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Abstract
Sierpiński–Zygmund (SZ) functions are the maps from R to R that have “as little continuity”
as possible. In this work we discuss the history behind their discovery, their constructions
through the years, and their generalizations. The presentation emphasizes the algebraic
properties of SZ maps and their relation to different classes of generalized continuous-like
functions. From the seminal work of Blumberg and the appearance of Sierpiński–Zygmund’s
result, we describe the current state of the art of this century-old class of functions and discuss
the impact that it has had on several different directions of research. Many typical proofs
used in the theory, often in a simplified format never published before, are included in the
presented material. Moreover, open problems and new directions of research are indicated.
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1 Introduction: how did Sierpiński–Zygmundmaps come about?

How much continuity must an arbitrary function from the real line R into R have? At a
first glance, an answer to this question should be none, since the characteristic function
χQ : R → {0, 1} of the set Q of all rational numbers (i.e., given as χQ(x) = 1 for x ∈ Q and
χQ(x) = 0 for x ∈ R\Q), known as the Dirichlet function, is clearly continuous at no point.
This was first observed by Peter Gustav Lejeune Dirichlet (1805–1859)1 in 1829, [52].

Nevertheless, if we consider the restrictions f � D of f to a D ⊂ R, then such restriction
can still be continuous. In fact, independently of the choice of f , the restriction f � D is
continuous at any isolated point of D; in particular, f � D is continuous when D has no limit
points. However, this could be seen as “cheating,” since lack of limit points in D makes the
continuity of f � D trivial. A more sensible question is to concentrate on the restrictions
f � D, when D has no isolated points:

Q1: Is it true that for every function f : R → R there exists a dense in itself D ⊂ R such
that f � D is continuous?

In the early 20th century Henry Blumberg (see Fig. 1) must have come across such a question,
since in his 1922 work [18] he provided an affirmative answer to the question Q1 by proving
the following result.

Theorem 1.1 For an arbitrary function f : R → R there exists a dense subset D of R such
that f � D is continuous.

The set D constructed in the original proof of Theorem 1.1 (as well as its simpler form
presented in the next section) is “just” countable. In light of this fact, the following question
seems natural to examine.

Q2: Is it true that, for every function f : R → R, there exists a set D ⊂ R dense in R (or
just in itself) which is uncountable and such that its restriction f � D is continuous?

Of course, one may also ask whether we can ensure that a set D in Q2 can be “big” in a sense
other than cardinality, e.g., in sense of Lebesgue measure or Baire category. We will discuss
the current state of knowledge on these generalized versions of Q2 in Sect. 2.

Question Q2was investigated right after the publication of Theorem 1.1 by two prominent
Polish mathematicians, Wacław Sierpiński (see Fig. 2) and Antoni Zygmund (see Fig. 3).
They proved, in their 1923 work [104], the following result (here c stands for the continuum,
that is, the cardinality of R).

1 All birth and death dates we include in this work are publicly available.
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Fig. 1 Henry Blumberg
(1886–1950) in 1914. Born in
Russia, immigrated to the USA
with his parents in 1891. He
received his Ph.D. in 1912 from
University of Göttingen under the
direction of Edmund Landau
(1877–1938). He directed eight
Ph.D. students between 1925 and
1950, while working at Ohio
State University. Among his
students was the prominent real
analyst Casper Goffman
(1913–2006). Interestingly,
Baruch Blumberg, co-recipient of
the 1976 Nobel Prize in
Physiology or Medicine, was a
nephew of Henry Blumberg.
Photograph courtesy of the
Blumberg family and Dr. George
Blumberg (his great nephew)

Theorem 1.2 There exists a function f : R → R such that f � S is discontinuous for every
S ⊂ R of cardinality c.

Nowadays, any function as in Theorem 1.2 is called a Sierpiński–Zygmund (or just SZ)
function.Wewill also use symbol SZ to denote the class of all Sierpiński–Zygmund functions
from R to R.

Theorem 1.2 provides a negative answer to Q2 under set theoretical assumption of the
Continuum Hypothesis, CH, that is, the statement that any uncountable subset of R must
have cardinality c. It is nowadays known that CH is consistent with, and also independent
from, the standard axioms ZFC of set theory. Therefore, Theorem 1.2 shows that within the
standard axioms of set theory Theorem 1.1 of Blumberg cannot be further improved.

The aim of this work is to organize and fully describe the current state of the art on the
century old class of Sierpiński–Zygmund functions. In order to achieve this goal, we shall
present the material not only by stating and discussing existing results, but also by presenting
many typical proofs used in the theory (often in a simplified never published before format).
In addition, we state several open problems and point to possible new directions of research.

The paper is organized as follows. In Sect. 2 we prove Theorems 1.1 and 1.2 and discuss
their possible generalizations. Section 3 deals with the algebraic genericity of the class SZ,
which has generated quite the amount of research papers during the last decade. Specifically,
we discuss lineability problems related to SZ, by which we mean finding the largest (in
the sense of dimension or systems of generators) possible algebraic structures contained in
SZ∪{0}. The notion of the cardinal coefficient known as additivity is also introduced and
related to algebraic genericity (Theorem 3.4). Section 4 focuses on the class of Sierpiński–
Zygmund maps that belong also to different classes of generalized continuous functions,
mainly those known as Darboux-like classes. As we will see, the existence of such functions
is consistent with, but also independent from, the usual axioms of set theory.While the results
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Fig. 2 Wacław Franciszek
Sierpiński (1882–1969) was a
Polish mathematician famous for
contributions to topology, set
theory (proving that ZF set theory
together with the GCH imply the
Axiom of Choice), and number
theory (in 1916 he provided the
first example of an absolutely
normal number). He published
over 700 papers and 50 books. He
co-founded the famous
mathematical journal
Fundamenta Mathematicae. He
had 9 Ph.D. students and,
currently, he counts with more
than 5000 mathematical
descendants, one of which is the
first named author of this paper,
K. C. Ciesielski

presented in Sects. 3 and 4mainly depend on the behavior of a SZ-mapwhen added to another
function. In the final Sect. 5 we shall cover similar behaviors under the operations of product,
composition, and inverse.

In the remainder of this paper we will use symbols C (X) andB(X) to denote the classes
of continuous and Borel functions from a topological space X into toR, respectively.We will
alsowriteC forC (R) andB forB(R). In addition, the symbol |X |will denote the cardinality
of the set X and, for a cardinality λ, we use the notation [X ]λ := {S ⊂ X : |X | = λ}.

2 Blumberg theorem, SZ functions, and their generalizations

In this section, partially based on the recently published paper [36] by Krzysztof Chris
Ciesielski,2 María ElenaMartínez-Gómez,3 and Juan Benigno Seoane-Sepúlveda,4 we prove
the theorems presented in the previous section and discuss their different generalizations, that
can be proved under different additional set theoretical assumptions.

2 Krzysztof Chris Ciesielski (1957–), the first author, is a Polish American mathematician. He received his
Ph.D. in 1985 from Warsaw University and the same year moved to the USA. Since 1989 he works at West
Virginia University (USA) where he directed, so far, five Ph.D. students, two of which, F. Jordan and K. Płotka,
contributed to this story. His research is in foundations of mathematics and, since 2004, in image processing.
Around 2006 he began adding his middle name, Chris, in his publications.
3 Current Ph.D. student of J. B. Seoane-Sepúlveda.
4 Juan Benigno Seoane-Sepúlveda (1978–), the second author, is a Spanish mathematician. He received his
first Ph.D. at the Universidad de Cádiz (Spain) jointly with Universität Karlsruhe (Germany) in 2005. His
second Ph.D. was earned at Kent State University (Kent, Ohio, USA) in 2006 under the supervision of Profs.
RichardM. Aron and Vladimir I. Gurariy (whose work inspired parts of this story). Since 2010 he’s a professor
at Universidad Complutense de Madrid (Spain) and has directed five Ph.D. theses.

123

Author's personal copy
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Fig. 3 Antoni Zygmund
(1900–1992) at the 1980 Summer
Symposium in Real Analysis. He
was a Polish mathematician and
is considered as one of the
greatest analysts of the 20th
century. He obtained his Ph.D. in
1923 from Warsaw University. In
1940, during the World War II, he
emigrated to the USA and
became a professor at Mount
Holyoke College in South
Hadley. From 1947 until his
passing he was a professor at the
University of Chicago. In 1986
he received the National Medal of
Science. He directed over 40
Ph.D. theses, one of which was
that of Paul Cohen (1937–2007),
Fields medallist in 1966.
Photograph courtesy of the Real
Analysis Exchange

2.1 Proof of Blumberg’s Theorem and its ZFC generalizations

Given an open set U ⊂ R we say that a set Z ⊂ R is nowhere first category in U provided
Z ∩ V is of second category in R for every nonempty open V ⊂ U . We will prove the
following slight generalization of Theorem 1.1 which can be found, for example, in a 1990
paper [7] of Stewart Baldwin. Used with Z = R it implies Blumberg’s Theorem.

Theorem 2.1 For every Z ⊂ R which is nowhere first category in R and an arbitrary f : Z →
R there exists D ⊂ Z dense in R such that f � D is continuous.

Recall that [36] contains a slightly shorter proof of Blumberg’s Theorem than the one
presented below. However, unlike the construction presented below, the one from [36] cannot
be naturally generalized to the construction under Martin’s axiom, which we present in
Theorem 2.8.

In the remainder of this section we will assume that Z ⊂ R is nowhere first category in R.
We start with the following lemma which for Z = R was proved in the original Blumberg’s
paper [18]. (See also [36,77].)

For an f : Z → R, a point x ∈ Z is said to be f -pleasant provided for every open
B � f (x) there is an open U B

x � x such that f −1(B) is nowhere first category in U B
x . Recall

also that a set G ⊂ Z is residual in Z provided G = Z\M for some first category subset M
of R.
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Lemma 2.2 For every f : Z → R the set Pf of all f -pleasant points is residual in Z.

Proof Let B be a countable basis for R. For every B ∈ B let

MB := {
x ∈ f −1(B) : f −1(B) is not nowhere first category in any open U � x

}

and notice that MB is of first category, in Z and in R. Indeed, MB is a union of two first
category sets: W ∩ MB and bd(W ) ∩ MB , where

W =
⋃

{V ∈ B : V ∩ MB is of first category},
and bd(W ) is the boundary of W .

As M := ⋃
B∈B MB is of first category, it is enough to show that Z\M ⊂ Pf . To see this,

fix an x ∈ Z\M and an open W � f (x). Choose B ∈ Bwith f (x) ∈ B ⊂ W . Since x /∈ MB ,
there is an open U B

x � x such that f −1(B) is nowhere first category in U B
x . Then f −1(W ) ⊃

f −1(B) is also nowhere first category in U B
x , that is, U W

x := U B
x is as needed. 	


Our proof of Theorem 2.1 will be expressed in terms of partial ordered set 〈P,≤〉 and its
dense subsets. Recall that D is a dense subset of P provided for every p ∈ P there exists a
q ∈ D such that q ≤ p.

For an f : Z → R let P := Pf \Q ⊂ Z and notice that, by Lemma 2.2, it is residual in Z .
Let B be a countable basis of R of nonempty intervals with rational endpoints. Notice that
for every B ∈ B the set B ∩ P is clopen in P .

Let B2 = {U × V : U , V ∈ B} and let P be the set of all pairs 〈X ,U〉 such that X is a
finite subset of P , U is a finite subset of B2, and for every U × V , U ′ × V ′ ∈ U
(a) f [X ∩ U ] ⊂ V and f −1(V ) is nowhere first category in U ;
(b) either U is disjoint with U ′, or one of them is contained in the other;
(c) for every x ∈ X ∩ f −1(V ) there is Ux � x with Ux × V ∈ U .
We order P by putting 〈X ,U〉 ≤ 〈Y ,V〉 if, and only if, Y ⊆ X and V ⊆ U .

We will also use the following lemma.

Lemma 2.3 For every B, W ∈ B such that f −1(W ) is not first category in Z the following
sets are dense in P:

DB = {〈X ,U〉 ∈ P : X ∩ B �= ∅},
EW = {〈X ,U〉 ∈ P : U × W ∈ U for some U }.

Proof To see the density of DB , fix 〈X ,U〉 ∈ P. It is enough to find an x ∈ R and a finite
V ⊃ U such that 〈X ∪ {x},V〉 ∈ DB . In order to do this, choose B̂ ⊂ B from B such that for
every U × V ∈ U either B̂ ⊂ U or B̂ ⊂ R\U . Let F := {U × V ∈ U : B̂ ⊂ U }.

If F �= ∅, then, by (b), there exists the smallest Û with Û × V̂ ∈ F . Then, by (a),
f −1(V̂ ) ⊂ Z is nowhere first category in B̂ ⊂ Û . Since P is residual in Z , we can choose

x ∈ P ∩ B̂ ∩ f −1(V̂ ).

If F = ∅, we simply choose x ∈ P ∩ B̂. Also let

W := {V : f (x) ∈ V for some U × V ∈ U}
and choose U0 ⊂ B̂ from B containing x such that f −1(

⋂W) is nowhere first category in
U0. (For W = ∅, we let ⋂W = P .) Let V := U ∪ {U0 × V : V ∈ W}. It is easy to see that
for this choice we indeed have 〈X ∪ {x},V〉 ∈ DB .
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To see density of EW , fix 〈X ,U〉 ∈ P, and let X0 = {x ∈ X : f (x) ∈ W }. If X0 = ∅,
replace it with a singleton {x} ⊂ P ∩ f −1(W ). For every x ∈ X0 choose Ux ∈ B containing
x such that f −1(W ) is nowhere first category in Ux and so that for every U × V ∈ U
either Ux ⊂ U or Ux ⊂ R\U . Moreover, decreasing the sets Ux , if necessary, we can
also assume that they are pairwise disjoint and Ux ∩ X = {x} for every x ∈ X0. Put
V = U∪{Ux×W : x ∈ X0}. It is easy to see that 〈X∪X0,V〉 ∈ EW and 〈X∪X0,V〉 ≤ 〈X ,U〉,
proving density of EW . 	


Proof of Blumberg’s Theorem 2.1 Let 〈Dk : k ∈ N〉 be an enumeration of the family

D = {DB : B ∈ B} ∪ {EW : W ∈ B and f −1(W ) is not first category in Z}.
By induction, using Lemma 2.3, choose a sequence

〈X1,U1〉 ≥ 〈X2,U2〉 ≥ · · · ≥ 〈Xk,Uk〉 ≥ · · ·
in P such that each 〈Xk,Uk〉 belongs to Dk . This construction constitutes a proof of the
Rasiowa–Sikorski lemma (see e.g. [29]) that the filter generated by this sequence is D-
generic. (Compare also Theorem 2.8.)

Notice that the set D := ⋃
k∈N Xk satisfies Theorem 2.1. Indeed, it is dense in R, since

for every B ∈ B there exists a k ∈ N such that Dk = DB and so, there is an x ∈ Xk ⊂ D
belonging to B. To see that f � D is continuous, choose W ∈ B and x ∈ D such that
f (x) ∈ W . It is enough to find Û ∈ B containing x such that f [D ∩ Û ] ⊂ W .
First notice that f −1(W ) is not of first category in Z , as x ∈ f −1(W ) ∩ D ⊂ Pf . Thus,

there exists k ∈ N with EW = Dk . In particular, U × W ∈ Uk for some U . Let � ≥ k be such
that x ∈ X�. Then, by (c), there is anUx � x withUx ×W ∈ U�. So, by (a), f [Xn ∩Ux ] ⊂ W
for every n ≥ �. Hence, f [D ∩ Ux ] = f [⋃n≥� Xn ∩ Ux ] ⊂ W , that is, Û := Ux is as
needed. 	


Although in Blumberg’s Theorem 1.1 we cannot, in ZFC, increase the size of the set
D, it is still possible to improve, in a sense, its density properties. The following theorem
constitutes the strongest known result in this direction and it comes from a 1996 work [72]
of Aleksandra Katafiasz and Tomasz Natkaniec. Recall that for an infinite cardinal κ ≤ c we
say that a set X ⊂ R is κ-dense provided X ∩ (a, b) has cardinality ≥ κ for every a < b.

Theorem 2.4 Given any arbitrary function f : R → R there exists a c-dense subset W of R

such that if C is the set of points of continuity of f � W , then (the graph of) f � C is dense
in (the graph of) f � W .

Theorem 2.4 generalizes a 1971 result of Jack B. Brown [21, Proposition C], where the
author proves the existence of a c-dense subset W of R for which the set C of points of
continuity of f � W is dense in W (and in R). Note that this does not imply that f � C is
dense in f � W . Both Theorem 2.4 and its version from [21] are proved in more general
setting of the real valued functions defined on the separable, complete, and dense in itself
metric spaces.

2.2 Proof of Sierpiński–Zygmund’s Theorem

The key fact needed in the construction is the following result of Kazimierz Kuratowski
(1896–1980) which can be found, for instance, in [73, p. 16].
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Lemma 2.5 For every continuous function g from an S ⊂ R into R, there exists a Gδ-set
G ⊃ S and a continuous extension ḡ : G → R of g. In particular, g admits Borel extension
ĝ ∈ B.

Proof Indeed, for every x ∈ cl(S) define

oscg(x) := inf{diam(g[U ∩ S]) : U � x is open}
and notice that the set G := {x ∈ cl(S) : oscg(x) = 0} contains S and is Gδ , since G :=⋂

n∈N Wn , where each Wn := {x ∈ cl(S) : oscg(x) < 1/n} is open in cl(S), so a Gδ in R.
Now, if cl(g) is the closure in R

2 of the graph of g, then ḡ = cl(g) ∩ (G × R) is the graph
of our desired function ḡ. A Borel extension ĝ of ḡ can be defined as 0 on R\G. 	


Using Lemma 2.5 and the fact that the family B of all Borel functions from R to R has
cardinality continuum, Theorem 1.2 follows immediately from its “folklore” generalization
(see e.g. [55]) that follows.

Theorem 2.6 For every family G ⊂ R
R of at most c many arbitrary maps from R to R there

exists a function f : R → R such that for every g ∈G the set [ f = g] := {x ∈R : f (x)=g(x)}
has cardinality < c.

Proof Let {xξ : ξ < c} be an enumeration, with no repetition, of R and let {gξ : ξ < c} be an
enumeration of G. For every ξ < c define f (xξ ) so that

f (xξ ) ∈ R\{gζ (xξ ) : ζ < ξ}.
This defines our function. Indeed, for every g ∈ G there is a ζ < c such that gζ = g. Then
[ f = g] ⊂ {xξ : ξ ≤ ζ }, since f (xξ ) �= gζ (xξ ) = g(xξ ) for every ξ > ζ . Thus, S has
cardinality < c, as needed, and we are done. 	


We should notice here that Theorem 2.6, used with the family G = B, gives a function in
the class

SZ(B) := { f ∈ R
R : | f ∩ g| < c for every g ∈ B}.

At the same time, Theorem 1.2 asks only for a function from the class

SZ(C ) := { f ∈ R
R : f � X is not continuous for every X ∈ [R]c}.

Of course, SZ(B) ⊂ SZ(C ).5 These two notions of Sierpiński–Zygmund classes of functions
were introduced in a 2016 paper [11] of Artur Bartoszewicz, Marek Bienias, Szymon Gła̧b,
and T. Natkaniec, where they proved Theorem 2.15, discussed below, that the properness of
the inclusion in SZ(B) ⊂ SZ(C ) is independent of the ZFC axioms.

In what followswewill not distinguish between these two notions of Sierpiński–Zygmund
functions and will use the symbol SZ to denote the class SZ(C ). Nevertheless, the majority
of the examples of SZ maps that we will discuss in what follows actually belong to the class
SZ(B).

5 Indeed, by Lemma 2.5, a function f ∈ R
R belongs to SZ(C ) if, and only if, | f ∩g| < c for every continuous

g from a Gδ-set G ⊂ R into R. Since any such g has an extension ĝ ∈ B, we have SZ(C ) ⊃ SZ(B).
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2.3 Generalizations: consistent and impossible

In some restriction theorems, the continuous restrictions f � D of f to “big” sets D can be
further extended to the continuous maps. For an arbitrary function f : R → R this can be
seen in Theorem 2.12 stated below. For measurable functions f , this follows immediately
from Luzin’s theorem, that there exists a compact set P ⊂ [0, 1] of arbitrary large measure
less than 1 such that f � P is continuous. Of course, f � P can be extended to a continuous
g : R → R. Actually, if we ask P to be just uncountable, then we can additionally require for
g to be continuously differentiable, see e.g., [48, section 3.4]. (However, for an uncountable
P the extension cannot be expected to be twice differentiable, even when f is continuous,
see e.g. [48, section 4.2].) Thus, it seems to be natural to ask, whether the restriction f � D
from Theorem 1.1, of Blumberg, can be ensured to have a continuous extension. However,
this certainly cannot be achieved, as justified by any function with jump discontinuity, e.g.,
f = χ(0,∞).
As mentioned above, under the Continuum Hypothesis, Theorems 1.1 and 1.2 give a

complete answer to questionQ2. In particular, underCH, the followingquestion has a negative
answer in all its instances.

Q3: Can it be true that for every function f : R → R there exists a set D ⊂ R (dense in
itself, or in R) such that f � D is continuous and D is uncountable? of a positive outer
Lebesgue measure? of second category?

But what happens when CH is false, that is, under ¬CH? (Recall, that ¬CH is consistent
with set theory ZFC.) Once again, this is not fully decided within the theory ZFC+¬CH.
Specifically, this follows from the following series of results.

No uncountable restrictions under¬CH

The next theorem has been proved independently in 1990’s by Gary Gruenhage (see the work
of Ireneusz Recław (1960–2012) [97, theorem 4]) and Saharon Shelah (1945–) [102, § 2].

Theorem 2.7 In a model of ZFC obtained by adding at least ω2 Cohen reals, we have ¬CH,
while

• There exists an f : R → R for which f � X is discontinuous for every uncountable
X ⊂ R.

Uncountable but null andmeager restrictions

Martin’s Axiom (MA) is a statement that is known to be consistent with ZFC+¬CH. It also
follows from CH. It is well known that under the Martin’s Axiom every subset of R of
cardinality < c is null (i.e., of Lebesgue measure zero) and meager (i.e., of first category).
The part (∗) of the following theorem has been proved in 1990 by Baldwin [7]. See also 1973
paper [103] of Juichi Shinoda, where it is shown that, under MA, there exists a set X as in
(∗) of cardinality κ , but not necessarily dense.

Theorem 2.8 Under MA, which is consistent with ZFC+¬CH, every subset of R of cardinality
< c is null and meager, while

(∗) For every function f : R → R and every infinite cardinal κ < c there exists a
κ-dense set X ⊂ R for which f � X is continuous.

In particular, under MA+¬CH the set D from Blumberg’s theorem can be ensured to be
ω1-dense.
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Before we sketch the proof of Theorem 2.8 we need to recall the following definitions.
Two elements p and q in a partially ordered set 〈P,≤〉 are compatible (in P) provided there
exists an r ∈ P such that r ≤ p and r ≤ q . An antichain in P is any subset A of P such that
no two distinct elements in P are compatible. A partially ordered set 〈P,≤〉 is said to be ccc
provided P contains no uncountable antichain. A subset F of P is said to be a filter provided
q ∈ F whenever q ≥ p ∈ F and for every p, q ∈ F there is an r ∈ F such that r ≤ p and
r ≤ q . For a familyD of dense subsets of P a filter F in P isD-generic provided F ∩ D �= ∅
for every D ∈ D.

Martin’s axiom For every ccc partially ordered set 〈P,≤〉 and every family D of
cardinality less than c and consisting of dense subsets of P there exists a D-generic
filter F in P.

Sketch of proof of Theorem 2.8 Fix an f : R → R and let and Pf be the set of all f -pleasant
points. By Lemma 2.2, it is residual in R. Let P := Pf \Q and 〈P,≤〉 be as in the proof of
Theorem 2.1. A standard argument shows that it is ccc.

Let {Zξ : ξ < c} be a partition of P into sets that are nowhere first category in R and fix
κ < c. Similarly as in the proof of Lemma 2.3 it can be shown that for every B ∈ B and
ξ < c the set

Dξ
B = {〈X ,U〉 ∈ P : X ∩ B ∩ Zξ �= ∅}

is dense in P. Thus, the family the family

D = {Dξ
B : B ∈ B & ξ < κ} ∪ {EW : W ∈ B & f −1(W ) is not first category}

has cardinality κ < c and consists of dense subsets of P. Thus, by MA, there exists a D-
generic filter F in P. The set D = ⋃{X : 〈X ,U〉 ∈ F} is the desired set from Theorem 2.8.

	


Restrictions to sets of second category

The following theorem comes from a 1995 paper [102] of Shelah.

Theorem 2.9 There exists a model of ZFC+¬CH in which

• For every f : R → R there exists a second category set D with f � D continuous.

The issue whether the set D in the above theorem can be also dense inRwas not addressed
in the paper [102]. However, this can indeed be the case, as we indicate below.

Proposition 2.10 The property • from Theorem 2.9 implies that

• For every f : R → R there exists a nowhere first category subset D of R for which f � D
continuous.

Proof Fix f : R → R and recall that every second category set D ⊂ R is nowhere first
category on some non-empty interval. Since every non-empty open interval is homeomorphic
with R, the union of the following family of non-empty open intervals

J := {J : there is nowhere first category subset DJ of J with f � DJ continuous}
is dense inR. Also, any non-empty open subinterval of J ∈ J is also inJ . Thus, themaximal
family J0 ⊂ J consisting of pairwise disjoint intervals has also union dense in R. It is easy
to see that the set D = ⋃

J∈J0
DJ is as needed. 	
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Combining Theorem 2.9 with Proposition 2.10 gives immediately the following corollary.
It can be found, without a proof, in [30, theorem 2.10].

Corollary 2.11 There exists a model of ZFC+¬CH in which

• For every f : R → R there exists a nowhere first category set D in R for which f � D
continuous.

Restrictions to sets with positive outer measure

The following theorem comes from a 2006 paper [100] of Rosłanowski and Shelah.

Theorem 2.12 There exists a model of ZFC+¬CH in which

• For every map f : R → R there exists a continuous function g : R → R that agrees with
f on a set D of positive Lebesgue outer measure.

In particular, f � D is continuous.

The set D in the theorem can easily be assumed to be dense in itself. However, it cannot
be ensured to be measure dense, that is, to have a positive outer measure in any non-trivial
interval I . This is justified by the following 1977 example of Brown [22]. The presented
construction comes from [30, theorem 2.11].

Theorem 2.13 There exists a function f : R → R such that f � D is discontinuous for every
set D ⊂ R which is nowhere measure zero, that is, such that D∩ I has positive outer measure
for every non-trivial interval I .

Proof Let {Fn : n < ω} be a partition of R such that F0 is a dense Gδ-set of measure zero and
Fn is nowhere dense for each n > 0. Define f : R → R by putting f (x) = n for x ∈ Fn .
Now, f � X is discontinuous for any dense X ⊂ R which is nowhere measure zero.

Indeed, if X ⊂ R is dense and not of measure zero, then there is an x ∈ X\F0. Hence
f (x) = n for some n > 0. Since {n} is open in f [R] ⊂ ω and f � X is continuous, there
is U � x open in R such that f [X ∩ U ] ⊂ {n}. Thus, X ∩ U ⊂ Fn and U ⊂ cl(X ∩ U ) ⊂
cl(Fn) = Fn in spite that Fn is nowhere dense. 	


Finally, for F ⊂ R
R, let dec(F,C ) denote the smallest cardinal κ such that the graph of

every function in F can be covered by the graphs of κ-many continuous partial functions.
The cardinal dec(B,C ), used in Theorem 2.15, was thoroughly studied in the 1991 paper
[28] of Jacek Cichoń, Michał Morayne, Janusz Pawlikowski, and Sławomir Solecki. (See
also also [30].) The next theorem, concerning decomposition number dec(SZ,C ), comes
from the 1999 paper [31] of K.C. Ciesielski.

Theorem 2.14 cof(c) ≤ dec(SZ,C ) = dec(RR,C ) ≤ c. Moreover, for every cardinal num-
ber λ with cof(λ) > ω:

(a) It is consistent with ZFC that dec(SZ,C ) = λ = c.
(b) It is consistent with ZFC that dec(SZ,C ) = cof(c) and λ = c.
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In particular, parts (a) and (b) of Theorem 2.14 imply, respectively, that

• It is consistent with ZFC that cof(c) < dec(SZ,C ) = c.
• It is consistent with ZFC that cof(c) = dec(SZ,C ) < c.

Part (a) of Theorem 2.14 holds in a Cohen model obtained by adding λ Cohen reals to a
model with CH. (Compare Theorem 2.7.) Part (b) in the case cof(λ) = λ holds in any model
of ZFC + c = λ, as implied by the main part of Theorem 2.14. In the case when cof(λ) < λ,
start with a model of ZFC+CH, choose an increasing sequence 〈λξ < λ : ξ < cof(λ)〉 of
regular cardinals cofinal with λ, and find a generic extension of our model of ZFC+CH
obtained by consecutive extensions ensuring that MA+c = λξ holds. Theorem 2.8 ensures
that in a final model obtained that way the property (b) holds.

The last result here concerns the relation between the two notions of SZ maps introduced
at the end of Sect. 2.2. It comes from [11, Theorem 4.4].

Theorem 2.15 The properness of the inclusion SZ(B) ⊂ SZ(C ) is independent of ZFC.
More specifically,

(1) if c is a successor cardinal and dec(B,C ) = c, then SZ(B) � SZ(C );
(2) if c is a regular cardinal and dec(B,C ) < c, then SZ(B) = SZ(C ).

There is also amultitude of other generalizations of Blumberg’s theorem, often concerning
functions between topological spaces X and Y ; see, for example, [19,21,24,61,67,71,72,84,
93,108,109]. For a placement of these results in a more general real analysis perspective see
[30] or [77].

3 Large algebraic structures within SZ

It is easy to see that the class SZ is closed under the multiplication by the nonzero numbers:
if c ∈ R is nonzero and f ∈ SZ, then c f ∈ SZ.6 Also, if f ∈ SZ and g ∈ R

R is continuous,
then clearly f + g ∈ SZ. In particular, SZ is not closed under addition, as our continuous
g /∈ SZ is a sum of two SZ maps: − f and f + g. In fact, SZ+SZ = R

R as follows from
Proposition 3.5(5) and Theorem 3.6. Similarly, SZ is not closed under multiplication, as, for
the functions f and g as above, the continuous map eg is a product of two SZ functions: e− f

and e f +g . These simple facts, that will be put in a more general context in Sect. 3.2, come
from 1997 paper [38] of Ciesielski and Natkaniec.

3.1 Lineability and algebrability of SZ

The goal of this section is to investigate the largest7 possible subfamilies of SZ∪{0} that
form either a linear subspace (over the field R) or a sub-algebra in R

R. The above remarks
show that neither of these structures can be realized trivially by SZ∪{0}. This direction of
research—the search for large algebraic structures within nonlinear subsets of nice (in our
case R

R) structures—is commonly referred to as lineability research, the term coined by
Vladimir I. Gurariy (see Fig. 4) in the early 2000’s, see [3,101]. It caught the interest of the
mathematical community and sparked a lot of activity about a decade ago [2,17]. However, it
can be traced back to 1966 paper [62] (see, also, [63]) of Gurariy where it is proved that there

6 This property is sometimes referred to as being star-like, see e.g. [56].
7 The largest in a sense of a size of the minimal cardinality of generating set.
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Fig. 4 Vladimir Ilyich Gurariy
(1935–2005) was born in
Kharkov (Ukraine). In 1991 he
moved to the USA and worked in
Kent State University (Ohio)
until his passing. He was a
visiting Professor at universities
in Germany, UK, Italy, and
Venezuela. He also worked at the
Institute for Advanced Study in
Princeton. Author of over 120
articles in pure and applied
mathematics. In addition, he was
a very gifted chess player,
publishing in the Russian
magazine 64 and in the Latvian
Šahs (edited by Mikhail Tal, the
eighth World Chess Champion).
He co-directed one of the Ph.D.
theses of the second named
author of this paper, J.B.
Seoane-Sepúlveda. Photograph
courtesy of Larisa Lev Altshuler

is an infinite dimensional vector subspace V of the class of all continuous functions from
[0, 1] to R such that every nonzero f ∈ V is nowhere differentiable. This space can even be
chosen to be closed within the space of continuous functions, as shown in [54]. Following
[2,3,9,12,16,17,45,53], for a cardinal number κ we say that an F ⊂ R

R is:

• κ-lineable if F ∪ {0} contains a vector subspace of R
R, over the field R, of dimension κ .

• κ-algebrable if there is an algebra A ⊂ F ∪ {0} for which κ is the smallest cardinality
of any B ⊂ A generating A.

• strongly κ-algebrable provided there exists a κ-generated free algebra A ⊂ F ∪ {0}.
Of course, strong κ-algebrability implies κ-algebrability which, in turn, implies κ-lineability.
Also, none of these implications can be reversed. A nice example of an algebrable set that
is not strongly algebrable is given in [12] and consists of the family c00 of all eventually
constant 0 sequences of real numbers. Its 1-algebrability is obvious, since it is an algebra. (In
fact, it isω-algebrable, with a canonical set {e1, e2, . . .} of generators.) However, as shown in
[12], it is not strongly 1-algebrable. Also, there are sets that are lineable and not algebrable,
for instance the class ES of everywhere surjective functions in R (i.e., f ∈ R

R such that
f [(a, b)] = R for all a < b), see e.g. [3–5].
In the above terms, the goal of this section is to establish the upper bound of the cardinal

numbers κ for which SZ is κ-lineable as well as (strongly) κ-algebrable. The first results in
this direction were established in a 2010 paper [55] of Jose Luis Gámez-Merino, Gustavo
A. Muñoz-Fernández, Víctor M. Sánchez, and J. B. Seoane-Sepúlveda where the authors
proved that SZ is c-algebrable and, also, the following.

Theorem 3.1 SZ is c+-lineable. In particular, it is consistent with ZFC, follows from the Gen-
eralized Continuum Hypothesis GCH, that SZ is 2c-lineable, which constitutes the maximal
possible lineability of SZ.

This follows immediately from Proposition 3.5(2) and Theorem 3.4. The main result of
this section is presented in the following two theorems, that come from 2013 paper [57] of
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J.L. Gámez-Merino and J. B. Seoane-Sepúlveda. To state them we need to explain that for
an infinite cardinal λ a family S of sets is λ-almost disjoint provided for any two distinct
S, T ∈ S their intersection S ∩ T has cardinality < λ.8 Notice that the notion of almost
disjoint families has proven to be a very useful tool when it comes to lineability (see, e.g.,
[1]).

Theorem 3.2 For any cardinal number κ the following are equivalent:

(1) SZ is κ-strongly algebrable.
(2) SZ is κ-algebrable.
(3) SZ is κ-lineable.
(4) There exists a c-almost disjoint family F ⊂ [c]c of cardinality κ .

It should be mentioned here that the main implication, (4) �⇒ (1), of Theorem 3.2 was
not proved in [57]. The authors of [57] simply pointed out that this was proved in the 2013
paper [13, Theorem 2.6] byA. Bartoszewicz, S. Gła̧b, DanielM. Pellegrino, and J. B. Seoane-
Sepúlveda. The proof of this implication presented in [13] is quite intricate and, actually, uses
some claims that do not hold when c is a singular cardinal. (This has been corrected in the
2013 paper [9] by A. Bartoszewicz, M. Bienias, and S. Gła̧b.) Below we include a simplified
(and correct) proof of this result.

Proof of Theorem 3.2 Clearly (1) implies (2) and (2) implies (3). Moreover, (3) implies (4)
since for any familyF justifying κ-lineability of SZ, the graphs of functions inF are c-almost
disjoint subsets of R

2, each of cardinality c, and they can be naturally treated as subsets of c.
To prove that (4) implies (1), let {rξ : ξ < c} and {gξ : ξ < c} be the enumerations of R

and B, respectively. By induction on ξ < c define the set S = {bξ : ξ < c} so that
bξ ∈ R\Q(Aξ ),

where Aξ := {bη : η < ξ} ∪ {gα(rβ) : α, β ≤ ξ} and Q(Aξ ) is the smallest subfield of R

containing Aξ . This ensures that, for every ξ < c,

{bη : ξ ≤ η < c} is algebraically independent over the field Q(Aξ ). (3.1)

(See, e.g. [81].) Now, let {Sζ ∈ [c]c : ζ < κ} be a one-to-one enumeration of a c-almost
disjoint familyF from (4) and for every ζ < κ let fζ be a bijection fromR onto {bη : η ∈ Sζ }
defined inductively via formula

fζ (rξ ) = bγ where γ := min{η < c : rη ∈ Sζ \ fζ [{rδ : δ < ξ}]}. (3.2)

Note that, in (3.2), γ ≥ ξ .
The family G := { fζ : ζ < κ} has cardinality κ , since the elements of the family

{ fζ [R] : ζ < κ} are c-almost disjoint. Thus, to finish the proof, it is enough to show that
the free algebra A(G) generated by G is contained in SZ. So, take an arbitrary element
of A(G). It is of the form f := p( fζ1 , . . . , fζn ) for some n ∈ N, polynomial p of n-
variables, and ζ1 < · · · < ζn < κ . Let gα ∈ B. We need to show that | f ∩ gα| < c.
To see this, choose a β < c such that β ≥ α and all coefficients of p are in Q(Aβ).
Also, let X := {r ∈ R : fζi (r) = fζ j (r) for some 0 < i < j ≤ n} and define

8 The definition of such a family in [57] additionally assumes that each S ∈ S has cardinality λ. We do
not impose it here, but apply this definition only to such families. But the distinction is important, since in
the model from Theorem 3.3 there are 2c many subsets of ω1 ⊂ ω2 which, according to our definition, are
c-almost disjoint. Nevertheless, (4) from Theorem 3.2 fails in this model.
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Y := {r ∈ R : fζi (r) ∈ Q(Aβ) for some 0 < i ≤ n}. Then |X ∪ Y | < c. Thus, it is
enough to show that for every rξ ∈ R\X ∪ Y with ξ ≥ β we have f (rξ ) �= gα(rξ ).

Indeed, we have f (rξ ) − gα(rξ ) = q( fζ1(rξ ), . . . , fζn (rξ )), where the polynomial
q(x1, . . . , xn) := p(x1, . . . , xn) − gα(rξ ) has all coefficients in Q(Aξ ). At the same
time, the distinct numbers fζ1(rξ ), . . . , fζn (rξ ) are, by the comment below (3.2), in
{bη : ξ ≤ η < c} and so, by (3.1), algebraically independent over Q(Aξ ). Hence,
f (rξ ) − gα(rξ ) = q( fζ1(rξ ), . . . , fζn (rξ )) �= 0 and f (rξ ) �= gα(rξ ), as needed. 	

One of the consequences of Theorem 3.2 is that, in the case of family SZ, the three

notions we consider in (1)-(3) are equivalent, which, as noted above, in general is not true. In
particular, under the GCH, the situation becomes crystal clear: SZ is 2c-strongly algebrable.
Actually, the same is true under a considerablyweaker set theoretical assumption that 2<c = c,
since under this assumption there exists a family F as in (4) of cardinality 2c, see e.g. [80,
p. 48, theorem 1.3]. However, the condition (4) allows also to show that there are models of
ZFC in which SZ is not 2c-lineable. This follows from the next theorem from [57], which is
proved by forcing technique. Notice, that this result is the first result in the lineability theory
that is undecidable in ZFC.

Theorem 3.3 It is consistent with ZFC that there is no c-almost disjoint family F ⊂ [c]c of
cardinality 2c. In particular, the 2c-lineability of SZ is undecidable in ZFC.

The proof presented below constitutes a new, hopefully less technical, presentation of the
argument from [57].

Proof The theorem follows from a general remark:

(κ) If M is a model of ZFC+GCH in which κ ≥ ω2 is a regular cardinal number, then no
ω2-cc generic extension M[G] of M can contain κ-almost disjoint family F ⊂ [κ]κ
with |F | = κ++.

By way of contradiction, assume that M[G] contains a κ-almost disjoint family F ⊂ [κ]κ
with one-to-one enumeration F = {Eα ∈ [κ]κ : α < κ++}. Let f be a map, in M[G],
from [κ++]2 into κ such that Eα ∩ Eβ ⊂ f ({α, β}) for every {α, β} ∈ [κ++]2. Using [80,
lemma VIII 5.6] and the ω2-cc property of our forcing, we can find in the ground model M
a map f̄ : [κ++]2 → κ so that f ({α, β}) ≤ f̄ ({α, β}) for every {α, β} ∈ [κ++]2.

Next, we work in M . Using in it Erdős–Rado Partition Theorem [82] usually represented
as (2κ )+ → (κ+)2κ and the fact that, by GCH, (2κ )+ = κ++, we find an H ⊂ κ++ with
|H | = κ+ and a γ < κ such that f̄ on [H ]2 is constant with value γ .

Finally, working back in M[G], we see that {Eα\γ : α ∈ H} is a family of cardinality
κ+ consisting of nonempty pairwise disjoint subsets of κ , giving a desired contradiction and
finishing an argument for (κ).

Turning back to the proof of Theorem 3.3, let M be a model of ZFC+GCH and M[G] its
generic extension obtained by applying an Easton forcing P which first adds ω4 subsets of
ω1 (by using countable supported functions Fn(ω4, 2, ω1)) and then ω2 Cohen reals (with
Fn(ω2, 2, ω)), see [80, Ch. VIII, §4]. This forcing is ω2-cc, see [80, lemma VIII 4.4], and
in the generic extension M[G] obtained by P we have c = 2ω = ω2, 2ω1 = ω4, and also
2c = 2ω2 = ω4, see [80, theorem VII 4.7]. So, by (κ) used with κ = ω2, we see that, in
M[G], there is no c-almost disjoint F ⊂ [c]c of cardinality 2c. 	


Coming back to the classes SZ(C ) and SZ(B) introduced in Section 2.2, we like to point
out [11, corollary 4.8] that, under CH, ES∩(SZ(C )\ SZ(B)) is c-lineable. (See also [11,
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corollaries 4.6 and 4.7] about the results related to SZ functions in complex variable.) The
family SZ(C )\ SZ(B) is either empty or it has cardinality 2c, [11, corollary 4.6]. Notice
also, that the techniques employed in [55, Theorem 5.6 and 5.7] can be adapted to show that,
under CH, the family SZ(C )\ SZ(B) is c+-lineable.

3.2 Additivity coefficient

Another notion which, perhaps unexpectedly, is related to lineability is that of an additivity
cardinal coefficient A(F) associatedwith anyF ⊂ R

R and defined as theminimal cardinality
|F | of a family F ⊂ R

R that cannot be shifted into F by any single ϕ ∈ R
R:

A(F) = min
({|F | : F ⊂ R

R and ϕ + F �⊂ F for every ϕ ∈ R
R} ∪ {(2c)+}).

This notionwas introduced in the early 1990’s byT.Natkaniec [89,90] and thoroughly studied
in a 1996 paper [69] of Francis Edmund Jordan. (See also his Ph.D. Dissertation [70], written
under the supervision of K. C. Ciesielski.) It is of interest to us here, since it is related to the
concept of lineability by the following theorem of Gámez, Muñoz, and Seoane-Sepúlveda
[56]:

Theorem 3.4 If F ∪ {0} � R
R is closed under the scalar multiplication and A(F) > c, then

F is A(F)-lineable.

Proof Choose an h ∈ R
R\ (F ∪ {0}). By transfinite induction on ξ < A(F)we can construct

a strictly increasing sequence 〈Vξ ⊂ F∪{0} : ξ < A(F)〉 of linear spaces, each of cardinality
< A(F). Then V := ⋃

ξ<A(F) Vξ witnesses A(F)-lineability of F .
For a limit ordinal ξ we define Vξ = ⋃

ζ<ξ Vζ . For a successor ordinal ξ + 1 we have

|{h} ∪ Vξ | < A(F), so there exists a gξ ∈ R
R such that

gξ + ({h} ∪ Vξ ) ⊂ F ∪ {0}.
Note that gξ /∈ Vξ since, otherwise, we would have

h ∈ −gξ + Vξ = Vξ ⊂ F ∪ {0},
contradicting the choice of h. Then Vξ+1 := R · (gξ + Vξ ) ⊂ F ∪ {0} is our desired linear
space. 	


Before we discuss the numberA(SZ), we like to list some basic properties of the operator
A. Properties (1)–(4) can be found in [44, proposition 1.1], a 1995 paper of K. C. Ciesielski
and Ireneusz Recław (1960-2012). The property (5) can be found in a 1996 article [69] of
F. Jordan. (Compare also [44, proposition 1.3].)

Proposition 3.5 For every F,G ⊂ R
R the following holds.

(1) 1 ≤ A(F) ≤ (2c)+.
(2) If F ⊂ G, then A(F) ≤ A(G).
(3) A(F) = 1 if, and only if, F = ∅.
(4) A(F) = (2c)+ if, and only if, F = R

R.
(5) If F �= ∅, then A(F) = 2 if, and only if, F − F �= R

R.

Proof The properties (1), (2), (3), and (4) are straightforward from the definition of the
operator A.
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To see (5), first notice that F − F = R
R implies that A(F) > 2. For this, fix an F =

{ f1, f2}. We need to find a g ∈ R
R so that g + F ⊂ F . Since F − F = R

R, there are
h1, h2 ∈ F such that f1 − f2 = h1 − h2. Then g = h1 − f1 = h2 − f2 is as needed.

To see the other implication suppose that F − F �= R
R. Since F �= ∅, it is enough to

show thatA(F) ≤ 2. Pick h ∈ R
R\(F −F) and put F = {0, h}. Let g ∈ R

R be arbitrary. It
is enough to show that g + F �⊂ F . Indeed, this is clear, when g = 0 + g /∈ F . At the same
time, if g = 0+ g ∈ F , then h + g /∈ F , since otherwise h ∈ F − g ⊆ F −F , contradicting
our choice of h. Thus, A(F) = 2. 	


We need to define the following cardinal numbers:

dc := min{|F | : F ⊆ cc & (∀g ∈ cc)(∃ f ∈ F)(|[ f = g]| = c)},
ec := min{|F | : F ⊆ cc & (∀g ∈ cc)(∃ f ∈ F)(|[ f = g]| < c)}.

The cardinal ec and the results of the next theorem that concern it come from 1994 paper
[37] of Ciesielski and Miller [37]. It came in a context that we will discuss in more detail in
Sect. 4.4. (See also Theorem 3.7.) The cardinal dc and Theorem 3.6 come from 1997 paper
[38] of Ciesielski and Natkaniec.

Theorem 3.6 c+ ≤ A(SZ) = dc ≤ 2c and this is all that can be proved in ZFC. Specifically,

(1) GCH implies that A(SZ) = 2c.
(2) For any cardinals λ ≥ κ ≥ ω2 such that cof(λ) > ω1 and κ is regular it is relatively

consistent with ZFC + CH that A(SZ) = dc = ec = κ and 2c = λ.
(3) For any cardinal λ > ω2 such that cof(λ) > ω1 it is relatively consistent with

ZFC + CH that A(SZ) = c+ < 2c = λ = ec.

The proofs of parts (2) and (3) of the theorem require forcing arguments. However (1)
follows immediately from the inequalities c+ ≤ A(SZ) ≤ 2c. Of these, the upper bound
for A(SZ) is an immediate consequence of Proposition 3.5. The proof of the lower bound,
A(SZ) ≥ c+, follows from Theorem 2.6. Indeed, if F ⊂ R

R has cardinality ≤ c, then
|B −F | ≤ c. So, by Theorem 2.6, for every g ∈ B − F there exists h ∈ R

R such that
|[h ∩ g]| < c. Then h + F ⊂ SZ, since |[(h + f ) ∩ ϕ]| = |[h ∩ (ϕ − f )]| < c for every
f ∈ F and ϕ ∈ B.
In what follows, for F ⊂ R

R we will use the symbol ¬F to denote the complement of F
with respect to R

R, that is, ¬F := R
R\F . The cardinal ec is directly related to the class SZ

through the following theorem of F. Jordan, see [69, theorems 9–11].

Theorem 3.7 c+ ≤ ec ≤ A(¬SZ) ≤ 2c. If 2<c = c, then A(¬SZ) = ec. Moreover, if there
exists a cardinal λ such that c = λ+ = 2λ, then A(SZ) = dc ≤ ec = A(¬SZ).

Of course, from Theorems 3.6 and 3.7 it is easy to conclude that

• It is consistent with ZFC that A(SZ) = c+ < 2c = A(¬SZ).
• It is consistentwithZFC that c+ ≤ A(SZ) = A(¬SZ) ≤ 2c and eachof these inequalities

can be, independently, either strict or not.

3.3 The lineability coefficient

While examining κ-lineability of some class F ⊂ R
R, we are naturally interested in the

largest κ for which F is κ-lineable. The problem is, that such largest κ might not exist, as
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was noticed in a 2005 paper [3] of Aron et al. (Their example consists of a family F of
polynomials of one variable of the form xn! p(x), where n ∈ N and p(x) is a polynomial
of the degree ≤ n. Such F is n-lineable for every n < ω, but is not ω-lineable.) Thus,
instead of looking for the largest κ for which F is κ-lineable, it is only natural to look for the
smallest κ for which F is not κ-lineable, as such a number is always well defined. This leads
to the following definition of a lineability coefficient that comes from a 2013 paper [10] of
Bartoszewicz and Gła̧b (see also [33]):

L(F) := min{κ : F is not κ-lineable}.
Notice a similarity to the definition of the coefficient A(F), which is defined as the smallest
cardinality κ for which there exist a subsets F ⊂ R

R admitting no shift into F .
It is easy to see that F ⊂ R

R is κ-lineable if, and only if, κ < L(F). Also, the family F
admits the largest cardinal κ for which F is κ-lineable if, and only if, L(F) is a successor
cardinal and equals to κ+.

In this notation Theorem 3.4 can be expressed as follows:

Corollary 3.8 If F ∪ {0} � R
R is closed under the scalar multiplication and A(F) > c, then

L(F) > A(F).

Similarly, the equation A(SZ) = dc from Theorem 3.6 and the equivalence of parts (3)
and (4) from Theorem 3.2 reduce to the statement

L(SZ) = min{κ : there is no c-almost disjoint F ⊂ R
2 with |F | = κ}.

Finally, Theorem 3.1 reduces to the inequality L(SZ) > c+, while Theorem 3.3 to the
statement that the equality L(SZ) = (2c)+ is independent of ZFC.

It is also worth to mention here that in a 2015 paper [96] Płotka generalized the definition
of a lineability coefficient to an arbitrary subfield E of R:

LE (F) := min{κ : F is not κ-lineable over E}
(so that L(F) = LR(F)) and proved that LQ(SZ) = L(SZ).

4 SZmaps which are Darboux-like

Clearly SZ functions are very far from being continuous. But can they be measurable in some
sense? Not in the standard sense: no f ∈ SZ can be either Baire or Lebesgue measurable,
since such functions have continuous restrictions to perfect subsets of R. Nevertheless, in a
2006 paper [76] Kharazishvili proved that there exist SZ-functions measurable with respect
to some translation invariant extensions of the Lebesgue measure. (For more on this subject,
see also [75,77,78].)

Here, and in the remainder of this paper, we will concentrate on a question whether
SZ-functions can be continuous in some generalized sense. Once again, the answer is neg-
ative for many classes of generalized continuous functions (like that of approximately or
I-approximately continuous functions, see e.g. [35]), since such functions usually have con-
tinuous restrictions to perfect (even residual) subsets of R. However, there is a large class
of generalized continuous functions, known under the common name of Darboux-like func-
tions, for which (mainly) this is not the case. Thus, the subject of this section is to examine
what is known about Darboux-like SZ-functions.
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Recall, that a function f ∈ R
R is called Darboux provided f [C] is connected (i.e., an

interval) for every connected C ⊂ R. In other words, f ∈ R
R is Darboux if, and only if,

f has the intermediate value property. The class of all Darboux functions f ∈ R
R will be

denoted as D . The name is used in honor of Jean Gaston Darboux (1842–1917)9 who in his
1875 paper [50] showed that all derivatives, including those that are discontinuous, are in the
class D .

The study of the class SZ∩D was initiated in the 1997 paper [6] of Balcerzak et al. where
it was proved that existence of Darboux SZ-functions is independent of ZFC, as expressed
in Theorems 4.1 and 4.2. To state the first of these theorems more precisely, define

covM := {κ : union of less than κ-many meager sets has empty interior}.
Recall that covM is equal to the smallest cardinality of a family of meager sets whose union
covers R and that the property

covM = c

is independent of ZFC: it follows from CH and, more generally, from the Martin’s Axiom;
at the same time, it is known that there are models of ZFC where it is false.

Theorem 4.1 It is consistent with ZFC, follows from covM = c, that there exists a Darboux
SZ-function, that is, that SZ∩D �= ∅.

Notice, that Theorem 4.1 follows easily from the forthcoming Theorem 4.5. See also
Theorem 4.4.

Theorem 4.2 It is consistent with ZFC, holds in the iterated perfect set (Sacks) model, that
there does not exist Darboux SZ-function, that is, that SZ∩D = ∅.

Proof Wewill show that, in the iterated perfect set (Sacks) model, there are not Darboux SZ-
functions. We are going to describe here only the properties of this model that are necessary
to us.

Thus, let V be a model of ZFC+CH and let V
[
Gω2

]
be a model of ZFC+c = ω2 obtained

as a generic extension of V over the forcing P, which is a countable support iteration of the
perfect set (Sacks) forcing. Then, V and V

[
Gω2

]
have the same cardinals. Moreover, there

exists an increasing sequence {V [Gα] : α ≤ ω2} of models of ZFC such that:

(1) CH holds in V [Gα] for every α < ω2.
(2) For every α < ω2 of uncountable cofinality and every p ∈ (RQ ∪ R) ∩ V [Gα] there

exists a β < α such that p ∈ V
[
Gβ

]
.

(3) For every a, b ∈ R with a < b and ordinal number α < ω2 and there exists an
s ∈ (a, b) ∩ (V

[
Gω2

] \V [Gα]) (a Sacks number over V [Gα]) such that for every
x ∈ R∩ (V

[
Gω2

] \V [Gα]) there exists a continuous function g ∈ R
R coded in V [Gα]

(i.e., such that g|Q ∈ V [Gα]) with the property that g(x) = s.

(1) follows immediately from the fact that CHholds in V andwe iterate forcings of cardinality
c. The properties (2) and (3) can be found in [15] and in [86], respectively.

9 Darboux made many important contributions to geometry and mathematical analysis. His alma mater was
the Ecole Normale Supérieure (in Paris). He was a biographer of Henri Poincaré (1854–1912). In 1908, he
was a plenary speaker at the International Congress of Mathematicians in Rome.
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Next, let h ∈ R
R be a SZ-function in V

[
Gω2

]
and let a = inf h [R], b = sup h [R]. Then

−∞ ≤ a < b ≤ ∞. We will show that (a, b) �⊂ h [R]. To see this, define for every β < ω2

the set Sβ as:

h
[
R ∩ V

[
Gβ

]] ∪
⋃{{x, y} : (∃g ∈ C )

(
g|Q ∈ V

[
Gβ

]
& 〈x, y〉 ∈ g ∩ h ∩ V

[
Gω2

])}
.

Notice that, by (1),
∣∣(R ∪ R

Q) ∩ V
[
Gβ

]∣∣ ≤ ω1. Also
∣∣g ∩ h ∩ V

[
Gω2

]∣∣ ≤ ω1 for every
g ∈ C with g|Q ∈ V

[
Gβ

]
. Thus, |Sβ | ≤ ω1 for every β < ω2. Define Γ : ω2 → ω2 by

putting Γ (β) := sup{γ (x) : x ∈ Sβ}, where γ (x) = min{ξ : x ∈ V
[
Gξ

]}, and let α < ω2

be of uncountable cofinality such that Γ (β) < α for every β < α. Then, by (2),

(i) h(x) ∈ V [Gα] for every x ∈ R ∩ V [Gα].
(ii) h ∩ g ⊂ V [Gα] for every g ∈ C with g|Q ∈ V [Gα].

Now, let s ∈ (a, b) ∩ (V
[
Gω2

] \V [Gα]) be a number from (3). It is enough to prove that
s /∈ h [R].

But s /∈ h [R ∩ V [Gα]] by (i). So, let x ∈ R ∩ (V
[
Gω2

] \V [Gα]). It is enough to show
that h(x) �= s. But, by (3), there exists a continuous function g ∈ R

R coded in V [Gα] such
that g(x) = s. So, h(x) �= s, since otherwise 〈x, s〉 ∈ h ∩ g and, by (ii), s ∈ V [Gα]. This
contradiction finishes the proof. 	


It is also worth mentioning that Theorem 4.2 follows also immediately from the next the-
orem that is presented in a 2004 monograph [42, section 6.2] of Ciesielski and Pawlikowski.
(See also [41].)

Theorem 4.3 The Covering Property Axiom CPA, which holds in the iterated perfect set
(Sacks) model, implies that for every SZ-function f its range f [R] contains no perfect set.

Of course, Theorems 4.1 and 4.2 imply that the statement SZ∩D �= ∅ is independent of
the ZFC axioms. Recently, the question of whether this statement could be equivalent to the
property covM = c was raised.

A simple construction presented in the next theorem shows that this is not the case, since
is consistent (holds in the model obtained by adding ω2 random reals to the model for CH,
see e.g. [14, pages 403–404]) that covN = c > covM. Recall that, by N we mean the ideal
of null (Lebesgue measure zero) subsets of R and covN is the smallest cardinal κ such that
R (equivalently, any its subset of positive measure) cannot be covered by < κ sets in N .

Theorem 4.4 covN = c implies that there exists f̄ : R → R which is Darboux and SZ. In
fact, f̄ ∈ SZ(B) and maps any non-empty open set onto R.

Proof Let J = {(p, q) × {r} : r ∈ R & p, q ∈ Q & p < q}. Also, let {gξ : ξ < c} be an
enumeration of the family B of all Borel maps in R

R. For every ξ < c let Jξ be the family
of all J ∈ J such that dom(J ∩ gξ ) /∈ N . Notice that each Jξ is at most countable, since
there exists at most countable many r ∈ R such that g−1

ξ (r) /∈ N .
By transfinite induction, we construct a sequence 〈Dξ ∈ [R]≤ω : ξ < c〉 and the functions

fξ : Dξ → R as follows. For every ξ < c let Iξ = Jξ\⋃
ζ<ξ Jζ . If Iξ = ∅ we put Dξ = ∅.

Otherwise, we let {Jn : n < ω} be an enumeration of Iξ and define, by a simple induction, a
set Dξ = {xn : n < ω} so that

xn ∈ dom(Jn ∩ gξ )\
⎛

⎝{xi : i < n} ∪
⋃

ζ<ξ

(Dζ ∪ dom(Jn ∩ gζ ))

⎞

⎠ .
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Fig. 5 All inclusions, indicated by arrows, among the Darboux-like classes of functions from R to R. The
only inclusions among the intersections of these classes are those that follows trivially from this schema. (See
[34,60].)

The choice can be made, since covN = c, dom(Jn ∩ gξ ) /∈ N , and the set of non-allowed
points is a union of < c null sets: singletons and dom(Jn ∩ gζ ) ∈ N .

For every n < ω define fξ (xn) as the unique number with 〈xn, fξ (xn)〉 ∈ Jn . This finishes
the inductive construction.

Next let f := ⋃
ξ<c fξ and notice that this is a partial function defined on D := ⋃

ξ<c Dξ .

Let f̄ ∈ R
R be an arbitrary extension of f so that f̄ � (R\D) is SZ(B). Then f̄ is as

needed. 	

T. Natkaniec just noticed (private communication) that a function f̄ from Theorem 4.4

can be also AC.

4.1 All Darboux-like classes within SZ

The term Darboux-like classes of functions (within R
R) usually refers to the eight classes

shown in Fig. 5. All these classes coincide (i.e., are equal) when restricted to the class of
Baire class 1 functions. (See [23] or [34, theorem 1.1] and the references therein.) However,
the graph presented in Fig. 5 remains almost10 unchanged, when we restrict Darboux-like
classes of functions to either Baire class 2 or Borel functions. (See [34, theorem 1.2].)

The seven so far undefined classes of Darboux-like functions, presented in order of their
chronological appearance in the literature, are as follows.

PC of all peripherally continuous functions f ∈ R
R, that is, such that for every number

x ∈ R there exist two sequences sn ↗ x and tn ↘ x with limn→∞ f (sn) =
f (x) = limn→∞ f (tn). This class was introduced in a 1907 paper [111] of Young
(1879–1932).11 The name comes from the papers [64,66,110].

PR of all functions f ∈ R
R with perfect road, that is, such that for every x ∈ R there

exists a perfect P ⊂ R having x as a bilateral limit point (i.e., with x being a limit
point of (−∞, x) ∩ P and of (x,∞) ∩ P) such that f � P is continuous at x .
This class was introduced in a 1936 paper [85] of Maximoff, where he proved that
D ∩B1 = PR∩B1, where B1 is the class of Baire class 1 functions.

Conn of all connectivity functions f ∈ R
R, that is, such that the graph of f restricted to

any connected C ⊂ R is a connected subset of R
2. This notion can be traced to a

10 Except that we, additionally, get D ⊂ SCIVP = CIVP.
11 Young was co-founder and a president of the MAA. He was also editor of the Bulletin of the American
Mathematical Society.
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1956 problem [88] stated by Nash (1928–2015).12 See also [66,105]. Connectivity
maps on R

2 are defined similarly.
AC of all almost continuous functions f ∈ R

R (in the sense of Stallings), that is, such
that every open subset of R

2 containing the graph of f contains also the graph of
a continuous function from R to R. This class was first seriously studied in a 1959
paper [105] of Stallings (1935–2008);13 however, it appeared already in a 1957
paper [66] of Hamilton (1899–1976).

Ext of all extendable functions f ∈ R
R, that is, such that there exists a connectivity

function g : R × [0, 1] → R with f (x) = g(x, 0) for all x ∈ R. The notion
of extendable functions (without the name) first appeared in 1959 paper [26] of
Stallings, where he asks a question whether every connectivity function defined
on [0, 1] is extendable.

CIVP of all functions f ∈ R
R with Cantor Intermediate Value Property, that is, such that

for all distinct p, q ∈ R with f (p) �= f (q) and for every perfect set K between
f (p) and f (q), there exists a perfect set C between p and q such that f [C] ⊂ K .
This class was first introduced in a 1982 paper [58] of Gibson and Roush.

SCIVP of all functions f ∈ R
R with Strong Cantor Intermediate Value Property, that is,

such that for all p, q ∈ R with p �= q and f (p) �= f (q) and for every Cantor set
K between f (p) and f (q), there exists a Cantor set C between p and q such that
f [C] ⊂ K and f � C is continuous. This notion was introduced in a 1992 paper
[99] of Rosen et al. to help distinguish extendable and connectivity functions on
R.

The inclusions

Conn ⊂ D ⊂ PC, PR ⊂ PC, and SCIVP ⊂ CIVP

are obvious from the definitions. The inclusions Ext ⊂ AC ⊂ Conn were proved by Stallings
[105], while CIVP ⊂ PR was stated without proof in [59]; its proof can be found in [60,
theorem 3.8]. The inclusion Ext ⊂ SCIVP comes from [99].

All inclusions indicated in Fig. 5 by the arrows are strict. In fact, this remains true
even when we add to the considerations the intersections of the classes from the top and
bottom rows of Fig. 6. This is well described in survey papers [30,34,60]. Specifically,
AC \CIVP �= ∅ and CIVP \AC �= ∅ was shown in a 1982 work [58]. The fact that
Conn \AC �= ∅ is the trickiest to prove and is related to late 1960’s papers: [98] of Roberts,
[49] of Cornette, [68] of Jones and Thomas, and [20] of Brown. The result D \Conn �= ∅
can be traced to 1965 paper [25] of Bruckner and Ceder (see also [20]), while examples
for PC \D �= ∅, PR \CIVP �= ∅, and PC \PR �= ∅ to 2000 paper [34] of Ciesielski and
Jastrzȩbski. All of these examples will be discussed also below in relation to SZ-functions.

Clearly SZ∩SCIVP = ∅. This also implies that SZ∩Ext = ∅. In particular, the classes
Ext and SCIVP are not of interest in our context and will be removed from our further
considerations below. This leaves us with the six classes from Fig. 5 which, as we will see
below, can contain an SZ-maps. This reduces Fig. 5 to the following Fig. 6, to which we
added class SZ, indicating the results from Theorems 4.1 and 4.2 .

12 Nash shared the 1994 Nobel Memorial Prize in Economic Sciences with game theorists Reinhard Selten
and John Harsanyi. In 2015, he also shared the Abel Prize with Louis Nirenberg for his work on nonlinear
PDEs.
13 Stallings’ contributions include a proof, in a 1960 paper, of the Poincaré Conjecture in dimensions greater
than six.
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Fig. 6 Six Darboux-like classes
of functions that contain
SZ-maps. Inclusions are
indicated by solid arrows. The
dotted arrow indicates inclusion
that is independent of the ZFC,
Theorems 4.1 and 4.2

The six Darboux-like classes of functions presented in Fig. 6 are naturally split into two
subclasses:

U := {AC,Conn,D},
whose non-empty intersection with SZ can be proven only consistently, and

L := {CIVP,PR,PC}
that admit SZ functions in ZFC. As such, we often treat these two groups separately.

Our first goal in what follows is to show two most fundamental results related to our
discussion: that SZ∩CIVP∩¬D �= ∅ (Theorem 4.6(i)) and that it is consistent with ZFC
that SZ∩AC∩CIVP �= ∅ (Theorem 4.5). Both of these results are proved in a stronger form,
which involve the following class:

Add of all additive functions f ∈ R
R, that is, such that f (x + y) = f (x) + f (y) for

every x, y ∈ R. For every f ∈ Add we also have f (qx) = q f (x) for every x ∈ R

and q ∈ Q, where Q is the set of all rational numbers. The study of this class
dates back to the work of Legendre whose aim was to determine the solution of
the Cauchy functional equation f (x + y) = f (x) + f (y) for x, y ∈ R. However,
the systematic study of the additive Cauchy functional equation was initiated by
Augustin-Louis Cauchy (1789–1857) in his famous 1821 seminal work [26], where
he proved that any continuous additive f is of the form f (x) = cx for some c ∈ R.
The fist construction of discontinuous f ∈ Add was given in the 1905 paper [65]
by Georg Karl Wilhelm Hamel (1877–1954).

The following theorem comes from a 2005 paper [92, example 10] of Natkaniec and
Rosen. The example of an f ∈ SZ∩AC∩CIVP, under the same assumption, was also
constructed in a 1999 paper [8] of Banaszewski and Natkaniec.

Theorem 4.5 If covM = c, then Add∩SZ∩AC∩CIVP �= ∅.

The results related to this theorem have a long history. In 1981 paper [27] Ceder showed
that CH implies that SZ∩Conn �= ∅ and Kellum, in 1982 paper [74], noticed that Ceder’s
function is in fact almost continuous. Theorem 4.5 generalizes also a result from a 1997 paper
[6] ofBalcerzak et al.where it is proved, under covM = c assumption, that SZ∩D ∩PR �= ∅,
compare Theorem 4.1. This last paper was was written to answer a problem from a 1993
paper of Darji [51], which we discuss below.

The next theorem concerns classes from the family L.

Theorem 4.6 The following can be proved in ZFC.

(i) Add∩SZ∩CIVP \D �= ∅.
(ii) Add∩SZ∩PR \(D ∪CIVP) �= ∅.
(iii) ∅ �= Add∩SZ \(D ∪PR) ⊂ PC.
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The inclusion in (iii) follows from the fact that

Add∩SZ ⊂ PC, (4.1)

see e.g. [92, remark 3]. This holds, since every function with a graph dense in R
2 is clearly

PC and is well known that every discontinuous additive function (so, one from Add∩SZ)
has a dense graph, see e.g. [79].

The constructions of functions justifying (i), (ii), and (iii) can be found, respectively, in
[92, examples 6, 7, and 4]. (The explicit statements describing [92, examples 7 and 4], which
justify (ii) and (iii), do not mention that the maps are not in D . However, in both cases they
are, as stated, injections. As such, being additive and discontinuous, they must be in ¬D .)

Theorem 4.6 generalizes a 1993 result of Darji [51], who gave a ZFC example of an
SZ-function with perfect road. A ZFC example of an additive SZ-function with perfect road
can be found in a 1997 paper [6] of Balcerzak et al.

4.2 Proofs of Theorems 4.6(i) and 4.5

To illustrate a typical methodology used in the construction of different SZ Darboux-like
functions we present below two of such constructions: the first one within ZFC and a second
one under the assumption that covM = c.

For A ⊂ R let linQ(A) denote the Q–linear subspace of R spanned by A. It is
well known (see, e.g., [29]) that if A ⊂ R is Q–linearly independent, then any map
f : A → R has a unique additive extension f̂ : linQ(A) → R. A standard method of
constructing discontinuous additive functions (and one that we shall use in the proofs below)
is to, first, define an f on some Hamel basis H (i.e., a basis of R as a Q–linear space) and,
then, extend it to its unique additive extension f̂ ∈ Add. Let us, then, proceed.

Proof of Theorem 4.6(i). Let H be a Hamel basis for which there exists a family
{Hn ⊂ H : n < ω} of pairwise disjoint perfect sets such that each nonempty open inter-
val contains one Hn . Such a basis exists, since there is a perfect set which is linearly
(even algebraically) independent (see the original work by Von Neumann [107], Myciel-
ski’s paper [87] and, also, the monographs [79] and [42, theorem 5.1.9].) For each n < ω

let
{

H K
n ⊂ H : K ∈ Perf

}
be a partition of Hn into perfect sets and, for every x ∈ R, let

Px = K when x ∈ H K
n for some n and perfect K , and Px = R otherwise.

Let {xξ : ξ < c} and {gξ : ξ < c} be enumerations of H andB, respectively. By induction
on ξ < c, choose

f (xξ ) ∈ Pxξ \ linQ
⎛

⎝{ f (xζ ) : ζ < ξ} ∪
⋃

ζ≤ξ

gζ [linQ({xζ : ζ ≤ ξ})]}
⎞

⎠ . (4.2)

This defines f : H → R. Let f̂ be the unique extension of f in Add. We claim, that it is as
needed, that is, that f̂ ∈ SZ∩CIVP∩¬D . This would complete the proof.

To see that f̂ ∈ CIVP notice that (4.2) ensures that, for every K ∈ Perf, our function f̂
maps

⋃
n<ω H K

n into K . This also shows that f̂ is discontinuous.
Next, notice that f̂ ∈ ¬D . Indeed, by (4.2), f is injective and f [H ] is linearly independent

over Q. Thus, f̂ is also injective. Being discontinuous and additive, f̂ is not Darboux.
Finally, we will show that f̂ ∈ SZ. For this, choose g ∈ B and let ζ < ω be such that

g = gζ . It is enough to show that [ f̂ = gζ ] ⊂ linQ({xη : η < ζ }).
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In order to see this, let us proceed by contradiction. Then, there would exist ξ ≥ ζ and
w ∈ linQ({xη : η ≤ ξ})\ linQ({xη : η < ξ}) such that f̂ (w) = gζ (w). We claim that this
contradicts the choice of f (xξ ) as in (4.2). Indeed, let q ∈ Q\{0} and v ∈ linQ({xη : η < ξ})
be such that w = qxξ + v. Then

q f (xξ ) + f̂ (v) = f̂ (w) = gζ (w)

and

f (xξ ) = q−1(gζ (w) − f̂ (v)) ∈ linQ

⎛

⎝{ f (xζ ) : ζ < ξ} ∪
⋃

ζ≤ξ

gζ [linQ({xζ : ζ ≤ ξ})]
⎞

⎠ ,

contradicting (4.2). 	

The proof of the second theorem is considerably more intricate and will depend on the

following lemmas and notation. For A ⊂ R
2 we let dom(A) stand for the projection of A

onto the fist coordinate. Let G be the family of all continuous functions from Gδ subsets of
R into R. Also, let

Ĝ0 := {g ∈ G : cl(dom(g)) is a non-trivial interval},
Ĝ1 := {g ∈ G : cl(dom(g)) is nowhere dense},

and put Ĝ := Ĝ0 ∪ Ĝ1.
Lemma 4.7 Let f ∈ R

R and assume that for every ĝ ∈ Ĝ0 there exist a g ∈ Ĝ0 and a
non-trivial interval J such that J ∩ dom( f ∩ g) �= ∅ and dom(ĝ ∩ g) is dense in J . Then
f ∈ AC.

Proof Let B be the family of all blocking sets, where by blocking set we mean a closed
B ⊂ R

2 that meets the graph of every continuous function and is disjoint with some arbitrary
function. It follows immediately from the definition of AC that if f ∈ R

R intersects every
blocking set, then f ∈ AC. Recall, also, that every B ∈ B contains the graph of some g ∈ Ĝ0,
see [74, lemma 1] and the proof of [6, theorem 1].14

To see that f ∈ AC, fix B ∈ B. It suffices to show that f ∩ B �= ∅. Indeed, B contains
some ĝ ∈ Ĝ0 and, by our assumption, there exist g ∈ Ĝ0 and a non-trivial interval J such
that J ∩ dom( f ∩ g) �= ∅ and D := dom(ĝ ∩ g) ∩ J is dense in J . In particular, since g is
continuous, cl(g � J ) ⊂ cl(ĝ ∩ g � J )15 and

∅ �= f ∩ g � J ⊂ cl(g � J ) ⊂ cl(ĝ ∩ g � J ) ⊂ cl(ĝ) ⊂ B.

Thus, ∅ �= f ∩ g � J ⊂ f ∩ B, as needed. 	

To ensure that our function belongs to Add∩SZ we shall also need the following lemma.

Lemma 4.8 Let g ∈ G, V ⊂R be a Q–vector space, x ∈R\V , and define W := linQ(V ∪{x}).
If f : W → R is additive, then [ f = g] ⊂ V if, and only if,

f (x) �= q−1(g(qx + v) − f (v)) for every v ∈ V and 0 �= q ∈ Q with qx + v ∈ dom(g).

14 By [74, lemma 1], dom(B) has nonempty interior. Thus, by the Baire category theorem, there exists n ∈ N

forwhich the same is true for the set Bn := B∩(R×[−n, n]). If J is a nonempty interval contained in dom(Bn)

and h : J → R is defined via h(x) = inf{y : 〈x, y〉 ∈ Bn}, then h is of Baire class 1. Thus, g := h � C(h) is
as needed.
15 The map γ from X := J ∩ dom(g) into g � J ⊂ R

2, given as γ (x) := 〈x, g(x)〉, is continuous and so
g � J = γ [J ∩ dom(g)] = γ [clX (D)] ⊂ clR(γ [D]) = clR(ĝ ∩ g � J ).
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Proof Since W\V = {qx + v : q ∈ Q\{0} & v ∈ V }, then [ f = g] �⊂ V if, and only if,
there are q ∈ Q\{0} and v ∈ V such that qx + v ∈ dom(g) and

q f (x) + f (v) = f (qx + v) = g(qx + v)

or, equivalently, that f (x) = q−1(g(qx + v) − f (v)), as needed. 	

Proof of Theorem 4.5. Let the sets {Hn ⊂ H : n < ω} be as in the above proof of The-
orem 4.6(i), for every n < ω let {Hn

ξ ∈ Perf : ξ < c} be a partition of Hn and let
H := {⋃n<ω Hn

ξ : ξ < c}. Thus, H is a partition of a linearly independent meager set
M := ⋃

n<ω Hn .
Let {gξ : ξ < c} and {Pξ : ξ < c} be enumerations of G and Perf, respectively, and

choose a sequence 〈rξ ∈ R : ξ < c〉 such that every r ∈ R appears in it c-many times. We
construct, by induction, a sequence 〈〈 fξ , Hξ 〉 : ξ < c〉 such that, for every ξ < c, fξ is a
function from at most countable Dξ ⊂ R intoR and Hξ ∈ H. Moreover, each initial segment
〈〈 fζ , Hζ 〉 : ζ < ξ 〉 satisfies the following inductive conditions for every η < ξ .

(i) Dα ∩ Dβ = ∅ for every α < β; for every δ ≤ ξ the set Tδ := ⋃
ζ<δ Dζ is linearly

independent; thus, the map
⋃

ζ<δ fζ has a unique extension to an additive function f̂δ
from Vδ := linQ(Tδ) into R.

(ii) Let Zη := ⋃{Zq,v
η,ζ : q ∈ Q\{0} & v ∈ Vη & ζ < η}, where

Zq,v
η,ζ := dom

(
gη ∩ {〈x, q−1(gζ (qx + v) − f̂η(v))〉 : qx + v ∈ dom(gζ )

})
.

IfUη is themaximal open, possibly empty, subset ofR such that each set dom(gη)\Zq,v
η,ζ

is residual in Uη, then Eη := dom(gη ∩ fη) is a countable dense subset of
Uη ∩ dom(gη)\Zη; moreover, fη � Eη = gη � Eη.

(iii) If rη /∈ linQ
(

Eη ∪ ⋃
ζ<η(Hζ ∪ Dζ )

)
or rη ∈ ⋃

ζ<η Hζ \ linQ
(

Eη ∪ ⋃
ζ<η Dζ

)
, then

Dη := Eη ∪ {rη}; otherwise Dη := Eη.

(iv) If rη ∈ Dη\Eη, then fη(rη) /∈ linQ
(

f̂η[Tη ∪ Eη] ∪ ⋃
ζ≤η gζ [Tη ∪ Eη]

)
; moreover, if

rη ∈ Hζ for a ζ < η, then fη(rη) ∈ Pζ .

(v) Hη ∈ H is disjoint with linQ
(

Dη ∪ ⋃
ζ<η(Hζ ∪ Dζ )

)
.

(vi)
⋃

ζ≤η(Hζ ∪ Dζ ) is linearly independent over Q.

(vii) For every ζ ≤ η we have dom( f̂η ∩ gζ ) ⊂ Vζ+1.

To construct such a sequence 〈〈 fξ , Hξ 〉 : ξ < c〉, assume that for some ξ < c its initial
segment 〈〈 fζ , Hζ 〉 : ζ < ξ 〉 satisfying conditions (i)–(vii) is already constructed. We need to
choose a pair 〈 fξ , Hξ 〉 so that the sequence 〈〈 fζ , Hζ 〉 : ζ < ξ +1〉 still satisfies the properties
(i)–(vii).

We start this by defining the set Eξ . If Uξ = ∅, then we put Eξ := ∅. Otherwise, let
{Gn �= ∅: n < ω} be a countable basis of Uξ and define Eξ := {xn : n < ω}, where
the points xn are chosen by induction on n < ω subject to the following condition, where

W n
ξ := linQ

(
{xi : i < n} ∪ ⋃

ζ<ξ (Hζ ∪ Dζ )
)
:

xn ∈ (Gn ∩ dom(gξ ))\
(

W n
ξ ∪

⋃
{Zq,v

ξ,ζ : q ∈ Q\{0} & v ∈ W n
ξ & ζ < ξ}

)
. (4.3)

Such a choice is possible by the assumption that covM = c, since Gn ∩dom(gξ ) is comeager
in Gn while, by (ii),

W n
ξ ∪

⋃
{Zq,v

ξ,ζ ∩ Gn ∩ dom(gξ ) : q ∈ Q\{0} & v ∈ W n
ξ & ζ < ξ}
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is a union of< cmeager sets. The set Eξ is extended to Dξ according to (iii) and Hξ is chosen
according to (v). The inductive assumption and (4.3) ensure that the set Eξ ∪⋃

ζ<ξ (Hζ ∪ Dζ )

is linearly independent over Q and, thus, (vi) holds. Of course we define fξ on Dξ according
to (ii) and (iv).

This finishes the inductive construction.
The construction clearly preserves properties (i)–(vi). To see that (vii) is also preserved,

first notice that for every ζ < ξ and n < ω, we have

dom( f̂ξ+1 ∩ gζ ) ∩ linQ({xi : i < n} ∪ Vξ ) ⊂ Vζ+1.

For n = 0 this is ensured by the inductive assumption (vii) while, for n > 0, this is proved
by induction using Lemma 4.8 (with V = linQ({xi : i < n} ∪ Vξ ) and x = xn) and the
restrictions imposed by (4.3). Thus,

dom( f̂ξ+1 ∩ gζ ) ∩ linQ(Eξ ∪ Vξ ) ⊂ Vζ+1.

This clearly ensures that (vii) is preserved for ζ < ξ in the casewhen Dξ = Eξ . But otherwise,
Dξ\Eξ = {rξ } and, in this case, (vii) for ζ < ξ holds by (iv) and an another use of Lemma 4.8.
Finally (vii) holds for ζ = ξ , since he have dom( f̂ξ+1 ∩ gξ ) ⊂ dom( f̂ξ+1) ⊂ Vξ+1.

Next, notice that H̃ := ⋃
ξ<c Dξ spans R, that is, that it is a Hamel basis. To see this,

first notice that
⋃

ζ<c Hζ ⊂ H̃ : this is ensured by (iii) and the fact that every r ∈ Hζ ,

with ζ < c, there is ξ > ζ with rξ = r . To see that R ⊂ linQ(H̃) fix an r ∈ R and
let ξ < c be such that r = rξ . It is enough to show that rξ ∈ linQ(H̃). Indeed, by (iii),

either rξ /∈ linQ
(

Eξ ∪ ⋃
ζ<ξ (Hζ ∪ Dζ )

)
, so rξ ∈ ⋃

ζ≤ξ Dξ ⊂ linQ(H̃), or else rξ ∈
linQ

(
Eξ ∪ ⋃

ζ<ξ (Hζ ∪ Dζ )
)

⊂ linQ
(⋃

ζ≤ξ Dξ ∪ ⋃
ζ<c Hζ

)
⊂ linQ(H̃), as needed.

This means that
⋃

ξ<c fξ has a unique extension f̂ ∈ Add. We claim that it is as desired,

that is, that f̂ ∈ SZ∩AC∩CIVP. Indeed, since f̂ = ⋃
ξ<c f̂ξ , Lemma 2.5, and (vii) imply

that f̂ ∈ SZ.
To see that f̂ ∈ CIVP, notice that for every K ∈ Perf there exists a ζ < c such that

K = Pζ , while conditions (iii) and (iv) imply that f̂ maps Hζ into Pζ = K . Since for every
a < b the set (a, b) ∩ Hζ contains a perfect set, it follows that f̂ ∈ CIVP.

Finally, we will show that f̂ ∈ AC. In order to see this, fix ĝ ∈ Ĝ0. By Lemma 4.7, it is
enough to find g ∈ Ĝ0 such that both sets dom(ĝ ∩ g) and dom( f̂ ∩ g) are dense in some
non-trivial interval.

Thus, let ξ < c be such that ĝ = gξ and let η ≤ ξ be the smallest such that, for some
v ∈ Vξ and q ∈ Q\{0}, the set Zq,v

ξ,η is somewhere dense. Next, let S be the largest open set

in R in which Zq,v
ξ,η is dense and let U := q S + v. Then S ∩ Zq,v

ξ,η ⊂ S ∩ dom(gξ ) is a dense
Gδ subset of S and U ∩ dom(gη) = (q S + v) ∩ dom(gη) is a dense Gδ subset of U . Notice,
that the minimality of η implies that

U ⊂ Uη. (4.4)

We shall see (4.4) by way of contradiction. Thus, let us assume that this is not the case.
By covM = c, this can happen only when there are ζ < η, w ∈ Vη, and nonzero p ∈ Q

such that Z p,w
η,ζ is dense in some non-trivial interval I ⊂ U . Then, J := q−1(I − v) is a

non-trivial interval contained in S and so J ∩ Zq,v
ξ,η is a dense Gδ subset of J . Moreover,

J ∩ q−1(Z p,w
η,ζ − v) = q−1(I ∩ Z p,w

η,ζ − v) is a dense Gδ subset of J ⊂ S, as I ∩ Z p,w
η,ζ is a

dense Gδ subset of I . Therefore, T := J ∩ q−1(Z p,w
η,ζ − v) ∩ Zq,v

ξ,η ⊂ dom(gξ ) is a dense Gδ
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subset of J and for any x ∈ T we have

gξ (x) = q−1(gη(qx + v) − f̂ (v))

and, also,

gη(qx + v) = p−1(gζ (p(qx + v) + w) − f̂ (w))

since qx + v ∈ Z p,w
η,ζ . In particular, if s := pq ∈ Q\{0} and u := pv + w ∈ Vξ , then

gξ (x) = q−1(gη(qx + v) − f̂ (v))

= q−1(p−1(gζ (p(qx + v) + w) − f̂ (w)) − f̂ (v))

= s−1(gζ (sx + u) − f̂ (u)).

In other words, we would have that T ⊂ Zs,u
ξ,ζ , contradicting the minimality of η, as T ⊂

dom(gξ ) is a dense subset of J . So, indeed U ⊂ Uη and (4.4) is proved.
Now, let Iξ be a nontrivial interval contained in S. Then, by (4.4), the interval Iη := q Iξ +v

is contained in q S +v = U ⊂ Uη so that Iη ∩dom(gη) is a dense Gδ subset of Iη. Therefore,

G := Iξ ∩ q−1(dom(gη) − v) = q−1((dom(gη) ∩ Iη) − v)

is a dense Gδ subset of Iξ = q−1(Iη − v).
Define g : G → R via the formula

g(x) = q−1(gη(qx + v) − f̂ (v)).

Then g ∈ Ĝ0. To finish the proof it is enough to show that both sets dom(ĝ ∩ g) and
dom( f̂ ∩ g) are dense in Iξ . However, dom( f̂ ∩ g) is dense in Iξ since it contains a dense
set Eξ ∩ Iξ ⊂ Iξ ∩ Zq,v

ξ,η . At the same time dom(ĝ ∩ g) = dom(gξ ∩ g) is dense in Iξ since

it contains a dense set G ∩ dom(gξ ) ⊂ Zq,v
ξ,η . 	


4.3 SZ and differences of Darboux-like classes

Using the inclusions indicated in Fig. 6 the algebra A(U) of subsets of R
R generated by the

classes in U has 4 atoms: {AC,Conn∩¬AC,D ∩¬Conn,¬D}. Similarly, A(L) generated
by the classes in L has atoms: {CIVP,PR∩¬CIVP,PC∩¬PR,¬PC}. This means that the
algebra A(U ∪ L) has theoretically 16 atoms, the intersections L ∩ U , where L ∈ A(L) and
U ∈ A(U). However, since D ⊂ PC three of these potential atoms are empty:

AC∩¬PC = Conn∩¬AC∩¬PC = D ∩¬Conn∩¬PC = ∅.

Moreover, the nonempty atom ¬D ∩¬PC is not contained in any of Darboux-like classes
of functions, so not of interest for us. This leads to 12 interesting atoms presented in the
following Table 1.

One may naturally wonder, if all these atoms intersect (at least consistently) SZ class.
What is known about this is listed in Table 2.

Here are the additional results and problems supporting Table 2. The next theorem comes
from a 2004 paper [91] of Natkaniec and Rosen.

Theorem 4.9 If covM = c, then Add∩SZ∩AC∩PR \CIVP �= ∅.

The following result has recently been proved by Ciesielski and Pan16 [40].

16 Current Ph.D. student of Ciesielski.
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Table 1 Nonempty atoms of A(U ∪ L) contained in PC

CIVP PR \CIVP PC \PR
AC AC∩CIVP AC∩PR \CIVP AC \PR
Conn \AC Conn∩CIVP \AC Conn∩PR \(AC∪CIVP) Conn \(AC∪PR)

D \Conn D ∩CIVP \Conn D ∩ PR \(Conn∪CIVP) D \(Conn∪ PR)

¬D CIVP \D PR \(D ∪CIVP) PC \(D ∪PR)

Table 2 Indication on nonempty intersections with SZ (and Add if indicated). The results in the last row are
in ZFC. The other under the assumption that covM = c, unless otherwise specified

CIVP PR \CIVP PC \PR
AC Theorem 4.10 Theorem 4.10 Theorem 4.10

Add: Theorem 4.5 Add: Theorem 4.9 Add: Problem 4.11

Conn \AC Theorem 4.10 Theorem 4.10 Theorem 4.10

Add: Theorem 4.12,
Problem 4.14

Add: Theorem 4.12,
Problem 4.14

Add: Theorem 4.12,
Problem 4.14

D \Conn Theorem 4.10 Theorem 4.10 Theorem 4.10

Add: Theorem 4.13,
Problem 4.15

Add: Theorem 4.13,
Problem 4.15

Add: Theorem 4.13,
Problem 4.15

¬D Add: Theorem 4.6 Add: Theorem 4.6 Add: Theorem 4.6

Theorem 4.10 If covM = c, then the intersection of SZ with any of the atoms from Table 1
is non-empty.

Problem 4.11 Does covM = c imply that Add∩SZ∩AC \PR �= ∅?

The next two theorems come from [92, examples 9 and 8].

Theorem 4.12 If CH holds, then Add∩SZ∩Conn \AC �= ∅.

Theorem 4.13 If covM = c, then Add∩SZ∩D \Conn �= ∅.

Problem 4.14 Can Theorem 4.12 be proved assuming only that covM = c? Is any of the
following three properties consistent with ZFC:

• Add∩SZ∩Conn∩CIVP \AC �= ∅;
• Add∩SZ∩Conn∩PR \(AC∪CIVP) �= ∅;
• Add∩SZ∩Conn \(AC∪PR) �= ∅?

Does any of this follow from covM = c ?
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Problem 4.15 Is any of the following 3 properties consistent with ZFC:

• Add∩SZ∩D ∩CIVP \Conn �= ∅;
• Add∩SZ∩D ∩PR \(Conn∪CIVP) �= ∅;
• Add∩SZ∩D \(Conn∪PR) �= ∅?

Does any of this follow from covM = c ?

4.4 Additivity and lineability coefficients

There is actually relatively little known about these coefficients for the classes of SZ maps
that are also Darboux-like.

The following theorem was proved in 2015 paper [96] of Płotka under the assumption
of CH. It was noticed, in a 2017 paper [32] of Ciesielski et al. that the argument from [96]
actually provides a stronger result: Theorem 4.16. We omit the proof here due to both, its
length and technicality.

Theorem 4.16 If covM = c holds, then L(AC∩SZ) > c+.

Let usmention that, assumingGCH, the previous result implies thatAC∩SZ is 2c-lineable
and, therefore,L(AC∩SZ) = L(SZ). However, taking into account Theorem 4.2, from [96],
the following corollary and corresponding natural open question are posed.

Corollary 4.17 (i) It is consistent with ZFC, follows from GCH, that

L(AC∩SZ) = L(Conn∩SZ) = L(D ∩SZ) = L(SZ).

(ii) It is consistent with ZFC, follows from CPA+2ω1 = ω2, that

L(AC∩SZ) = L(Conn∩SZ) = L(D ∩SZ) = 1 < c+ < L(SZ).

Problem 4.18 Is it consistent for any F ∈ {AC,Conn,D} that F ∩ SZ �= ∅ while also
L(F ∩ SZ) < L(SZ)?

The results presented in Table 3 constitute the current state of knowledge on the additivity
and lineability coefficients for SZ∩F for some F ∈ A(U ∪ L). The symbol c− used in the
table is defined:

c− :=
{

κ when c = κ+ and cof(κ) > ω,

c otherwise.

Problem 4.19 Are any among the coefficientsA(AC∩SZ),A(Conn∩SZ), andA(D ∩SZ)

provably equal (in ZFC)? What about L(AC∩SZ), L(Conn∩SZ), and L(D ∩SZ)?

Problem 4.20 Does the assumption SZ∩D �= ∅ imply that SZ∩D is c+-lineable? Does it
imply that SZ∩D is κ-lineable whenever SZ is κ-lineable?

4.5 Generalized additivity

All results presented in this section come from 2002 paper [94] of Płotka and were a part of
his Ph.D. thesis. For the families F1,F2 ⊂ R

R, the additivity of F1 over F2 is defined as the
following cardinal number:

A(F1,F2) = min({|F | : F ⊂ R
R, h + F � F2,∀h ∈ F1} ∪ {(2c)+}).

Notice that A(F) = A(RR,F).
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Table 3 Summary of what is currently known on the additivity and lineability coefficients for classes consid-
ered in this section

Class A Source L Source

SZ dc Theorem 3.6 > dc Corollary 3.8 and Theorem 3.2

SZ∩PR c+ [32, thm 2.6] > c+ Corollary 3.8

SZ∩CIVP c+ [32, thm 2.6] > c+ Corollary 3.8

SZ∩CIVP \D c+ [46] > c+ Corollary 3.8

SZ∩PR \(CIVP∪D) c+ [46] > c+ Corollary 3.8

SZ∩PC dc [32, thm 2.6] > dc Corollary 3.8 and Theorem 3.2

SZ∩AC ≤ c Under cof(c) = c, > c+ Under covM = c,

[32, thm 2.11] Theorem 4.16

SZ∩Conn ≤ c Under cof(c) = c, > c+ Under covM = c,

[32, thm 2.11] Theorem 4.16

SZ∩D ≤ c Under cof(c) = c, > c+ Under covM = c,

[32, thm 2.11] Theorem 4.16

SZ∩D \Conn ≤ c− Under 2c− = c, [46]

Proposition 4.21 Let F1 ⊆ F2 ⊆ R
R and F ⊆ R

R.

(1) A(F1,F) ≤ A(F2,F)

(2) A(F,F1) ≤ A(F,F2)

(3) A(F1,F2) ≥ 2 if, and only if, R
R = F2 − F1.

(4) If A(F1,F2) ≥ 2, then F1 ∩ F2 �= ∅.
(5) A(F) = A(F,F) + 1. In particular, if A(F) ≥ ω then A(F,F) = A(F).

In relation to the family SZ we have the following results.

Theorem 4.22 (i) If Martin’s Axiom holds, then A(D,SZ) ≥ A(AC,SZ) ≥ ω.
(ii) If Martin’s Axiom holds, then A(SZ,AC) = A(SZ,D) = c.
(iii) If the theory “ZFC + ∃ measurable cardinal” is consistent, then so is the theory “ZFC

+ A(AC,SZ) > c > ω1”.
(iv) A(PC,SZ) = A(SZ) and A(SZ,PC) = 2c.

Since SZ = {− f : f ∈ SZ}, Proposition 4.21 and Theorem 4.22(ii) immediately imply
the following result.

Corollary 4.23 If Martin’s Axiom holds, then R
R = AC+SZ = D +SZ.

Notice also that SZ∩D = ∅ implies SZ∩AC = ∅ and so, by parts (3) and (4) of
Proposition 4.21, that AC+SZ �= R

R �= D +SZ. Hence, by Theorem 4.2,
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Corollary 4.24 The equalities R
R = AC+SZ and R

R = D +SZ are independent of ZFC.

More on the generalized additivity, including some results related to SZ can be found in
the 2008 paper [95] by Płotka. For instance, let HF stand for the class of Hamel functions,
that is, functions in R

R whose graph is a Hamel basis for R
2. These maps are as far from

being additive as possible. In [95] we can find that

A(SZ,HF) = A(HF) and A(HF,SZ) > c.

However, it is unknown whether, in ZFC, we have

A(HF,SZ) = A(SZ).

We also have, [95, Remark 5], that

A(Add,SZ) ≤ A(HF,SZ).

5 Inverses, products, and compositions of SZ-functions

5.1 Sierpiński–Zygmund functions and their inverses

Let an SZ-map f ∈ R
R be one-to-one. The questionwe are interested in here is the following:

Can its inverse f −1 be an SZ -map?

Up to this moment, all our SZ-maps were defined on the entire real line. If we continue to
keep this requirement, then f −1 could be an SZ-map only when the original f is surjective.
However, according to Theorem 4.3, no ZFC example of SZ bijection exists. Nevertheless, it
is consistent with ZFC that such an example can be constructed, as follows from the following
1997 result of K. C. Ciesielski and T. Natkaniec, see [39, theorem 7 and corollary 6].

Theorem 5.1 Assume that covM = c holds. Then

(i) there exists an SZ bijection f ∈ R
R such that f −1 = f ;

(ii) there exists an SZ bijection f ∈ R
R such that f −1 /∈ SZ.

This theorem was (partially) generalized in 2005 by Natkaniec and Rosen [92, exam-
ples 13 and 12]. They proved, under the same set-theoretical assumption, that:

• There is an additive SZ bijection f ∈ R
R such that f −1 ∈ SZ. (However, the constructed

map need not be its own inverse.)
• There exists an additive SZ bijection f ∈ R

R such that f −1 /∈ SZ.

This is all that can be proved in this direction about SZ bijections. But what if we assume
only that an SZ-map f ∈ R

R is one-to-one? Then the inverse function f −1 is defined only
on f [R], which can be a proper subset of R. Luckily, the definition of SZ functions can be
naturally extended to partial maps defined on X ⊂ R (of cardinality c):

an f : X → R is an SZ-map provided f � S is discontinuous for every S ⊂ X of
cardinality c.

In this setting, allowing partial SZ functions, considerably more can be proved. Nevertheless,
perhaps surprisingly, only one kind of such an example can be constructed in ZFC. It comes
from [39, theorem 2].
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A century of Sierpiński–Zygmund functions 3895

Theorem 5.2 There exists an SZ injection f ∈ R
R such that f −1 is continuous (and, thus,

not SZ).

Sketch of proof This is a small variation of the proof of Theorem 2.6. Let h : R → R be a
continuous surjection such that h−1(y) has cardinality c for every y ∈ R.

Let {xξ : ξ < c} be an enumeration, with no repetition, of R and let {gξ : ξ < c} be an
enumeration of B. For every ξ < c choose

f (xξ ) ∈ h−1(xξ )\({gζ (xξ ) : ζ < ξ} ∪ { f (xζ ) : ζ < ξ}).
Then f ∈ SZ and f −1 is continuous, as its graph is contained in the graph of h. 	


Avariant of Theorem5.2 is proved also in [92, example 11], where the authors construct an
additive SZ injection f ∈ R

R with f −1 /∈ SZ. However, in this case, f −1 is not continuous.
Also, in [83, theorem 5], Zbigniew Lipecki showed the following result for topological vector
spaces.

Theorem 5.3 Let X be a topological linear space of dimension c and let Y be a Hausdorff
topological linear space with dim(Y ) ≥ c. Then there exists an injective operator T : X → Y
such that no restriction of T to a separable subspace of X of dimension c is continuous.

Finally, it is natural to ask if one can construct a ZFC example of an SZ injection f ∈ R
R

such that f −1 is also SZ. At a first glance this should be possible, since Theorem 4.3 does
not seem to prevent it. Nevertheless, the existence of such a function is still independent of
ZFC. Specifically, its consistent existence follows from Theorem 5.1(i). The existence of a
model of ZFC without such a function follows from the next result that comes from [39,
theorem 8 and corollary 9].

Theorem 5.4 The following properties are equivalent.

(i) There is no SZ injection from an X ⊂ R of cardinality c into R such that f −1 is SZ.
(ii) There exists a family H of continuous functions from X ⊂ R into R such that H has

cardinality < c and that R
2 is covered by the graphs of h ∈ H and their inverses.

In particular, since (ii) is consistent with ZFC—it follows from CPA—so is (i).

The fact that (ii) holds in the iterated perfect set (Sacks) model was proved in 1999
paper [106] of Steprāns. The fact that it follows from CPA was proved by Ciesielski and
Pawlikowski, see [42, chapter 4] and [43]. Compare also [47] for related results.

5.2 Products

In this section we will examine for which functions f ∈ R
R there exists an h ∈ R

R such that
h f ∈ SZ. All results presented here come from 1997 paper [38] of Ciesielski and Natkaniec.

First of all, observe that if |[ f = 0]| = c, then h f ∈ SZ for no h ∈ R
R. Thus, we restrict

here our attention to the family

R0 :=
{

f ∈ R
R : |[ f = 0]| < c

}
.

Theorem 5.5 For every F ⊂ R0 of cardinality ≤ c there exists an h : R → R\{0} such that
h f ∈ SZ for each f ∈ F .
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Theorem 5.5 allows us to conclude the following characterization of functions in R
R can

be expressed as the product of two Sierpiński–Zygmund functions.

Corollary 5.6 For every function f ∈ R
R the following conditions are equivalent:

(i) |[ f = 0]| < c, that is, f ∈ R0;
(ii) f is the product of two SZ-functions.

One can also define the following multiplicative analogue of the additivity cardinal coef-
ficient A(SZ):

m(SZ) := min
({|F | : F ⊂ R0 and ϕ · F �⊂ SZ for every ϕ ∈ R

R} ∪ {(2c)+}).
Then, we have the following result [38, theorem 3.3]:

Theorem 5.7 m(SZ) = A(SZ).

5.3 Compositions

In this section we are going to present some results regarding the composition with SZ-
functions and when such composition is also a function in SZ. Again, all these results come
from [38].

The following notation shall be crucial in what follows

Mout (SZ) =
{

f ∈ R
R : f ◦ h ∈ SZ for each h ∈ SZ

}
,

Min(SZ) =
{

f ∈ R
R : h ◦ f ∈ SZ for each h ∈ SZ

}
.

Theorem 5.8 If c is a regular cardinal, thenMout (SZ) = Min(SZ). However, if c is singular,
then Min(SZ) �⊂ Mout (SZ).

The following open question comes out naturally after the previous result.

Problem 5.9 Can the inclusionMout (SZ) ⊂ Min(SZ) be proved without assuming that c is
regular?

Theorem 5.10 For each f ∈ R
R the following conditions are equivalent:

(i) there exists an h ∈ SZ∩R
R such that h ◦ f ∈ SZ;

(ii) there exists an h ∈ R
R such that h ◦ f ∈ SZ;

(iii) | f −1(y)| < c for each y ∈ R.

Theorem 5.11 Assume that c is a regular cardinal. For each f ∈ R
R the following conditions

are equivalent:

(i) there exists an h ∈ SZ∩R
R such that f ◦ h ∈ SZ;

(ii) there exists an h ∈ R
R such that f ◦ h ∈ SZ;

(iii) | f [R]| = c.

6 Closing remarks and comments

In the above text we have presented a comprehensive overview of the current state of knowl-
edge related to the question of how much continuity an arbitrary function from R into R must
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have. From the seminal 1922 theorem of Blumberg [18] and 1923 example of Sierpiński
and Zygmund [104], we discuss almost 100 years of history of the research in this subject.
Actually during the first 70 years after the publication of the above-mentioned two papers,
there were no publications directly related to SZ-functions and relatively few related to
(generalizations of) Blumberg theorem, namely (in chronological order, from 1954 to 1984)
papers [19,21,22,27,61,103], and [84]. The situation drastically changed in early 1990’s with
a sudden “explosion” of papers generalizing the results of both [18,104]. In addition to
these generalizations, algebraic properties of SZ functions have also been studied, as well
as the relation of the class SZ to the classes of generalized continuous functions, mainly
Darboux-like. This increased interest was certainly sparked by a dynamic development of
set-theoretical tools in the 1970’s and the 1980’s, which constitutes an integral part of this
renewed interest.

At the closure of this work, we would like to emphasize that the research around the
presented topics is far from being finished. This is witnessed, for example, by the long list
of open problems we explicitly stated in this text: 4.11, 4.14, 4.15, 4.18, 4.19, 4.20, and
5.9. Solving these questions would certainly deepen our understanding of the interactions of
Darboux-like functions with the class SZ, together with their corresponding additivity and
lineability coefficients. The solutions of many of these problems will certainly require a good
understanding of the tools that come from real analysis, set theory, and algebra. The authors
expect to keep researching this class and obtain further results in the future.
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8. Banaszewski, K., Natkaniec, T.: Sierpiński–Zygmund functions that have the Cantor intermediate value
property. Real Anal. Exchange 24(2), 827–835 (1998/1999)

9. Bartoszewicz, A., Bienias,M., Gła̧b, S.: Lineability, algebrability and strong algebrability of some sets in
R
R orC

C. In: Traditional and Present-day Topics in Real Analysis, pp. 213–232. Faculty ofMathematics
and Computer Science, University of Łódź, Łódź (2013)
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93. Piotrowski, Z., Szymański, A.: Concerning Blumberg’s theorem. Houst. J. Math. 10(1), 109–115 (1984)
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