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Abstract
A function f : R → R is Sierpiński–Zygmund, f ∈ SZ(C), provided its restriction
f �M is discontinuous for any M ⊂ R of cardinality continuum. Often, it is slightly
easier to construct a function f : R → R, denoted as f ∈ SZ(Bor), with a seemingly
stronger property that f �M is not Borel for any M ⊂ R of cardinality continuum. It
has been recently noticed that the properness of the inclusion SZ(Bor) ⊆ SZ(C) is
independent of ZFC. In this paper we explore the classes SZ(�) for arbitrary families
� of partial functions fromR toR.We investigate additivity and lineability coefficients
of the class S := SZ(C)\SZ(Bor). In particular we show that if c = κ+ and S �= ∅,
then the additivity of S is κ , that S is c+-lineable, and it is consistent with ZFC that S is
c++-lineable. We also construct several examples of functions from SZ(C)\ SZ(Bor)
that belong also to other important classes of real functions.
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1 Background

The restriction theorems constitute a very important research subject in analysis, see
e.g. [9] or [20]. A typical example of such result is a 1912 theorem of N. Lusin,
according towhich every (Lebesgue)measurable function f : R → Rhas a continuous
restriction f � E to a closed E ⊂ R, where the measure of R\E is arbitrary small.
Another, less known result in this direction is a 1984 theorem of M. Laczkovich [36]
(see also [20, Section 3.2]) stating that for every continuous f : R → R there exists a
perfect set P ⊂ R such that f � P is differentiable.

As these two examples indicate, the majority of restriction results assume that the
original function f : R → R has some “nice” property. An exception here is a 1922
theorem of H. Blumberg [8] (see also [13]) stating that for every function f : R → R

there exists a dense set D ⊂ R such that the restriction f �D is continuous. The set D
constructed by Blumberg is countable. Thus, a natural question arises whether each
f : R → R has a continuous restriction to an uncountable set.Answering this question,
W. Sierpiński and A. Zygmund constructed, in a 1923 paper [43], an f : R → R such
that the restriction f �M is discontinuous for any M ⊂ R of cardinality continuum c.
Nowadays, any such map is called a Sierpiński–Zygmund (or just SZ-) function.

A construction of an SZ-function f is actually quite simple once one recalls the
following result of K. Kuratowski, see e.g., [32, p. 16].

Proposition 1.1 For every continuous function g from an S ⊂ R to R there exist a
Gδ-set G ⊂ R containing S and a continuous extension ḡ : G → R of g.

Now, if {xξ : ξ < c} and {gξ : ξ < c} are the enumerations, respectively, of R and
the family of all continuous maps from Gδ subsets of R to R and one chooses, by
induction on ξ < c, the values

f (xξ ) ∈ R\{gζ (xξ ) : ζ < ξ & xξ ∈ dom(gζ )}, (1)

then this defines a map f : R → R which, by Proposition 1.1, is in SZ(C).
The condition “xξ ∈ dom(gζ )” in (1) is essential, since functions gζ are only partial:

the set G in Proposition 1.1 cannot be, in general, equal to R. Of course, function ḡ
from Proposition 1.1 can be further extended to a Borel map ĝ : R → R. But, in fact,
there is another result of K. Kuratowski, see e.g., [32, p. 73], that is useful for us:

Proposition 1.2 For every Borel function g from an S ⊂ R to R there exists a Borel
extension ḡ : R → R of g.

Now, if {gξ : ξ < c} is an enumeration of all Borel functions g : R → R, then the
condition “xξ ∈ dom(gζ )” in (1) can be removed. Moreover, by Proposition 1.2, the
resulted f : R → R is in SZ(Bor). This last approach, which produces a function in
SZ(Bor), can be found in [6,24,26,34], or [4]. On the other hand, the original approach
from [43], which produces an f ∈ SZ(C), is used in [3,15,16,22].

Obviously, SZ(Bor) ⊆ SZ(C) and, as proved in [5, Theorem 4.4] (see also
Corollary 2.5 below), the equality between these classes is both consistent with and
independent from the usual axioms ZFC of set theory. In spite of the differences
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Different notions of Sierpiński–Zygmund functions 153

between classes SZ(Bor) and SZ(C) that we plan to explore in this paper, their def-
initions are clearly very similar. To emphasize this, in the reminder of this paper we
will consider the generalized class SZ(G) of Sierpiński–Zygmund functions, which
will encompass both SZ(Bor) and SZ(C).

The main results of this article concern the algebraic properties the family
SZ(C)\ SZ(Bor) investigated in terms of two measures that are commonly used for
this purpose in the literatures, see e.g. [25,30,37]. The first of them, so called additivity,
connected to the linear space generated by SZ(C)\ SZ(Bor), is considered in Sect. 3.
The second one, called lineability and concerning the maximal size of a linear space
contained in {0} ∪ SZ(C)\SZ(Bor), is studied in Sect. 4.

In the last section we construct examples of functions from SZ(C)\SZ(Bor) that
belong also to other important classes of real functions: additive functions, Hamel
functions, and almost continuous functions of Stallings.

In what follows, for a set X its cardinality is denoted as |X |. Also, for a cardinal
number κ , we define [X ]κ := {A ⊂ X : |A| = κ}, and [X ]≤κ := {A ⊂ X : |A| ≤ κ},
etc. If f is a function, then dom( f ) denotes its domain. For the sets X and Y we use
symbol Y X to denote the family of all functions from X to Y . An ordinal number α

is identified with the set of all ordinals ξ < α. A cardinal number κ is identified with
the first ordinal of size κ . The cardinality of the set of all reals is denoted by c.

2 SZ(G) functions
Throughout this section the symbol X will always stand for a non-empty separable
metric space. In particular, this means that |X | ≤ c.

Let G be a family of partial maps from X to R. Then SZX (G) is defined as the
family all functions f : X → R such that f �M /∈ G for every M ∈ [X ]c, that is,

SZX (G) :=
{

f ∈ R
X : f �M /∈ G for every M ∈ [X ]c

}
. (2)

We write SZ(G) for SZR(G). This definition agrees with our earlier definition of the
families SZ(Bor) and SZ(C), where symbols Bor and C denote the classes of all partial
function from R to R that are, respectively, Borel and continuous. In what follows we
will also consider, for any n inN := {1, 2, 3, . . .}, the classes Dn of all partial functions
from R to R that are n-times differentiable.

Of course, if |X | < c, then SZX (G) = R
X for any family G. So, we will be mainly

interested in SZX (G) when |X | = c.
Assume G is a family of partial functions on X . Then cf(G), the cofinality of G, is

the minimal cardinality of a subfamily G0 ⊂ G such that every g ∈ G is covered (i.e.,
g ⊂ g0) by some g0 ∈ G0. Any such family G0 is called a basis for G. We say that
a family G is hereditary if it is closed onto subfunctions: if g ∈ G and g0 ⊂ g, then
g0 ∈ G. A family G is called nice if it is hereditary, contains all functions defined on
singletons, and has cofinality less than or equal to c. Note that the following families
of partial functions from R to R are nice:

• Bor of all Borel functions;
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• C of all continuous functions;
• Dn of all n-times differentiable functions, n ∈ N;
• Cn of all maps in Dn , n ∈ N, with continuous nth derivative.

The fact that classes Dn and Cn are nice follows from an appropriate version of
Proposition 1.1, that every partial Dn function has an extension to a Dn function
defined on a Borel set, see a 2018 paper [19, theorem 5.4] of Ciesielski and Seoane-
Sepúlveda. (Surprisingly, it seems that for n > 1 this result was previously unknown.)

The original construction of Sierpiński and Zygmund can easily be generalized as
follows.

Theorem 2.1 Let G be a non-empty family of real valued partial functions on X and
assume that cf(G) ≤ c. Then SZX (G) �= ∅.

Proof If |X | < c, then SZX (G) = R
X �= ∅. So, we can assume that |X | = c. Let

G0 = {gξ : ξ < c} be a basis for G and X = {xξ : ξ < c}. For every ξ < c choose
f (xξ ) as in (1). Then f ∈ SZX (G). 
�
It is easy to observe that if G ⊂ F , then SZX (F) ⊂ SZX (G) and one can ask when

this inclusion is proper. This question is related to the following notions.

Definition 2.2 Let G be a family of partial functions on X . A function f : X → R is
called:

• (κ,G)-decomposable if there exists a partition {Xα}α<κ of X such that the restric-
tion of f to any Xα belongs to G;

• (< λ,G)-decomposable when f is (κ,G)-decomposable for some κ < λ.

Notice that the notions of (ω,G)- and (< c,G)-decomposability coincide underCH.
The following proposition characterizes the (< c,G)-decomposable functions

under the assumption that c is a regular cardinal. This result generalizes a charac-
terization of countable continuity formulated (for X = R, under CH, and without a
proof) by Darji in [23, Theorem 10]. See also [5, Proposition 4.3].

Proposition 2.3 Let G be a nice family of partial functions on X and let A ∈ [X ]c.

(1) If f : A → R satisfies the following condition

(∗) for every U ∈ [A]c there exists a V ∈ [U ]c such that f �V ∈ G (i.e. f �U /∈
SZU (G) for every U ∈ [A]c),

then f is (< c,G)-decomposable.
(2) If c is a regular cardinal, then every (< c,G)-decomposable f : A → R satisfies

the condition (∗).

Proof (1) Suppose that f : A → R is not (< c,G)-decomposable. We need to show
that (∗) is false. So, let G0 = {gα : α < c} be a basis of G and for each α < c
choose an xα ∈ A\{xβ : β < α} such that 〈xα, f (xα)〉 /∈ ⋃

β<α gβ . This is possible
as f �⊂ ⋃

β<α{〈xβ, f (xβ)〉} ∪⋃
β<α gβ , since f is not (< c,G)-decomposable. Then

U := {xα : α < c} ∈ [A]c justifies the negation of (∗), since |( f �U )∩ g| < c for each
g ∈ G0.
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(2) Next assume that c is regular and f : A → R is (< c,G)-decomposable. Then,
for some κ < c, A can be represented as A = ⋃

α<κ Xα with f �Xα ∈ G for each
α < κ . To see (∗), fix a U ∈ [A]c. Since c is regular, there exists an α < κ for which
V := U ∩ Xα is of size c. Then V justifies (∗). Indeed, f �V ∈ G since G is hereditary
and contains f �Xα . 
�

Now assume that F and G are families of partial functions on X such that
⋃F ⊂⋃G (i.e., so that every f ∈ F is covered by functions from G). Notice, that this

assumption is satisfied when G contains all singletons. By dec(F ,G) we denote the
minimal cardinal κ such that every f ∈ F is (κ,G)-decomposable, that is, such that
for every f ∈ F there is a partition {Xα : α < κ} of X for which f �Xα ∈ G for every
α < κ . This cardinal has been defined by Cichoń et al. [11]. (See also [12]).

Theorem 2.4 Assume that |X | = c and let F and G be the families of partial functions
on X such that G is nice and F is hereditary.

(1) Assume that there exists an f0 ∈ F such that dec({ f0},G) = c. Then, there exists
an f ∈ R

X in SZX (G)\SZX (F). In particular, such an f exists, when c is a
successor cardinal and dec(F ,G) = c.

(2) If c is a regular cardinal and dec(F ,G) < c, then SZX (G)\ SZX (F) = ∅.

Proof (1) By our assumption, there exists an f0 : A → R in F which is not (< c,G)-
decomposable. Then A ∈ [X ]c. So, by Proposition 2.3, there exists a U ∈ [A]c such
that f0�V /∈ G for any V ∈ [U ]c, that is, with the property that f0�U ∈ SZU (G). Also,
by Theorem 2.1, there is a map f1 : X\U → R in SZX\U (G). Then f = ( f0�U ) ∪ f1
is as needed. Indeed, to see that f ∈ SZX (G) fix an M ∈ [X ]c and, by way of
contradiction, assume that f �M ∈ G. Then f �(M ∩ U ), f �(M\U ) ∈ G, as G is
hereditary. Also, at least one of the sets M ∩U and M\U must have cardinality c. But
|M ∩ U | = c contradicts the fact that f �U = f0�U ∈ SZU (G), while |M\U | = c
contradicts f �(M\U ) = f1�(M\U ) ∈ SZX\U (G). So, indeed f ∈ SZX (G). Also,
f /∈ SZX (F) since F is hereditary so that f �U = f0�U ∈ F .
(2) To see this, take an f : X → R not in SZX (F). We need to show that f /∈

SZX (G). Indeed, f /∈ SZX (F) implies that there is an A ∈ [X ]c with f �A ∈ F . Since
dec(F ,G) = κ < c, our f �A can be decomposed into κ maps { f �Bξ : ξ < κ} from
G. Since c is a regular cardinal and κ < c, there is ξ < c with |Bξ | = c. This and
f �Bξ ∈ G imply that f /∈ SZX (G), as needed. 
�
This implies the following result about classes SZ(Bor) and SZ(C).

Corollary 2.5 For any uncountable Polish space X the equality SZX (Bor) = SZX (C)

is independent of ZFC.

Proof Let Bor0 denote the family of all Borel functions f : X → R. Cichoń,Morayne,
Pawlikowski and Solecki proved that

cov (M) ≤ dec(Bor0,C) ≤ d, (3)

where cov (M), the covering of category, is the smallest cardinality of a covering
of R by meager sets, and d, the dominating number, is the smallest cardinality of a
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dominating family D ⊂ ωω. (See [11, Theorem 5.7] and [10, Theorem 4.3]. Compare
also [12, Theorem 4.1]). Note that dec(Bor0,C) = dec(Bor,C). Indeed, since Bor0 ⊂
Bor, dec(Bor0,C) ≤ dec(Bor,C). The opposite inequality follows easily from the fact
that each partially Borel function can be extended to a Borel function defined on whole
X . (Compare Proposition 1.2).

Next, observe that SZ(C)\ SZ(Bor) �= ∅ is consistent with ZFC. Specifically, this
holds whenever cov (M) = c, which is implied by the Continuum Hypothesis and,
more general, byMartin Axiom. This is the case, since cov (M) = c implies that there
there exists a Borel function f0 ∈ R

R for which dec({ f0},C) = c, see [11, Theorem
5.7]. So, by part (1) of Theorem 2.4, SZ(C)\SZ(Bor) �= ∅.

Finally, the equality SZ(Bor) = SZ(C) holds in any model of ZFC in which c is a
regular cardinal and d < c, for example in the iterated perfect set model (or any model
of ZFC in which the Covering Property Axiom CPA holds, see [17] or [18, Theorem
3.1]). Indeed, by (3), in such case we have dec(Bor,C) ≤ d < c. So, by part (2) of
Theorem 2.4, SZ(C)\ SZ(Bor) = ∅. In particular, we have SZ(C) ⊂ SZ(Bor). Since
inclusion SZ(Bor) ⊂ SZ(C) always holds, as C ⊂ Bor, we get desired SZ(Bor) =
SZ(C). 
�

The similar conclusions can be also established for the other pairs of classes of nice
functions mentioned above:

Corollary 2.6 For every n ∈ N:

(i) The strict inclusion SZ(Dn) � SZ(Cn) is independent of ZFC;
(ii) The strict inclusion SZ(Cn−1) � SZ(Dn) is provable in ZFC.

Proof As in the Proof of Corollary 2.5, by Theorem 2.4 these results can be reduced
to the decomposition results. Specifically, it is proved in [18] (see also [17, Example
4.5.5]) that, for everyn ∈ N, dec(Cn−1,Dn) = c is provable inZFC (in fact, there exists
a function f ∈ Cn−1 with dec({ f },Dn) = c), while dec(Dn,Cn) = c is independent
of ZFC: it fails1 under CPA, when we also have c = ω2; it is implied by CH. 
�

In the remainder of this paper we restrict our study to the family SZ(C)\SZ(Bor),
that is, the family SZX (G)\SZX (F) from Theorem 2.4 with X = R, G = C—the
family of all partial continuous functions, and F = Bor—the family of all partial
Borel functions.

3 Additivity coefficient

Recall that the additivity cardinal coefficient A(F) of an F ⊂ R
R is defined as the

minimal cardinality |F | of a family F ⊂ R
R that cannot be shifted into F by any

single ϕ ∈ R
R:

A(F) := min
({|F | : F ⊂ R

R andϕ + F �⊂ F for everyϕ ∈ R
R} ∪ {(2c)+}).

1 The proof in [18] (and [17]) that, under CPA, dec(Dn ,Cn) < c has a gap—it relies on a false lemma.
This has been corrected in [19].
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Different notions of Sierpiński–Zygmund functions 157

This notion was introduced in the early 1990’s by Natkaniec [37,38] and thoroughly
studied in a 1996 paper [30] of Jordan. (See also [12,31]). The basic properties of this
operator are listed in the following proposition, that comes from [30].

Proposition 3.1 For every F ,G ⊂ R
R the following holds.

(1) 1 ≤ A(F) ≤ (2c)+.
(2) If F ⊂ G, then A(F) ≤ A(G).
(3) A(F) = 1 if, and only if, F = ∅.
(4) A(F) = (2c)+ if, and only if, F = R

R.
(5) If F �= ∅, then A(F) = 2 if, and only if, F − F �= R

R.

In [15, Theorem 2.14] it is shown that A(SZ(C)) = dc, where the cardinal

dκ =: min
{|F | : F ⊂ κκ & ∀h∈κκ ∃ f ∈F | f ∩ h| = κ

}

is defined for any infinite cardinal κ . It is known that dc > c, and dc can be different
in different models of ZFC, see [15, Corollaries 2.10 and 2.12]. It is worth to notice
that the equality A(SZ(C)) = dc is true in a more general setting:

Proposition 3.2 Assume that G is a family of partial functions from R to R such that G
contains a constant zero function and cf(G) ≤ c. Then A(SZ(G)) = dc. In particular,
A(SZ(Bor)) = dc > c.

Proof The proof of this fact is identical to the proof from [15, Theorem 2.14] that
A(SZ(C)) = dc. We will not repeat it here, since in what follows we will use the
proposition only to justify that A(SZ(Bor)) > c, which can be easier proved by a
simple transfinite induction. 
�

The goal of this section is to study the number A(SZ(C)\ SZ(Bor)). Since, by
Proposition 3.1(3), its value is 1 when SZ(C)\ SZ(Bor) = ∅, in the rest of this section
we assume that SZ(C)\SZ(Bor) �= ∅.

The main result of this section is the following theorem.

Theorem 3.3 Assume that SZ(C)\SZ(Bor) �= ∅. Then,

(a) ω ≤ A(SZ(C)\SZ(Bor)) ≤ c.
(b) If c = κ+ for some cardinal κ , then A(SZ(C)\ SZ(Bor)) = κ .
(c) If c is a regular limit cardinal (that is, it is a weakly inaccessible cardinal, see

e.g. [35]), then A(SZ(C)\ SZ(Bor)) = c.

In particular

(
SZ(C)\SZ(Bor)

) + (
SZ(C)\SZ(Bor)

) = R
R.

The additional statement follows from (a) and Proposition 3.1(5). The upper bounds
in Theorem 3.3 follow from the next two lemmas.

Lemma 3.4 A(SZ(C)\SZ(Bor)) ≤ c.
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Proof To see this, let F := Bor ∩ R
R and fix a g ∈ R

R. Since |F | = c, it is enough to
show that g + F �⊂ SZ(C)\SZ(Bor).

Indeed, g = g + 0 ∈ g + F . If g ∈ SZ(Bor), then we are done. So, assume
that g /∈ SZ(Bor). Then, there is an h ∈ Bor contained in g with X := dom(h)

of cardinality c. By Proposition 1.2 there is an extension h̄ ∈ F of h. However,
g − h̄ /∈ SZ(C), since it is equal 0 on the set X of cardinality c. 
�
Lemma 3.5 If c = κ+, then A(SZ(C)\ SZ(Bor)) ≤ κ .

Proof First notice that, under c = κ+,
• There exists an F = { fζ ∈ R

R : ζ < κ} such that |h\⋃
F | ≤ κ for every

h ∈ Bor ∩ R
R.

Indeed, if R = {rξ : ξ < c} and Bor∩R
R = {hξ : ξ < c}, then for every ξ < c choose

the values fζ (rξ ), ζ < κ , so that { fζ (rξ ) : ζ < κ} ⊃ {hη(rξ ) : η < ξ}. This works.
Next, let F̄ := F ∪ {}, where  is the constant zero function, and fix a g ∈ R

R.
It is enough to show that g + F̄ �⊂ SZ(C)\SZ(Bor).

To see this, we can assume that g = g +  /∈ SZ(Bor). Then, by Proposition 1.2,
there is an h ∈ Bor ∩ R

R and X ∈ [R]c with g = −h on X . Since (h � X)\⋃
F̄ ⊂

h\⋃
F has cardinality at most κ < κ+ = c, there exists an f ∈ F and Y ∈ [X ]c so

that f = h on Y . Therefore, g + f = −h + h =  on Y , so that g + f /∈ SZ(C), as
needed. 
�

The next lemma will be used to prove the lower bounds in Theorem 3.3. It is quite
technical and, perhaps, a little long but its proof is provided in full detail.

Lemma 3.6 Assume that SZ(C)\ SZ(Bor) �= ∅ and let κ < c be an infinite cardinal.
If either κ = ω or c is a regular cardinal, then A(SZ(C)\ SZ(Bor)) ≥ κ .

Proof Choose an F ⊂ R
R with |F | < κ . We need to find a ḡ ∈ R

R such that
ḡ + F ⊂ SZ(C)\SZ(Bor).

Since A(SZ(Bor)) > c (see Proposition 3.2), there exists a g ∈ R
R such that

g + F ⊂ SZ(Bor). We claim that is enough to show that

(F) there exists a family {Yφ ∈ [R]c : φ ∈ F} of pairwise disjoint sets such that
for every φ ∈ F there is a gφ : Yφ → R so that gφ + (φ � Yφ) ∈ Bor and
gφ + ( f � Yφ) ∈ SZYφ (C) for every f ∈ F .

Indeed, in such a case the function

ḡ(x) :=
{

gφ(x) when x ∈ Yφ for someφ ∈ F;
g(x) otherwise

is as needed.
To prove (F) we consider two cases.

Case κ = ω. Let h ∈ SZ(C)\SZ(Bor). Then, h /∈ SZ(Bor) implies that there is a set
X ∈ [R]c so that h�X ∈ Bor, while h ∈ SZ(C) implies that

(∗) h � Y is discontinuous for every Y ∈ [X ]c.
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Let {X f ∈ [X ]c : f ∈ F} be a partition of X and fix a φ ∈ F . We will find a
Yφ ∈ [Xφ]c and a gφ : Yφ → R satisfying (F). Let { f0, . . . , fn} be an enumeration of
F with f0 = φ. We will prove, by induction on k ≤ n, that

(Ik) there exist Xk
φ ∈ [Xφ]c and finite Ak ⊂ N such that (ah − φ + fi ) � Xk

φ ∈
SZXk

φ
(C) for every a ∈ N\Ak and i ≤ k.

Indeed, by (∗), for k = 0 this holds with X0
φ := Xφ and A0 := ∅. So, assume that (Ik)

holds for some k < n. We need to prove (Ik+1).
If (ah − φ + fk+1) � Xk

φ ∈ SZXk
φ
(C) for every a ∈ N\Ak , then Xk+1

φ := Xk
φ and

Ak+1 := Ak clearly satisfy (Ik+1). So, assume that this is not the case. Then, there
exist an ak ∈ N\Ak and an Xk+1

φ ∈ [Xk
φ]c such that (akh −φ+ fk+1) � Xk+1

φ ∈ C.We

claim that this Xk+1
φ and Ak+1 := Ak ∪ {ak} satisfy (Ik+1). Indeed, otherwise there

exist an a ∈ N\Ak+1 and a Y ∈ [Xk+1
φ ]c such that (ah − φ + fk+1) � Y ∈ C. Also,

(akh −φ + fk+1) � Y ∈ C, as Y ⊂ Xk+1
φ . Therefore, their difference (ak − a)h � Y is

continuous, what contradicts (∗) as ak −a �= 0. This completes the inductive argument.
Next, let Yφ := Xn

φ and gφ := (ah − φ) � Yφ for the first a ∈ N\An . Then (F) is
satisfied by (In). This completes the proof in the case when κ = ω.
Case κ > ω and c is a regular cardinal. We can assume that F is an additive group.
Choose a family B ∈ [

R
R
]κ

of linearly independent functions such that LIN (B) ⊂
SZ(C)∪{0} and, for some X ∈ [R]c, we have f � X ∈ Bor(X) for all f ∈ B. (It exists
by [5, Corollary 4.6], see the begin of the proof of Theorem 4.3). Since |h ∩ h′| < c
for every distinct h, h′ ∈ B and c is regular, decreasing X (by a set of cardinality < c)
if necessary, we can also assume that

h(x) �= h′(x) for every x ∈ X and distinct h, h′ ∈ B. (4)

Let {X f : f ∈ F} ⊂ [X ]c be a decomposition of X .
Fix an φ ∈ F . Wewill find a Yφ ∈ [Xφ]c and a gφ : Yφ → R satisfying (F). For this,

let {gγ : γ < c} be an enumeration of the family of all continuous maps g : G → R

with G being a Gδ set in R and for every γ < c define

ḡγ := gγ \
⋃
ξ<γ

gξ .

Thus, the sets (partial continuous functions) {ḡγ : γ < c} are pairwise disjoint and⋃
ξ≤γ ḡξ = ⋃

ξ≤γ gξ for every γ < c.
For every γ < c, h ∈ B, and f ∈ F let

D f
h,γ := dom(ḡγ ∩ (h − f )).

Notice that, for every h ∈ B and f ∈ F , the sets in the family
{

D f
h,γ : γ < c

}

are pairwise disjoint, since so are the functions {ḡγ : γ < c}. In addition, for every

γ, γ ′ < c and distinct h, h′ ∈ B the set D := D f
h,γ ∩ D f

h′,γ ′ has cardinality < c.
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Indeed, if x ∈ D, then we have h(x) − ḡγ (x) = f (x) = h′(x) − ḡγ ′(x). Thus
h − h′ = ḡγ ′ − ḡγ on D. Since h − h′ is a restriction of a function in SZ(C) and
(ḡγ ′ − ḡγ ) � D is continuous, we see that indeed |D| < c.

Next, for every γ < c, h ∈ B, and f ∈ F let

D̄ f
h,γ := D f

h,γ \
⋃
β≤γ

⋃
h′∈B\{h}

D f
h′,β

and notice that
∣∣∣D f

h,γ \D̄ f
h,γ

∣∣∣ < c. Also, D̄ f
h,γ ∩ D̄ f

h′,β = ∅, whenever the pairs

〈h, γ 〉, 〈h′, β〉 ∈ B × c are distinct: for h �= h′ this follows from the above defi-
nition, while for h = h′ from pairwise disjointness of {D̄ f

h,γ : γ < c}, which follows

from the same property of the family {D f
h,γ : γ < c}.

Now, for every f ∈ F let D f := ⋃{D̄ f
h,γ : h ∈ B & γ < c} ∩ Xφ and define

f ∗ : D f → R so that f ∗ := f + ḡγ on every set D̄ f
h,γ . This is well defined, since

D̄ f
h,γ are pairwise disjoint.
We claim that

(∗) there exists an h ∈ B such that the set Th := (h � Xφ)\⋃{ f ∗ : f ∈ F} has
cardinality c.

By way of contradiction, assume that this is not the case, that is, that |Th | < c for every
h ∈ B. Then, by regularity of c, the set Z := ⋃

h∈B dom(Th) has cardinality less than
c. Choose an x ∈ Xφ\Z and notice that, by (4), the set {h(x) : h ∈ B} is of cardinality
|B| = κ while it is contained in the set { f ∗(x) : f ∈ F} of cardinality ≤ |F | < κ , a
contradiction.

Finally, let h ∈ B be as in (∗) and Yφ := dom(Th). Define gφ : Yφ → R as
gφ := h − φ � Yφ . We claim that it satisfies (F).

Clearly gφ + (φ � Yφ) = h � Yφ ∈ Bor. To finish the proof, fix an f̂ ∈ F and let
f := φ − f̂ ∈ F . We need to show that gφ + ( f̂ � Yφ) ∈ SZYφ (C). To see this, first

notice that gφ + f̂ = h −φ + f̂ = h − f on Yφ . By way of contradiction, assume that
h − f is continuous on some subset of Yφ of cardinality c. So, there exists a γ < c
such that the set A := Yφ ∩ dom((h − f ) ∩ gγ ) has cardinality c. We can assume that
γ is the smallest with this property. Then also the set Ā := Yφ ∩ dom((h − f ) ∩ ḡγ )

has cardinality c. Notice, that for every x ∈ Ā we have (h − f )(x) = ḡγ (x), that

is, x ∈ dom(ḡγ ∩ (h − f )) = D f
h,γ . So, Ā ⊂ D f

h,γ and, since |D f
h,γ \D̄ f

h,γ | < c,

we may assume that Ā ⊂ D̄ f
h,γ . Therefore, Ā ⊂ D̄ f

h,γ ∩ Yφ , and on Ā we have

h = f + ḡγ = f ∗. But this contradicts the fact that Ā ⊂ Yφ = dom(Th). This finishes
the proof. 
�
Proof of Theorem 3.3 The upper bound in part (b) follows from Lemma 3.5, while in
parts (a) and (c) from Lemma 3.4. The lower bounds follow from Lemma 3.6.

Problem 3.7 Assume that SZ(C)\ SZ(Bor) �= ∅. What can be said about the number
A(SZ(C)\SZ(Bor)) when c is a singular cardinal number?
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Problem 3.8 Can we prove Theorem 3.3 for more general classes in place of Bor and
C?

4 Lineability

The goal of this section is to investigate the lineability of SZ(C)\SZ(Bor), that is,
finding the largest possible subfamily of {0} ∪ (SZ(C)\SZ(Bor)) that forms a linear
subspace of the spaceR

R (over the fieldR).We say that a familyF ⊂ R
R is κ-lineable

if F ∪ {0} contains a linear subspace of dimension κ , see [1,6,7,25].

Proposition 4.1 For any cardinal number κ the following conditions are equivalent.

(1) SZ(C) is κ-lineable;
(2) SZ(Bor) is κ-lineable;
(3) there exists a c-almost disjoint family F ⊂ [c]c of cardinality κ .

Proof The equivalence of conditions (2) and (3) is proved in [26]. Since SZ(Bor) ⊂
SZ(C), the condition (2) implies (1). Finally, (1) implies (3) because if f , g ∈ SZ(C)

are linearly independent, then they are c-almost disjoint. (The same argument is used
in [26] in the proof of implication (2)⇒(3)). 
�

The following fact is proved in [5, Corollary 4.6] by so-called exponential like
function method, which has been used in many earlier papers, see e.g. [2,27,28].

Proposition 4.2 If the family SZ(C)\SZ(Bor) is non-empty, then it is c-lineable.

We will show below that this result is not optimal.
Assume that X is a set of size c.We say that a cardinal κ has the double star property(

�
�

)
if there exists a sequence { fξ ∈ ωX : ξ < κ} such that for every n ∈ N

(1) the sets in { f −1
ξ (n) ∈ [X ]c : ξ < κ} are pairwise c-almost disjoint;

(2) for all one-to-one sequences 〈i1, . . . , in〉 ∈ N
n and 〈ξ1, . . . , ξn〉 ∈ κn

n⋂
k=1

f −1
ξk

(ik) ∈ [X ]c.

Theorem 4.3 Assume that SZ(C)\SZ(Bor) �= ∅. If a cardinal κ ≥ c has the property(
�
�

)
, then the family SZ(C)\SZ(Bor) is κ-lineable.

Proof Let h ∈ SZ(C)\SZ(Bor). Then, h /∈ SZ(Bor) implies that there is a set X ∈
[R]c so that h�X ∈ Bor, while h ∈ SZ(C) implies that

(∗) h � Y is discontinuous for every Y ∈ [X ]c.
We may assume that |R\X | = c. For every n ∈ N let hn(x) := enh(x). Then the set
{hn : n ∈ N} is linearly independent and any h ∈ LIN ({hn : n ∈ N}) satisfies the
property (∗). (See [24, Lemma 5.9]. Compare also [5, Corollary 4.6]).

Notice that, by the condition (1) of the property
(
�
�

)
, there exists a family satis-

fying (3) of Proposition 4.1. Hence, there exists also a linearly independent family
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{gξ ∈ R
R : ξ < κ} with span in SZ(Bor) ∪ {0}. Let { fξ ∈ ωX : ξ < κ} be a family

witnessing the property
(
�
�

)
and for every ξ < κ let f̄ξ : R → ω be an extension of fξ

such that f̄ξ (x) = 0 for every x ∈ R\X .
For every ξ < κ let

g̃ξ :=
(

gξ � f̄ −1
ξ (0)

)
∪

⋃
n∈N

(
hn � f −1

ξ (n)
)

that is,

g̃ξ (x) :=
{

hn(x) when x ∈ f −1
ξ (n) for some n ∈ N;

gξ (x) otherwise.

First notice that the functions {g̃ξ : ξ < κ} are linearly independent. To see this,
assume that a1g̃ξ1 + · · · + an g̃ξn = 0 for some a1, . . . , an ∈ R and ξ1 < · · · < ξn .
We need to show that a1 = · · · = an = 0. Indeed, let g := a1gξ1 + · · · + angξn . Then
g ∈ SZ(Bor) ∪ {0} must be constant 0, since otherwise g ∈ SZ(Bor), in spite the
fact that on the set R\X of cardinality c we have g = a1g̃ξ1 + · · · + an g̃ξn = 0, that
is, g � R\X ∈ Bor. Hence, a1gξ1 + · · · + angξn = 0 and, by linear independence of
{gξ ∈ R

R : ξ < κ}, this implies that a1 = · · · = an = 0.
By the above fact, LIN ({g̃ξ : ξ < κ}) has dimension κ . So, to finish the proof, it is

enough to verify that

LIN ({g̃ξ : ξ < κ}) ⊂ {0} ∪ SZ(C)\ SZ(Bor).

To see this, fix an f ∈ LIN ({g̃α : α < κ})\{0}. Then f = a1g̃ξ1+· · ·+an g̃ξn for some
a1, . . . , an ∈ R\{0} and ξ1 < · · · < ξn . We need for show that f ∈ SZ(C)\SZ(Bor).

To argue for f /∈ SZ(Bor), observe that f (x) = a1h1(x) + · · · + anhn(x) for any
x ∈ Y := ⋂n

k=1 f −1
ξk

(k) ∈ [R]c. Hence, f �Y is a Borel function on Y ∈ [R]c and so
f /∈ SZ(Bor).
To see that f ∈ SZ(C) first notice that {⋂n

k=1 f −1
ξk

(ik) : 〈i1, . . . , in〉 ∈ ωn} is a
countable partition of R. Therefore, it is enough to prove that f is SZ(C) on any of
these sets. So, fix 〈i1, . . . , in〉 ∈ ωn and let Z := ⋂n

k=1 f −1
ξk

(ik).
To argue for f � Z ∈ SZZ (C) define the sets A := {k ∈ {1, . . . , n} : ik �= 0} and

B := {1, . . . , n}\A. For every x ∈ Z , put

f̃ (x) :=
∑
k∈A

akhik (x) and f̂ :=
∑
k∈B

ak gξk (x).

We can assume that ik �= i j for any distinct j, k ∈ A, since otherwise, by (1),
f −1
ξk

(ik) ∩ f −1
ξ j

(i j ) ⊃ Z has cardinality less than c and so f �Z ∈ SZZ (C).
We have three cases.

A = ∅ Then, by the choice of maps gξ , we have f �Z = f̂ �Z ∈ SZZ (Bor).
B = ∅ Then, since the functions hn , n ∈ N, are linearly independent and so

f �Z = f̃ �Z = (
∑n

i=1 ai hik )�Z ∈ SZZ (C).
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A �= ∅ �= B Then, Z ⊂ X , f̃ �Z ∈ Bor, and f̂ �Z ∈ SZZ (Bor). Therefore, clearly we
have f �Z = f̃ �Z + f̂ �Z ∈ SZZ (Bor).

Thus, f � Z ∈ SZZ (C), as needed. 
�
Theorem4.3 and the following lemma give an independent proof of Proposition 4.2.

Lemma 4.4 The cardinal c has the property
(
�
�

)
.

Proof Let X be the family of all g ∈ ωc such that supp(g) := {ξ < c : g(ξ) > 0} is
countable infinite and g is one-to-one on supp(g). Notice that X is of size c. For every
ξ < c define fξ : X → ω by the formula: fξ (g) = n if, and only if, g(ξ) = n. Then
the family { fξ : ξ < c} witnesses the property (

�
�

)
. 
�

4.1 c+-lineability

The goal of this subsection is to show that in Proposition 4.2 we can actually have
c+-lineability when c is a regular cardinal. This will follow immediately from the next
lemma.

Lemma 4.5 If c is a regular cardinal, then the cardinal c+ has the property
(
�
�

)
.

Proof To see this, fix an X ∈ [R]c. We will construct, by transfinite induction α ≤ c+,
the sequences

Fα := 〈 fξ ∈ ωX : ξ < α〉

subject to the following inductive conditions, where Fα is the family of all one-to-one
maps s from a D ∈ [α]<ω into N.

(Iα) For every n ∈ N the sets in the family { f −1
ξ (n) ∈ [X ]c : ξ < α} are pairwise

c-almost disjoint.
(Jα) Ts := ⋂

ν∈dom(s) f −1
ν (s(ν)) ∈ [X ]c for every s ∈ Fα .

(Mα) Fξ ⊂ Fη for ξ ≤ η < α.

Notice that any set
⋂n

k=1 f −1
ξk

(ik) from the part (2) of definition of
(
�
�

)
equals to Ts ,

where s := {〈ξ1, i1〉, . . . , 〈ξn, in〉} ∈ Fκ . Thus, the properties (Iκ ) and (Jκ ) represent
(1) and (2) from

(
�
�

)
. (For s = ∅, we understand Ts as equal X ).

Our induction starts with α = c, for which the desired sequence exists by
Lemma 4.4. It is easy to see that if α ≤ c+ is a limit ordinal then a sequence
Fα = ⋃

ξ<α Fξ , satisfies (Iᾱ)&(Jᾱ)&(Mᾱ) for every ᾱ < α; therefore, it satisfies
also (Iα)&(Jα)&(Mα).

To finish the inductive proof, assume that for some α < c+, with α ≥ c, we already
have a sequence 〈 fξ ∈ ωX : ξ < α〉 that satisfies (Iα)&(Jα). We need to construct
an fα ∈ ωX for which the extended sequence 〈 fξ ∈ ωX : ξ < α + 1〉 still satisfies
(Iα+1)&(Jα+1).

Let 〈〈sξ , nξ 〉 : ξ < c〉 be a sequence of all pairs 〈s, n〉 ∈ Fα × N so that n does
not belong to the range of s and such that each such pair appears in it c-many times.
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Let { fδξ : ξ < c} be an enumeration of { fξ : ξ < α}. By induction define a sequence
〈tξ : ξ < c〉 so that

tξ ∈ Zξ :=
⋂

ν∈dom(sξ )

f −1
ν (sξ (ν))\

⎛
⎝{tζ : ζ < ξ} ∪

⋃
ζ<ξ

f −1
δζ

(nξ )

⎞
⎠ .

To see that such choice is possible, notice that there exists an η ∈ c\dom(sξ ) such
that fη �= fδζ for all ζ < ξ . Then, by (Jα), the set f −1

η (nξ ) ∩ ⋂
ν∈dom(sξ ) f −1

ν (sξ (ν))

has cardinality c (as nξ does not belong to the range of sξ ). Therefore, also the set
f −1
η (nξ ) ∩ Zξ has cardinality c, since c is a regular cardinal and, by (Iα), each set

f −1
η (nξ ) ∩ f −1

δζ
(nξ ) has cardinality < c.

Define

fα(x) :=
{

nξ when x = tξ for some ξ < c;
0 otherwise

and notice that it is as needed.
Indeed, (Iα+1) holds, since for every ξ < α there is a ζ < c such that fδζ = fξ

and, by our definition, for every n ∈ N the set f −1
α (n) ∩ f −1

ξ (n) = f −1
α (n) ∩ f −1

δζ
(n)

is contained in {tγ : γ ≤ ζ }.
To see (Jα+1), it is enough to show that for every set Ts from (Jα) and every n ∈ N

not in the range of s the set Ts ∩ f −1
α (n) has cardinality c. But this is the case, since

there is c-many ξ < c such that 〈sξ , nξ 〉 = 〈s, n〉 and tξ ∈ Ts ∩ f −1
α (n) for any such

ξ . 
�
The above lemma and Theorem 4.3 immediately imply the following corollary.

Corollary 4.6 If SZ(C)\ SZ(Bor) �= ∅ and c is a regular cardinal, then the family
SZ(C)\ SZ(Bor) is c+-lineable.

4.2 Forcing axioms and c++-lineability

In this subsection we will show that it is consistent with ZFC that the family
SZ(C)\ SZ(Bor) is c++-lineable. Notice that such result cannot be obtained in ZFC,
since it contradicts 2c = c+. Moreover, there are models of ZFC in which c++ = 2c

andwithout c-almost disjoint familyF ⊂ [c]c of size 2c, see [21, Theorem3.3]. In such
models the family SZ(C) is not 2c-lineable, see Proposition 4.1. Thus SZ(C)\ SZ(Bor)
has the same property.

For every cardinal κ and partially ordered set P consider the following statement,
a specific form of Generalized Martins Axiom to which we will refer as κ-Martin’s
Axiom for P. (See [14]. Compare also [15]).

MAκ(P) For any family D of dense subsets of P, if |D| < κ , then there exists a
D-generic filter G in P, that is, such that D ∩ G �= ∅ for every D ∈ D.
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In a manner similar to that used in [15], for every X ∈ [R]c and a family F ⊂ R
X

satisfying properties (1) and (2) from the definition of
(
�
�

)
consider the following

notions of forcings: PX := {
p ∈ ωD : D ∈ [X ]≤ω

}
ordered by the reversed inclusion

and

PF := PX × [F]≤ω

ordered as

〈p, E〉 ≤ 〈q, F〉 ⇐⇒ p ⊇ q and E ⊇ F and

p(x) �= f (x) for every f ∈ F and x ∈ dom(p)\dom(q).

It is not difficult to see that each forcing PF is ω-closed and, under CH, also ω2-cc. In
particular, the standard iterated forcing technique, identical to that used to prove [14,
theorem 3.7], gives the following result.

Proposition 4.7 Let M be a model of ZFC+GCH in which X ∈ [R]c and let λ ≥ κ ≥
ω2 be the cardinals such that cf(λ) > ω1 and κ is regular. Then, there exists a generic
model N of ZFC+CH extending M, having the same cardinals and real numbers than
M, in which 2c = λ and MAκ(PF ) holds for every appropriate family F .

With this result, we are ready to prove the main theorem of this subsection.

Theorem 4.8 For every X ∈ [R]c and λ ≥ ω3 with cf(λ) > ω1 it is relatively
consistent with ZFC+CH that 2c = λ and SZ(C)\ SZ(Bor) is c++-lineable.

Proof It is enough to prove that SZ(C)\ SZ(Bor) is c++-lineable in the model N from
Proposition 4.7 used with κ = ω3.

To see this, first notice that in this model we have c = ω1 and κ = ω3 = c++. Also,
SZ(C)\ SZ(Bor) �= ∅, since we have CH. Therefore, by Theorem 4.3, it is enough to
show that, under κ > c, MAκ(PF ) implies that κ has the property

(
�
�

)
.

For this, similarly as in Lemma 4.4, we will construct, by transfinite induction
α ≤ κ , the sequences

Fα := 〈 fξ ∈ ωX : ξ < α〉

satisfying the following inductive conditions, where Fα is the family of all one-to-one
maps s from a D ∈ [α]<ω into N.

(Iα) For every n ∈ N the sets in the family { f −1
ξ (n) ∈ [X ]c : ξ < α} are pairwise

c-almost disjoint.
(Jα) Ts := ⋂

ν∈dom(s) f −1
ν (s(ν)) ∈ [X ]c for every s ∈ Fα .

(Mα) Fξ ⊂ Fη for ξ ≤ η < α.

By Lemma 4.4, we can start our induction with α = c+. Once again, it is easy
to see that if α ≤ κ is a limit ordinal then a sequence Fα = ⋃

ξ<α Fξ satisfies
(Iᾱ)&(Jᾱ)&(Mᾱ) for every ᾱ < α; therefore, it satisfies also (Iα)&(Jα)&(Mα).
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To finish the inductive proof, assume that for some α < κ , with α ≥ c+, we already
have a sequence 〈 fξ ∈ ωX : ξ < α〉 that satisfies (Iα)&(Jα). We need to construct
an fα ∈ ωX for which the extended sequence 〈 fξ ∈ ωX : ξ < α + 1〉 still satisfies
(Iα+1)&(Jα+1). We will use MAκ(PF ) with F = { fξ : ξ ≤ α}2 to construct such fα .

For this, let {xξ : ξ < c} be an enumeration of X and notice that for every ζ < α,
n ∈ N, γ < c, and s ∈ Fα so that n is not in the range rng(s) of s, the following sets

Dζ := {〈p, E〉 ∈ PF : fζ ∈ E
}
,

Ds
γ,n := {〈p, E〉 ∈ PF : there is a ξ > γ with 〈xξ , n〉 ∈ p and xξ ∈ Ts

}
,

are dense in PF .
Indeed, each Dζ is dense, since for every 〈p, E〉 ∈ PF the condition 〈p, E ∪ { fζ }〉

is in Dζ and extends 〈p, E〉. To see the density of Ds
γ,n , fix a 〈p, E〉 ∈ PF . It is enough

to find a ξ > γ such that 〈p ∪ {〈xξ , n〉}, E〉 is in Ds
γ,n and extends 〈p, E〉.

The choice of xξ is similar to that of tξ in the proof of Lemma 4.4. Specifically,
choose an η < α such that η /∈ dom(s) and fη /∈ E . Then, by (Jα), we have
Ts ∩ f −1

η (n) ∈ [X ]c. At the same time, by (Iα), we have | f −1
η (n) ∩ f −1

ζ (n)| < c

for every fζ ∈ E . Thus, there exists a ξ > γ such that xξ ∈ Ts ∩ f −1
η (n)\dom(p)

and

xξ /∈ f −1
η (n) ∩ f −1

ζ (n) for every fζ ∈ E . (5)

We claim that such xξ is as needed. Indeed, we have q := p ∪ {〈xξ , n〉} ∈ PX since
xξ ∈ X\dom(p). So, 〈q, E〉 ∈ Ds

γ,n , as ξ > γ . Also, to see that 〈q, E〉 ≤ 〈p, E〉 we
need to show that n = q(xξ ) �= f (xξ ) for every f ∈ E . But this is ensured by (5).

By the above, all sets in the family

D :=
{

Dζ : ζ < α} ∪ {Ds
γ,n : γ < c & n ∈ N & s ∈ Fα & n /∈ rng(s)

}

are dense inPF . Since |D| ≤ |α| < κ , byMAκ(PF ) there exists aD-generic filterG in
PF . Let f̂ = {p : 〈p, E〉 ∈ G}. Since G is a filter, it is easy to see that f̂ is a function.
Let fα ∈ R

X be an extension of f̂ such that fα(x) = 0 for every x ∈ X\dom( f̂ ).
Then fα is as needed.

Indeed, (Iα+1) holds, since for every ζ < α there is a 〈p, E〉 ∈ G∩Dζ . Specifically,
by the definition of order in PF , for every n ∈ N, if fα(x) = fζ (x) = n, then
x ∈ dom(p). (Indeed, if x /∈ dom( f̂ ), then fα(x) = 0 �= n. If x ∈ dom( f̂ ), then
there is 〈q, F〉 ∈ G extending 〈p, E〉 with x ∈ dom(q). So, fα(x) = q(x) �= fζ (x),
unless x ∈ dom(p)). Thus, | f −1

α (n) ∩ f −1
ζ (n)| < c, as required.

To see (Jα+1), it is enough to show that for every set Ts from (Jα) and every
n ∈ N not in the range of s the set Ts ∩ f −1

α (n) has cardinality c. Since c = ω1 is a
regular cardinal, to see it, it is enough to show that for every γ < c there is a ξ > γ

such that xξ ∈ Ts ∩ f −1
α (n). But this follows immediately from the fact that there

2 Note that this cannot be done in ZFC, since the number of sets Ts in (Jα) that we need consider (and also
sets in Iα)) is > c.
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is a 〈p, E〉 ∈ G ∩ Ds
γ,n , since then there is a ξ > γ with xξ ∈ Ts and fα(xξ ) =

p(xξ ) = n. 
�
Finally notice that if the family SZ(C)\ SZ(Bor) is κ-lineable, then there exists a

c-almost disjoint family F ⊂ [c]c of cardinality κ , see Proposition 4.1. It would be
good to know, if these two conditions are equivalent.

Problem 4.9 (1) Is the double star property
(
�
�

)
equivalent to the existence of a c-

almost disjoint family F ⊂ [c]c of cardinality κ?
(2) Assume that SZ(C)\SZ(Bor) �= ∅ and κ is a cardinal such that there exists a

c-almost disjoint family F ⊂ [c]c of cardinality κ . Does this imply that the family
SZ(C)\SZ(Bor) is κ-lineable?

5 Examples

5.1 Additive SZ(G) functions

It is well-known that there are additive SZ(C) functions, that is, functions which
satisfies the Cauchy equation:

f (x + y) = f (x) + f (y)

for all x, y ∈ R. Examples of such functions can be found in [3,39,40]. Exactly in the
same way one can construct an example of additive SZ(Bor) function (see [34]). In
the next theorem we generalize these results to the case when G is a nice family of
partial functions on R.

Theorem 5.1 Suppose G is a nice family of partial functions on R. Then there exists
an additive function f ∈ SZ(G).

Proof Let R = {xα : α < c} and {gα : α < c} be a basis for G. We will construct a
sequence 〈 fβ : β < c〉 such that each fβ is an additive function defined on a linear
subspaceVβ ofR over the fieldQ of rational numbers. The construction is by transfinite
induction on α ≤ c so that each of its initial segments 〈 fβ : β < α〉 satisfies the
following inductive conditions.

(1) fβ ⊂ fγ for all β ≤ γ < α;
(2) |Vβ | ≤ max(ω, β) for all β < α;
(3) xβ ∈ Vβ for all β < α;
(4) dom( fγ ∩ gβ) ⊂ Vβ for all β ≤ γ < α.

First notice that if for α = c such a sequence is constructed, then f := ⋃
β<c fβ is

our desired function. Indeed, clearly f is an additive function defined, by (3), on R.
It is in SZ(G) by (2) and (4).

To make an inductive step of our construction, fix an α < c so that 〈 fβ : β < α〉
satisfies (1)–(4). Let f α := ⋃

β<α fβ and V α = ⋃
β<α Vβ . We will find an extension

fα of f α so that the sequence 〈 fβ : β < α+1〉 still satisfies the inductive assumptions.
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If xα ∈ V α , then we can just put fα := f α and Vα := V α . So assume that xα /∈ V α

and let

Vα := V α + Qxα. (6)

Choose a yα ∈ R so that

yα /∈ rng( f α) +
⋃
β≤α

Qgβ [dom(gβ) ∩ Vα]. (7)

Such a choice is possible since the set rng( f α) + ⋃
β≤α Qgβ [dom(gβ) ∩ Vα] has

cardinality less than c. Define fα : Vα → R as the unique additive extension of
f α ∪ {〈xα, yα〉}. Then, clearly, conditions (1), (2), and (3) are satisfied.
To verify (4) we will use (7). So, let β < α and x ∈ Vα ∩ dom(gβ) be such that

fα(x) = gβ(x). We need to show that x ∈ Vβ . This clearly holds by an inductive
assumption when x ∈ V α . So, by way of contradiction, assume that x /∈ V α . Then
there are z ∈ V α and q ∈ Q\{0} such that x = z + qxα . Hence, f α(z) + qyα =
fα(x) = gβ(x) and so

yα = q−1gβ(x) − q−1 f α(z) ∈ rng( f α) +
⋃
β≤α

Qgβ [dom(gβ) ∩ Vα],

contrary to (7). 
�
Next, we will prove a similar result for the maps in SZ(G)\ SZ(F).

Theorem 5.2 Suppose G and F are families of partial functions on R, such that F is
hereditary while G is nice and closed onto compositions (outer and inner) with linear
operations �(x) = ax + b. If there exists an ϕ ∈ F such that dec({ϕ},G) = c, then
there is an additive function f ∈ SZ(G)\ SZ(F). In particular, there exists such an f
when SZ(G)\SZ(F) �= ∅ and c is a successor cardinal.

Proof Let ϕ ∈ F be such that dec({ϕ},G) = c. Notice that, under the assumption
that SZ(G)\SZ(F) �= ∅ and c is a successor cardinal, such function ϕ exists since
SZ(G)\ SZ(F) �= ∅ and Proposition 2.3(2) imply that dec(F ,G) = c, while this, and
our assumption on c, ensures existence of the desired ϕ ∈ F .

Let R = {xα : α < c} and {gα : α < c} be a basis for G. We will construct a
sequence 〈 fβ : β < c〉 of additive functions and a one-to-one mapping c � β �→ tβ ∈
dom(ϕ). The construction is by transfinite induction on α ≤ c so that each of its initial
segments 〈 fβ : β < α〉 satisfies the following inductive conditions.

(1) fβ ⊂ fγ for all β ≤ γ < α;
(2) |Vβ | ≤ max(ω, β) for all β < α;
(3) xβ ∈ Vβ for all β < α;
(4) dom( fγ ∩ gβ) ⊂ Vβ for all β ≤ γ < α;
(5) 〈tβ, ϕ(tβ)〉 ∈ fβ .
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First notice that if for α = c such a sequence is constructed, then f := ⋃
β<c fβ is

our desired function. Indeed, clearly f is an additive function defined, by (3), on R.
It is in SZ(G) by (2) and (4). It is not in SZ(F) since (5) implies that | f ∩ ϕ| = c.

To make an inductive step of our construction, fix an α < c so that 〈 fβ : β < α〉
satisfies (1)–(5). Let f α := ⋃

β<α fβ and V α = ⋃
β<α Vβ . We will find an extension

fα of f α so that the sequence 〈 fβ : β < α + 1〉 still satisfies the inductive conditions.
First, we will find an extension f̂α of f α that ensures satisfaction of (1)–(4). This

is done the same way as in the proof of Theorem 5.1. Next, choose a point tα ∈(
dom(ϕ)\dom( f̂α) ∪ {tβ : β < α}

)
such that

ϕ(tα) /∈
⋃

{qgβ(v) + b : v ∈ dom(gβ) ∩ dom( f̂α) & b ∈ rng( f̂α)}. (8)

Such tα exists by the assumption that dec({ϕ},G) = c, since G contains all singletons
and each of the maps qgβ + b is in G.

We define fα on Vα := dom( f̂α) + Qtα as the unique additive extension of the
map f̂ α ∪ {〈tα, ϕ(tα)〉}. Then, clearly conditions (1), (2), (3), and (5) are satisfied.
The proof that the property (4) is satisfies is, once again, essentially identical to one
in Theorem 5.1. 
�

As a consequence of the above theoremwe immediately obtain the following corol-
lary.

Corollary 5.3 If SZ(C)\SZ(Bor) �= ∅ and c is a successor cardinal, then there exists
an additive function f : R → R which belongs to the class SZ(C)\ SZ(Bor).

Recall also (compare Corollary 2.6) that there exists an f ∈ Cn−1 such that
dec({ f },Dn) = c, see [17, Example 4.5.5]. So, by Theorem 5.2, we have also

Corollary 5.4 For every n ∈ N there exists an additive function f : R → R which
belongs to the class SZ(Dn)\SZ(Cn−1).

5.2 Hamel functions

Recall that a function f : R → R is called Hamel function provided its graph is a
Hamel basis of the linear space R

2 over Q, see [41]. An example of Hamel function
in the class SZ(C) was constructed by Plotka [42].

Theorem 5.5 Suppose G and F are families of partial functions on R, such that F is
hereditary while G is nice. If there exists a ϕ ∈ F such that dec({ϕ},G) = c, then
there is a Hamel function f ∈ SZ(G)\SZ(F). In particular, there exists such an f
when SZ(G)\SZ(F) �= ∅ and c is a successor cardinal.

Proof Fix ϕ ∈ F such that dec({ϕ},G) = c.
Let {xα : α < c} be an enumeration of R with x0 = 0 and let {gα : α < c} be a

basis for G. We will construct a sequence 〈 fβ : β < c〉 and a one-to-one mapping
c � β �→ tβ ∈ dom(ϕ). The construction is by transfinite induction on α ≤ c so that
each of its initial segments 〈 fβ : β < α〉 satisfies the following inductive conditions
for every β ≤ γ < α:

123



170 K. C. Ciesielski, T. Natkaniec

(1) fβ is a function which graph is a linearly independent subset of R
2;

(2) fβ ⊂ fγ ;
(3) | fβ | ≤ max(ω, β);
(4) xβ ∈ dom( fβ) and 〈0, xβ〉 ∈ LIN ( fβ);
(5) fγ ∩ gβ ⊂ fβ ;
(6) 〈tβ, ϕ(tβ)〉 ∈ fβ .

First notice that if for α = c such a sequence is constructed, then f := ⋃
β<c fβ is our

desired function. Indeed, clearly f is a function which graph a linearly independent
subset of R

2. By (4), dom( f ) = R and LIN ( f ) = R
2, so that f is a Hamel function.

By (6), | f ∩ϕ| = c, so f /∈ SZ(F). Finally, the statements (3) and (5) yield f ∈ SZ(G).
To make an inductive step of our construction, fix an α < c so that 〈 fβ : β < α〉

satisfies (1)–(6). Let f α := ⋃
β<α fβ and and observe that its graph is a linearly

independent subset of R
2. We will find, in few steps, an extension fα of f α so that

the sequence 〈 fβ : β < α + 1〉 still satisfies the inductive conditions.
Step 1. If xα ∈ dom( f α), then put f ′

α := f α . If α = 0, define f ′
α := {〈0, 1〉}.

Otherwise observe that

Yα = LIN (rng( f α)) ∪ {gξ (xα) : ξ ≤ α & xα ∈ dom(gξ )}

is of size < c, choose y ∈ R\Yα , and put

f ′
α := f α ∪ {〈xα, y〉}.

Step 2. If 〈0, xα〉 ∈ LIN ( f ′
α), put f ′′

α = f ′
α . Otherwise choose y /∈ LIN (dom( f ′

α))

and

z ∈ R\{gξ (x), xα − gξ (x) : ξ ≤ α & x ∈ dom(gξ )}.

and put

f ′′
α = f ′

α ∪ {〈y, z〉, 〈−y, xα − z〉}.

Notice that f ′′
α satisfies the conditions (1)–(5).

Step 3. Finally notice that ϕ cannot be covered by α-many functions from G.
Therefore, there exists a tα ∈ dom(ϕ)\LIN (dom( f ′′

α ) ∪ {tβ : β < α}) such that
ϕ(t) /∈ {gξ (t) : ξ ≤ α & t ∈ dom(gξ )}. Then define

fα = f ′′
α ∪ {〈t, ϕ(t)〉}

and observe that fα satisfies all conditions (1)–(6). 
�
Remark 5.6 In the same way (or even simpler) one can prove that if G is a nice family
of partial functions on R, then there exists a Hamel function f ∈ SZ(G).

Also, since cov (M) = c implies that there exists a ϕ ∈ Bor with dec({ϕ},C) = c,
see [11, Theorem 5.7], we get
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Corollary 5.7 If cov (M) = c, then there exists an f ∈ SZ(C)\ SZ(Bor) which is a
Hamel function.

5.3 Almost continuous functions

A function f : R → R is almost continuous in the sense of Stallings, denoted f ∈ AC,
if every open subset of R

2 containing f contains also a continuous function from R to
R, see [44]. It is known that existence of a function f ∈ AC∩SZ(C) cannot be proved
in ZFC, see [3]. In the same paper the authors construct an example f ∈ AC∩ SZ(C)

under assumption that cov (M) = c. If, in the construction of f ∈ AC ∩ SZ(C) from
[3] we replace the family C with the family Bor, we obtain the following result.

Theorem 5.8 Assume that cov (M) = c. Then there exists an f ∈ AC ∩ SZ(Bor).
Moreover, the graph of f is dense in R

2.

We have also another variety on the same topic.

Theorem 5.9 If cov (M) = c, then there exists a g ∈ AC ∩ SZ(C)\ SZ(Bor).

Proof Fix an f ∈ SZ(Bor) ∩AC which is dense in R
2. It is known that every modifi-

cation of such f on a nowhere dense set is still almost continuous; that is, if C ⊂ R is
nowhere dense and g : R → R is such that f = g on R\C , then g ∈ AC, see [33] or
[29]. Let C be the ternary Cantor set. Since cov (M) = c, there exists a Borel function
ϕ ∈ R

C with dec({ϕ},C) = c, see [11, theorem 5.7]. Therefore, by part (1) of Theo-
rem 2.4, there exists a X ∈ [C]c with ϕ�X ∈ SZX (C). Then g := f �(R\X) ∪ ϕ�X is
as needed. 
�
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