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Abstract. The class D of generalized continuous functions on R known
under the common name of Darboux-like functions is usually described
as consisting of eight families of maps: Darboux, connectivity, almost con-
tinuous, extendable, peripherally continuous, those having perfect road,
and having either the Cantor Intermediate Value Property or the Strong
Cantor Intermediate Value Property. The algebra A(D) of classes of func-
tions generated by these families contains 17 atoms. In this work we will
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1. Introduction and Preliminary Results

There are eight classical Darboux-like families of elements in R
R: Darboux,

connectivity, almost continuous, extendable, peripherally continuous, functions
having perfect road, and having either the Cantor Intermediate Value Prop-
erty (CIVP) or the Strong Cantor Intermediate Value Property (SCIVP). The
algebra A(D) of classes of functions generated by these families contains 17
atoms (and, of course, 217 elements). The aim of this work is to provide (among
other results) the value of the additivity coefficient A(F) for all atoms in this
algebra.

This paper’s arrangement is, briefly, as follows. This first introductory
section focuses on presenting definitions, notations, and preliminary results
that shall be needed throughout the article. This section shall also provides a
summary of all results contained in this work. The remaining ten sections will
each consider the values of A for different elements of the algebra. Throughout
these sections we shall build the tools that will eventually allow us to find the
values of A coefficient for all atoms of A(D). In the process, we will also deter-
mine the values A(F) for many other families in the algebra. Open questions
and new directions of research shall also be provided.

Let us begin with providing the definitions of eight classes of Darboux-like
functions mentioned above.

1.1. Definitions of Darboux-like Functions

Consider the following classes of maps from R to R associated with different
properties of continuous functions, usually referred to as Darboux-like func-
tions.

D of all Darboux functions f ∈ R
R, that is, such that f [C] is connected

(i.e., an interval) for every connected C ⊂ R (or, equivalently, that
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Figure 1. Jean-Gaston Darboux (1842–1917), the Ph.D. su-
pervisor of E. Borel, examined the intermediate value prop-
erty of discontinuous functions in his 1875 paper [21], which
first page is displayed on the right hand side

f has the intermediate value property). This class was first systemat-
ically investigated by Jean-Gaston Darboux (1842–1917) in his 1875
paper [21], see Fig. 1.

PC of all peripherally continuous functions f ∈ R
R, that is, such that for

every number x ∈ R there exist two sequences sn ↗ x and tn ↘ x with
limn→∞ f(sn) = f(x) = limn→∞ f(tn). This class was introduced in a
1907 paper [51] of John Wesley Young (1879–1932). The name comes
from the papers [30,31,50].

PR of all functions f ∈ R
R with perfect road, that is, such that for every

x ∈ R there exists a perfect P ⊂ R having x as a bilateral limit point
(i.e., with x being a limit point of (−∞, x) ∩ P and of (x,∞) ∩ P )
such that f � P is continuous at x. This class was introduced in a 1936
paper [40] of Isaie Maximoff, where he proved that D ∩B1 = PR∩B1,
where B1 is the class of Baire class 1 functions.

Conn of all connectivity functions f ∈ R
R, that is, such that the graph of f

restricted to any connected C ⊂ R is a connected subset of R2. This
notion can be traced to a 1956 problem [41] stated by John Forbes
Nash (1928–2015). We also refer to [31,49]. Connectivity maps on R

2

are defined in a similar fashion.
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Figure 2. All inclusions, indicated by arrows, among the
Darboux-like classes D. The only inclusions among the in-
tersections of these classes are those that follow trivially from
this schema (see [12,26])

AC of all almost continuous functions f ∈ R
R (in the sense of Stallings),

that is, such that every open subset of R2 containing the graph of f
contains also the graph of a continuous function from R to R. This class
was first seriously studied in a 1959 paper [49] of John Robert Stallings
(1935–2008); however, it appeared already in a 1957 paper [31] by Olan
H. Hamilton (1899–1976).

Ext of all extendable functions f ∈ R
R, that is, such that there exists a

connectivity function g : R × [0, 1] → R with f(x) = g(x, 0) for all
x ∈ R. The notion of extendable functions (without the name) first
appeared in a 1959 paper [49] of J. Stallings, where he asks a question
whether every connectivity function defined on [0, 1] is extendable.

CIVP of all functions f ∈ R
R with Cantor Intermediate Value Property, that

is, such that for all distinct p, q ∈ R with f(p) �= f(q) and for every
perfect set K between f(p) and f(q), there exists a perfect set C be-
tween p and q such that f [C] ⊂ K. This class was first introduced in a
1982 paper [27] of Richard G. Gibson and Fred William Roush.

SCIVP of all functions f ∈ R
R with Strong Cantor Intermediate Value Prop-

erty, that is, such that for all p, q ∈ R with p �= q and f(p) �= f(q) and
for every perfect set K between f(p) and f(q), there exists a perfect set
C between p and q such that f [C] ⊂ K and f � C is continuous. This
notion was introduced in a 1992 paper [48] of Harvey Rosen, R. Gibson,
and F. Roush to help distinguish extendable and connectivity functions
on R.

In what follows we will denote the collection of these classes of functions
by the symbol D, that is, D := {Ext,AC,Conn,D ,SCIVP,CIVP,PR,PC}.
The diagram in Fig. 2 shows the relations between the classes in D. The arrows
denote strict inclusions.

The inclusions Conn ⊂ D ⊂ PC, PR ⊂ PC, and SCIVP ⊂ CIVP are obvi-
ous from the previous definitions. On the other hand, the remaining inclusions
are less obvious. Among them the inclusions Ext ⊂ AC ⊂ Conn were proved
by Stallings [49], while CIVP ⊂ PR was stated without proof in [28] (although
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its proof can be found in [26, Theorem 3.8]). The inclusion Ext ⊂ SCIVP
comes from [48].

The inclusions indicated in Fig. 2 are the only inclusions among these
classes even when we add to the considerations the intersections of the classes
from the top and bottom rows of Fig. 2. This is well described in the expository
papers [10,12,26]. Specifically, AC \CIVP �= ∅ and CIVP \AC �= ∅ was shown
in a 1982 paper [27]. The fact that Conn \AC �= ∅ is the trickiest to prove
and is related to late 1960’s papers: [47] of John Henderson Roberts, [20] of
James L. Cornette, [32] of F. Burton Jones and Edward S. Thomas Jr., and
[6] of J. Brown. The result D \Conn �= ∅ can be traced to the 1965 paper [7]
of Andrew M. Bruckner and Jack Gary Ceder (see also [6]), while examples
for PC \D �= ∅, PR \CIVP �= ∅, and PC \PR �= ∅ to the 2000 paper [12] of K.
C. Ciesielski and Jan Jastrzȩbski.

The inclusions indicated in Fig. 2 suggest a natural split of D into two sub-
classes: U := {Ext,AC,Conn,D ,PC} and L := {Ext,SCIVP,CIVP,PR,PC},
each consisting of the families that are mutually comparable by inclusion. In
particular, the algebra A(U) of subsets of PC generated by the classes in U

has 5 atoms:

{PC \D ,D \Conn,Conn \AC,AC \Ext,Ext} .

Similarly, A(L) generated by the classes in L has also 5 atoms:

{PC \PR,PR \CIVP,CIVP \SCIVP,SCIVP \Ext,Ext} .

This means that the algebra A(D) has theoretically 25 atoms, the intersections
L∩U , where L ∈ A(L) and U ∈ A(U). However, if Ext ∈ {U,L}, then L∩U = ∅
unless L = U = Ext. Thus, A(D) = A(U ∪ L) has actually 17 atoms: Ext and
the 16 atoms presented in Table 1, where for F ⊂ R

R we use the symbol ¬F
to denote the complement of F with respect to R

R, that is, ¬F := R
R \ F .

Next, and still within this preliminary section of the paper, let us provide
a full account on the notion of additivity coefficient.

Table 1. All atoms of A(D) with exception of Ext.

⋂
PC \ PR PR \ CIVP CIVP \ SCIVP SCIVP \ Ext

PC \D PC ∩
¬(PR ∪D)

PR ∩
¬(CIVP ∪D)

CIVP ∩
¬(SCIVP ∪D)

SCIVP \D
D ∩

¬ Conn

D ∩
¬(PR ∪ Conn)

D ∩ PR ∩
¬(CIVP ∪ Conn)

D ∩ CIVP ∩
¬(SCIVP ∪ Conn)

D ∩ SCIVP ∩
¬ Conn

Conn ∩
¬ AC

Conn ∩
¬(PR ∪ AC)

Conn ∩ PR ∩
¬(CIVP ∪ AC)

Conn ∩ CIVP ∩
¬(SCIVP ∪ AC)

Conn ∩ SCIVP

∩¬ AC

AC ∩
¬ Ext

AC \ PR
AC ∩ PR ∩

¬ CIVP

AC ∩ CIVP ∩
¬ SCIVP

AC ∩ SCIVP ∩
¬ Ext
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1.2. Additivity Coefficient: Definition and Background

The important recent developments in modern analysis concern the cardinal
functions that are defined for different classes of functions in terms of algebraic
operations on functions. Probably the most important of them is the additiv-
ity coefficient of F . Its definition was motivated by the following property of
Darboux functions due to Henry Fast [23]: for every family F ⊂ R

R of size ≤ c
there exists a g ∈ R

R such that g + F ⊂ D , where g + F := {g + f : f ∈ F}.
Of course c stands for |R|, that is, the cardinality of R.

In 1974 Kellum [37] proved the similar result for the class AC, and in
1991 Natkaniec [43] defined the following cardinal number for every F ⊂ R

R.

Definition 1.1. For F ⊂ R
R, we define the additivity coefficient of F by

A(F) = min
({

|F | : F ⊂ R
R, ∀g ∈ R

R, g + F �⊂ F
}

∪
{

(2c)+
})

.

This notion was thoroughly studied in a 1996 paper [35] of Francis Ed-
mund Jordan. (See also his Ph.D. Dissertation [34], written under the supervi-
sion of K. C. Ciesielski.) The values of the additivity coefficient for Darboux-
like classes were investigated by Natkaniec [43], Ciesielski and Miller [14],
Ciesielski and Rec�law [17]. They are listed in [26, Table 1]. Jordan [35] studied
the values of A(F) for the complements of Darboux-like functions (see, also,
[1,4,24] for some recently discovered links of additivity to other algebraic no-
tions). A summary of these previously mentioned investigations is presented
in Proposition 1.2 (see, e.g., [17,35]).

Proposition 1.2. Let G,F ⊂ R
R. Then,

(i) A(F) ≥ 2 if, and only if, F �= ∅;
(ii) A(F) ≤ 2c if, and only if, F �= R

R;
(iii) if F ⊂ G then A(F) ≤ A(G);
(iv) if F �= ∅ then A(F) = 2 if, and only if, F − F �= R

R;

Proof. All of these properties are straight consequences of the definition of the
operator A. Parts (i)-(iii) come from [17] while (iv) from [35]. �

Let κ be a cardinal number > 0 and X a set of cardinality ≥ κ. We
define [X]κ = {Y ⊂ X : |Y | = κ}, [X]<κ = {Y ⊂ X : |Y | < κ}, and [X]≤κ

= {Y ⊂ X : |Y | ≤ κ}.
Let ec denote the following cardinal number

ec = min
{
|F | : F ⊂ R

R,∀g ∈ R
R,∃f ∈ F such that |f ∩ g| < c

}
,
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see [14], and let PES stand for the family of all perfectly everywhere surjective
maps f ∈ R

R, that is, such that f [P ] = R for every perfect set P ⊂ R. Also,
following [35], we define

dc = min{|F | : F ⊂ R
R,∀g ∈ R

R,∃f ∈ F such that |f ∩ g| = c},

and

d∗
c = min{|F | : F ⊂ R

R,∀G ∈ [RR]c,∃f ∈ F such that ∀g ∈ G, |f ∩ g| = c}.

Proposition 1.3. We have the following results.

(a) c+ ≤ A(AC) = A(Conn) = A(D) = A(PES) = ec ≤ 2c and this is all
that can be proved in ZFC, see [14,24] or [13, Proposition 1.8].

(b) A(Ext) = A(PR) = c+, see [17].
(c) A(PC) = 2c, see [17].
(d) A(¬PC) = ω1 (Ciesielski, see [35, Theorem 7]).
(e) A(¬Ext) = A(¬PR) = 2c, see [35].
(f) dc ≤ A(¬D) ≤ A(¬Conn) ≤ A(¬AC) ≤ d∗

c , see [35, Theorem 8].

If |[c]<c| = c, then A(¬D) = A(¬Conn) = A(¬AC) = dc = d∗
c , see

[35, Corollary 12].

If |[c]<c| = c and c = λ+, then dc ≤ ec, see [35, Theorem 11].

Moreover, in [15], it was proven that c+ ≤ dc ≤ 2c and
(f1) For every cardinals λ ≥ κ ≥ ω2 such that cof(λ) > ω1 and κ is

regular, it is relatively consistent with ZFC+CH that 2c = λ and
dc = ec = κ. In particular, c+ < dc = A(¬D) = A(D) = ec < 2c is
consistent with ZFC+CH.

(f2) For every cardinal λ > ω2 such that cof(λ) > ω1, it is relatively
consistent with ZFC+CH that c+ = ω2 = A(¬D) = dc < ec =
A(D) = 2c = λ.

1.3. Summary of the Results

The following Table 2, summarizing the main results of this work, shows the
values of A(F) for the atoms of A(D) presented in Table 1. The value of A for
the remaining atom Ext is A(Ext) = c+, as shown in [17]. We define

c− :=

{
κ when c = κ+,

c otherwise.
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Table 2. The values A(F) for F from Table 1 and the refer-
ences to these results, where # denotes the additivity of the
family F in the respective cell of Table 1.

⋂ PC \ PR PR \ CIVP CIVP \ SCIVP SCIVP \ Ext
2c (6.1) c+ (7.1) c+ (8.1) 2 ≤ # ≤ c (11.1)

PC \D (10.1) dc ≤ # ≤ d∗
c c+ c+ 2

dc ≤ # ≤ d∗
c (10.1) (9.1) (9.1) (2.3)

D \ Conn (4.5) c− ≤ # ≤ c c− ≤ # ≤ c c− ≤ # ≤ c 2
c− ≤ # ≤ c (6.3) (7.2) (8.2) (2.3)

Conn \ AC (5.4) ω1 ≤ # ≤ c ω1 ≤ # ≤ c ω1 ≤ # ≤ c 2
c− ≤ # ≤ c (6.3) (7.2) (8.2) (2.3)

AC \ Ext (3.1) ec c+ c+ 2 ≤ # ≤ c
ec (3.1) (9.3) (9.3) (11.1)

Furthermore, the results of this work also show the additivities of some
families F ∈ A(D) that are not necessarily the atoms of A(D). This is shown in
Table 3, in which the cells of Table 1 have been combined in order to show the
union of the atoms of A(D) using either two (second and fifth rows of Table 3)
or three (second row and fifth column).

Table 3. The values of A(F) for some F ∈ A(D) as indi-
cated and the references to these results, where # denotes
the additivity of the family F in the respective cell of Table 1.

⋂
PC \ PR PR \ CIVP CIVP \ SCIVP SCIVP \ Ext

PC \D dc ≤ # ≤ d∗
c

A(F) = c+ Theorem 9.1

A(F) = 2 for F ⊂
SCIVP

⋂ ¬ AC

Theorem 2.3

for F ⊂ PR \(D ∪ SCIVP)

D \ Conn c− ≤ # ≤ c c− ≤ # ≤ c c− ≤ # ≤ c

Conn \ AC ω1 ≤ # ≤ c ω1 ≤ # ≤ c ω1 ≤ # ≤ c

AC \ Ext ec
A(F) = c+ Theorem 9.3

2 ≤ # ≤ c
for F ⊂ AC ∩ PR \ SCIVP

We will finish this section with the notations and definitions that will be
useful in the remainder of this work. We will use the symbol B(X) to denote
the class of Borel functions from a topological space X into R. We will also
write B for B(R).

The families of all perfect subsets of R, of nonempty open intervals, and of
nonempty open intervals with rational endpoints in R will be denoted by Perf,
J , and B, respectively. It is well known that |Perf | = |J | = c and |B| = ω.

The symbol SZ will denote the class of all Sierpiński-Zygmund maps
f : R → R, that is, such that f � X is discontinuous for every X ⊂ R of
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cardinality c. Recall (see, e.g., [45]) that if |f ∩ g| < c for every g ∈ B, then
f ∈ SZ. We will also consider the following notation:

• The symbol ES denotes the family of everywhere surjective functions
f ∈ R

R, that is, such that f [(a, b)] = R for all a < b.
• The symbol SES denotes the family of strongly everywhere surjective

functions f ∈ R
R, that is, f−1(y)∩J has cardinality c for every y ∈ R and

every nonempty open interval J ⊂ R. Clearly PES ⊂ SES ⊂ ES ⊂ D ,
where PES was already defined on page 5.
Let F ⊂ R

R be nonempty, f ∈ R
R, and X ⊂ R. We say that the property

“f ∈ F” is decided on X provided every g ∈ R
R with g � X = f � X has the

same property, that is, g ∈ F .

2. A(F) = 2 for F ∈ A(D) with ∅ �= F ⊂ SCIVP \AC

First, we will prove the inequality A(SCIVP \AC) ≤ 2. To do so, we will use the
fact that a function f : R → R is almost continuous if, and only if, it intersects
every blocking set, that is, a closed set K ⊂ R

2 which meets the graph of every
continuous map from R into R and which is disjoint with a graph of at least
one function from R into R. We can assume that the first coordinate projection
dom(K) of every blocking set K contains a non-degenerate interval, see [37]
or [43, Remark 1.1]. In particular, every blocking set K contains a graph of
a Borel function h from a non-degenerate interval I ⊂ R into R, see [16, p.
117].1 This immediately implies

Fact 2.1. If f : R → R is such that f ∩ h �= ∅ for every Borel map h from an
J ∈ J into R, then f ∈ AC.

Lemma 2.2. A(SCIVP \AC) ≤ 2.

Proof. Let f ∈ R
R be such that f ∩ ψ �= ∅ for every Borel function ψ from a

perfect set into R. If {Bh : h ∈ B} is a partition of R into Bernstein sets (see,
e.g., [9, Theorem 7.3.4]), then f :=

⋃
h∈B h � Bh is as needed.

Let Θ be the constant zero function and put F = {f,Θ}. It is enough to
show that g + F �⊂ SCIVP \AC for every g ∈ R

R.
Indeed, let g ∈ R

R be such that g = g +Θ ∈ SCIVP. It is enough to show
that g + f ∈ AC. We will prove this by using Fact 2.1. So, fix a Borel map h
from an J ∈ J into R. We need to show that (g + f) ∩ h �= ∅.

To see this, notice that g = g + Θ ∈ SCIVP implies the existence of a
perfect C ⊂ J such that g � C is continuous. (This is obvious when g � J is
constant and, otherwise, follows directly from the definition of SCIVP.) Then

1Indeed, for every n ∈ N let Kn = K ∩ (R × [−n, n]). Then each dom(Kn) is closed and
their union is dom(K), which contains an interval. Thus, by Baire category theorem, there
is an n ∈ N such that dom(Kn) contains a nonempty interval I. Then the map h : I → R

defined as h(x) = inf{y : 〈x, y〉 ∈ Kn} is of Baire class one (so Borel) with graph contained
in Kn ⊂ K.
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ψ := (h − g) � C is Borel. So, by the choice of f , there is an x ∈ C with
f(x) = ψ(x) = h(x) − g(x). Hence, (f + g)(x) = h(x) and we have the desired
(g + f) ∩ h �= ∅. �

Theorem 2.3. A(F) = 2 for every nonempty F ∈ A(D) with F ⊆ SCIVP \AC.

Proof. The atoms of A(D) contained in SCIVP \AC consists of the sets
SCIVP \D , D ∩SCIVP \Conn, and Conn∩SCIVP \AC. By Proposition 1.2
(iii), the additivity for each of them is ≤ A(SCIVP \AC) ≤ 2. To see that they
all are also ≥ 2, by Proposition 1.2 (i) it is enough to show each of these classes
is nonempty. This is the case, since any Darboux Borel function is SCIVP and
there are Baire class 2 examples that distinguish between the classes D , Conn,
and AC, see e.g. [12, Theorem 1.2]. More specifically, a map in SCIVP \D is
given in [12, Example 3.5], while the other two examples come from [5]. �

3. A(AC \PR) = ec

Theorem 3.1. A(F) = ec for every F ∈ A(D) with AC \PR ⊂ F ⊂ AC.

Proof. As AC \PR ⊂ F ⊂ AC, Proposition 1.2 (iii) implies that A(AC \PR) ≤
A(F) ≤ A(AC) = ec. Therefore, to finish the proof it is enough to show that
A(AC \PR) ≥ ec.

So, let F ⊂ R
R be a family of cardinality < ec. We need to find a g ∈ R

R

so that g + F ⊂ AC \PR. The family F − B ⊃ F still has cardinality < ec
and, by Proposition 1.3 (a), there exists a g ∈ R

R so that g + (F −B) ⊂ PES.
We claim, that this g is as needed.

To see this, fix an f ∈ F . To prove that g + f ∈ AC we will use Fact 2.1.
So, fix a Borel map h from an J ∈ J into R and let h̄ ∈ B be its extension.
We need to show that (g + f)∩h �= ∅. But g + f − h̄ ∈ PES, so there exists an
x ∈ J so that (g + f − h̄)(x) = 0. Hence, (g + f)(x) = h̄(x) = h(x) and indeed
(g + f) ∩ h �= ∅.

To see that g + f /∈ PR it is enough to prove that g + f is unbounded on
any P ∈ Perf. But this is clear since, for h ≡ 0, (g+f)[P ] = (g+f −h)[P ] = R.

�

4. On A(D \Conn)

We will start with investigating the upper bound. Of course, the obvious upper
bound here is

A (D \Conn) ≤ A(D \AC) ≤ min {A(D),A(¬AC)} = min {ec, d
∗
c} ,

where the last equality is justified by parts (a) and (f) of Proposition 1.3.
Nevertheless, this upper bound is suboptimal, as shown by the following two
lemmas.
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4.1. The Upper Bounds

Lemma 4.1. A (ES \AC) ≤ A(D \AC) ≤ c.

Proof. To see this, let F := B. Then |F | = c. Fix a g : R → R. It is enough to
show that g + F �⊂ D \AC.

Indeed, take any f ∈ F and assume that g + f /∈ AC. Then, by Fact 2.1,
there is an h ∈ B = F and a nonempty J := (a, b) such that g + f is disjoint
with h � J . But this means that g + (f − h) ∈ g + F takes no value 0 on
J . Modifying f at the points a and b, if necessary, we can also assume that
(g + f − h)(a) < 0 and (g + f − h)(b) > 0. But this means that g + F �⊂ D .
�

The next lemma shows that even the upper bound c for A(ES \AC) can
be, consistently with ZFC, even lower than c.

Lemma 4.2. If 2c− = c and cof(c−) > ω, then A(ES \AC) ≤ c−.

Proof. By Lemma 4.1 and the definition of c− we can assume that c = κ+

with cof(κ) > ω. We need to prove that A(ES \AC) ≤ κ.
For this, we will define the sequence 〈fζ ∈ R

R : ζ < κ〉 so that for the
family F := {fζ ∈ R

R : ζ < κ} there is no g ∈ R
R with g + F ⊂ ES \AC.

If for some g ∈ R
R, we have g + F ⊂ ¬AC, then, by Fact 2.1, for every

ζ < κ there is a pair 〈hζ , Jζ〉 ∈ B×B such that (g + fζ) ∩ (hζ � Jζ) = ∅. If we
knew in advance, that it is a sequence 〈〈hζ , Jζ〉 ∈ B×B : ζ < κ〉 that justifies
g + F ⊂ ¬AC, then an argument as in Lemma 4.1 shows that for F being
the collection of all differences fζ − hζ , we would have g + F �⊂ ES for every
g ∈ R

R.
To formalize the above inside, enumerate {〈〈hξ

ζ , J
ξ
ζ 〉 : ζ < κ〉 : ξ < c} all

κ-length sequences in B×B. This is possible, since |(B×B)κ| = 2κ = 2c− = c.
Also, fix a one-to-one enumeration {rξ : ξ < c} of R. For each ξ < c we will
choose the values 〈fζ(rξ) : ζ < κ〉 so that it will restrict the possibility for each
sequence among {〈〈hη

ζ , Jη
ζ 〉 : ζ < κ〉 : η < ξ} to justify g + F ⊂ ¬AC and, at

the same time, to allow g+F ⊂ ES. The choice of values of 〈fζ(rξ) : ζ < κ〉 for
each ξ is independent of these values for any other ξ. So, there is no induction
on ξ < c.

For every η < c choose a Jη ∈ B such that Kη := {ζ < κ : Jη
ζ = Jη} has

cardinality κ. This can be done, since cof(κ) > ω. Let αη := min Kη.
Fix a ξ < c and let 〈〈ην , δν〉 : ν < κ〉 list all elements of (ξ + 1) × (ξ + 1),

each pair 〈η, δ〉 ∈ (ξ + 1) × (ξ + 1) appearing κ-many times. By induction on
ν < κ define

ζν = min(Kην
\ {ζμ : μ < ν})

(what ensures that Jην

ζν
= Jην ) and, if ζν �= min Kην

= αην
, put

fζν
(rξ) := hην

ζν
(rξ) + fαην

(rξ) − rδν
. (4.1)



    7 Page 12 of 38 K. C. Ciesielski et al. Results Math

For all ζ < κ for which (4.1) does not apply, the value of fζ(rξ) is chosen
arbitrarily. This finishes the construction of the family F .

To see that F is as needed, choose a g ∈ R
R so that g + F ⊂ ¬AC. We

need to show that there is an f ∈ F so that g + f /∈ ES.
For every ζ < κ choose 〈hζ , Jζ〉 ∈ B×B so that (hζ � Jζ) ∩ (g + fζ) = ∅.

Fix a η < c such that 〈〈hη
ζ , Jη

ζ 〉 : ζ < κ〉 = 〈〈hζ , Jζ〉 : ζ < κ〉. We will show that
g + fαη

/∈ ES by arguing that (g + fαη
)[Jη] = R leads to a contradiction.

To see this, first notice that

(g + fαη
)(rξ) �= rδ for everyξ ≥ η with rξ ∈ Jη and every δ ≤ ξ (4.2)

Indeed, otherwise g(rξ) = rδ − fαη
(rξ). Also, a pair 〈η, δ〉 equals to 〈ην , δν〉 for

κ-many ν < κ. So, there is such ν < κ with ζν �= αη = αην
in which case, by

(4.1), fζν
(rξ) = hην

ζν
(rξ) + fαην

(rξ) − rδν
= hην

ζν
(rξ) + fαη

(rξ) − rδ. Combining
this with g(rξ) = rδ − fαη

(rξ) gives (g + fζν
)(rξ) = hην

ζν
(rξ), contradicting the

fact that hζν
= hη

ζν
= hην

ζν
has no common values with g + fζν

on the interval
Jη = Jην = Jην

ζν
. So, (4.2) indeed holds.

Now, if (g + fαη
)[Jη] = R, then, for every δ ≥ η, there is a ξδ < c so

that rξδ
∈ Jη and (g + fαη

)(rξδ
) = rδ. But, by (4.2), we must have ξδ < δ.

Therefore, the mapping c \ η � δ �→ ξδ ∈ c is regressive. Thus, by the pressing-
down lemma (see [38, page 80]), it is a constant on a stationary subset S of c.
This means, in particular, that there exist distinct δ, δ′ < c such that ξδ = ξδ′ .

Therefore (g + fαη
)(rξδ

) = (g + fαη
)(rξδ′ ) has two distinct values, rδ and

rδ′ , which is certainly impossible.
Thus, we must have (g + fαη

)[Jη] �= R, so that g + fαη
/∈ ES. �

4.2. The Lower Bound and the Value of A(D \Conn)
Lemma 4.3. Let S ⊂ R be c-dense, that is, such that |S ∩ (p, q)| = c for every
p < q. Also, let F ⊂ Φ ⊂ R

R be such that |F | < c− and |Φ| < c. Then there
exist a g ∈ R

R and a linear map �a of the form �a(x) := ax such that
(i) (g + f) ∩ �a = ∅ for every f ∈ F ;
(ii) for every f ∈ Φ we have g + f ∈ ES and this is decided on S.

Proof. For every ϕ ∈ Φ and J ∈ B consider the following set
Aϕ,J := {a ∈ R : (∃ya ∈ R) |{x ∈ S ∩ J : (∀f ∈ F ) �a(x) − ya �= f(x) − ϕ(x)}| < c} .

Let λ := |F |2 when c is a regular cardinal and λ := max{|F |2, cof(c)}, when c
is a singular cardinal. Notice that λ+ < c. We will show that, for every ϕ ∈ Φ
and J ∈ B,

|Aϕ,J | ≤ λ. (4.3)
To see (4.3) assume, by way of contradiction, that this is not the case, that is,
that |Aϕ,J | ≥ λ+. Let Ta := {x ∈ S ∩ J : (∀f ∈ F ) �a(x) − ya �= f(x) − ϕ(x)}
and notice that |Ta| < c for every a ∈ Aϕ,J . We claim that

∣
∣
∣
∣
∣

⋃

a∈A

Ta

∣
∣
∣
∣
∣
< c for some A ⊂ Aϕ,J of cardinality

(
|F |2

)+
. (4.4)
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Indeed, if c is a regular cardinal, then any A ⊂ Aϕ,J of cardinality (|F |2)+
satisfies (4.4). So, assume that c is a singular cardinal. Then |Aϕ,J | ≥ λ+ ≥
cof(c)+, and there is a cardinal μ < c and an A0 ⊂ Aϕ,J of cardinality λ+

such that |Ta| ≤ μ for every a ∈ A0. So, any A ⊂ A0 of cardinality (|F |2)+
satisfies (4.4).

By (4.4) the set Z := (S∩J)\
⋃

a∈A Ta has cardinality c. For any x ∈ Z the
set {�a(x) − ya : a ∈ A} is contained in the set Wx := {f(x) − ϕ(x) : f ∈ F}
of cardinality ≤ |F |. Since |A| > |F |2, by the pigeon hole principle, there
is an A0 ⊂ A of cardinality > |F | such that �a(x) − ya = �a′(x) − ya′ for
every a, a′ ∈ A0. Next, choose x′ ∈ Z with x′ �= x. Then, as before,
{�a(x′) − ya : a ∈ A0} is contained in the set Wx′ of cardinality ≤ |F |. So,
there are distinct a, a′ ∈ A0 ⊂ A such that �a(x′) − ya = �a′(x′) − ya′ . But
we have also �a(x) − ya = �a′(x) − ya′ . This means, that two linear functions,
�a−ya and �a′ −ya′ , with different slopes, have the same values at two different
points, a contradiction. This finishes the argument for (4.3).

Now, we can define g. By (4.3), we can pick an a ∈ (0,∞)\
⋃

ϕ∈Φ,J∈B Aϕ,J .
For this, use (4.3) to fix an a ∈ (0,∞)\

⋃
ϕ∈Φ,J∈B Aϕ,J . Let 〈〈Jξ, ϕξ, yξ〉 : ξ < c〉

be an enumeration of B × Φ × R. By induction on ξ < c we will choose a one-
to-one sequence 〈xξ ∈ Jξ ∩ S : ξ < c〉 and define the value of g(xξ) such that
the following properties hold:

(a) g(xξ) + ϕξ(xξ) = yξ;
(b) g(xξ) + f(xξ) �= axξ for every f ∈ F .

Of course, for any fixed xξ the property (a) forces us to define g(xξ) :=
yξ − ϕξ(xξ). On the other hand, to have (b) we need to ensure that g(xξ) �=
axξ − f(xξ) for every f ∈ F . Thus, to ensure (a) and (b), we need to choose
an xξ ∈ S ∩ Jξ \ {xζ : ζ < ξ} so that yξ − ϕξ(xξ) �= axξ − f(xξ) or, equiva-
lently, that �a(xξ)−yξ �= f(xξ)−ϕξ(xξ). But the existence of such xξ is ensured
by our choice of a, by which a /∈ Aϕξ,Jξ

, that is, the set
{x ∈ S ∩ Jξ : (∀f ∈ F ) �a(x) − yξ �= f(x) − ϕξ(x)} has cardinality c.

We extend g, so far defined only on the set B = {xζ : ξ < c}, by defining
g(x), for every x ∈ R \ B, so that g(x) + f(x) �= ax for every f ∈ F (i.e., by
picking g(x) ∈ R \ {ax − f(x) : f ∈ F}).

Notice that this choice, together with (b), ensures that (i) is as satisfied.
Now, to see (ii), fix a ḡ ∈ R

R such that ḡ � S = g � S. We need to show
that ḡ + Φ ⊂ ES. So, choose a J ∈ B and an ϕ ∈ Φ. We need to show that
(ḡ + ϕ)[J ] = R. Thus, fix a y ∈ R. We will find an x ∈ J ∩ S for which
(ḡ + ϕ)(x) = (g + ϕ)(x) = y. But, 〈J, ϕ, y〉 ∈ B × Φ × R. So, there is a ξ < c
such that 〈J, ϕ, y〉 = 〈Jξ, ϕξ, yξ〉. Hence, xξ ∈ Jξ ∩ S = J ∩ S and, by (a),
(ḡ + ϕ)(xξ) = g(xξ) + ϕξ(xξ) = yξ = y, as needed. �

Lemma 4.4. Let S ⊂ R be c-dense. Also, let Φ ⊂ R
R be such that |Φ| < c

when cof(c−) = ω and |Φ| < c− otherwise. Then there exist a g ∈ R
R and a

countable family Λ ⊂ R
R of continuous functions such that
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(I) for every f ∈ Φ there is 〈λf , If 〉 ∈ Λ × J such that (g + f)(x) �= λf (x)
for every x ∈ If ;

(II) for every f ∈ Φ we have g + f ∈ ES and this is decided on S.
In particular, g + Φ ⊂ ES \Conn so that A(ES \Conn) ≥ c− and, when
cof(c−) = ω, also A(ES \Conn) ≥ c.

Proof. First notice that (I) and (II) indeed imply that g + Φ ⊂ ES \Conn. So,
fix an f ∈ Φ. Then clearly g + f ∈ ES. Also, if 〈λf , If 〉 ∈ Λ × J are as in (I),
then there exist p < q in If such that (g+f)(p) > λf (p) and (g+f)(q) < λf (q).
Let L1 := {p} × (−∞, λf (p)], L2 := λf � [p, q] and L3 := {q} × [λf (q),∞) and
notice that the curve L1 ∪ L2 ∪ L3 separates g + f . Thus, g + Φ ⊂ ¬Conn, as
needed.

To prove (I) and (II) first assume that cof(c−) > ω. Then, by Lemma 4.3
applied to F = Φ, there exist a g ∈ R

R and an a > 0 such that
(i) (g + f) ∩ �a = ∅ for every f ∈ F = Φ;
(ii) for every f ∈ Φ we have g + f ∈ ES and this is decided on S.

Therefore, g and Λ = {�a} satisfy (I) and (II).
Finally, assume that cof(c−) = ω. Then |Φ| < c and c− < c, since c

has uncountable cofinality. Furthermore, since cof(c−) = ω, we have that
Φ =

⋃
n<ω Fn for some families Fn of cardinality < c−. By Lemma 4.3, for

every n < ω we can find a gn ∈ R
R and a linear map �an

satisfying (i) and (ii)
of Lemma 4.3 for F = Fn. Let {Jn : n < ω} be a partition of R into non-trivial
intervals. Then g :=

⋃
n<ω gn � Jn and Λ := {�an

: n < ω} satisfy (I) and (II).
�

Theorem 4.5. c− ≤ A(ES \Conn) = A(D \Conn) ≤ c and the first inequality
is strict when cof(c−) = ω. Moreover

(i) It is consistent with ZFC, follows from the arithmetic 2ω = 2ω1 = ω2,
that c− = A(ES \Conn) = A(D \Conn) < c.

(ii) It is consistent with ZFC, follows from CH or the arithmetic 2ω = (ωω)+,
that c− < A(ES \Conn) = A(D \Conn) = c.

(iii) It is consistent with ZFC, follows from a possible arithmetic 2ω = ωω1 ,
that c− = A(ES \Conn) = A(D \Conn) = c.

Proof. Notice that Lemma 4.4, the inclusions ES \Conn ⊂ D \Conn ⊂ D \AC
together with Proposition 1.2 (iii), and Lemma 4.1 imply that

c− ≤ A(ES \Conn) ≤ A(D \Conn) ≤ A(D \AC) ≤ c.

Thus, to finish the proof of the main part of the theorem it is enough to show
that A(D \Conn) ≤ A(ES \Conn). To see this, choose an F ⊂ R

R such that
|F | < A(D \Conn). We need to show that |F | < A(ES \Conn), that is, that
there exists a g ∈ R

R such that g + F ⊂ ES \Conn.
To argue for this, let F̂ := {f +qχ{p} : f ∈ F & p, q ∈ Q} and notice that

|F̂ | < A(D \Conn), since, by Lemma 4.4, A(ES \Conn) > ω.
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So, there is a g ∈ R
R such that g + F̂ ⊂ D \Conn. Since F ⊂ F̂ , this

clearly gives g + F ⊂ ¬Conn. It remains to show that g + F ⊂ ES. But,
since g + F ⊂ g + F̂ ⊂ D , it is enough to show that, for every f ∈ F , g + f
has a dense graph in R

2. Indeed, assume that there exist nonempty open sets
U, V ⊂ R such that (g + f) ∩ (U × V ) = ∅. Choose p ∈ U ∩ Q and q ∈ Q such
that g(p) + f(p) + q ∈ V . Then f̂ := f + qχ{p} is in F̂ and (g + f̂) ∩ (U × V )
is a singleton showing that g + f̂ /∈ D , a contradiction. This finishes the proof
of the main part of the theorem.

Now, the additional parts (i)–(iii) follow immediately from the main part
and the inequalities given by Lemmas 4.2 and 4.4. �

5. The Value of A(Conn \AC)

The upper bounds for A(Conn \AC) will come from the previous section. So,
we concentrate here on the lower bound. Let

K := {K ⊂ R
2 : K is compact connected and dom(K) = [a, b] for some a < b}.

The following fact will be of major importance for the results presented
in this section. It is commonly cited in the literature related to the class of
connectivity functions as well known or folklore. (See e.g. [12, p. 208] or [19,
p. 188].) However, our recent intensive search for its explicit proof in literature
brought no results.2 Therefore, we include below its easy proof, which never-
theless relies on a deep topological result • (related to the fact that the 2-cell
[0, 1]2 is unicoherent) stated below.

Lemma 5.1. If f : R → R intersects every K ∈ K, then f ∈ Conn.

Proof. In the argument we will use [44, thm 14.3, p. 123)]:
• Let X = [a, b] × [c, d]. If there are two points in X separated by a closed

F ⊂ X, then they are separated by a connected component of F .3

To prove Lemma 5.1, fix an f ∈ ¬Conn. It is enough to show that f ∩ K = ∅
for some K ∈ K.

As f ∈ ¬Conn, there are a < b in R such that the points p = 〈a, f(a)〉
and q = 〈b, f(b)〉 are separated by some closed F ⊂ R

2 disjoint with f . Thus,
for every large enough n ∈ N the points p and q belong to Xn := [a, b]× [−n, n]

2The only paper we are aware of that contains a result closely related to Lemma 5.1 is paper
[25]. However, the wording of [25, thm 2] related to Lemma 5.1 is actually very different
from our lemma and it is not easily seen that it implies it. Moreover, the proof of [25, thm 2]
is quite long and complicated, while still not self contained. (It cites a result, from a book of
R.L. Moore, that is of similar depth to that • we use.) One of the earliest exact formulation
of Lemma 5.1 comes from [8, thm 1C], which sends readers to [25] for its proof. An earlier
version of Lemma 5.1 can be found in [33, thm 2]. However, it is stated and proved only for
additive connectivity functions.
3The property • is also proved in the paper [31], that also concerns connectivity maps.
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and, furthemore, the points p and q are separated by the closed set F ∩ Xn.
So, by •, they are separated by a connected component Kn of F ∩ Xn. Such
compact connected Kn is our desired K ∈ K, unless dom(Kn) is a single point
xn ∈ (a, b) and Kn = {xn} × [−n, n]. However, if Kn is of this format for
infinitely many n, then the closed set F ∩ ([a, b] × R) contains a vertical line,
contradicting the fact that F is disjoint with f . So, there is an n ∈ N for which
K := Kn is as needed. �

On the other hand, J.H. Roberts constructed in [47] a subset Z ⊂ [0, 1]2

homeomorphic to the Cantor set C such that Z ∩ g �= ∅ for every continuous
function g : [0, 1] → [0, 1]. Thus, Z is a blocking set for maps from [0, 1] to
[0, 1]. This construction was slightly modified by Ciesielski and Ros�lanowski
in [19, Lemma 2.1] to obtain a blocking set Z̄ for functions from R to R that
have the following additional properties.

Proposition 5.2. Let Q be a countable dense subset of (−1, 1) and
G := (−1, 1)\Q. Then there exists an embedding F = 〈F0, F1〉 : R → (−1, 1)×R

such that F0 is non-decreasing,
(a) B := F [R] is a blocking set;
(b) zero-dimensional Z̄ := F [Z + C] ⊂ B is also a blocking set;
(c) γ := Z̄ ∩ (G × R) = B ∩ (G × R) is a continuous function on G; and
(d) for every x ∈ Q the vertical section B ∩ ({x} × R) of B is a non-trivial

closed interval and Z̄ ∩ ({x} × R) consists of the two endpoints of that
interval.

Notice that Z̄ is also a 0-dimensional and for every x ∈ Q the right hand
side limit of γ(x) exists. Using Robert’s set Z it is relatively easy to construct a
connectivity function f : [0, 1] → [0, 1] which is not almost continuous. Below,
we will use set Z̄ to obtain a lower bound of the additivity of Conn \AC.

In what follows, for α > 0 and k ∈ Z we define

αZ̄k := {〈x + 2k, αy〉 : 〈x, y〉 ∈ Z̄}.

Clearly, each set αZ̄k is a blocking set. Also let

Kk := {K ∈ K : dom(K) ∩ (2k − 1, 2k + 1) �= ∅}.

Theorem 5.3. Assume that S ⊂ (−1, 1) is such that |S ∩ (p, q)| = c whenever
−1 ≤ p < q ≤ 1. Also, let Φ ⊂ R

R be countable. Then for every f ∈ Φ there
exist a g ∈ R

R, an α > 0, and a countable T ⊂ (−1, 1) such that
(i) (g + f) ∩ (αZ̄0) = ∅;
(ii) dom(K ∩ (g + ϕ)) ∩ (S ∪ T ) �= ∅ for every ϕ ∈ Φ and K ∈ K0.

Proof. Let B0 be a countable basis for (−1, 1). We actually will prove a seem-
ingly stronger version of (ii) that the set dom(K ∩ (g + ϕ)) ∩ (S ∪ T ) in its
statement is dense in dom(K) ∩ (−1, 1). For this, we will first show that for
an appropriately chosen α and T we can inductively choose for every trip-
ple 〈K,ϕ, J〉 ∈ K0 × Φ × B0 with nonempty dom(K) ∩ S ∩ J a distinct
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x ∈ dom(K) ∩ (S ∪ T ) ∩ J and define g(x) so that 〈x, (g + ϕ)(x)〉 ∈ K while
〈x, (g + f)(x)〉 /∈ αZ̄0. Such defined partial function g ensures (ii) while pre-
serving (i). Then any extension of g to R that preserves (i) will satisfy both
(i) and (ii).

To carry this plan, consider the family E of all 〈K,ϕ, J, α〉 ∈ K0×Φ×B0×
(0,∞) which can give us difficulty, that is, such that J ⊂ dom(K) ∩ (−1, 1)
and for which the set C〈K,ϕ,J,α〉 := dom

(
K \

(
(ϕ − f) � G + α γ

))
∩J ∩S has

cardinality less than c.
For any quadruple 〈K,ϕ, J, α〉 ∈ E let D〈K,ϕ,J,α〉 := J∩S\(C〈K,ϕ,J,α〉∪Q)

and ψ〈K,ϕ,J,α〉 := K ∩ (D〈K,ϕ,J,α〉 × R). We will need the following fact:
Claim Assume that 〈K,ϕ, J, α〉, 〈K ′, ϕ, J, α′〉 ∈ E .

(A) (ϕ − f) � D〈K,ϕ,J,α〉 and ψ〈K,ϕ,J,α〉 are continuous maps from D〈K,ϕ,J,α〉
to R.

(B) If ψ〈K,ϕ,J,α〉 and ψ〈K′,ϕ,J,α′〉 can be both extended to a continuous func-
tions on J , then α′ = α.

(C) If α′ = α, then ψ〈K,ϕ,J,α〉 = ψ〈K′,ϕ,J,α′〉 on D〈K,ϕ,J,α〉 ∩ D〈K′,ϕ,J,α′〉.

To see (A) notice that ψ〈K,ϕ,J,α〉 is a function since it is contained in the
map (ϕ− f) � G+α γ. It is continuous, since its graph K ∩ (D〈K,ϕ,J,α〉 ×R) is
bounded and closed in D〈K,ϕ,J,α〉×R. Finally, (ϕ−f) � D〈K,ϕ,J,α〉 is continuous
since it is equal to the continuous function ψ〈K,ϕ,J,α〉 − α γ � D〈K,ϕ,J,α〉.

To see (B) notice that D := D〈K,ϕ,J,α〉 ∩ D〈K′,ϕ,J,α′〉 is dense in J and
that both ψ〈K,ϕ,J,α〉 � D = (ϕ − f) � D + α γ � D and ψ〈K′,ϕ,J,α′〉 � D =
(ϕ−f) � D+α′ γ � D can be extended to the continuous maps on J . Therefore,
also their difference (α − α′) γ � D can be extended to a continuous map on
J . But this is impossible, unless α = α′.

The property (C) holds, since under its assumptions both ψ〈K,ϕ,J,α〉 � D
and ψ〈K′,ϕ,J,α′〉 � D are equal to (ϕ − f) � D + α γ � D. This completes the
proof of Claim.

Now let E0 be the family of all 〈K,ϕ, J, α〉 ∈ E for which ψ〈K,ϕ,J,α〉 can be
extended to a continuous function on J and notice that by part (B) of Claim
the set A := {α : 〈K,ϕ, J, α〉 ∈ E0} is at most countable.

From this point on we fix an α ∈ (0,∞) \ A. We will show that this α
satisfies the statement of the theorem. To see this, notice that

(D) If 〈K,ϕ, J, α〉 ∈ E , then there is a T 〈ϕ,J〉 ⊂ R
2 such that dom(T 〈ϕ,J〉) is

dense in J , the x-vertical section T
〈ϕ,J〉
x := {y : 〈x, y〉 ∈ T 〈ϕ,J〉} of T 〈ϕ,J〉

is a non-trivial interval for every x ∈ dom(T 〈ϕ,J〉) , and T 〈ϕ,J〉 ⊂ K ′ for
every 〈K ′, ϕ, J, α〉 ∈ E .

To argue for (D), assume that 〈K,ϕ, J, α〉 ∈ E and choose an I ∈ B0

contained in J . Notice that the choice of α implies that 〈K,ϕ, I, α〉 /∈ E0. In
particular, there is an xI ∈ I such that the numbers

bI := lim sup
x→xI ,x∈D〈K,ϕ,J,α〉

ψ〈K,ϕ,J,α〉(x)
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and
aI := lim inf

x→xI ,x∈D〈K,ϕ,J,α〉
ψ〈K,ϕ,J,α〉(x)

are distinct. It is enough to show that the segment {xI} × [aI , bI ] is contained
in K ′ for every 〈K ′, ϕ, J, α〉 ∈ E , as then T 〈ϕ,J〉 :=

⋃
I∈B0, I⊂J{xI} × [aI , bI ] is

as needed.
To see that {xI} × [aI , bI ] ⊂ K ′ notice that by the property (C) we have

ψ〈K,ϕ,J,α〉 = ψ〈K′,ϕ,J,α〉 on D := D〈K,ϕ,J,α〉 ∩D〈K′,ϕ,J,α〉 and that D is dense in
D〈K,ϕ,J,α〉.4 Since, by (A), ψ〈K,ϕ,J,α〉 : D〈K,ϕ,J,α〉 → R is continuous, there are
the sequences 〈pn ∈ D : n < ω〉 and 〈qn ∈ D : n < ω〉 both converging to xI

and such that aI = limn→∞ ψ〈K′,ϕ,J,α〉(pn) and bI = limn→∞ ψ〈K′,ϕ,J,α〉(qn).
Thus, 〈xI , aI〉, 〈xI , bI〉 ∈ K ′. To see that {xI}×[aI , bI ] ⊂ K ′ fix an r ∈ (aI , bI).
We need to show that 〈xI , r〉 ∈ K ′.

So, by way of contradiction, assume that 〈xI , r〉 /∈ K ′. Since K ′ is com-
pact, there exists an ε > 0 such that the segment [xI −ε, xI +ε]×{r} is disjoint
with K ′. Choose an n < ω such that ψ〈K′,ϕ,J,α〉(pn) < r, ψ〈K′,ϕ,J,α〉(qn) > r,
and pn, qn ∈ [xI −ε, xI +ε]. Assume that pn < qn, the other case being similar.
Then the closed three-segments set

N := ({pn} × [r,∞)) ∪ ([pn, qn] × {r}) ∪ ({qn} × (−∞, r])

separates K ′, what contradicts connectedness of K ′ ∈ K. This completes the
proof of (D).

Now, we are ready to construct our function g. For this, first notice that,
by (D), the family T := {T 〈ϕ,J〉 : 〈K,ϕ, J, α〉 ∈ E} is at most countable, so we
can enumerate it as {Tn : n < ω}. By induction choose a sequence 〈pn : n < ω〉
so that pn ∈ dom(Tn)\{pi : i < n} and define g on the set T := {pn : n < ω} so
that if Tn = T 〈ϕ,J〉, then 〈pn, (g + ϕ)(pn)〉 ∈ Tn while 〈pn, (g + f)(pn)〉 /∈ αZ̄0.
This is insured by choosing g(pn) in the interval −ϕ(pn) + {y : 〈pn, y〉 ∈ Tn}
while not in the at most two element set −f(pn) + {y : 〈pn, y〉 ∈ αZ̄0}. This
establishes the definition of g on T . Notice g defined so far satisfies (i) and
that, by (D), dom(K ∩ (g + ϕ)) ∩ T ∩ J �= ∅ provided 〈K,ϕ, J, α〉 ∈ E .

To finish the construction of g let {〈Kξ, ϕξ, Jξ〉 : ξ < c} be an enumeration
of the family {〈K,ϕ, J〉 ∈ K0×Φ×B0 : 〈K,ϕ, J, α〉 /∈ E}. By induction on ξ < c
choose

xξ ∈ dom (Kξ \ ((ϕξ − f) � G + α γ)) ∩ Jξ ∩ S \ (Q ∪ T ∪ {xζ : ζ < ξ}) .

The choice is possible since
∣
∣dom

(
Kξ \

(
(ϕξ − f) � G + α γ

))
∩ Jξ ∩ S

∣
∣ = c as

〈Kξ, ϕξ, Jξ, α〉 /∈ E . This allows us to choose g(xξ) so that

〈xξ, (ϕξ + g) (xξ)〉 ∈ Kξ \ ((ϕξ − f) � G + α γ) .

This ensures that (ii) is satisfied as xξ ∈ dom(Kξ ∩ (g + ϕξ)) ∩ S, while (i)
is satisfied by g defined so far, as (ϕξ + g)(xξ) �= (ϕξ − f + α γ)(xξ) so that
〈xξ, (f + g)(xξ)〉 does not belong to αZ̄0.

4Actually, D is even c-dense in J .



Additivity of Darboux-Like Maps on R Page 19 of 38     7 

To finish the constriction of g it is enough to extend it to the entire R so
that the property (i) is preserved. �

Corollary 5.4. Assume that S ⊂ R is c-dense and let Φ = {fk ∈ R
R : k ∈ Z}.

Then there exist a g ∈ R
R and a countable T ⊂ R such that

(i) for every k ∈ Z there is an αk > 0 for which (g + fk) ∩ (αkZ̄k) = ∅;
(ii) for every ϕ ∈ Φ we have g +ϕ ∈ ES ∩Conn and this is decided on S ∪T .

In particular, g + Φ ⊂ Conn \AC and so ω1 ≤ A(Conn \AC) ≤ c.

Proof. First notice that for every k ∈ Z there exist a gk ∈ R
R, an αk > 0, and

a countable Tk ⊂ (2k − 1, 2k + 1) such that
(I) (gk + fk) ∩ (αkZ̄k) = ∅;

(II) dom(K ∩ (gk + ϕ)) ∩ (S ∪ Tk) ∩ (2k − 1, 2k + 1) �= ∅ for every ϕ ∈ Φ and
K ∈ Kk.

This follows from Theorem 5.3 applied, for every k ∈ Z, to the 2k-translated
versions of f = fk, Φ, and S.

We will show that T :=
⋃

k∈Z
Tk and g :=

⋃
k∈Z

gk � [2k − 1, 2k + 1)
are as needed. Indeed, the property (i) follows from (I) since dom(αkZ̄k) ⊂
[2k−1, 2k+1) so that (g+fk)∩(αkZ̄k) = (g+fk) � [2k−1, 2k+1)∩(αkZ̄k) =
(gk + fk) ∩ (αkZ̄k) = ∅.

To see (ii), fix ϕ ∈ Φ and K ∈ K. It is enough to show that there exists
an x ∈ S ∪T such that 〈x, (g+ϕ)(x)〉 ∈ K. But clearly there exists a k ∈ Z for
which dom(K)∩ (2k−1, 2k+1) �= ∅ so that K ∈ Kk. Then, by (II), there is an
x ∈ (S ∪T )∩ (2k − 1, 2k +1) for which 〈x, (gk +ϕ)(x)〉 ∈ K. But g(x) = gk(x)
for such x. So, indeed 〈x, (g + ϕ)(x)〉 ∈ K and (ii) is proved.

To see the additional part, notice that by (i) for every fk ∈ Φ the sum
g+fk does not intersect a blocking set αkZ̄k, so g+fk /∈ AC. So, g+Φ ⊂ ¬AC.
Since clearly (ii) implies that g +Φ ⊂ Conn, this proves the main part and the
lower bound of A(Conn \AC).

The upper bound for A(Conn \AC) follows from Proposition 1.2 and
Lemma 4.1. �

6. Additivity of PC \PR and Its Refinements

Theorem 6.1. A(PC \PR) = 2c.

Proof. In [17], to prove that A(PC) = 2c the authors show that for every
F ⊂ R

R with |F | < 2c there exists a g : R → R such that for every f ∈ F the
graph of g + f is dense in R

2, so that g + f ∈ PC. The same argument shows
also a bit stronger result:

(PC) Let X be a second countable space with every nonempty open set having
cardinality c. Then for every F ⊂ R

X with |F | < 2c there exists a g : X →
R such that for every f ∈ F the graph of g + f is dense in X × R.
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Since A(PC \PR) ≤ A(PC) = 2c, we need to show only that A(PC \PR)
≥ 2c. To see this, fix a family F ⊂ R

R of size less than 2c. We will find a
g ∈ R

R such that g + F ⊂ PC \PR.
Let {BP : P ∈ Perf} be a family of pairwise disjoint Bernstein sets in-

dexed by Perf. For every P ∈Perf let XP :=P ∩BP and FP :={f � XP : f ∈F}.
By property (PC), we can find a gP : XP → R such that for every f ∈ F the
graph of gP + f � XP is dense in XP × R.

Let g : R → R be any extension of
⋃

P∈P gP . Then g is as needed. Indeed,
for every f ∈ F and P ∈ Perf the restriction of g + f to P has a dense graph
in P × R, so g + f ∈ PC \PR, as needed. �

To decide the additivity of the refinements of the class PC \PR we will
need also the following lemma.

Lemma 6.2. For every countable Λ ⊂ R
R, Bernstein set B ⊂ R, and F ⊂ R

R

with |F | < c there exists a g ∈ R
R such that

(i) (g + f) ∩ λ = ∅ for every f ∈ F and λ ∈ Λ;
(ii) (g + f) � P ∩ B is unbounded for every f ∈ F and P ∈ Perf.

Proof. Let Λ, B, and F be as in the assumptions. Let 〈〈Pξ, nξ, fξ〉 : ξ < c〉 be
an enumeration of Perf ×N × F and, by induction on ξ < c, define a sequence
〈〈xξ, yξ〉 : ξ < c〉 such that
(a) xξ ∈ B ∩ Pξ \ {xζ : ζ < ξ}, and
(b) yξ ∈ (nξ − fξ(xξ),∞) \ {λ(xξ) − f(xξ) : f ∈ F & λ ∈ Λ}.

Then g0 := {〈xξ, yξ〉 : ξ < c} is a function on D := {xξ : ξ < c}. Extend it to a
g ∈ R

R so that for every x ∈ R \ D we have

g(x) ∈ R \ {λ(x) − f(x) : f ∈ F & λ ∈ Λ}. (6.1)

Then g is as needed.
Indeed, to see (i), fix f ∈ F and x ∈ R. We need to show that for every

λ ∈ Λ we have (g + f)(x) �= λ(x), that is, that g(x) �= λ(x) − f(x). But this is
ensured by (b) and (6.1).

To see (ii), fix f ∈ F , P ∈ Perf, and n ∈ N. Then, there exists a ξ < c
such that 〈P, n, f〉 = 〈Pξ, nξ, fξ〉. Then, by (a), we have xξ ∈ B ∩ Pξ = B ∩ P ,
while, by (b),

(g + f)(xξ) = g(xξ) + fξ(xξ) = yξ + fξ(xξ) > nξ = n.

Therefore, g + f takes arbitrary large values on P ∩B, that is, (g + f) � B ∩P
is indeed unbounded. �

Theorem 6.3. We have c− ≤ A(ES \(PR ∪Conn)) ≤ A(D \(PR ∪Conn)) ≤ c
and ω1 ≤ A(ES ∩Conn \(PR ∪AC)) ≤ A(Conn \(PR ∪AC)) ≤ c. Further-
more, A(ES \(PR ∪Conn)) = c when cof(c−) = ω. Moreover

(i) It is consistent with ZFC, follows from the arithmetic 2ω = 2ω1 = ω2,
that c− = A(ES \(PR ∪Conn)) = A(D \(PR ∪Conn)) < c.
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(ii) It is consistent with ZFC, follows from CH or the arithmetic 2ω = (ωω)+,
that c− < A(ES \(PR ∪Conn)) = A(D \(PR ∪Conn)) = c.

(iii) It is consistent with ZFC, follows from a possible arithmetic 2ω = ωω1 ,
that c− = A(ES \(PR ∪Conn)) = A(D \(PR ∪Conn)) = c.

(iv) It is consistent with ZFC, follows from CH, that A(Conn \(PR ∪AC)) =
c.

Proof. The upper bounds follow from Lemma 4.1.
To argue for the lower bounds choose a Bernstein set B ⊂ R, put S :=

R \ B, and let κ = c when cof(c−) = ω and κ = c− otherwise.
To see that A(ES \(PR ∪Conn)) ≥ κ choose Φ ∈ [RR]<κ We need to find

a g ∈ R
R such that g + Φ ⊂ ES \(PR ∪Conn). By Lemma 4.4 there exist an

h ∈ R
R and a countable family Λ ⊂ R

R of continuous functions such that

(a) for every f ∈ Φ there is 〈λf , If 〉 ∈ Λ × J such that (h + f)(x) �= λf (x)
for every x ∈ If ;

(b) for every f ∈ Φ we have h + f ∈ ES and this is decided on S.

Also, by Lemma 6.2, there exists an h′ ∈ R
R such that

(c) (h′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(d) (h′ + f) � P ∩ B is unbounded for every f ∈ Φ and P ∈ Perf.

Then g := (h � S) ∪ (h′ � B) is as needed. Indeed, (b) and (d) imply, respec-
tively, that g + Φ ⊂ ES and g + Φ ⊂ ¬PR. Moreover, by (a) and (c), for every
f ∈ Φ there is 〈λf , If 〉 ∈ Λ × J such that (h + f)(x) �= λf (x) for every x ∈ If .
This, together with g + Φ ⊂ ES, implies that g + f ∈ ¬Conn.

To show that A(ES∩Conn \(PR ∪AC)) ≥ ω1 assume that Φ is countable
and let {fk : k ∈ Z} be an enumeration of Φ. Then, by Corollary 5.4, there
exist an h ∈ R

R and a countable T ⊂ R such that

(A) for every k ∈ Z there is an αk > 0 for which (h + fk) ∩ (αkZ̄k) = ∅;
(B) for every ϕ ∈ Φ we have h+ϕ ∈ ES ∩Conn and this is decided on S ∪T .

Now, let Λ be such that
⋃

Λ covers
⋃

k∈Z
αkZ̄k. We can also replace B with

B \ T , and notice that this new set B is still a Bernstein set. Thus, we can
apply Lemma 6.2 to these B, Λ, and Φ, to find an h′ ∈ R

R satisfying (c) and
(d) in this setting.

As before define g := (h � R \ B) ∪ (h′ � B). We need to show that
g + Φ ⊂ ES ∩Conn \(PR ∪AC). Indeed, (B) and (d) imply, respectively, that
g + Φ ⊂ ES ∩Conn and g + Φ ⊂ ¬PR. Moreover, by (A) and (c), we have
(g + fk) ∩ (αkZ̄k) = ∅ for every fk ∈ Φ. Since αkZ̄k is a blocking set, we
conclude that g + fk ∈ ¬AC.

The statement (i) is a direct consequence of Theorem 4.5 (i). �

Problem 6.4. Is it possible to prove in ZFC that A(Conn \(PR ∪AC)) = ω1 or
A(Conn \(PR ∪AC)) = c? If not, is it possible to improve the lower or upper
bounds of A(Conn \(PR ∪AC)) in ZFC + ¬CH?
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7. Additivity of PR \CIVP and Its Refinements

We say that M ⊂ R is perfect-dense provided for every J ∈ J there is a
nonempty perfect set contained in M ∩ J .

Lemma 7.1. For every countable Λ ⊂ R
R, perfect-dense M ⊂ R, Φ ∈ [RR]≤c,

and F ∈ [RR]<c there exists a g ∈ R
R such that

(i) (g + f) ∩ λ = ∅ for every f ∈ F and λ ∈ Λ;
(ii) g + Φ ⊂ ¬CIVP;
(iii) for every f ∈ Φ we have g + f ∈ PR and this is decided on M .
In particular, A(PR \CIVP) = c+.

Proof. First notice (see [2, Lemma 2] and, for better understanding, [22]) that
there exists a sequence 〈〈Hα, xα〉 : α < c〉 such that
(a) Hα ∪{xα} ⊂ R is compact perfect, xα /∈ Hα, and xα is a bilaterally limit

point of Hα;
(b) Hα ∩ Hβ = ∅ for any α < β < c;
(c) for every x ∈ R, there exist c-many γ < c such that x = xγ ;
(d) Hα ⊂ M for any α < c.

To see this, let {xα : α < c} be an enumeration of R such that for every x ∈ R,
there exist c-many γ < c with x = xγ . Choose a family of pairwise disjoint
perfect sets {CI ⊂ I ∩ M : I ∈ B} and for every I ∈ B let {Cα

I ∈ Perf : α < c}
be a partition of CI . For every α < c and n < ω choose Iα,n, Jα,n ∈ B
with Iα,n ⊂ (xα − 2−n, xα) and Jα,n ⊂ (xα, xα + 2−n). Then sets Hα :=⋃

n<ω(Cα
Iα,n

∪ Cα
Jα,n

) are as needed.
Next, list Φ = {ϕα : α < c}, R = {rβ : β < c}, and let {〈xξ, yξ, fξ〉 : ξ < c}

be an enumeration of R × R × Φ. By induction on ξ < c, choose a sequence
〈Pξ : ξ < c〉 of distinct sets from {Hζ : ζ < c} such that, for every ξ < c, the
set Pξ ∪ {xξ} satisfies (a). Also, fix a perfect set K ⊂ R such that

int(S + K) = ∅ for every S ∈ [R]<c. (7.1)

Notice that this holds for any K ⊂ R for which the linear space LINQ(K)
spanned by K over Q has co-dimension c, as then, for S ∈ [R]<c,
LINQ(S+K) has the same co-dimension. In particular, any non-trivial portion
K of a linearly independent perfect set H (see [38, Theorem 2, Chapter XI,
Sect. 7] for the existence of H) will have such property.

We define g by choosing, for every r = rα ∈ R, the value g(r) so that it
satisfies

(g + f)(r) /∈ K ∪ {λ(r) : λ ∈ Λ} for every f ∈ Fα := F ∪ {ϕβ : β < α} (7.2)

and
| (g + fξ) (r) − yξ| < |r − xξ| whenever r ∈ Pξ. (7.3)

This is ensured by choosing

g(r) ∈ Ur \
⋃

f∈Fα

(−f(r) + (K ∪ {λ(r) : λ ∈ Λ})) ,
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where Ur := yξ − fξ(r) + (−|r − xξ|, |r − xξ|) whenever r ∈ Pξ for some ξ < c
and Ur := R, otherwise. The possibility of such choice is ensured by (7.1).

To finish the proof, we need to show that such defined g satisfies the
properties (i), (ii), and (iii). Indeed (i) is ensured by the choice as in (7.2).

To see (ii), first notice that for every f = ϕα ∈ Φ the graph of g + f is
dense in R

2. For every 〈x, y〉 ∈ R
2 and ε > 0 there exist a ξ < c and an r ∈ Pξ

so that 〈xξ, yξ, fξ〉 = 〈x, y, f〉 and |r − xξ| < ε. Therefore, by (7.3), we have

‖〈r, (g + f)(r)〉 − 〈x, y〉‖ = ‖〈r − xξ, (g + fξ)(r) − yξ〉‖ < 2ε,

where the inequality follows from (7.3) and the fact that |r − xξ| < ε. So,
indeed the graph of g + f is dense in R

2. But there is no perfect set C with
(g + f)[C] ⊂ K, since, by (7.2), |(g + f)−1[K]| < c. So, (ii) is proved.

To see (iii), choose a ḡ ∈ R
R such that ḡ � M = g � M , an f ∈ Φ, and

an x ∈ R. We need to find a perfect P ⊂ R having x as a bilateral limit point
such that (ḡ + f) � P is continuous at x. For this, let ξ < c be such that
〈xξ, yξ, fξ〉 = 〈x, (ḡ + f)(x), f〉 and let P := Pξ ∪ {x}. Then x is a bilateral
limit point of P and, by (7.3), for every r ∈ Pξ = P \ {x} we have

| (ḡ + f) (r) − (ḡ + f) (x)| = | (g + fξ) (r) − yξ| < |r − xξ| = |r − x|.
This clearly implies that (ḡ + f) � P is continuous at x, as needed. �

Theorem 7.2. We have the inequalities ω1 ≤ A(ES ∩Conn ∩PR \(CIVP ∪AC))
≤ A(Conn ∩PR \(CIVP ∪AC)) ≤ c and c− ≤ A(ES∩PR \(CIVP ∪Conn))
≤ A(D ∩PR \(CIVP ∪Conn)) ≤ c. Also A(D ∩PR \(CIVP ∪Conn)) = c when
cof(c−) = ω. Moreover

(i) It is consistent with ZFC, follows from the arithmetic 2ω = 2ω1 = ω2, that
c− = A(ES∩PR \(CIVP ∪Conn)) = A(D ∩PR \(CIVP ∪Conn)) < c.

(ii) It is consistent with ZFC, follows from CH or the arithmetic 2ω = (ωω)+,
that c− < A(ES ∩PR \(CIVP ∪Conn)) = A(D ∩PR \(CIVP ∪Conn)) =
c.

(iii) It is consistent with ZFC, follows from a possible arithmetic 2ω = ωω1 ,
that c− = A(ES ∩PR \(CIVP ∪Conn)) = A(D ∩PR \(CIVP ∪Conn)) =
c.

(iv) It is consistent, follows from CH, that A(Conn ∩PR \(CIVP ∪AC)) = c.

Proof. The proof is similar to that for Theorem 6.3.
Once again, the upper bounds follow from Lemma 4.1. To argue for the

lower bounds choose a Bernstein set B ⊂ R, a perfect-dense meager M ⊂ R,
and Φ ⊂ R

R such that |Φ| < c when cof(c−) = ω and |Φ| < c− otherwise. We
need to show that Φ can be shifted into ES∩PR \(CIVP ∪Conn) and, in case
when |Φ| ≤ ω, also into Conn∩PR \(CIVP ∪AC).

Let S = R \ (B ∪ M). By Lemma 4.4, we can find a countable family Λ
of continuous functions and h ∈ R

R such that
(a) for every f ∈ Φ there is 〈λf , If 〉 ∈ Λ × J such that (g + f)(x) �= λf (x)

for every x ∈ If ;
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(b) for every f ∈ Φ we have h + f ∈ ES and this is decided on S.

Also, by Lemma 6.2, there exists an h′ ∈ R
R such that

(c) (h′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(d) (h′ + f) � P ∩ B is unbounded for every f ∈ Φ and P ∈ Perf.

Finally, since |Φ| < c, by Lemma 7.1 used with F = Φ, there exists an h′′ ∈ R
R

such that

(e) (h′′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(f) h′′ + Φ ⊂ ¬CIVP;
(g) for every f ∈ Φ we have h′′ + f ∈ PR and this is decided on M .

Define g := (h � S) ∪ (h′ � B \ M) ∪ (h′′ � M) and notice that it is as needed,
that is, that g + Φ ⊂ ES ∩PR \(CIVP ∪Conn). Indeed, (b) and (g) imply,
respectively, that g + Φ ⊂ ES and g + Φ ⊂ PR. We have g + Φ ⊂ ¬Conn since
g + Φ ⊂ ES and, by (a), (c), and (e), for every f ∈ Φ there is 〈λf , If 〉 ∈ Λ × J
such that (g + f) ∩ λf � If = ∅.

Finally, to see that g+Φ ⊂ ¬CIVP fix an f ∈ Φ. Since h′′ +Φ ⊂ ¬CIVP,
there are p < q and a K ∈ Perf between (h′′ + f)(p) and (h′′ + f)(q) such
that (h′′ + f)[C] �⊂ K for any C ∈ Perf contained in (p, q). Since g + f ∈ ES,
there are p′ < q′ in (p, q) such that K ⊂ ((g + f)(p′), (g + f)(q′)). To prove
that g + f ∈ ¬CIVP it is enough to show that (g + f)[C] �⊂ K for any
C ∈ Perf contained in (p′, q′). So, fix a C ∈ Perf contained in (p′, q′). If C \M
is uncountable, then there is a C ′ ∈ Perf contained in C \M ⊂ (p, q). Then, by
(d), (g+f)[C ′∩B] = (h′+f)[C ′∩B] is unbounded, so (g+f)[C] ⊃ (g+f)[C ′∩B]
cannot be a subset of any bounded K. So, assume that C\M is countable. Then
there is a C ′ ∈ Perf contained in C ∩ M and we cannot have (g + f)[C] ⊂
K, since this would imply (h′′ + f)[C ′] = (g + f)[C ′] ⊂ (g + f)[C] ⊂ K,
contradicting our choice of set K.

To show that A(ES∩Conn ∩PR \(CIVP ∪AC)) ≥ ω1 assume that Φ is
countable, and let {fk : k ∈ Z} be an enumeration of Φ (we can extend Φ if
necessary). Then, by Corollary 5.4, there exist an h ∈ R

R and a countable
T ⊂ R such that

(A) for every k ∈ Z there is an αk > 0 for which (h + fk) ∩ (αkZ̄k) = ∅;
(B) for every ϕ ∈ Φ we have h+ϕ ∈ ES ∩Conn and this is decided on S ∪T .

Now, let Λ ⊂ R
R be such that

⋃
Λ covers

⋃
k∈Z

αkZ̄k. We can assume that B
is disjoint with T and that h′ as above was obtained for such B and Λ. Notice
also that M \ T is still perfect-dense and that |Φ| = ω. So, by Lemma 7.1,
there exists an h′′ ∈ R

R such that

(E) (h′′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(F) h′′ + Φ ⊂ ¬CIVP;
(G) for every f ∈ Φ we have h′′ + f ∈ PR and this is decided on M \ T .

Define g := (h � S ∪ T ) ∪ (h′ � B \ M) ∪ (h′′ � M \ T ). A similar argument as
above shows that g + Φ ⊂ ES ∩Conn ∩PR \(CIVP ∪AC). �
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Problem 7.3. Is it possible to prove in ZFC that A(Conn ∩PR \(CIVP ∪AC)) =
ω1 or A(Conn ∩PR \(CIVP ∪AC)) = c? If not, is it possible to improve the
lower or upper bounds of A(Conn ∩PR \(CIVP ∪AC)) in ZFC + ¬CH?

8. Additivity of CIVP \ SCIVP and Its Refinements

Lemma 8.1. For every countable Λ ⊂ R
R, perfect-dense M ⊂ R, Φ ∈ [RR]≤c,

and F ∈ [RR]<c there exists a g ∈ R
R such that

(i) (g + f) ∩ λ = ∅ for every f ∈ F and λ ∈ Λ;
(ii) g + Φ ⊂ SZ ⊂ ¬SCIVP;
(iii) for every ϕ ∈ Φ we have g + ϕ ∈ CIVP and this is decided on M .
In particular, A(CIVP \SCIVP) = c+.

Proof. Let P be a family of pairwise disjoint sets in Perf contained in M such
that every J ∈ J contains c-many P ∈ P, and extend Φ, if necessary, so that
|Φ| = c. Choose a one-to-one mapping Perf ×J ×Φ � 〈K,J, ϕ〉 �→ P〈K,J,ϕ〉 ∈ P
such that P〈K,J,ϕ〉 ⊂ J . Let {rξ : ξ < c} be an enumeration, with no repetitions,
of R and put B = {hξ : ξ < c} and Φ = {ϕξ : ξ < c}. By induction on ξ < c
choose g(rξ) such that
(a) g(rξ)∈−ϕ(rξ)+K provided rξ ∈P〈K,J,ϕ〉 for some 〈K,J, ϕ〉∈Perf ×J ×Φ;
(b) g(rξ) /∈ {(λ − f)(rξ) : f ∈ F & λ ∈ Λ} ∪ {(hζ − ϕη)(rξ) : ζ, η < ξ}.

Then g is as needed.
Indeed, (i) and (ii) are ensured by (b). To see (iii) fix ϕ ∈ Φ, J ∈ J ,

and K ∈ Perf. Then, by (a), the perfect set P〈K,J,ϕ〉 contained in M ∩ J
is mapped into K, as needed. Hence, A(CIVP \SCIVP) > c. On the other
hand, by Proposition 1.2, A(CIVP \SCIVP) ≤ A(PR) = c+, so we have
A(CIVP \SCIVP) = c+. �
Theorem 8.2. We have

ω1 ≤ A(ES∩Conn ∩CIVP \(SCIVP ∪AC))
≤ A(Conn ∩CIVP \(SCIVP ∪AC)) ≤ c

and

c− ≤ A(ES ∩CIVP \(SCIVP ∪Conn))
≤ A(D ∩CIVP \(SCIVP ∪Conn)) ≤ c.

Also A(D ∩CIVP \(SCIVP ∪Conn)) = c when cof(c−) = ω. Moreover
(i) It is consistent with ZFC, follows from the arithmetic 2ω = 2ω1 = ω2, that

c− =A(ES∩CIVP\(SCIVP∪Conn))=A(D ∩CIVP\(SCIVP∪Conn))<c.
(ii) It is consistent with ZFC, follows from CH or the arithmetic

2ω = (ωω)+,

that

c− < A(ES∩CIVP \(SCIVP ∪Conn)) = A(D ∩CIVP \(SCIVP ∪Conn)) = c.
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(iii) It is consistent with ZFC, follows from a possible arithmetic 2ω = ωω1 ,
that

c− = A(ES∩CIVP \(SCIVP ∪Conn)) = A(D ∩CIVP \(SCIVP ∪Conn)) = c.

(iv) It is consistent, follows from CH, that

A(Conn ∩CIVP \(SCIVP ∪AC)) = c.

Proof. The proof is similar to that for Theorem 7.2, where we replace the use
of Lemma 7.1 with Lemma 8.1.

The upper bounds follow from Lemma 4.1. For the lower bounds it is
enough to prove the following. For any Φ ⊂ R

R such that |Φ| < c when
cof(c−) = ω and |Φ| < c− otherwise, the set Φ can be shifted to

ES ∩CIVP \(SCIVP ∪Conn).

Furthemore, if Φ is countable, then the same can be said for Conn∩CIVP \
(SCIVP ∪AC).

Let B and M be a Bernstein set and a perfect-dense meager set of R,
respectively. Put S := R \ (B ∪ M). By Lemma 4.4, there exist a countable
family Λ ⊂ R

R of continuous functions and an h ∈ R
R such that

(a) for every f ∈ Φ, there is 〈λf , If 〉 ∈ Λ×J such that (h+f)∩λf � If = ∅;
(b) for every f ∈ Φ, we have h + f ∈ ES and this is decided on S.

By Lemma 6.2, there exists an h′ ∈ R
R such that

(c) (h′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(d) (h′ + f) � P ∩ B is unbounded for every f ∈ Φ and P ∈ Perf.

Finally, by Lemma 8.1, since |Φ| < c, there exists an h′′ ∈ R
R such that

(e) (h′′ + f) ∩ λ = ∅ for every f ∈ Φ and λ ∈ Λ;
(f) h′′ + Φ ⊂ ¬SCIVP;
(g) for every f ∈ Φ, we have h′′ + f ∈ CIVP and this is decided on M .

Define g := (h � S)∪ (h′ � B \M)∪ (h′′ � M). Then g is as needed. Indeed, (b)
and (g) imply that g+Φ ⊂ ES ∩CIVP. Also, g+Φ ⊂ ¬Conn since g+Φ ⊂ ES
and, by (a), (c) and (e), for every f ∈ Φ, there is 〈λf , If 〉 ∈ Λ × J such that
(g + f) ∩ λf � If = ∅.

It remains to show that g + Φ ⊂ ¬SCIVP. To see this, fix an f ∈ Φ and
notice that g + f ⊂ ¬SCIVP. Indeed, (f) implies that h′′ + f ⊂ ¬SCIVP. So,
there are p < q and a K ∈ Perf between (h′′ + f)(p) and (h′′ + f)(q) such that

(i) for any P ∈ Perf contained in (p, q), if (h′′ + f) � P is continuous, then
(h′′ + f)[P ] �⊂ K.

Since g+f ∈ES, there are p′ < q′ in (p, q) such that K ⊂((g+f)(p′), (g+f)(q′)).
To prove that g + f ∈ ¬SCIVP, it is enough to show that for any C ∈ Perf
contained in (p′, q′), it is impossible that

(ii) (g + f) � C is continuous and (g + f)[C] ⊂ K.
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Indeed, if C ∩M is uncountable, then it contains a P ∈ Perf for which we have
(g + f) � P = (h′′ + f) � P . Thus, in this case, (ii) contradicts (i).

So, assume that |C ∩M | ≤ ω. Then C \M contains a P ∈ Perf for which
we have (g +f) � P ∩B = (h′ +f) � P ∩B. Hence (h′ +f)[P ∩B] ⊂ (g +f)[C]
and, by (d), the set (h′ + f)[P ∩ B] is unbounded. So, (g + f)[C] cannot be
contained in bounded K, that is, once again (ii) is impossible.

The argument for A(ES∩Conn ∩CIVP \(SCIVP ∪AC)) ≥ ω1 is similar
to that above, except that (similarly as in the proof of Theorem 7.2) we replace
in it Lemma 4.4 with Corollary 5.4, by which there exists an h ∈ R

R and a
countable T ⊂ R such that
(A) for every k ∈ Z, there is an αk > 0 for which (h + fk) ∩ (αkZ̄k) = ∅;
(B) for every ϕ ∈ Φ, we have h+ϕ ∈ ES∩Conn and this is decided on S ∪T .
The properties (A), (B), and (c)–(g) imply that

g := (h � S ∪ T ) ∪ (h′ � B \ M) ∪ (h′′ � M \ T )

shifts Φ to ES ∩Conn ∩CIVP \(SCIVP ∪AC), as needed. �

Problem 8.3. Is it provable in ZFC that A(Conn ∩CIVP \(SCIVP ∪AC)) =
ω1 or A(Conn ∩CIVP \(SCIVP ∪AC)) = c? If not, is it possible to improve
the lower or upper bounds of A(Conn ∩CIVP \(SCIVP ∪AC)) in ZFC+¬CH?

9. A(F) = c+ for F ∈ A(D) with F ⊂ PR \(SCIVP∪D)
or F ⊂ AC∩PR \ SCIVP

According to the author of [36], the equality A(SZ ∩CIVP \D) = c+, which
was stated in [10, Theorem 4.18], was already proven in a preliminary version
of [36]. However, until now, a proof of this result has not been published
anywhere. Thus, we will include it below.

Theorem 9.1. We have A(SZ ∩CIVP \D) = A(CIVP \(SCIVP ∪D)) = c+

and A(SZ ∩PR \(CIVP ∪D))= A(PR \(CIVP ∪D))= A(PR \(SCIVP ∪D))=
c+. In particular, A(F) = c+ for any nonempty F ∈ A(D) with
F ⊂ PR \(D ∪SCIVP).

Proof. Since SZ ∩PR \(CIVP ∪D) ⊂ PR \(CIVP ∪D) ⊂ PR \(SCIVP ∪D) ⊂
PR, and SZ∩CIVP \D ⊂ CIVP \(SCIVP ∪D) ⊂ PR, by Propositions 1.2
and 1.3 (b) we have that

A (SZ ∩PR \ (CIVP ∪D)) ≤ A (PR \ (CIVP ∪D))
≤ A (PR \ (SCIVP ∪D)) ≤ A(PR) = c+

and

A (SZ ∩CIVP \D) ≤ A (CIVP \ (SCIVP ∪D)) ≤ A(PR) = c+.

So, to finish the proof it is enough to show that

A (SZ ∩PR \ (CIVP ∪D)) ≥ c+ (9.1)
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and
A (SZ ∩CIVP \D) ≥ c+. (9.2)

Proof of the inequality (9.1)
To see this, fix an F ⊂ R

R with |F | ≤ c. We need to find a g ∈ R
R so

that g + F ⊂ SZ ∩PR \(CIVP ∪D). First let

F̂ :=
{
f + bχ{a} : f ∈ F & a, b ∈ R

}
. (9.3)

Notice that F ⊂ F̂ and |F̂ | = c. Thus, it is enough to find a g ∈ R
R so that

g + F̂ ⊂ SZ ∩PR \(CIVP ∪D). We use F̂ in place of F to ensure the following
property:

If g + F̂ ⊂ PR, then g + f has a dense graph in R
2 for every f ∈ F̂ . (9.4)

First of all, notice that if g + f has a dense graph for every f ∈ F , then also
g+f has a dense graph for every f ∈ F̂ . Thus, to prove (9.4), fix an f ∈ F and,
by way of contradiction, assume that g +f does not have a dense graph in R

2.
Then, there exist nonempty open sets U, V ⊂ R such that (g+f)∩(U ×V ) = ∅.
Choose a ∈ U and b ∈ R such that g(a) + f(a) + b ∈ V . Then f̂ := f + bχ{a}
is in F̂ and (g + f̂) ∩ (U × V ) is a singleton, which contradicts the assumption
that g + f̂ ∈ PR.

Let {rβ : β < c} be an enumeration, without repetition, of R. We define
the values {g(rβ) : β < c} by induction on β < c. The choice of each value g(rβ)
will be guided by three kind of conditions which will ensure, respectively, that
g + F̂ ⊂ PR, g + F̂ ⊂ ¬CIVP, and g + F̂ ⊂ ¬D . We start with the first of
these requirements.

We know that there exists a sequence 〈〈Hα, pα〉 : α < c〉 (see the proof of
Lemma 7.1) such that

(a) Hα ∪ {pα} ⊂ R is compact perfect, pα /∈ Hα, and pα is a bilaterally limit
point of Hα ∪ {pα};

(b) Hα ∩ Hβ = ∅ for all β < α < c;
(c) for every r ∈ R, there exist c-many γ < c such that r = pγ .

Let {〈βα, fα〉 : α < c} be an enumeration of c × F̂ such that βα ≤ α for
every α < c. By induction on α < c, choose a sequence 〈Pα : α < c〉 of pairwise
disjoint sets from {Hζ : ζ < c} such that Pα ∪ {rβα

} satisfies the property (a)
and

Pα ∩ {rβ : β ≤ α} = ∅. (9.5)

To have g + F̂ ⊂ PR, we will choose the values of g so that for every α < c

| (g + fα) (rβ) − (g + fα) (rβα
) | < |rβ − rβα

| for every rβ ∈ Pα. (9.6)

This will ensure g + F̂ ⊂ PR, since for every f ∈ F̂ and r ∈ R there exists an
α < c such that 〈rβα

, fα〉 = 〈r, f〉 while (9.6) implies that g + f = g + fα is
continuous at r = rβα

on the perfect set Pα ∪ {rβα
}.
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To enforce (9.6) notice that if rβ belongs to some Pα, then, by (9.5),
βα ≤ α < β. So, g(rβα

) is already defined and we can put

Jβ := ((g + fα) (rβα
) − ε, (g + fα) (rβα

) + ε) where ε := |rβ − rβα
|. (9.7)

Define nonempty open set Uβ as

Uβ :=

{
−fα(rβ) + Jβ when rβ belongs to a Pα,

R when rβ belongs to no Pξ

and notice that the choice
g (rβ) ∈ Uβ (9.8)

ensures (9.6).
Next, we turn our attention to the requirement g+F̂ ⊂ ¬CIVP. For this,

choose an arbitrary perfect nowhere dense compact K ⊂ R and let f ∈ F̂ .
Since, by the above construction, g + f will have a dense graph, we will need
only to ensure that (g+f)[C] �⊂ K for every C ∈ Perf. For this, let {Bξ : ξ < c}
be a partition of R into Bernstein sets and let {ϕξ : ξ < c} be an enumeration,
without repetitions, of F̂ . When choosing g(rβ) we will require that

g (rβ) /∈ −ϕξ (rβ) + K, where ξ < c is unique with rβ ∈ Bξ. (9.9)

Then, for every f ∈ F̂ and C ∈ Perf there is a unique ξ < c with f = ϕξ and
rβ ∈ C ∩ Bξ, for which (g + f)(rβ) = (g + ϕξ)(rβ) /∈ K, as needed. Therefore,
the properties (9.8) and (9.9) indeed imply that g + F̂ ⊂ ¬CIVP.

Now, to ensure that g + F̂ ⊂ ¬D holds, for every β < c we choose a
number yβ ∈ R \ (g + ϕβ)[{rζ : ζ < β}] and then add a requirement

g (rβ) /∈ {yζ − ϕζ (rβ) : ζ ≤ β} . (9.10)

This ensures that, for every ζ < c, yζ /∈ (g + ϕζ)[R] and, taking under consid-
eration that g + ϕζ has a dense graph, also g + ϕζ ∈ ¬D .

Finally, we just need the requirement for g + F̂ ⊂ SZ. Let {hξ : ξ < c}
be an enumeration of B. For any β < c, when choosing g(rβ) we just need to
guarantee that

g (rβ) /∈ {(hη − ϕζ) (rβ) : ζ, η ≤ β} . (9.11)

Clearly (9.11) guarantees that g + F̂ ⊂ SZ.
In summary, for every β < c we choose g(rβ) satisfying (9.8), (9.9), (9.10),

and (9.11), that is,

g (rβ) ∈ (Uβ \ (−ϕξ (rβ) + K)) \ ({yζ − ϕζ (rβ) : ζ ≤ β}
∪ {−ϕζ (rβ) + hη (rβ) : ζ, η ≤ β}) .

The choice is possible, since the set
(
Uβ \ (−ϕξ(rβ)+K)

)
has cardinality c, as

being residual in Uβ , while

|{yζ − ϕζ(rβ) : ζ ≤ β}∪ {−ϕζ(rβ) + hη(rβ) : ζ, η ≤ β}| < c.

Proof of the inequality (9.2)
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To see A(SZ ∩CIVP \D) ≥ c+, choose a family F ⊂ R
R of cardinality c.

We need to find a g ∈ R
R such that g + F ⊂ SZ ∩CIVP \D .

Let P be a family of pairwise disjoint sets in Perf such that every J ∈ J
contains c-many P ∈ P. Let {rξ : ξ < c} be an enumeration, with no repeti-
tions, of R, and let {fξ : ξ < c}, {〈Kξ, Jξ, ϕξ〉 : ξ < c}, and {hξ ∈ R

R : ξ < c}
be the enumerations of F , Perf ×J ×F , and B, respectively. By induction on
ξ < c define the sequence 〈〈g(rξ), yξ, Pξ〉 ∈ R × R × P : ξ < c〉 so that

(i) g(rξ) /∈
⋃

ζ,η<ξ{(hζ − fη)(rξ), yη − fη(rξ)};
(ii) g(rξ) ∈ −ϕζ(rξ) + Kζ when there exists a ζ < ξ so that rξ ∈ Pζ ;
(iii) Pξ ⊂ Jξ is distinct from all Pζ , ζ < ξ, and yξ /∈ {g(rζ)+fη(rζ) : ζ, η ≤ ξ}.

Then g is as needed.
To see this, fix an f ∈ F . Then g + f ∈ CIVP is ensured by (ii) since

for every 〈K,J〉 ∈ Perf ×J there is a ζ < c with 〈K,J, f〉 = 〈Kζ , Jζ , ϕζ〉, and
g +f = g +ϕζ maps Pζ ⊂ Jζ = J into Kζ = K. Also g +f ∈ ¬D since, by the
above (ii), g + f has a dense graph, while for η < c with f = fη we have yη /∈
(g + f)[R] from (i) and (iii). Finally, g + f ∈ SZ since for every Borel function
hζ and for ξ > η, ζ we have {x ∈ R : (g + f)(x) = hζ(x)} ⊂ {rα : α ≤ ξ} , that
is, |(g + f) ∩ hζ | < c. �

Lemma 9.2. Let F ⊂ R
R be of cardinality c and G ⊂ R be a dense Gδ set of

measure 0.

(i) There exists a γ0 ∈ R
G such that for every g ∈ R

R extending γ0 and
f ∈ F :

• g + f ∈ AC,
• for every perfect P ⊂ G, the restriction (g + f) � P is discontinuous

and Q ∩ (g + f)[P ] �= ∅.
(ii) There exists a γ1 ∈ R

R\G such that for every g ∈ R
R extending γ1 and

f ∈ F :
• for every nonempty open I, J ⊂ R there is a perfect P ⊂ I \ G such

that (g + f)[P ] ⊂ J ,
• for every perfect P ⊂ R \ G, we have Q ∩ (g + f)[P ] �= ∅.

(iii) There exists a γ2 ∈ R
R\G such that for every g ∈ R

R extending γ2, and
f ∈ F :

• for every p < q and K ∈ Perf there exists a perfect P ⊂ (p, q) \ G
with (g + f)[P ] ⊂ K,

• for every perfect P ⊂ R \G, the restriction (g + f) � P is discontin-
uous.

Proof. (i) Let {Bi
f : f ∈ F & i < 3} be a partition of R into Bernstein sets.

For every f ∈ F let gf : B0
f ∩ G → R intersect every blocking set. Also, let

h ∈ R
R be such that h + F ⊂ SZ, which exists, since A(SZ) > c. For every
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f ∈ F define

γ0 � (Bi
f ∩ G) :=

⎧
⎨

⎩

gf − (f � B0
f ∩ G) when i = 0,

−(f � B1
f ∩ G) when i = 1,

h � B2
f ∩ G when i = 2.

Then γ0 is as needed. Indeed, for every f ∈ F , g + f ∈ AC, since it extends
γ0 � (B0

f ∩ G) + f � (B0
f ∩ G) = gf , which intersects every blocking set. Also,

for every perfect P ⊂ G, the map (g + f) � P is discontinuous, since so is

(g + f) � B2
f ∩ P = γ0 � (B2

f ∩ P ) + f � (B2
f ∩ P ) = (h + f) � B2

f ∩ P

as |B2
f ∩ P | = c. Also, there is an x ∈ P ∩ B1

f for which (g + f)(x) = 0 ∈ Q.
To see (ii) and (iii), let B0 be a countable basis of R with ∅ /∈ B0, fix a

family {PI ⊂ I \G : I ∈ B0} of pairwise disjoint perfect sets. Let {Bf ′ : f ′ ∈ F}
be a partition of R into Bernstein sets.

To construct γ1, for every I ∈ B0 let {P I
f,J : f ∈ F & J ∈ B0} be a

partition of PI into perfect sets. For every x ∈ R \ G choose γ1(x) so that
• γ1(x) ∈ −f ′(x) + Q, where f ′ ∈ F is unique such that x ∈ Bf ′ and
• γ1(x) ∈ −f(x) + J , provided x ∈ P I

f,J for some f ∈ F and I, J ∈ B0.
Such choice is clearly possible, since −f(x) + J is an open nonempty set and
−f ′(x) + Q is dense in R. We extend γ1 to R \ G arbitrarily. Then γ1 is as
needed.

Finally, to construct γ2, let {xξ : ξ < c} be an enumeration, with no
repetitions, of R \ G. For every J ∈ B0 let {P J

f,K : f ∈ F & K ∈ Perf} be
a partition of PJ into perfect sets and let B×F = {〈hξ, fξ〉 : ξ < c}. For
every ξ < c let Pξ := −f(xξ) + K provided xξ ∈ P J

f,K and Pξ := R provided
xξ /∈

⋃
J∈J PJ . For ξ < c choose

γ2 (xξ) ∈ Pξ \ {(hη − fη) (xξ) : η < ξ} .

Then γ2 is as needed. Indeed, let g be an extension of γ2. For every p < q,
f ∈ F , perfect K ⊂ R there exists a J ∈ B0 with J ⊂ (p, q). Then P J

f,K ⊂
PJ ⊂ (p, q) and for every xξ ∈ P J

f,K we have (g + f)(xξ) ∈ f(xξ) + Pξ = K,
that is, (g + f)[P J

f,K ] ⊂ K. Also, if P ⊂ R \ G is perfect, then (g + f) � P
cannot be continuous, since otherwise there is an η < c so that fη = f and
hη � P = (g + f) � P . But then, for every ξ ≥ η with xξ ∈ P we have
(g + f)(xξ) = γ2(xξ) + fη(xξ) �= hη(xξ) = (g + f)(xξ), a contradiction. �
Theorem 9.3. A(F) = c+ for any F ∈ A(D)\{∅} with F ⊂ AC ∩PR \SCIVP.
In particular, A(AC ∩PR \CIVP) = A(AC ∩CIVP \SCIVP) = c+.

Proof. We have A(AC ∩PR \CIVP) ≤ A(AC ∩PR \SCIVP) ≤ A(PR) = c+

and A(AC ∩CIVP \SCIVP) ≤ A(PR) = c+. Thus, it is enough to show that

A (AC ∩PR \CIVP) > c and A (AC∩CIVP \SCIVP) > c.

To see this, fix a family F = {fα : α < c} ⊂ R
R. It is enough to find

functions g1, g2 ∈ R
R such that g1 + F ⊂ AC ∩PR \CIVP and g2 + F ⊂
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AC ∩CIVP \ SCIVP. For this, let γ0, γ1, and γ2 be as in Lemma 9.2. We
claim that g1 := γ0 ∪ γ1 and g2 := γ0 ∪ γ2 are as needed.

Indeed, g1 +F ⊂ AC and g2 +F ⊂ AC by the choice of γ0. The fact that
g1 + F ⊂ PR easily follows from the choice of γ1.

To see that g1 + F ⊂ ¬CIVP choose an f ∈ F and a perfect set K ⊂
(0, 1) \ Q. By the choice of γ1, there exist a, b ∈ R with (g1 + f)(a) < 0 < 1 <
(g1 + f)(b). Thus, it is enough to show that (g1 + f)[C] ⊂ K for no perfect set
C. Since G is Borel, we can decrease C, if necessary, so that either C ⊂ G or
C ⊂ R \ G. But if C ⊂ G, the choice of γ0 ensures that Q ∩ (g1 + f)[C] �= ∅,
that is, (g1 + f)[C] �⊂ K. Similarly, if C ⊂ R \ G, the choice of γ1 ensures that
Q∩ (g1 +f)[C] �= ∅, so again (g1 +f)[C] �⊂ K. Thus, indeed, g1 +F ⊂ ¬CIVP.

The fact that g2 +F ⊂ CIVP is immediately ensured by the choice of γ2.
To see that g2 + F ⊂ ¬SCIVP choose an f ∈ F and a perfect set P . We need
to show that (g2 + f) � P is discontinuous. Indeed, as before, we can assume
that either P ⊂ G or P ⊂ R \ G. But then, the discontinuity of (g2 + f) � P is
ensured by the choice of γ0 for P ⊂ G and the choice of γ2 for P ⊂ R \G. �

10. On A(PC \(PR∪D))

The goal of this section is to prove the following result.

Theorem 10.1. dc ≤ A(PC \(PR ∪D)) ≤ d∗
c . In particular, if |[c]<c| = c, then

A(PC \(PR ∪D)) = A(¬D) = dc = d∗
c .

Proof. It is enough to prove that A(PC \(PR ∪D)) ≥ dc, as the rest of the
theorem follows from Proposition 1.3 (f).

To see this inequality, fix an F ∈ [RR]<dc . We need to find a g ∈ R
R such

that g + F ⊂ PC \(PR ∪D). Since this is obvious for F = ∅, we can assume
that F �= ∅.

Let {B〈P,J〉 : 〈P, J〉 ∈ Perf ×B} be a partition of R into Bernstein sets.
For 〈P, J, f〉 ∈ Perf ×B × F define f〈P,J,f〉 : B〈P,J〉 → B so that f〈P,J,f〉(x) ⊂
−f(x) + J for every x ∈ B〈P,J〉. Since the family {f〈P,J,f〉 : f ∈ F} has cardi-
nality < 2c, |B〈P,J〉| = c, and |B| = ω, by [17, Lemma 2.2] (compare also [17,
Theorem 2.2]) there exists a mapping B〈P,J〉 � x �→ Jx ∈ B such that for every
f ∈ F there is an x ∈ B〈P,J〉 with Jx = f〈P,J,f〉(x). Now, if R � x �→ Jx ∈ B is
the union of all such mappings, then

(i) for every 〈P, J, f〉 ∈ Perf ×B ×F there is an x ∈ P with Jx ⊂ −f(x)+J .

Next, fix an additive Φ ∈ ES, see e.g. [9, Corollary 7.3.5]. Since F̂ :=
{Φ ◦ f : f ∈ F} has cardinality < dc, there exists a ḡ ∈ R

R so that for every
f ∈ F the set ḡ ∩ (Φ ◦ f) has cardinality < c.

Choose a g ∈
∏

x∈R
Jx such that Φ ◦ g = −ḡ. This can be done since

Φ ∈ ES. We claim that g is as needed, that is, such that g+F ⊂ PC \(PR ∪D).
To see this, fix an f ∈ F . Then, by (i), for every P ∈ Perf the map

(g + f) � P is dense in P × R. In particular, g + f ∈ PC \PR.
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To see that g + f ∈ ¬D , by density of the graph of g + f in R
2, it is

enough to show that (g + f)[R] �= R. Indeed, otherwise Φ ◦ (g + f)(x) = 0 for
c-many x ∈ R. Since Φ is additive, for any such x we have

(−ḡ + Φ ◦ f) (x) = (Φ ◦ g + Φ ◦ f) (x) = Φ ◦ (g + f)(x) = 0,

that is, |ḡ ∩ (Φ ◦ f)| = c, contradicting the choice of ḡ. �
Remark 10.2. Let us denote by D∗ the family of Darboux functions f ∈ R

R

that are nowhere constant, that is, f � J is not constant for every J ∈ J . No-
tice that D∗ ⊂ D . Then, by Proposition 1.2, we have that A(PC \(PR ∪D)) ≤
A(PC \(PR ∪D∗)). Furthemore, by using similar arguments to those in the
proof of [35, Lemma 25], it is easy to show that A(PC \(PR ∪D∗)) ≤
A(PC \(PR ∪D)). Thus, A(PC \(PR ∪D∗)) = A(PC \(PR ∪D)).

Remark 10.3. Notice that we have A(PC \(PR ∪SES)) ≥ dc. This is a straight-
forward consequence of Theorem 10.1, since PC \(PR ∪D) ⊂ PC \(PR ∪SES).

11. On AC∩ SCIVP \Ext

Theorem 11.1. 2 ≤ A(AC ∩SCIVP \Ext) ≤ A(SCIVP \Ext) ≤ c.

Proof. Ciesielski and Ros�lanowski proved in [19] that AC∩SCIVP \Ext �= ∅.
So, by Proposition 1.2 (i), we have A(AC ∩SCIVP \Ext) ≥ 2.

To see the other inequality we will use the following key fact:
• for every perfect-dense meager set M ⊂ R there exists an h ∈ Ext such

that h � M is Borel and “h ∈ Ext” is decided on M .
This easily follows from the results presented in [17]. Specifically, the authors
constructed there, in [17, Theorem 3.3], a connectivity function f : R2 → R

such that for some dense Gδ-subset G of R2 any map f̃ : R2 → R which agrees
with f on R

2 \ G is connectivity. We need to notice that this f constructed
in [17, Theorem 3.3] is (can be) Borel. (See property (∗) in the proof of [17,
Theorem 3.3].) Now, this implies, see [17, Corollary 3.4], that there exists
a dense Gδ-subset G̃ of R and a section ĥ(·) = f(·, y) of f such that any
extension h̄ ∈ R

R of ĥ � R \ G̃ is in Ext. Decreasing G̃, if necessary, we can
assume that M̃ := R \ G̃ is a perfect-dense meager set. Recall also, that there
exists a homeomorphism ϕ ∈ R

R with ϕ[M ] = M̃ (see [29, Lemma 4]). Then
h := ĥ ◦ ϕ � M is as needed.

To see that A(SCIVP \Ext) ≤ c, let F := B. Then |F | = c. Fix a g ∈ R
R.

It is enough to show that g + F �⊂ SCIVP \Ext.
Indeed, since the constant zero function is Borel, we have g ∈ g + F . We

can assume that g ∈ SCIVP. It is enough to find an f ∈ F with g + f ∈ Ext.
But g ∈ SCIVP implies that there is a perfect-dense meager set M such that
g � M is Borel. Thus, by •, there is an h ∈ Ext such that h � M is Borel, and
there is an f ∈ F such that (g + f) � M = h � M . But then, by •, g + f ∈ Ext,
as needed. �



    7 Page 34 of 38 K. C. Ciesielski et al. Results Math

Problem 11.2. Is it possible to find in ZFC the exact value of A(SCIVP \Ext)
or of A(AC ∩SCIVP \Ext)? If not, what better lower and upper bounds do we
have for A(AC ∩SCIVP \Ext) and A(SCIVP \Ext)?
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