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TIIE SPACE OF DENSITY CONTINUOUS 
FUNCTIONS 

K. CIESIELSKI (Morgantown) and L. LARSON (Louisville) 

We denote by Rd the set of real numbers, R, endowed with the density 
topology. A function f :  Rd ~ Rd is said to be density continuous, if it 
is continuous with respect to the topology on Rd in both the domain and 
range. The set of density continuous functions has been studied in several 
limited ways. Bruckner [1] and Niewiarowski [3] have studied density con- 
tinuous functions which are homeomorphisms under the standard topology 
on R. Ostaszewski has investigated the local behavior of density continuous 
functions [4] and has investigated their behavior as a semigroup [5]. 

In this paper, we consider the composition of the set of density contin- 
uous functions. The structure of this set seems to be quite complicated. 
Ostaszewski [5] has noted that it is not dosed under uniform convergence. 
In Example 2 we show that it is not a vector space. Corollary 3 shows that 
each real-analytic function is density continuous, but Example 1 is a C ~ 
function which is not density continuous. It is not difficult to construct a 
density continuous function which is not continuous. On the other hand, 
every density continuous function must be approximately continuous. 

In what follows, the right (left) unilateral derivatives of a function f are 
represented as f+  ( f - ) .  The Lebesgue measure of a set A is denoted by 
IAI and the Lebesuge density (right, left Lebesgue density) of A at a point 
x is written as d(A ,x ) (d+(A ,x ) ,d - (A ,x ) ) .  The set of functions which are 
infinitely differentiable on R is written as C ~176 Finally, if A and B are two 
sets such that sup A __< inf B, then we write A << B. 

Before stating the main result, we first present the following lemma. 

LEMMA 1. Suppose I is a compact interval and f :  I --, R. If  there exist 
number s ~ and ~ such that 

(1)  0 < c~ < f ( x ) - f ( y )  
x - y  < fl < oo, for all z,  y E I,  x # y, 

then f is density continuous on I.  

PROOF. From (1) it is easy to see that f is strictly increasing and con- 
tinuous on I. If g = f - l ,  then it follows from (1) that 

(2) 1 g(u)-g(v) 1, 
-u v- foranu, v e f ( I ) ,  
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The right-hand inequality in (2) implies that  g is a Lipschitz function on 
f ( I )  and hence g is absolutely continuous and gt is bounded above a.e. The 
left-hand inequality in (2) shows that  g' is bounded away from 0 on f ( I )  
a.e. Now a result of Bruckner [1, Corollary 1] shows that  g preserves density 
points. This implies the density continuity of f .  

THEOREM 1. If  I is an open 
density continuous. 

PROOF. Fix a point a E I.  

interval and f :  I ~ R is convex, then f is 

It will be shown that  f is right density 
continuous at a. To do this, we lose no generality in supposing that  f (a)  = 
= a = 0, because the translation of a density continuous function is obviously 
density continuous. 

According to [6, Theorem 10.11], there exists a nondecreasing function 
h: I ~ R such that  

x 

(3) f ( x )  = / h(t)dt, for all x E I.  

0 

Because of this, it is easy to see that  there must exist a real number b > 0 
such that  f is monotone on [0, b]. We may assume that  f is strictly monotone 
on [0, b] because if it is not, f must be constant on some right neighborhood 
of 0, and right density continuity at 0 follows at once. With this assumption, 
f is a homeomorphism from [0,b] onto f([0,b]). Denote g = (fl[0,b]) -1. 

There are now two cases to consider, depending upon whether f is strictly 
increasing or strictly decreasing on [0, b]. 

Assume first that  f is strictly decreasing on [0, b]. Then by (3), h < 0 
on [0, b). There is no generality lost in assuming h(b) < 0. If 0 < x < y __< b, 
then considering the average value of h on (z, y) and recalling that  h is 
nondecreasing, it is obvious that  

Y 

fh 
O > h(b) >= ~ - f ( y ) -  f ( x )  => h(O). 

y - x  y - x  

This implies 

0 < -h(b)  < (-f(y)) - (-f(x)) 
y - x  < - h ( 0 )  < for all x , y  e [0,b]. 

(h(0) is finite because h is monotone on a neighborhood of 0.) Lemma 1 
now shows that  - f  is density continuous on [0, hi. Since density continuity 
is easily shown to be preserved under constant multiplication, it follows that  
f is density continuous on [0, b] and therefore right density continuous at 0. 
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Next, assume tha t  f is strictly increasing on (0, b) and tha t  In = [a, ,  bn] 
is a sequence of disjoint intervals from (0, f (b))  such tha t  In decreases t0 0 
and 

(4).  
In =l In n (O't) I 

> 0 > o, for all t e (o, f (b)) .  

O0 

Let S = U In, J ,  = g(In)  and Gn = (bn+l, an). From (4), it follows tha t  
n = l  

k=~ Ik co 
(5) > - - ,  for aH n > 1. 

1 - co 

k=n~J l Gk 

Before proceeding with the  proof, we make the following useful observa- 
tions. From (3) and the assumpt ion  tha t  f is increasing we see tha t  h > 0 
o n  (0,b). Let A and B be intervals contained in (0, b) such tha t  A << B. 
Then  because h is nondecreasing,  

f h  f h  
If(A)l  _ A < suph( t )  < inf h(t) < B I f (B)[  

IA[ [AI = teA = teB = IB[ - [B[ 

This implies the s ta tement  

(6) IcI 
Ig(C)l > Ig(D)IID I 

for all intervals C and D from (0, f (b))  such tha t  C << D, and this es t imate  
immedia te ly  extends to the case when C, D are finite unions of disjoint 
intervals. 

We define an infinite par t i t ion Sn of S as follows. Let a l  = al.  By (5), 
there exists an a S < a l  such tha t  

I (o~,a l )  n SI co 
IGll 1 - co" 

Let c~2 = min{a~,  a2}. Assume tha t  ak has been chosen for k = 1 , 2 , . . .  , n - 1  
so tha t  either ak > ak or c~ k < a k and 

I(O~k, OZk-1)N S[ co 
D 

IGa-ll  1 - co 
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such tha t  and equality holds if ak  < ak. Choose a n < a , - i  

I ( a ' , a , - l )  n Sl 

I G . - l l  1 - 

To see tha t  such a choice is possible, there are two cases to consider, depend- 
ing on an-1 .  If an-1  = a n - l ,  it can be seen immediate ly  from (5). In case 
Oln_ 1 < a n _ l ,  let 

m = max{k < n : ak  = ak} .  

Then  [(ak, ak_ l )  N S]--~ # [ G k _ l l / ( 1  - ~) for ra + 1 < k < n -  1 so tha t  

n--1 

! ~[~ IGk-xl. (7) I ( ~ n - l , a . , ) n S I -  1 e k=,-. 

According to (5), there is a t < a n _  1 such tha t  

n 

_e ~ IGk-~l. (8) I ( t , a . , ) n S l -  1 ~o = 

Subtract ing (7) from (8) gives 

l a . - l l .  I(t, an -x )  n SI = 1 - ~  

We set a n~ = t in this case. Then let a n  = m i n { a t n , a n } .  Define Sn = 
= [ a n + l , a n ) N  S. From the choice of an < an, and the fact tha t  an ~t Sn, we 
see sup Sn < bn+l. So Sn << Gn = ( b n + l , a n )  and 

IS.l > 
IC. l  = ] - e" 

Finally, we use (6) and the preceding inequality to see 

Hence, 

g s,, E Ig(Sn)l E Ig (G. ) l  
n = l  - -  n = l  > n = l  > ~0 

g E Ig(C.)l E Ig(C.)l - 1-e" 
1 n n = l  n = l  

> ~ .  
I g ( ( O ,  a l ) )  I = 

Because t~ can be made  as close to 1 as desired, we see tha t  f is right density 
continuous at 0. 

Similar a rguments  show tha t  f is left density continuous at every point  
of I .  This completes the proof  of the theorem. 
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COROLLARY 1. / f  g: [a,b] ~ R is convex on (a,b) and {g+(a) ,g-(b)}  C 
C It, then g is density continuous. 

PROOF. Define 

I g + ( a ) ( x - a ) + g ( a )  i f x < a ,  

f ( x )  - g(x) if a __< x __< b, 

g - ( b ) ( x  - b) + g(b) if �9 > b 

and apply Theorem 1. 
By using g = - f  in Theorem 1 and Corollary 1 we arrive at the following 

corollary. 

COROLLARY 2. I f  g is concave downward on an open interval I, then g is 
density continuous on I. Further, if g is concave downward on the interval 
[a,b] with both g+(a) and g-(b)  finite, then g is density continuous on [a,b]. 

Ostaszewski [5, Question 4] asked whether polynomials are density con- 
tinuous. The following corollary provides an affirmative answer to this ques- 
tion. 

COROLLARY 3. Real analytic functions are density continuous. 

PROOF. If f is real analytic, then f '  is finite everywhere and f "  has only 
a finite number of zeroes in every interval, so applications of Corollaries 1 
and 2 suffice to establish this corollary. 

COROLLARY 4.  I f  f (x , )  = X a for  ol E R,  then f is density continuous on 
its domain. 

PROOf. If a <__ 0, then this follows directly from Theorem 1. If a > 1, 
then this corollary is a consequence of Corollary 1. 

Suppose 0 < a < 1. It is clear that  Theorem 1 implies f is density con- 
tinuous on Dom( f )  \ {0}. So, it must be shown that  f is density continuous 
at 0. 

Let h > 0 and suppose A C (0, h). Then, we use the fact that  ( f - l ) ,  is 
an increasing function to see 

IAI If-l(A)l 1 / x l l a )  -1 > 1 /X( I I~ )  -1 _ IAI lla 
_ _ _  = 

f - l ( h )  hll  ~ ~ = hi~ ~ a hll  ~ k i l l ' ' ]  

A 0 

It follows from this inequality that  f is right density continuous at 0. A 
similar argument holds from the left. 

EXAMPLE 1. There is a function f E C ~ which is not density continuous. 
Choose any sequence of disjoint intervals Jn = [an, bn] C [0, 1] decreasing 

to 0 such that  

(9) d + Jn, 0 = 0 
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and let h be a C ~ function satisfying 

(10) h(0) = 0, h(1) = 1, and h(n)(0) = h(n)(1) = 0, for all n e N. 

(An example of such a function is 

X 

f e x p ( - 1 / t  2 - 1 / ( t -  1)2)dr, h(x) 
. ]  

0 

for suitable ~.) Let 

(11) an = max{Ih(k)(x)l: 0 <= k _ <_ n and 0 _ _< x = < 1} = > 1, 

0 if x < an, 

a"(b'~-a'Qnh(X-a"~ i f x  E J ,  
0 2 )  h . ( ~ )  = . ~  ~b~-o~  , 

~ . (b . -~ ) "  if x > b~ 

and 
o o  

f(x) = E h.(x). 
n ~ l  

From the choice of h, we see that  hn E C ~ for each n. Obviously, using (9) 
and (11), it follows that  

OO OO 

(13) ~ a.(b~ - a~)~ :~ Z ( b .  _ an) < ~ ,  

n = l  n = l  

so that  f exists everywhere. Moreover, because the jn  are pairwise disjoint, 
it follows that  f is infinitely differentiable on R \ 0 and continuous on R. 

To prove that  f(k+l)(0) exists and equals 0, let us assume that  f(k)(0) = 0 
and choose am _< s < an- i  for some n > k. Then it follows from (11) and 
(12) that  

Oo Ei=n(bd aj) j < bn if k 0, 
f ( k ) ( ~ ) _  f(k)(0 ) } E h~(~) < ~ - = 

s - 0  1L(k), , <  _ 
, . (b . - a . ) " -~k  < bn a ,  < bn i f k  > 0. 7nn (s )= s~n(b._an)k = 

Since s --+ 0 implies b, --+ 0, this shows f(a+l)(0) = 0. Therefore, f is a C ~ 
function. 

But, f cannot be density continuous because of (9) and the fact that  

f R X U J o  
n----1 

is countable. 
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EXAMPLE 2. There is a continuous, density continuous function 
f :  R ~ R such that f ( x )  + x is not density continuous. 

To construct such a function, we first choose two differentiable functions 
hi and h2 satisfying: 

(i) 0 < hi < h2 on (0, oo); 
(ii) hi(x)  = h2 (x )=  x for x < O; and, 

(iii) 1/2 < hi(x  ) < 1 < h~(x) < 2 when x > O. 
Let an and bn be any two sequences converging to 0 such that 1 = bl > al > 
b2 > a2 > . . . ,  and both 

(14) h2(bn ) -  hi(an) = 2 and h i ( a n ) -  hz(bn+l) = 1/2. 
bn - an an - bn+l 

Define a piecewise linear function f0 by letting fo(an) = hi(an), fo(bn) = 

= h2(bn) and fo(x) = x +  f o ( b l ) -  b, when x > 1 and fo(x) = x when 
x =< 0. The function f0 is easily seen to be continuous because hi and h2 are 
continuous and have value 0 at 0. Equation (14) implies 

1 < fo(b) - fo(a) < 2, for all a, b E (0, oc). 
2 = b - a  = 

It follows from Lemma 1 that f must be density continuous. 

Denote A (1 / 2 )=  U [bn+l,an] and A(2 )=  U [anb~]. Either 
n = l  n= l  

(-oo,0]UA(1/2) or (-oo,0) uA(2) 

has positive upper density at 0. Without loss of generality we assume that 
it is the former. Then f l ( x )  = f o ( x ) -  x /2  is constant on each compo- 
nent of A(1/2). But this implies that I f l (A(1/2))  I = 0 and A(1/2) = 
= f ~ l  ( f l (A(1 /2 ) ) )  has positive density at 0. Therefore, f l  is not densi- 
ty continuous at 0. So, it is enough to define f ( x )  = -2f0(x)  to obtain the 
desired function. 

We note that the f in Example 2 can actually be constructed as a C ~ 
function by a method analogous to the construction in Example 1. 

This example answers questions posed by Ostaszewski [5, Questions 5 
and 6]. 

We wish to thank Krzysztof Ostaszewski for bringing to our attention 
several of the questions we have considered here. 
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