THE SPACE OF DENSITY CONTINUOUS FUNCTIONS

K. CIESIELSKI (Morgantown) and L. LARSON (Louisville)

We denote by $\mathbf{R}_{\boldsymbol{d}}$ the set of real numbers, \mathbf{R}, endowed with the density topology. A function $f: \mathbf{R}_{\boldsymbol{d}} \rightarrow \mathbf{R}_{\boldsymbol{d}}$ is said to be density continuous, if it is continuous with respect to the topology on \mathbf{R}_{d} in both the domain and range. The set of density continuous functions has been studied in several limited ways. Bruckner [1] and Niewiarowski [3] have studied density continuous functions which are homeomorphisms under the standard topology on \mathbf{R}. Ostaszewski has investigated the local behavior of density continuous functions [4] and has investigated their behavior as a semigroup [5].

In this paper, we consider the composition of the set of density continuous functions. The structure of this set seems to be quite complicated. Ostaszewski [5] has noted that it is not closed under uniform convergence. In Example 2 we show that it is not a vector space. Corollary 3 shows that each real-analytic function is density continuous, but Example 1 is a C^{∞} function which is not density continuous. It is not difficult to construct a density continuous function which is not continuous. On the other hand, every density continuous function must be approximately continuous.

In what follows, the right (left) unilateral derivatives of a function f are represented as $f^{+}\left(f^{-}\right)$. The Lebesgue measure of a set A is denoted by $|A|$ and the Lebesuge density (right, left Lebesgue density) of A at a point x is written as $d(A, x)\left(d^{+}(A, x), d^{-}(A, x)\right)$. The set of functions which are infinitely differentiable on \mathbf{R} is written as C^{∞}. Finally, if A and B are two sets such that $\sup A \leqq \inf B$, then we write $A \ll B$.

Before stating the main result, we first present the following lemma.
Lemma 1. Suppose I is a compact interval and $f: I \rightarrow \mathbf{R}$. If there exist numbers α and β such that

$$
\begin{equation*}
0<\alpha<\frac{f(x)-f(y)}{x-y}<\beta<\infty, \text { for all } x, y \in I, x \neq y \tag{1}
\end{equation*}
$$

then f is density continuous on I.
Proof. From (1) it is easy to see that f is strictly increasing and continuous on I. If $g=f^{-1}$, then it follows from (1) that

$$
\begin{equation*}
0<\frac{1}{\beta}<\frac{g(u)-g(v)}{u-v}<\frac{1}{\alpha}, \text { for all } u, v \in f(I), u \neq v \tag{2}
\end{equation*}
$$

The right-hand inequality in (2) implies that g is a Lipschitz function on $f(I)$ and hence g is absolutely continuous and g^{\prime} is bounded above a.e. The left-hand inequality in (2) shows that g^{\prime} is bounded away from 0 on $f(I)$ a.e. Now a result of Bruckner [1, Corollary 1] shows that g preserves density points. This implies the density continuity of f.

Theorem 1. If I is an open interval and $f: I \rightarrow \mathbf{R}$ is convex, then f is density continuous.

Proof. Fix a point $a \in I$. It will be shown that f is right density continuous at a. To do this, we lose no generality in supposing that $f(a)=$ $=a=0$, because the translation of a density continuous function is obviously density continuous.

According to [6, Theorem 10.11], there exists a nondecreasing function $h: I \rightarrow \mathbf{R}$ such that

$$
\begin{equation*}
f(x)=\int_{0}^{x} h(t) d t, \text { for all } x \in I \tag{3}
\end{equation*}
$$

Because of this, it is easy to see that there must exist a real number $b>0$ such that f is monotone on $[0, b]$. We may assume that f is strictly monotone on $[0, b]$ because if it is not, f must be constant on some right neighborhood of 0 , and right density continuity at 0 follows at once. With this assumption, f is a homeomorphism from $[0, b]$ onto $f([0, b])$. Denote $g=\left(\left.f\right|_{[0, b]}\right)^{-1}$.

There are now two cases to consider, depending upon whether f is strictly increasing or strictly decreasing on $[0, b]$.

Assume first that f is strictly decreasing on $[0, b]$. Then by (3), $h<0$ on $[0, b)$. There is no generality lost in assuming $h(b)<0$. If $0 \leqq x<y \leqq b$, then considering the average value of h on (x, y) and recalling that \bar{h} is nondecreasing, it is obvious that

$$
0>h(b) \geqq \frac{\int_{x}^{y} h}{y-x}=\frac{f(y)-f(x)}{y-x} \geqq h(0)
$$

This implies

$$
0<-h(b)<\frac{(-f(y))-(-f(x))}{y-x}<-h(0)<\infty, \text { for all } x, y \in[0, b]
$$

($h(0)$ is finite because h is monotone on a neighborhood of 0 .) Lemma 1 now shows that $-f$ is density continuous on $[0, b]$. Since density continuity is easily shown to be preserved under constant multiplication, it follows that f is density continuous on $[0, b]$ and therefore right density continuous at 0 .

Next, assume that f is strictly increasing on $(0, b)$ and that $I_{n}=\left[a_{n}, b_{n}\right]$ is a sequence of disjoint intervals from $(0, f(b))$ such that I_{n} decreases to 0 and

$$
\begin{equation*}
\frac{\left|\bigcup_{n=1}^{\infty} I_{n} \cap(0, t)\right|}{t}>\varrho>0, \text { for all } t \in(0, f(b)) \tag{4}
\end{equation*}
$$

Let $S=\bigcup_{n=1}^{\infty} I_{n}, J_{n}=g\left(I_{n}\right)$ and $G_{n}=\left(b_{n+1}, a_{n}\right)$. From (4), it follows that

$$
\begin{equation*}
\frac{\left|\bigcup_{k=n}^{\infty} I_{k}\right|}{\left|\bigcup_{k=n-1}^{\infty} G_{k}\right|}>\frac{\varrho}{1-\varrho}, \text { for all } n>1 \tag{5}
\end{equation*}
$$

Before proceeding with the proof, we make the following useful observations. From (3) and the assumption that f is increasing we see that $h>0$ on ($0, b$). Let A and B be intervals contained in $(0, b)$ such that $A \ll B$. Then because h is nondecreasing,

$$
\frac{|f(A)|}{|A|}=\frac{\int_{A} h}{|A|} \leqq \sup _{t \in A} h(t) \leqq \inf _{t \in B} h(t) \leqq \frac{\int_{B} h}{|B|}=\frac{|f(B)|}{|B|}
$$

This implies the statement

$$
\begin{equation*}
|g(C)| \geqq|g(D)| \frac{|C|}{|D|} \tag{6}
\end{equation*}
$$

for all intervals C and D from $(0, f(b))$ such that $C \ll D$, and this estimate immediately extends to the case when C, D are finite unions of disjoint intervals.

We define an infinite partition S_{n} of S as follows. Let $\alpha_{1}=a_{1}$. By (5), there exists an $\alpha_{2}^{\prime}<\alpha_{1}$ such that

$$
\frac{\left|\left(\alpha_{2}^{\prime}, \alpha_{1}\right) \cap S\right|}{\left|G_{1}\right|}=\frac{\varrho}{1-\varrho}
$$

Let $\alpha_{2}=\min \left\{\alpha_{2}^{\prime}, a_{2}\right\}$. Assume that α_{k} has been chosen for $k=1,2, \ldots, n-1$ so that either $\alpha_{k} \geqq a_{k}$ or $\alpha_{k}<a_{k}$ and

$$
\frac{\left|\left(\alpha_{k}, \alpha_{k-1}\right) \cap S\right|}{\left|G_{k-1}\right|}=\frac{\varrho}{1-\varrho}
$$

and equality holds if $\alpha_{k}<a_{k}$. Choose $\alpha_{n}^{\prime}<\alpha_{n-1}$ such that

$$
\frac{\left|\left(\alpha_{n}^{\prime}, \alpha_{n-1}\right) \cap S\right|}{\left|G_{n-1}\right|}=\frac{\varrho}{1-\varrho}
$$

To see that such a choice is possible, there are two cases to consider, depending on α_{n-1}. If $\alpha_{n-1}=a_{n-1}$, it can be seen immediately from (5). In case $\alpha_{n-1}<a_{n-1}$, let

$$
m=\max \left\{k<n: \alpha_{k}=a_{k}\right\}
$$

Then $\left|\left(\alpha_{k}, \alpha_{k-1}\right) \cap S\right|=\varrho\left|G_{k-1}\right| /(1-\varrho)$ for $m+1 \leqq k \leqq n-1$ so that

$$
\begin{equation*}
\left|\left(\alpha_{n-1}, \alpha_{m}\right) \cap S\right|=\frac{\varrho}{1-\varrho} \sum_{k=m}^{n-1}\left|G_{k-1}\right| \tag{7}
\end{equation*}
$$

According to (5), there is a $t<\alpha_{n-1}$ such that

$$
\begin{equation*}
\left|\left(t, \alpha_{m}\right) \cap S\right|=\frac{\varrho}{1-\varrho} \sum_{k=m}^{n}\left|G_{k-1}\right| \tag{8}
\end{equation*}
$$

Subtracting (7) from (8) gives

$$
\left|\left(t, \alpha_{n-1}\right) \cap S\right|=\frac{\varrho}{1-\varrho}\left|G_{n-1}\right|
$$

We set $\alpha_{n}^{\prime}=t$ in this case. Then let $\alpha_{n}=\min \left\{\alpha_{n}^{\prime}, a_{n}\right\}$. Define $S_{n}=$ $=\left[\alpha_{n+1}, \alpha_{n}\right) \cap S$. From the choice of $\alpha_{n} \leqq a_{n}$, and the fact that $a_{n} \notin S_{n}$, we see $\sup S_{n} \leqq b_{n+1}$. So $S_{n} \ll G_{n}=\left(b_{n+1}, a_{n}\right)$ and

$$
\frac{\left|S_{n}\right|}{\left|G_{n}\right|} \geqq \frac{\varrho}{1-\varrho}
$$

Finally, we use (6) and the preceding inequality to see

$$
\frac{\left|g\left(\bigcup_{n=1}^{\infty} S_{n}\right)\right|}{\left|g\left(\bigcup_{n=1}^{\infty} G_{n}\right)\right|}=\frac{\sum_{n=1}^{\infty}\left|g\left(S_{n}\right)\right|}{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right|} \geqq \frac{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right| \frac{\left|S_{n}\right|}{\left|G_{n}\right|}}{\sum_{n=1}^{\infty}\left|g\left(G_{n}\right)\right|} \geqq \frac{\varrho}{1-\varrho}
$$

Hence,

$$
\frac{\left|g\left(\bigcup_{n=1}^{\infty} S_{n}\right)\right|}{\left|g\left(\left(0, a_{1}\right)\right)\right|} \geqq \varrho .
$$

Because ϱ can be made as close to 1 as desired, we see that f is right density continuous at 0 .

Similar arguments show that f is left density continuous at every point of I. This completes the proof of the theorem.

Corollary 1. If $g:[a, b] \rightarrow \mathbf{R}$ is convex on (a, b) and $\left\{g^{+}(a), g^{-}(b)\right\} \subset$ $\subset \mathbf{R}$, then g is density continuous.

Proof. Define

$$
f(x)= \begin{cases}g^{+}(a)(x-a)+g(a) & \text { if } x<a, \\ g(x) & \text { if } a \leqq x \leqq b, \\ g^{-}(b)(x-b)+g(b) & \text { if } x>b\end{cases}
$$

and apply Theorem 1.
By using $g=-f$ in Theorem 1 and Corollary 1 we arrive at the following corollary.

Corollary 2. If g is concave downward on an open interval I, then g is density continuous on I. Further, if g is concave downward on the interval $[a, b]$ with both $g^{+}(a)$ and $g^{-}(b)$ finite, then g is density continuous on $[a, b]$.

Ostaszewski [5, Question 4] asked whether polynomials are density continuous. The following corollary provides an affirmative answer to this question.

Corollary 3. Real analytic functions are density continuous.
Proof. If f is real analytic, then f^{\prime} is finite everywhere and $f^{\prime \prime}$ has only a finite number of zeroes in every interval, so applications of Corollaries 1 and 2 suffice to establish this corollary.

Corollary 4. If $f(x)=x^{\alpha}$ for $\alpha \in \mathbf{R}$, then f is density continuous on its domain.

Proof. If $\alpha \leqq 0$, then this follows directly from Theorem 1 . If $\alpha \geqq 1$, then this corollary is a consequence of Corollary 1.

Suppose $0<\alpha<1$. It is clear that Theorem 1 implies f is density continuous on $\operatorname{Dom}(f) \backslash\{0\}$. So, it must be shown that f is density continuous at 0 .

Let $h>0$ and suppose $A \subset(0, h)$. Then, we use the fact that $\left(f^{-1}\right)^{\prime}$ is an increasing function to see

$$
\frac{\left|f^{-1}(A)\right|}{f^{-1}(h)}=\frac{1}{h^{1 / \alpha}} \int_{A} \frac{x^{1 / \alpha)-1}}{\alpha} \geqq \frac{1}{h^{1 / \alpha}} \int_{0}^{|A|} \frac{x^{(1 / \alpha)-1}}{\alpha}=\frac{|A|^{1 / \alpha}}{h^{1 / \alpha}}=(|A| / h)^{1 / \alpha} .
$$

It follows from this inequality that f is right density continuous at 0 . A similar argument holds from the left.

Example 1. There is a function $f \in C^{\infty}$ which is not density continuous.
Choose any sequence of disjoint intervals $J_{n}=\left[a_{n}, b_{n}\right] \subset[0,1]$ decreasing to 0 such that

$$
\begin{equation*}
d^{+}\left(\bigcup_{n=1}^{\infty} J_{n}, 0\right)=0 \tag{9}
\end{equation*}
$$

and let h be a C^{∞} function satisfying

$$
\begin{equation*}
h(0)=0, h(1)=1, \text { and } h^{(n)}(0)=h^{(n)}(1)=0, \text { for all } n \in \mathbf{N} . \tag{10}
\end{equation*}
$$

(An example of such a function is

$$
h(x)=\varrho \int_{0}^{x} \exp \left(-1 / t^{2}-1 /(t-1)^{2}\right) d t
$$

for suitable ϱ.) Let

$$
\begin{gather*}
\alpha_{n}=\max \left\{\left|h^{(k)}(x)\right|: 0 \leqq k \leqq n \text { and } 0 \leqq x \leqq 1\right\} \leqq 1, \tag{11}\\
h_{n}(x)= \begin{cases}0 & \text { if } x<a_{n}, \\
\frac{\alpha_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} h\left(\frac{x-a_{n}}{b_{n}-a_{n}}\right) & \text { if } x \in J_{n}, \\
\frac{\alpha_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} & \text { if } x>b_{n}\end{cases} \tag{12}
\end{gather*}
$$

and

$$
f(x)=\sum_{n=1}^{\infty} h_{n}(x) .
$$

From the choice of h, we see that $h_{n} \in C^{\infty}$ for each n. Obviously, using (9) and (11), it follows that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{a_{n}\left(b_{n}-a_{n}\right)^{n}}{\alpha_{n}} \leqq \sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right)<\infty, \tag{13}
\end{equation*}
$$

so that f exists everywhere. Moreover, because the J_{n} are pairwise disjoint, it follows that f is infinitely differentiable on $\mathbf{R} \backslash 0$ and continuous on \mathbf{R}.

To prove that $f^{(k+1)}(0)$ exists and equals 0 , let us assume that $f^{(k)}(0)=0$ and choose $a_{n} \leqq s<a_{n-1}$ for some $n>k$. Then it follows from (11) and (12) that

$$
\frac{f^{(k)}(s)-f^{(k)}(0)}{s-0}= \begin{cases}\frac{1}{s} \sum_{i=n}^{\infty} h_{i}(s) \leqq \sum_{i=n}^{\infty}\left(b_{j}-a_{j}\right)^{j}<b_{n} & \text { if } k=0 \\ \frac{1}{s} h_{n}^{(k)}(s) \leqq \frac{a_{n}\left(b_{n}-a_{n}\right)^{n}-\alpha_{k}}{s \alpha_{n}\left(b_{n}-a_{n}\right)^{k}} \leqq b_{n}-a_{n}<b_{n} & \text { if } k>0\end{cases}
$$

Since $s \rightarrow 0$ implies $b_{n} \rightarrow 0$, this shows $f^{(k+1)}(0)=0$. Therefore, f is a C^{∞} function.

But, f cannot be density continuous because of (9) and the fact that

$$
f\left(\mathbf{R} \backslash \bigcup_{n=1}^{\infty} J_{n}\right)
$$

is countable.

Example 2. There is a continuous, density continuous function $f: \mathbf{R} \rightarrow \mathbf{R}$ such that $f(x)+x$ is not density continuous.

To construct such a function, we first choose two differentiable functions h_{1} and h_{2} satisfying:
(i) $0<h_{1}<h_{2}$ on ($0, \infty$);
(ii) $h_{1}(x)=h_{2}(x)=x$ for $x \leqq 0$; and,
(iii) $1 / 2<h_{1}^{\prime}(x)<1<h_{2}^{\prime}(x)<2$ when $x>0$.

Let a_{n} and b_{n} be any two sequences converging to 0 such that $1=b_{1}>a_{1}>$ $b_{2}>a_{2}>\ldots$, and both

$$
\begin{equation*}
\frac{h_{2}\left(b_{n}\right)-h_{1}\left(a_{n}\right)}{b_{n}-a_{n}}=2 \quad \text { and } \quad \frac{h_{1}\left(a_{n}\right)-h_{2}\left(b_{n+1}\right)}{a_{n}-b_{n+1}}=1 / 2 \tag{14}
\end{equation*}
$$

Define a piecewise linear function f_{0} by letting $f_{0}\left(a_{n}\right)=h_{1}\left(a_{n}\right), f_{0}\left(b_{n}\right)=$ $=h_{2}\left(b_{n}\right)$ and $f_{0}(x)=x+f_{0}\left(b_{1}\right)-b_{1}$ when $x>1$ and $f_{0}(x)=x$ when $x \leqq 0$. The function f_{0} is easily seen to be continuous because h_{1} and h_{2} are continuous and have value 0 at 0 . Equation (14) implies

$$
\frac{1}{2} \leqq \frac{f_{0}(b)-f_{0}(a)}{b-a} \leqq 2, \text { for all } a, b \in(0, \infty)
$$

It follows from Lemma 1 that f must be density continuous.

$$
\begin{gathered}
\text { Denote } A(1 / 2)=\bigcup_{n=1}^{\infty}\left[b_{n+1}, a_{n}\right] \text { and } A(2)=\bigcup_{n=1}^{\infty}\left[a_{n} b_{n}\right] \text {. Either } \\
(-\infty, 0] \cup A(1 / 2) \text { or }(-\infty, 0) \cup A(2)
\end{gathered}
$$

has positive upper density at 0 . Without loss of generality we assume that it is the former. Then $f_{1}(x)=f_{0}(x)-x / 2$ is constant on each component of $A(1 / 2)$. But this implies that $\left|f_{1}(A(1 / 2))\right|=0$ and $A(1 / 2)=$ $=f_{1}^{-1}\left(f_{1}(A(1 / 2))\right)$ has positive density at 0 . Therefore, f_{1} is not density continuous at 0 . So, it is enough to define $f(x)=-2 f_{0}(x)$ to obtain the desired function.

We note that the f in Example 2 can actually be constructed as a C^{∞} function by a method analogous to the construction in Example 1.

This example answers questions posed by Ostaszewski [5, Questions 5 and 6].

We wish to thank Krzysztof Ostaszewski for bringing to our attention several of the questions we have considered here.

References

[1] A. M. Bruckner, Density-preserving homeomorphisms and a theorem of Maximoff, Quart. J. Math. Oxford, 21 (1970), 337-347.
[2] I. P. Natanson, Theory of Functions of a Real Variable, Vol. 2, Frederick Ungar Publishing Co. (New York, 1964).
[3] Jerzy Niewiarowski, Density preserving homeomorphisms, Fund. Math., 106 (1980), 77-87.
[4] Krzysztof Ostaszewski, Continuity in the density topology, Real Anal. Exch., 7 (198182), 259-270.
[5] Krzystof Ostaszewski, The semigroup of density continuous functions, Real Anal. Exch. (to appear).
[6] A. Zygmund, Trigonometric Series, Vol. 1, Cambridge University Press, 1952.
(Received April 8, 1988; revised March 6, 1989)

DEPARTMENT OF MATHEMATICS
METHODIST COLLEGE
fayetteville, nc 28311
USA

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LOUISVILLE
LOUISVILLE, KY 40292
USA

