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lineability. The examples include all non-empty classes in the algebra of all Darboux-
like functions and of their restrictions to the Baire class 2 maps.
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1. Lineability and a canonical linear subspace WF of RX

Over the last two decades a lot of mathematicians have been interested in finding the largest possible 
vector spaces that are contained in various families of real functions, see e.g. survey [8], monograph [6], 
and the literature cited there. (More recent work in this direction includes [5,10,16].) Specifically, given a 
cardinal number κ, a subset M of a vector space X is said to be κ-lineable (in X) provided there exists 
a linear space Y ⊂ M ∪ {0} of dimension κ. This notion was first studied by Vladimir Gurariy [20], even 
though he did not use the term lineability. He showed that the set of continuous nowhere differentiable 
functions on [0,1], together with the constant 0 function, contains an infinite-dimensional vector space, that 
is, it is ω-lineable.

In what follows c denotes |R|, the cardinality of R. The goal of this article is to apply the following simple 
proposition to show c-lineability of several subclasses of Darboux-like functions.

For a non-empty set X let RX be the class of all maps from X into the real line R. We consider RX as 
a linear space over R. For an f ∈ RX its support is defined as

supp(f) := {x ∈ X : f(x) �= 0}.
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Notice that we do not take the closure of the set above, even when X is a topological space. For a non-empty 
family F ⊆ RX of non-zero functions with pairwise disjoint supports consider the following vector subspace 
of RX :

LF =

⎧⎨
⎩
∑
f∈F

s(f) · f : s ∈ RF

⎫⎬
⎭ .

The maps 
∑

f∈F s(f) · f are well defined, since the functions in F have disjoint supports. The following 
proposition is obvious, unless 2|F| = c. (In the case 2|F| > c it can be found, for example, in [12]. Compare 
also proof of [14, theorem 2.14].) The cases with |F| were also considered, but in considerable less general 
format. (See for example [7, theorem 3.2], where the linear space associated with F is defined as the closure 
of the space spanned by F .)

Proposition 1.1. If F ⊆ RX is an infinite family with pairwise disjoint supports, then LF has dimension 
2|F|.

Proof. Let κ = |F| and B be a basis for LF . If 2κ > c, then the conclusion is obvious, since otherwise 
|B| < 2κ and 2κ = | LF | = |R| · |B| = c · |B| < 2κ, a contradiction. So, assume that 2κ = c. To finish the 
proof it is enough to find c-many linearly independent functions in LF .

Let {fk : k < ω} be a family of distinct non-zero functions in F and A be a family of c-many infinite 
pairwise almost disjoint subsets of ω. (See e.g. [24, proposition 5.26].) For every A ∈ A let FA =

∑
k∈A fk ∈

LF and notice that {FA : A ∈ A} ⊂ LF is linearly independent. To see this, choose c1, . . . , cn ∈ R, distinct 
A1, . . . , An ∈ A, and notice that

c1FA1 + c2FA2 + · · · + cnFAn
�= 0,

unless c1 = c2 = · · · = cn = 0. Indeed, if ci �= 0, then there is a k ∈ Ai \
⋃

j �=i Aj and an x ∈ supp(fk) for 
which (c1FA1 + c2FA2 + · · · + cnFAn

)(x) = cifk(x) �= 0. Thus, indeed the equation 2κ = c implies that LF
has dimension 2κ. �
2. c-lineability of the families of Baire 2 Darboux-like maps

The name Darboux-like functions usually refers to the eight classes of generalized continuous maps from 
R to R, five of which are defined below. (The remaining three classes will be discussed in the next section.) 
These classes have been extensively studied, see e.g. surveys [11,13,18] and the literature cited there. Com-
pare also the recent paper [15]. For a metric space X, the five main classes of Darboux-like functions from 
X to R are defined as follows. (These notions will be used here mainly when X is an interval in R.)

DX of all Darboux functions f ∈ RX , that is, such that f [C] is connected (i.e., an interval) for every 
connected C ⊂ X. This class, for X = R was first systematically investigated by Jean-Gaston 
Darboux (1842–1917) in his 1875 paper [17].

PCX of all peripherally continuous functions f ∈ RX , that is, such that for every x ∈ X, open interval 
J ⊂ R containing f(x), and ε > 0, there exists an open neighborhood U of x of diameter < ε such 
that f [bd(U)] ⊂ J , where bd(U) is the boundary (or periphery) of U . Notice that for X = R this is 
equivalent to the statement that for every x ∈ R there exist two sequences sn ↗ x and tn ↘ x with 
lim
n→∞

f(sn) = f(x) = lim
n→∞

f(tn). This class was introduced in a 1907 paper [32] of John Wesley 

Young (1879–1932). The name comes from the papers [21,22,31]. Note that any function in RR with 
a graph dense in R2 is PC.
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ConnX of all connectivity functions f ∈ RX , that is, such that the graph of f restricted to any connected 
C ⊂ X is a connected subset of X ×R. This notion can be traced to a 1956 problem [27] stated by 
John Forbes Nash (1928–2015). We also refer to [22,30].

ACX of all almost continuous functions f ∈ RX (in the sense of Stallings), that is, such that every open 
subset of X×R containing the graph of f contains also the graph of a continuous function from X to 
R. This class was first seriously studied in a 1959 paper [30] of John Robert Stallings (1935–2008); 
however, it appeared already in a 1957 paper [22] by Olan H. Hamilton (1899–1976). See also 1991 
survey [28] by T. Natkaniec.

ExtX of all extendable functions f ∈ RX , that is, such that there exists a connectivity function g : X ×
[0, 1] → R with f(x) = g(x, 0) for all x ∈ X. The notion of extendable functions (without the 
name) first appeared in a 1959 paper [30] of J. Stallings, where he asks a question whether every 
connectivity function defined on [0, 1] is extendable.

Let PX = {ExtX , ACX , ConnX , DX , PCX} be the collection of all these classes. We will drop the subscript 
X in this notation when X = R or when X is clear from the context.

The topological nature of these definitions and their format easily justifies the following properties of 
these classes.

Remark 2.1. Let P ∈ P and X and Y be metric spaces.

(i) If g ∈ PY and f is a homeomorphism from X to Y , then g ◦ f ∈ PX .
(ii) If g ∈ PY and h : R → R is a homeomorphism, then h ◦ g ∈ PY .
(iii) If g ∈ PY , P �= AC, and B ⊂ Y , then g � B ∈ PB .

The format of the definition of the class AC does not allow to immediately conclude for it the above 
property (iii). In fact, in such generality the statement is false, see [28, example 2.1]. However, the following 
result for this family can be found in [28, corollary 2.2].

Proposition 2.2. Let f ∈ RR. Then

f ∈ AC if, and only if, f � [k, k + 1] ∈ AC[k,k+1] for every k ∈ Z.

The sufficiency condition in Proposition 2.2 will be also needed for the other three classes:

Lemma 2.3. If f ∈ RR, P ∈ {AC, Conn, D , PC}, and f � [k, k + 1] ∈ P[k,k+1] for every k ∈ Z, then f ∈ P .

Proof. For P = AC this is implied by Proposition 2.2.
For P = PC the result is obvious from the definition of the class PC.
To see this for P = Conn choose a connected C ⊂ R, that is, an interval, and notice that the non-empty 

consecutive sets in the family {f � ([k, k + 1] ∩ C) : k ∈ Z} are connected (since f � [k, k + 1] ∈ Conn[k,k+1]
and [k, k + 1] ∩ C is connected) and have non-empty intersections. So, by a well known result (see e.g. [26, 
theorem 23.3]) their union f � C is connected, as needed, that is, indeed f ∈ Conn.

The argument for P = D is similar, where for a connected C ⊂ R we just notice that f [C], the union of 
the family {f [[k, k + 1] ∩ C] : k ∈ Z}, is connected. �

It is well known (see e.g. one of the papers [11,13,15,18] or Example 2.4 below) that these classes are 
related as follows:

Ext � AC � Conn � D � PC . (1)



4 G.M. Albkwre, K.C. Ciesielski / J. Math. Anal. Appl. 505 (2022) 125611
It is also known that within the family B1 of Baire class 1 functions (i.e., pointwise limits of continuous 
functions) all these classes coincide. On the other hand, within the family B2 of Baire class 2 functions (i.e., 
pointwise limits of B1 functions) all inclusions presented in (1) remain strict. This means that neither of 
the classes

B2 ∩ (PC \D), B2 ∩ (D \Conn), B2 ∩ (Conn \AC), and B2 ∩ (AC \Ext) (2)

is empty. The goal of this section is to show that each of these classes is c-lineable, which is the best result 
in this direction, since their cardinalities are bounded by |B2| = c. To prove this lineability result, we recall 
the following fact. (Compare also citations in [13].)

Example 2.4. Each of the classes listed in (2) contains a Baire class 2 function f : [0, 1] → R such that 
f(0) = f(1) = 0.

Proof. For the class B2 ∩ (AC \ Ext) see [13, theorem 3.1].
For the class B2 ∩ (Conn \ AC) see [23].
For the class B2 ∩ (D \ Conn) see [9, example 2].
For the class B2 ∩ (PC \ D) take a function F : [−1, 1] → R from [13, example 3.5] which is in B2 \ D . 

It is PC, since it belongs to the class SCIVP ⊂ PC discussed in the next section. Thus, if � maps linearly 
[0, 1] onto [−1, 1], then, by Remark 2.1, the function f defined by f(x) = F ◦ �(x) − 1 is as needed. �

For a non-zero f : [0, 1] → R with f(0) = f(1) = 0 let

Ff := {fk : k ∈ Z},

where f0 ∈ RR is an extension of f such that f0 ≡ 0 on the complement of [0, 1] and, generally, fk ∈ RR is 
defined as fk(x) := f0(x − k). Notice that Ff is an infinite countable family of functions that have disjoint 
supports, since supp(fk) ⊂ (k, k + 1) for every k ∈ Z. So, LFf

is well defined and has dimension 2|Ff | = c.

Theorem 2.5. Let f : [0, 1] → R be such that f(0) = f(1) = 0. If P, Q ∈ P are such that f ∈ P \ Q, then 
LFf

justifies c-lineability of P \Q.

Proof. By Proposition 1.1, the space LFf
is well defined and has dimension c. Also, (1) and P \Q �= ∅ imply 

that P ∈ {AC, Conn, D , PC} and Q ∈ {Ext, AC, Conn, D}.
Next, take a non-zero g ∈ LFf

. We need to show that g ∈ P \ Q. Indeed, g =
∑

k∈Z ckfk for some 
constants ck not all zero. Moreover, g � [k, k + 1] = ckf ◦ tk, where tk : [k, k + 1] → [0, 1] is a translation 
given by tk(x) = x − k. In particular, by Remark 2.1(i)&(ii), g � [k, k + 1] ∈ P[k,k+1] for every k ∈ Z. Thus, 
by Lemma 2.3, indeed g ∈ P .

Next, fix a k ∈ Z such that ck �= 0 and notice that, by Lemma 2.3 and the fact that f0 � [j, j + 1] ∈ Q

for every non-zero j ∈ Z, we have f0 /∈ Q. So, by Remark 2.1(i)&(ii), also ckfk /∈ Q. In particular, the 
contrapositive version of Remark 2.1(iii) implies that g � [k, k + 1] = ckfk � [k, k + 1] /∈ Q[k,k+1]. Thus, by 
Proposition 2.2 and contrapositive of Remark 2.1(iii), g /∈ Q, finishing the proof. �

Now, we are ready for the main result of this section.

Corollary 2.6. Each of the classes listed in (2) is c-lineable.

Proof. Choose P, Q ∈ P so that B2 ∩ (P \ Q) is one of the classes listed in (2). By Example 2.4, there 
exists an f : [0, 1] → R in B2 ∩ (P \Q) such that f(0) = f(1) = 0. By Theorem 2.5, the family LFf

justifies 
c-lineability of P \Q. To finish the proof, it is enough to notice that if f ∈ B2, then any map g =

∑
k∈Z ckfk

from LFf
is also Baire class 2. �
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AC Conn D

Ext PC

SCIVP CIVP PR

Fig. 1. All inclusions, indicated by arrows, among the Darboux-like classes D. The only inclusions among the intersections of these 
classes are those that follow trivially from this schema. (See [13,18].)

3. c-lineability of Darboux-like subclasses of Conn \ AC

For the functions from the interval J into R there are also three more classes of Darboux-like functions.

PRJ of all functions f ∈ RJ with perfect road, that is, such that for every x ∈ J there exists a perfect 
P ⊂ J containing x such that: x is a bilateral limit point of P (i.e., with x being a limit point of 
(−∞, x) ∩ P and of (x, ∞) ∩ P ) when x is an interior point of J ; and that f � P is continuous 
at x. This class was introduced in a 1936 paper [25] of Isaie Maximoff, where he proved that 
D ∩B1 = PR∩B1.

CIVPJ of all functions f ∈ RJ with Cantor Intermediate Value Property, that is, such that for all distinct 
p, q ∈ J with f(p) �= f(q) and for every perfect set K between f(p) and f(q), there exists a perfect 
set P between p and q such that f [P ] ⊂ K. This class was first introduced in a 1982 paper [19] of 
Richard G. Gibson and Fred William Roush.

SCIVPJ of all functions f ∈ RJ with Strong Cantor Intermediate Value Property, that is, such that for all 
p, q ∈ J with p �= q and f(p) �= f(q) and for every perfect set K between f(p) and f(q), there 
exists a perfect set P between p and q such that f [P ] ⊂ K and f � P is continuous. This notion 
was introduced in a 1992 paper [29] of Harvey Rosen, R. Gibson, and F. Roush to help distinguish 
extendable and connectivity functions on R.

As before, we will drop the subscript J in this notation when J = R or when J is clear from the context.
Let D := {Ext, AC, Conn, D , SCIVP, CIVP, PR, PC}. The diagram in Fig. 1 shows the relations between 

the classes in D. The arrows denote strict inclusions.
It is well known (see e.g. [13, theorem 1.2]) and easy to see that

every Darboux Borel (so B2) map f ∈ RR is SCIVP. (3)

This, together with Example 2.4 and Corollary 2.6, implies immediately that

Corollary 3.1. Each of the following classes (of column 4 of Table 1) is c-lineable:

SCIVP \D , SCIVP∩D \Conn, SCIVP∩Conn \AC, SCIVP∩AC \Ext. (4)

The Boolean algebra A(D) of subsets of RR generated by D has 18 atoms: Ext, RR \ PC, and 16 
intersections listed in Table 1, where we use the notation ¬G := RR \G. To see this, notice that the upper 
row of Fig. 1, that is the inclusions (1), leads to the atoms of A(P) ⊂ A(D) listed in the left column of the 
table, while the lower row of Fig. 1

Ext � SCIVP � CIVP � PR � PC (5)
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Table 1
All atoms of A(D) except for Ext and ¬ PC. The entries constitute the intersections of 
the classes from the left column and top row.⋂

PC \PR PR \CIVP CIVP \ SCIVP SCIVP \Ext

PC \D
PC∩

¬(PR∪D)
PR∩

¬(CIVP∪D)
CIVP∩

¬(SCIVP∪D) SCIVP \D

D ∩
¬Conn

D ∩
¬(PR∪Conn)

D ∩PR∩
¬(CIVP∪Conn)

D ∩CIVP∩
¬(SCIVP∪Conn)

D ∩ SCIVP∩
¬Conn

Conn∩
¬AC

Conn∩
¬(PR∪AC)

Conn∩PR∩
¬(CIVP∪AC)

Conn∩CIVP∩
¬(SCIVP∪AC)

Conn∩ SCIVP
∩¬AC

AC∩
¬Ext AC \PR AC∩PR∩

¬CIVP
AC∩CIVP∩

¬ SCIVP
AC∩ SCIVP∩

¬Ext

leads to the atoms of A({Ext, SCIVP, CIVP, PR, PC}) ⊂ A(D) listed in the top row of Table 1.
The classes from Table 1 have been recently intensively studied, see the long paper [15]. Finding maximal 

lineabilities of these classes is a subject of a Ph.D. dissertation of the first author, written under the 
supervision of the second author. In particular, article [3] concerns lineability of the class D \ Conn. We also 
know, see [1,2], that all the classes in the table—with the exceptions of those in the third row and the last 
class SCIVP∩(D \ Conn) in the second row—are (provable in ZFC) 2c-lineable. Concerning this last class, 
it is proved in [4] that it is c+-lineable whenever c is a regular cardinal number. Of course, by Corollary 3.1, 
all classes in the last column of the table are (provably in ZFC) c-lineable.

The goal of this section is to prove c-lineability of the first three classes from the third row, that is, the 
classes

Conn \(PR∪AC), Conn∩PR \(CIVP∪AC), Conn∩CIVP \(SCIVP∪AC) (6)

for which nothing was known so far in this direction. Notice that each class in (6) is the intersection of the 
class Conn \ AC with one of the following classes:

PC \PR, PR \CIVP, and CIVP \ SCIVP. (7)

We will use the following variant of Theorem 2.5, with a very similar proof.

Theorem 3.2. Let f : [0, 1] → R be such that f(0) = f(1) = 0. If P and Q are among the classes in 
{SCIVP, CIVP, PR, PC} and such that f ∈ P \Q, then LFf

justifies c-lineability of P \Q.

Proof. First, notice that the analogues of Remark 2.1(i)–(iii) and Lemma 2.3 hold also for the classes PC, 
PR, CIVP, and SCIVP. By Proposition 1.1, the space LFf

is well defined and has dimension c. Also, (5)
and P \Q �= ∅ imply that P ∈ {CIVP, PR, PC} and Q ∈ {SCIVP, CIVP, PR}.

Take a non-zero g ∈ LFf
. We need to show that g ∈ P \ Q. Indeed, g =

∑
k∈Z ckfk for some constants 

ck not all zero. Moreover, g � [k, k + 1] = ckf ◦ tk, where tk : [k, k + 1] → [0, 1] is a translation given by 
tk(x) = x − k. In particular, by above mentioned analog of Remark 2.1(i)&(ii), g � [k, k + 1] ∈ P[k,k+1] for 
every k ∈ Z. Thus, by an analogue of Lemma 2.3, indeed g ∈ P . Also, if k ∈ Z is such that ck �= 0, then, by 
an analogue of Remark 2.1(ii), g � [k, k + 1] /∈ Q[k,k+1]. So, by the analogues of Proposition 2.2 and of the 
contrapositive of Remark 2.1(iii), g /∈ Q, finishing the proof. �

Now, we are ready for the main result of this section.

Corollary 3.3. Each of the classes listed in (6) is c-lineable.

Proof. First notice that we have an analogue of Example 2.4 for the classes in (6):
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(a) each of the classes in (6) contains an f : [0, 1] → R such that f(0) = f(1) = 0.

To see this, first recall the class ES consist of all f ∈ RR for which every level set f−1(r) is dense in R. It 
follows from the results presented in the paper [15] that

(b) each of the classes in (6) contains an F : R → R that belongs also to ES.

Indeed, the additivity coefficient A associated with each class F ⊂ RR (see e.g. [15, definition 1.1]) has the 
property that A(F) ≥ 2 if, and only if, F �= ∅ (see e.g. [15, proposition 1.2(i)]) while we have the following 
results:

[15, theorem 6.3]: A(ES∩ Conn \(PR∪ AC)) ≥ ω1,
[15, theorem 7.2]: A(ES∩ Conn∩ PR \(CIVP∪ AC)) ≥ ω1,
[15, theorem 8.2]: A(ES∩ Conn∩ CIVP \(SCIVP∪ AC)) ≥ ω1.

This clearly implies (b). To see (a) let F ∈ ES belong to one of the classes in (6), choose a < b so that 
F (a) = F (b) = 0, and notice that f := F ◦ �[a,b] is as needed for (a), where �[a,b] maps linearly [0, 1] onto 
[a, b].

To finish the proof, take an f as in (a) and notice that LFf
justifies c-lineability of an appropriate family 

from (6). Indeed, every non-zero map g ∈ LFf
is in Conn \ AC by Theorem 2.5, while by Theorem 3.2 it 

belongs also to an appropriate class listed in (7). But this means that indeed g is in an appropriate class 
from (6). �

We should also remark here, that technique used in the proof of Corollary 3.3 can be also used to prove 
that all other classes from Table 1 are c-lineable. All one needs for such proof is to notice that each class 
in the table contains a function as in (a) in the proof of Corollary 3.3. However, the c-lineability of other 
classes follows from the stronger lineability results we mentioned above, so there is no reason for completing 
such argument here.
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