms of A(D) are discussed in the papers [1, 2, 4].
(Compare also [3].) The summary of all these results can be found in [1].
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2 Preliminaries

Our terminology is standard and follows [10]. In particular, the symbolsQ andR stand for the
sets of all rational and all real numbers, respectively. We consider only real-valued functions
of one real variable. No distinction is made between a function and its graph. The cardinality
of a set X is denoted by |X | and the symbol c denotes |R|. For an A ⊂ R we use symbol χ A

to denote the characteristic function of A.
For an f ∈ R

R its support is defined as

supp( f ) := {x ∈ R : f (x) �= 0}.
Note that we do not take the closure of the set above. Also, for G ⊂ R and a family F ⊂ R

R

we define

supp(F) :=
⋃

f ∈F
supp( f ) and F � G := { f · χG : f ∈ F}.

For an A ⊂ R the symbol Q(A) denotes the subfield of R generated by A, that is, Q(A) is
the intersection of all subfields of R that contain A. By Q̄(A)we denote the algebraic closure
of Q(A) in R, that is, Q̄(A) is the set of x ∈ R that are algebraic over Q(A). We say that
an S ⊂ R is: algebraically independent when it is algebraically independent over Q; it is
a transcendental basis provided it is a maximal algebraically independent subset of R. For
every algebraically independent set S ⊂ R there exists a transcendental basis T with S ⊂ T ,
see e.g. [24]. If T is transcendental basis, then every x ∈ R is algebraic over Q(T ), that is
Q̄(T ) = R.

For an A ⊂ R, a transcendence degree of R over Q̄(A) is the cardinality of any transcen-
dental basis of R over Q̄(A). Notice that if S ⊂ R is algebraically independent such that
Q̄(S) = Q̄(A) and T ⊃ S is a transcendental basis, then the transcendence degree of R over
Q̄(A) equals the cardinality of the set T \S.

For a Polish space X (we will use this notion only for only X = R and X = 2ω) we say
that B ⊂ X is a Bernstein set (in X ) provided both B and X\B intersect every perfect subset
of X .

2.1 Canonical linear spaceWF

For a family F ⊆ R
R of functions having pairwise disjoint supports let

VF :=
⎧
⎨

⎩
∑

f ∈F
s( f ) · f : s ∈ {0, 1}F

⎫
⎬

⎭ =
⎧
⎨

⎩
∑

g∈G
g : G ⊂ F

⎫
⎬

⎭

and notice that VF ⊂ R
R by the disjoint support assumption. The spaceWF is defined as the

linear subspace of R
R over R spanned by VF . The spaceWF was first used in [11]; however,

it is closely related to a bigger natural vector space LF :=
{∑

f ∈F s( f ) · f : s ∈ R
F

}

considered in [2] as well as in the earlier papers cited therein. All linear spaces we use in this
paper to justify 2c-lineability are in the form WF .

Notice that if F is infinite, then WF has dimension 2|F |. This is obvious when 2|F | >

|R| = c, the only case we are interested in this paper, while a simple argument for this in the
case when 2|F | = c can be found in [2]. In particular, the following remark is obvious.

Remark 2.1 If |F | = c, then WF has dimension 2c.
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Notice also the following simple fact.

Remark 2.2 Let F ⊆ R
R be a family of functions having pairwise disjoint supports. If

g ∈ WF , then there is a finite set Ag ⊂ R such that

• for every f ∈ F there exists an a f ∈ Q(Ag) so that g = a f · f on supp( f ).

Proof Let g = ∑
i<n aiϕi ∈ WF with ϕi = ∑

f ∈F si ( f ) f ∈ VF for every i < n. Then,
Ag := {ai : i < n} is as needed. Indeed, for every f ∈ F and x ∈ supp( f ) we have

g(x) =
∑

i<n

aiϕi (x) =
∑

i<n

ai s
i ( f ) f (x) = a f f (x),

where a f := ∑
i<n ai s

i ( f ) ∈ Q(Ag). 
�

2.2 Subclases ES and PES ofD

Consider also the following classes of Darboux functions studied in the lineability context,1

(see e.g. [6, 12, 13]):

ES of all everywhere surjective functions f ∈ R
R, that is, such that f [(a, b)] = R for all

a < b or, equivalently, such that f −1(r) is dense in R for every r ∈ R;
PES of all perfectly everywhere surjective functions f ∈ R

R, that is, such that for every
perfect P ⊂ R we have f [P] = R or, equivalently, f −1(r) ∩ P �= ∅ for every r ∈ R.

Clearly PES � ES � D. It is also easy to see that PES ⊂ ¬PR.
All non-zero functions in R

R we will consider in this paper will have dense graphs. In
particular, the following simple remark will be useful for us.

Remark 2.3 If f ∈ R
R has a dense graph in R

2, then f ∈ D if, and only if, f ∈ ES.

2.3 FamiliesH for whichWH ensures lineability of the classes inD

Proposition 2.4 LetF,H ⊂ R
R be families of functions with pairwise disjoint supports such

that all maps in F have graphs dense in R
2. Assume that B ⊂ R is such that supp(F) ⊂ B

and that F � B = H � B.

(i) The graph of every non-zero g ∈ WH is dense in R
2.

(ii) If F ⊂ CIVP, then WH ⊂ CIVP.
(iii) If F ⊂ SCIVP, then WH ⊂ SCIVP.
(iv) If F ⊂ D and B\ supp(F) is dense in R, then WH ⊂ ES∪{0}.
(v) IfF ⊂ PES and B\ supp(F) intersects every perfect subset ofR, then WH ⊂ PES∪{0}.
Proof Choose a non-zero g ∈ WH. By Remark 2.2, there exists an h ∈ H and non-zero
c ∈ R such that g = c · h on supp(h). By our assumption, there exists an f ∈ F such that
f � B = h � B. In particular, g = c · f on supp( f ).
To see (i) notice that f � supp( f ), as well as its multiplication by c, has graph dense in

R
2.
To see (ii) notice that the assumption that f ∈ CIVP implies that c · f ∈ CIVP and in

the definition of the class CIVP we can restrict our attention to perfect sets K ⊂ R\{0}
1 The class ES was studied earlier by the second author under the name strongly Darboux maps see e.g. [10]
[sec 7.2]. Compare also [15].
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in which case the condition c · f [P] ⊂ K is achieved only for P ⊂ supp( f ), so that
g[P] = c · f [P] ⊂ K , as needed. The argument for (iii) is essentially the same.

To see (iv) first notice that, by Remark 2.3, F ⊂ ES. In particular, for every r ∈ R\{0}
we have g−1(r) ⊃ (c · f )−1(r) and this last set is dense, since c · f ∈ ES. Finally, g−1(0)
is dense, since it contains B\ supp(F). The argument for (v) is essentially the same. 
�

Notice that, in particular, all non-zero functions in the considered spaces WF (which will
have dense graphs) will be in ES .

2.4 FamiliesH for whichWH ensures lineability of¬ Conn

Let id� ∈ R
R be defined as id�(x) = x for x �= 0 and id�(0) = 1. Notice that this ensures

that the function 1/ id� is well defined at all points, including x = 0.
The following lemma is extracted from the proof of [11,theorem 2.1].

Lemma 2.5 LetH ⊂ R
R be a family of functions with pairwise disjoint supports and graphs

dense in R
2. If (g/ id�)[R] �= R for every g ∈ WH, then WH ⊂ ¬Conn∪{0}.

Proof Let g ∈ WH be non-zero. Then, by Proposition 2.4(i), g has a dense graph. To see that
g ∈ ¬Conn choose an a ∈ R\(g/ id�)[R]. This means that (g/ id�)(x) �= a for every x ∈ R.
In particular, g(x) �= a id�(x) = ax for every x �= 0. Since g has a dense graph, there exist
q > p > 0 such that g(p) > ap and g(q) < aq . But this implies that the three-segment set
({p} × (−∞, ap]) ∪ {(x, ax) : x ∈ [p, q]} ∪ ({q} × [aq,∞)) separates the graph of g. So,
indeed g ∈ ¬Conn. 
�

In Lemma 2.5 we assume that no function in (1/ id�) ·WH is surjective. But how to ensure
this together with the needed property that WH ⊂ ES∪{0}? To see this first notice that
(1/ id�) · WH = WG where G = (1/ id�) · H. To ensure that no function in WG is surjective
for such G, we will use the following simple lemma extracted from [11].

Lemma 2.6 Let S0 ⊂ R be such that R has infinite transcendence degree over Q̄(S0). If
G ⊂ Q(S0)R is a family of functions with pairwise disjoint supports, then no function in WG
is surjective.

Proof Let S be a transcendental basis of Q̄(S0) (overQ) and T be a transcendental basis with
S ⊂ T . Fix a g ∈ WG and choose a finite Sg ⊂ T such that Ag ⊂ Q(Sg), where Ag as in the
Remark 2.2. Then, the range of g is contained in Q̄(Sg ∪ S), while Q̄(Sg ∪ S) �= Q̄(T ) = R

by our assumption that R has infinite transcendence degree over Q̄(S0) = Q̄(S). So, indeed
g is not surjective. 
�

Notice that the conclusion of Lemma 2.6 does not hold if in its statement we replace space
WG with LG . This is the main reason we work here with the spacesWF rather than with LG .

2.5 FamiliesHwithWH ensuring lineability of ES∩¬ Conn

2c-lineability of ES is established via well known and perhaps the easiest construction pre-
sented in this paper. Specifically, for a family� := {Dr

ξ : r ∈ R& ξ < c} of pairwise disjoint
dense subsets of R define the functions

(ϕ) ϕξ := ∑
r∈R r · χDr

ξ
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and let F(ϕ) := {ϕξ : ξ < c}.
Clearly functions in F(ϕ) are ES and have pairwise disjoint supports. So, WF(ϕ) is well

defined. To ensure that WF(ϕ) is contained in ¬Conn∪{0} we will consider the sets Dr
ξ of

the form id�(r) · Srξ for some dense sets Srξ ⊂ R.

Proposition 2.7 Let S = {Srξ ⊂ R\{0} : r ∈ R & ξ < c} be a family of dense sets and put
S := ⋃S. For r ∈ R and ξ < c let Dr

ξ := id�(r) · Srξ . Then every function ϕξ is ES and
ϕξ/ id� has range contained in Q(S). In particular, if R has infinite transcendence degree
over Q̄(S), the sets in

� := {id�(r) · Srξ : r ∈ R & ξ < c} (2)

are pairwise disjoint, and F(ϕ) := {ϕξ : ξ < c}, then the space WF(ϕ) is well defined and
WF(ϕ) justifies 2c-lineability of ES \Conn.

Proof Clearly ϕξ ∈ ES, since each set Dr
ξ is dense. To see (ϕξ / id�)[R] ⊂ Q(S) notice that

(ϕξ / id�)[R] = {0} ∪
⋃

r∈R\{0}

r · χDr
ξ

id�

[R] = {0} ∪
⋃

r∈R\{0}

{
r

id�(x)
: x ∈ Dr

ξ

}

= {0} ∪
⋃

r∈R\{0}

{
r

id�(id�(r)x)
: x ∈ Srξ

}
= {0} ∪

⋃

r∈R\{0}

{
1

x
: x ∈ Srξ

}
.

So, the first part is proved.
To see the second part, notice that the familyWF(ϕ) iswell defined and that, byRemark 2.1,

it has dimension 2c. The fact that WF(ϕ) ⊂ ES∪{0} is justified by Proposition 2.4(iv) (used
with B = R and H = F(ϕ)) while WF(ϕ) ⊂ ¬Conn∪{0} from Lemmas 2.6 and 2.5. 
�

To successfully use Proposition 2.7 to show 2c-lineability of ES \Conn we still need to
find the families S satisfying its assumptions. This is a relatively easy task if we ignore
the requirement that the sets in the family � from (2) need to be pairwise disjoint. In fact,
such a family with considerably stronger properties (including c-density of each set Srξ )
is constructed in Lemma 4.1. The refining of such family to one ensuring also pairwise
disjointness of the sets in � can then be found using the following result.

Lemma 2.8 LetS be a family of pairwise disjoint sets such that
⋃S is algebraically indepen-

dent and for every S ∈ S let rS ∈ R\{0}. Then for every S ∈ S there exists a set NS ⊂ ⋃S of
cardinality less than c such that the sets in � := {rS · (S\NS) : S ∈ S} are pairwise disjoint.
Moreover, if rS ∈ Q, then NS = ∅.

Proof The proof of this lemma is implicitly included in the proof of [11,theorem 2.1].
(See (a) and (b) in that proof.) Specifically, if T = {tξ : ξ < c} is a transcendental basis
extending

⋃S and ηS < c is the smallest such that rS ∈ Q̄({tξ : ξ < ηS}), then the sets
NS := Q̄({tξ : ξ < ηS}) ∩ ⋃S are as needed. For more details see [11]. 
�

3 2c-lineability of ES∩¬Conn∩¬PR and of ES∩¬Conn∩ SCIVP

We start with examining the two classes from the top row of (1).
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3.1 The class ES∩¬ Conn∩¬ PR

The 2c-lineability of this class is an easy corollary of the main result from [11].

Theorem 3.1 There exists a family F ⊂ R
R of c-many maps with pairwise disjoint supports

such that WF ⊂ (PES∩¬Conn) ∪ {0}. In particular, ES∩¬Conn∩¬PR is 2c-lineabile.

Proof The existence of anF satisfying the first part of the theoremwas proved in [11,theorem
2.1]. (See also Subsection 3.3.) To finish the proof just recall that PES ⊂ ¬PR. 
�

3.2 The class ES∩¬ Conn∩ SCIVP

In the proof of 2c-lineability of this class we will use the following well known fact, where
B = {(p, q) : p < q & p, q ∈ Q} is the standard countable basis for R.

Lemma 3.2 There exists a family M0 = {P I ⊂ I : I ∈ B} of pairwise disjoint perfect
sets such that

⋃M0 is algebraically independent and the transcendence degree of R over
Q̄(

⋃M0) is c.

Proof Let K ⊂ R be an algebraically independent compact perfect set, see [31] or [26].
Choose a family {K I ⊂ K : I ∈ B} of pairwise disjoint perfect sets such that the set
K\⋃

I∈B K I has cardinality c. For every I ∈ B choose non-zero pI , qI ∈ Q such that the
set P I := pI + qI K I is contained in I . Then M0 := {P I ⊂ I : I ∈ B} is as needed. 
�

Next, let M0 = {P I ⊂ I : I ∈ B} be as in Lemma 3.2. For every I ∈ B let
{P I ,r

ξ ⊂ P I : ξ < c & r ∈ R} be a family of pairwise disjoint perfect sets and put

S := ⋃
I∈B{P I ,r

ξ ⊂ P I : ξ < c & r ∈ R}. Applying Lemma 2.8 to S and numbers

rS = id�(r) for S = P I ,r
ξ we can decrease each P I ,r

ξ , if necessary, to a perfect set such that

the sets in the family {id�(r) · P I ,r
ξ : r ∈ R & ξ < c& I ∈ B} are pairwise disjoint. For every

ξ < c and r ∈ R put Srξ := ⋃
I∈B P I ,r

ξ and Dr
ξ := id�(r) · Srξ .

Let F(ϕ) := {ϕξ : ξ < c}, where the functions ϕξ are defined as in (ϕ), that is, ϕξ :=∑
r∈R r · χDr

ξ
for the sets Dr

ξ as above.

Theorem 3.3 If F(ϕ) is defined as above, then WF(ϕ) justifies 2c-lineability of ES∩
¬Conn∩SCIVP.

Proof WF(ϕ) has dimension 2c by Remark 2.1. Also, each ϕξ ∈ F(ϕ) is in SCIVP. Indeed,
every set Srξ contains a perfect subset of every I ∈ B (namely P I ,r

ξ ), so the same is true for
each set Dr

ξ = id�(r) · Srξ . In particular, for every I ∈ B and perfect K ⊂ R there exists
a perfect P ⊂ I such that ϕξ � P is constant (so continuous) with value r ∈ K , proving
that indeed ϕξ ∈ SCIVP. Therefore, F(ϕ) ⊂ SCIVP, so by Proposition 2.4(iii) used with
B := R and H = F(ϕ), WF(ϕ) justifies 2c-lineability of SCIVP.

Finally, notice that S = {Srξ ⊂ R : r ∈ R & ξ < c} and � := {id�(r) · Srξ : r ∈
R& ξ < c} satisfy the assumptions of Proposition 2.7. HenceWF(ϕ) justifies 2c-lineability of
ES \Conn. 
�

The consistency of the 2c-lineability of ES∩¬Conn∩SCIVP can be also deduced from
the theorem proved in [4] that this class is c+-lineabile if c is a regular cardinal. Thus,
Theorem 3.3 can be viewed as a generalization of the result from [4].
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3.3 Proof of 2c-lineability of PES∩¬ Conn

It is worth to notice that the developed machinery, which we used to prove the previous
theorem, gives also a direct proof of Theorem 3.1.

To see this, let T be an algebraically independent set intersecting every perfect set
(i.e., T is a Bernstein set).2 Let {Srξ ⊂ T : ξ < c & r ∈ R} be a family of pairwise
disjoint Bernstein sets. Applying Lemma 2.8 we can ensure that the sets in the family
� := {id�(r) · Srξ : r ∈ R & ξ < c} are pairwise disjoint. Let F(ϕ) := {ϕξ : ξ < c},
where functions ϕξ are defined as in (ϕ), that is, ϕξ := ∑

r∈R r · χDr
ξ
for the sets Dr

ξ as
above. Then the family WF(ϕ) justifies 2c-lineability of PES∩¬Conn.

Indeed the argument used in the proof of Theorem 3.3 immediately implies that WF(ϕ)

justifies 2c-lineability of ¬Conn. Also, the fact that all sets Srξ and Dr
ξ = id�(r) · Srξ are

Bernstein, ensures that F(ϕ) ⊂ PES. So, by Proposition 2.4(v) used with B = R and
H = F , WF(ϕ) ⊂ PES∪{0}, as needed.

4 Lineability of ES∩¬Conn∩PR∩¬CIVP and
ES∩¬Conn∩CIVP∩¬ SCIVP

The following lemma will be used to establish 2c-lineability of both of these classes.

Lemma 4.1 Let M0 = {P I ⊂ I : I ∈ B} be a family of pairwise disjoint per-
fect sets as in Lemma 3.2, that is, such that

⋃M0 is algebraically independent
and the transcendence degree of R over Q̄(

⋃M0) is c. Then there exist a family
S0 = {Sr ⊂ R\ ⋃M0 : r ∈ R} of pairwise disjoint c-dense sets and a set Z ⊂ R\Q(

⋃S0)
such that

(i)
⋃

(M0 ∪ S0) is algebraically independent;
(ii)

⋃{id�(r) · Sr : r ∈ R} contains no perfect set;
(iii) Z intersects every perfect set and Z ∪ ⋃S0 is algebraically independent.

Proof Let 〈〈rξ , Jξ 〉 : ξ < c〉 be an enumeration of R × B with c-many repetitions and let
{Pξ : ξ < c} be an enumeration of all perfect subsets of R. By induction on ξ < c choose a
sequence 〈〈xξ , yξ , zξ 〉 : ξ < c〉 so that
(Aξ ) xξ ∈ Jξ\Q̄(

⋃M0 ∪ {xζ : ζ < ξ} ∪ {yζ / id�(rξ ) : ζ < ξ} ∪ {zζ : ζ < ξ});
(Cξ ) yξ ∈ Pξ\{id�(rζ ) · xζ : ζ ≤ ξ};
(Zξ ) zξ ∈ Pξ\Q̄({xζ : ζ ≤ ξ} ∪ {zζ : ζ < ξ}).
Such xξ can be chosen, as otherwise the transcendence degree of R over Q̄(

⋃M0) would
be less than c.

For each r ∈ R define Sr := {xξ : ξ < c & rξ = r} and let Z = {zξ : ξ < c}. We claim
that these definitions ensure that S0 = {Sr : r ∈ R} and Z are as needed.

Indeed, clearly the sets in S0 are pairwise disjoint and c-dense, since the sequence
〈xξ : ξ < c〉 is one-to-one and each pair 〈r , J 〉 ∈ R × B appears in the sequence
〈〈rξ , Jξ 〉 : ξ < c〉 c-many times. Also

⋃S0 = {xξ : ξ < c} is contained in R\Q̄(
⋃M0). So,

(Aξ ) ensures (i).

2 If {Pξ : ξ < c} is a list of all perfect subsets of R and tξ ∈ Pξ \Q̄({tζ : ζ < ξ}) for every ξ < c, then
T := {tξ : ξ < c} is as needed: it cannot contain any perfect P ⊂ R, since then, for any p ∈ P , T would be
disjoint from perfect p + P .
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To show (ii), for a perfect set P ⊂ R choose a ξ < c such that Pξ = P and notice
that yξ ∈ Pξ = P does not belong to

⋃{id�(r) · Sr : r ∈ R} = {id�(rζ ) · xζ : ζ < c}:
yξ /∈ {id�(rζ ) · xζ : ζ ≤ ξ} is ensured by (Cξ ), while yξ /∈ {id�(rζ ) · xζ : ξ < ζ } by the
conditions (Aζ ) with ζ > ξ .

Finally, the first part of (iii)—the fact that Z intersects every perfect set—is ensured
by (Zξ ), while its second part—an algebraic independence of the set Z ∪ ⋃S0 =
{zξ : ξ < c} ∪ {xξ : ξ < c}—by the choice as in (Aξ ) and (Zξ ). 
�

In what follows M0 = {P I ⊂ I : I ∈ B}, S0 = {Sr ⊂ R\ ⋃M0 : r ∈ R}, and Z
are always as in Lemma 4.1. Removing from each set Sr one number, if necessary, we can
assume that

(A) the transcendence degree of R over both Q̄(
⋃

(M0 ∪ S0)) and Q̄(Z ∪ ⋃S0) is c.
Notice that

(B) M := ⋃M0 is a meager Fσ -set and that
⋃S0 is contained in Mc := R\M .

For every r ∈ R let {Srξ ⊂ Sr : ξ < c} be a family of pairwise disjoint c-dense sets.
Since

⋃
(M0 ∪ S0) is algebraically independent, we can apply Lemma 2.8 to the fam-

ily S := {Srξ : r ∈ R & ξ < c} ∪ {M} and numbers rS = id�(r) for S = Srξ and
rM = 1 to slightly decrease sets Srξ , if necessary, to ensure that the sets in the family
� := {id�(r) · Srξ : r ∈ R & ξ < c} ∪ {M} are pairwise disjoint. In summary

(C) the sets in {Srξ ⊂ ⋃S0 : r ∈ R & ξ < c} are c-dense, pairwise disjoint, and the sets in
� := {id�(r) · Srξ : r ∈ R & ξ < c} ∪ {M} are pairwise disjoint.

(D) Let F(ϕ) := {ϕξ : ξ < c}, where functions ϕξ := ∑
r∈R r · χDr

ξ
are as in (ϕ) with

Dr
ξ := id�(r) · Srξ for the sets Srξ as in (C).

The following fact will be used in the proofs of our two remaining theorems.

Proposition 4.2 If F(ϕ) is as in (D) and functions in H ⊂ R
R having pairwise disjoint

supports are such that H � Mc = F(ϕ) � Mc, then WH ⊂ ES∪{0}.
Proof Our definition of F(ϕ) ensures that F(ϕ) ⊂ ES. Also, supp(F(ϕ)) ⊂ Mc and
Mc\ supp(F(ϕ)) is dense inR, since it contains dense sets S0ξ . So, Proposition 2.4(iv) implies
that WH ⊂ ES∪{0}. 
�

4.1 2c-lineability of ES∩¬ Conn∩ PR∩¬ CIVP

For every I ∈ B choose a family {P I ,q
ξ ⊂ P I : ξ < c & q ∈ Q} of pairwise disjoint perfect

sets and for every ξ < c define

γξ :=
∑

〈I ,q〉∈B×Q

q χ
P I ,q

ξ

and hξ = ϕξ + γξ , (3)

where maps ϕξ are from the family F(ϕ) := {ϕξ : ξ < c} from Proposition 4.2. Clearly the
supports of maps in the family H := {hξ : ξ < c} are pairwise disjoint as functions in F(ϕ)

have disjoint supports contained in Mc, while the maps in {γξ : ξ < c} have disjoint supports
contained in M .

Theorem 4.3 If H := {hξ : ξ < c} for the functions hξ from (3), then WH justifies 2c-
lineability of ES∩¬Conn∩PR∩¬CIVP.
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Proof WH has dimension 2c by Remark 2.1. The inclusion WH ⊂ ES∪{0} is ensured by
Proposition 4.2, since H � Mc = F(ϕ) � Mc.

To see that WH ⊂ ¬Conn∪{0} notice that for every ξ < c

(γξ / id�)[R] ⊂
{q
r

: q ∈ Q & r ∈
⋃

M0

}
⊂ Q(

⋃
M0)

and, by (D) andProposition2.7, (ϕξ / id�)[R] ⊂ Q(
⋃S0). Therefore,wehave (hξ / id�)[R] ⊂

(ϕξ / id�)[R]∪(γξ / id�)[R] ⊂ Q(
⋃

(M0∪S0)). Thus, by (A) andLemmas 2.5 and 2.6, indeed
WH ⊂ ¬Conn∪{0}.

Next notice that every non-zero g ∈ WH is in PR. This argument is a variation of one
used in [1,fact 2.9]. Indeed, by Remark 2.2, there exists a ξ < c and non-zero c ∈ R such that
g = c · hξ on supp(hξ ). In particular, for every x ∈ R choose a sequence 〈qn ∈ Q : n ∈ N〉
converging to g(x)/c and disjoint intervals In = (an, bn) ∈ B so that a2n ↗n x and
a2n+1 ↘n x . Then P := {x} ∪ ⋃

n∈N P In ,qn
ξ is perfect having x as a bilateral limit point and

g � P is continuous at x , since

lim
p→x,p∈P

g(p) = lim
p→x,p∈P

c · hξ (p) = lim
n→∞ c · qn = g(x).

So, indeed g ∈ PR.
To finish the proof, it is enough to show that WH ⊂ ¬CIVP∪{0}. So, choose a non-zero

g ∈ WH. By Remark 2.2, there exists a finite set A ⊂ R such that

g ⊂
⋃

a∈Q(A)

⋃

ξ<c

a · hξ . (4)

Choose a perfect K ⊂ R\Q(A). Since the graph of g is dense it is enough to show that
g[P] �⊂ K for every perfect P ⊂ R. By way of contradiction, assume that g[P] ⊂ K for
some perfect P ⊂ R. Since M is Borel, we can assume that either P ⊂ M or P ⊂ Mc.

However, if P ⊂ M , then hξ [P] = γξ [P] ⊂ Q. So, by (4) and the fact that our definition
ensures γξ [R] ⊂ Q, we have g[P] ⊂ ⋃

a∈Q(A)

⋃
ξ<c a ·γξ [P] ⊂ Q(A) ⊂ Kc, contradicting

our assumption that g[P] ⊂ K .
This would mean that P ⊂ Mc. But this is also impossible, since the fact that⋃{id�(r) · Sr : r ∈ R} contains no perfect set (ensured by part (ii) of Lemma 4.1) implies

that there exists an x ∈ P\ supp(H) so that 0 = g(x) ∈ g[P], while 0 /∈ K , a contradiction.

�

4.2 2c-lineability of ES∩¬ Conn∩ CIVP∩¬ SCIVP

Although there is a considerable similarity of the argument in this case to the previous one,
we need to choose the family {P I ,q

ξ ⊂ P I : ξ < c & q ∈ Q} with considerable more care.
For this we will use the following lemma, a slight modification of [1,Lemma 2.12]. Let P be
the family of all perfect subsets of R.

Lemma 4.4 For every P I ∈ P there is a family P I of continuum many pairwise disjoint
perfect subsets of P I such that if P ∈ P is contained in

⋃P I , then there is a P̂ ∈ P I such
that P ∩ P̂ is uncountable.

Proof Choosing a subset, if necessary, we can assume that P I is homeomorphic to 2ω. Let
B be a Bernstein subset of 2ω and hI : 2ω × 2ω → P I be an embedding. Then the family
P I := {hI [{b}× 2ω] : b ∈ B} is as needed. Indeed, assume that P ⊂ ⋃P I is perfect and let
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Q0 := {x ∈ 2ω : hI [{x} × 2ω] ∩ P �= ∅}, that is, Q0 is the projection of h−1
I (P ∩ P I ) onto

the first coordinate. The compact set Q0 must be countable, since otherwise Q0\B �= ∅, that
is, P �⊂ ⋃P I , a contradiction. Therefore there is a b ∈ B so that the intersection of P and
P̂ = hI [{b} × 2ω] ∈ P I is uncountable. 
�

For every I ∈ B let P I be as in Lemma 4.4 and let {P I ,K
ξ ⊂ P I : ξ < c & K ∈ P} be its

enumeration. Let Z be as in (A). Recall that Z intersects every P ∈ P . For every ξ < c let

(κ) κξ := ∑
〈I ,K 〉∈B×P κ

I ,K
ξ , where κ

I ,K
ξ : R → Z has support contained in P I ,K

ξ ,

κ
I ,K
ξ [P I ,K

ξ ] ⊂ K ∩ Z , and κ
I ,K
ξ is discontinuous on any perfect Q ⊂ P I ,K

ξ
3

and let
hξ = ϕξ + κξ , (5)

where maps ϕξ are from the family F(ϕ) := {ϕξ : ξ < c} from Proposition 4.2. Clearly the
supports of maps in the family H := {hξ : ξ < c} are pairwise disjoint as functions in F(ϕ)

have disjoint supports contained in Mc, while the maps in {κξ : ξ < c} have disjoint supports
contained in M .

Theorem 4.5 If H := {hξ : ξ < c} for the functions hξ from (5), then WH justifies 2c-
lineability of ES∩¬Conn∩CIVP∩¬SCIVP.

Proof Similarly as in the proof of Theorem4.3 the spaceWH has dimension 2c byRemark 2.1
and WH ⊂ ES∪{0} is ensured by Proposition 4.2, since we have H � Mc = F(ϕ) � Mc.

To see that WH ⊂ ¬Conn∪{0} notice that for every ξ < c,

(κξ / id�)[R] ⊂
{ z
r

: z ∈ Z & r ∈
⋃

M0

}
⊂ Q(Z ∪

⋃
S0)

and, by (D) andProposition2.7,wehave (ϕξ / id�)[R] ⊂ Q(
⋃S0). Therefore, (hξ / id�)[R] ⊂

(ϕξ / id�)[R] ∪ (κξ / id�)[R] ⊂ Q(Z ∪ ⋃S0). Thus, by (A) and Lemmas 2.5 and 2.6, indeed
WH ⊂ ¬Conn∪{0}.

Next notice that every hξ is in CIVP. Indeed, for every I ∈ B and K ∈ P the perfect
set P I ,K

ξ is contained in I and hξ [P I ,K
ξ ] = κξ [P I ,K

ξ ] ⊂ K . Thus, H ⊂ CIVP so, by
Proposition 2.4(ii) used with B = M and F = {κξ : ξ < c}, WH ⊂ CIVP.

To finish the proof, it is enough to show thatWH ⊂ ¬SCIVP∪{0}. So, choose a non-zero
g ∈ WH and a perfect K ⊂ R\Q. Since the graph of g is dense it is enough to show that for
every perfect P ⊂ R, if g[P] ⊂ K , then g � P is discontinuous. By way of contradiction,
assume that there exists a perfect P ⊂ R such that g[P] ⊂ K and g � P is continuous. Since
M is Borel, we can assume that either P ⊂ M or P ⊂ Mc.

But P ⊂ Mc is impossible, since this and the fact that
⋃{id�(r) · Sr : r ∈ R} contains no

perfect set would imply that there exists an x ∈ P\ supp(H) with 0 = g(x) ∈ g[P], while
0 /∈ K , a contradiction.

However, the inclusion P ⊂ M together with g[P] ⊂ K ⊂ R\{0} imply that P ⊂
M ∩ supp({κξ : ξ < c}) ⊂ ⋃

I∈B P I . So, choosing perfect subset of P , if necessary, we can
assume that P ⊂ P I for some I ∈ B. But this means that P ⊂ ⋃P I . Since P I is as in

Lemma 4.4, there exists a P I ,K ′
ξ ∈ P I such that P ∩ P I ,K ′

ξ is uncountable. In particular,

there exists a perfect set Q ⊂ P ∩ P I ,K ′
ξ . Then, by Remark 2.2, there exists an a ∈ R

such that g � Q = a hξ � Q = a κξ � Q. But this is impossible, since a = 0 implies
g[Q] = {0} ⊂ Kc, while a �= 0 implies that g � Q = a κξ � Q is discontinuous by the
choice of functions κξ , contradicting our assumption that g � P is continuous. 
�
3 κ

I ,K
ξ � P I ,K

ξ can be chosen as a Sierpiński-Zygmund function from P I ,K
ξ into K∩Z , that is, a map whose

restriction to any set of cardinality c is discontinuous, see e.g. [18].
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5 Final remarks

This work completes the proof that for any class G in the algebraA(D) of Darboux-like maps,
if G �⊂ Conn \AC, then G is 2c-lineable, see [1] and above work. On the other hand for the
non-empty classes G ∈ A(D) with G ⊂ Conn \AC, it is only known that G is c-lineable, see
[2], while potentially each of these classes can be 2c-lineable. Thus, we have the following
open problem.

Problem 5.1 Is the class Conn \AC 2c-lineable? Is the same true for the non-empty classes
G ∈ A(D) contained in Conn \AC? What about c+-lineablity of these classes?
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