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We characterize the real valued functions f defined on perfect subsets P of R
which admit n-times differentiable extensions F : R → R. In this characterization 
no continuity of F (n) is imposed. In particular, it generalizes Jarník’s Extension 
Theorem, according to which f admits differentiable extension F : R → R if, 
and only if, f is differentiable. The new characterization is also closely related to 
the Whitney’s Extension Theorem, which characterizes partial maps f admitting 
n-times differentiable extensions F : R → R with continuous nth derivative F (n). 
We also provide an elegant description of a linear extension operator Tn : C(P ) →
C(R) such that Tn(f) ∈ Dn(R) for every Dn(R)-extendable f ∈ C(P ) and 
Tn(f) ∈ Cn(R) whenever f ∈ C(P ) is Cn(R)-extendable.

© 2019 Elsevier Inc. All rights reserved.

1. Preliminaries and background

In what follows P will always be a perfect subset of the real line R, that is, a closed subset of R which 
equals to the set P ′ of its accumulation points. A function f : P → R is differentiable, provided for every 
point p ∈ P the following limit,

f ′(p) := lim
x→p, x∈P

f(x) − f(p)
x− p

exists and is finite. Of course such defined map f ′ : P → R is referred to as the derivative of f . The above 
limit has no sense, unless p is an accumulation point of P . Therefore, we restrict our attention to perfect 
sets, to ensure that the derivatives can be defined on the entire domain of a function.
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For an n ∈ N := {1, 2, 3, . . .}, let Dn(P ) be the family of all n-times differentiable functions f : P → R

and Cn(P ) the family of all f ∈ Dn(P ) with continuous nth derivative f (n). Symbols D0(P ) and C0(P )
will stand for the class C(P ) of all continuous maps f : P → R.1

The smooth extension theorems, for real valued functions defined on closed subsets of Rk, have been 
extensively studied over the past century, see e.g., [1,3,8–10,13,15,16,18,19]. However, these studies were 
mainly concerned with the versions of Whitney’s Extension Theorem, WET, from 1934 papers [18,19], in 
which the derivatives of all orders are to be continuous. For functions of one variable WET can be stated 
as follows (see, e.g., [6] or [7]), where for f ∈ Dn(P ) and a ∈ P

Tn
a f(x) :=

n∑
i=0

f (i)(a)
i! (x− a)i

is the n-th degree Taylor polynomial2 of f at a and Qn
f : P 2 → R is defined as

Qn
f (a, b) :=

⎧⎨
⎩

Tn
b f(b) − Tn

a f(b)
(b− a)n for a �= b,

0 for a = b.

Whitney’s Extension Theorem WET. Let P ⊂ R be perfect and n ∈ N. A function f : P → R admits an 
extension F ∈ Cn(R) if, and only if, f ∈ Cn(P ) and the map Qn−i

f(i) : P 2 → R is continuous for every i ≤ n.

The problem of existence of an extension F ∈ Dn(R) of f : P → R (no continuity of F (n) imposed) so 
far was studied considerably less vigorously and only for n = 1. In fact, until this paper little was known in 
this direction beyond the following 1923 theorem of Jarník.

Jarník’s Extension Theorem JET. Let P ⊂ R be closed. A map f : P → R admits an extension F ∈ D1(R)
if, and only if, f ∈ D1(P ).3

The story behind this theorem, as well as its elementary proof, is given in details in the recent paper [4]. 
(See also [7]).) In short, the theorem first appeared in 1923 papers of V. Jarník: [12] in Czech and [11] in 
French, but with only sketch of a proof. These papers, and the theorem, were unnoticed by the mathematical 
community until the mid 1980’s. The result was rediscovered in 1974 by G. Petruska and M. Laczkovich [17]
and was further studied in 1984 paper [14] of J. Mařík. Jarník’s paper [11] was rediscovered by the authors 
of 1985 paper [2], which discusses multivariable version of JET. Interestingly, it is shown in [2] that the 
theorem does not have a straightforward generalization to functions of two or more variables, since in such 
case the derivative of a partial function need not be of Baire class one. (At the same time, it is proved 
in [2] that a differentiable f : P → R, with P being a closed subset of Rk, admits differentiable extension 
F : Rk → R if, and only if, the derivative of f is of Baire class one.)

The main result of this article, presented in the next section as Theorem 1, is an extension of JET to the 
higher order of differentiation. This constitutes a solution to a problem posed in [7, prob. 6.4].

In addition, we show in Theorem 2 how the characterization from Theorem 1 can be encompassed in WET, 
giving an alternative characterization in the theorem. This new characterization, which is of independent 

1 The notation Cn(P ) agrees with the topological standard on what C(P ), our C0(P ), stands for. This should not be confused 
with Cn(P ), often used in the papers concerning Whitney’s extension theorem (see e.g. [10]), that stands for all f ∈ Cn(P )
admitting extension F ∈ Cn(R).
2 In the literature concerning Whitney’s extension theorem (see e.g. [10]) the polynomials Tn

a f are often denoted as Ja(f) and 
referred to as “jets” of f at a.
3 For closed, not necessary perfect, sets P ⊂ R we write f ∈ D1(P ) when the finite limit limx→p, x∈P

f(x)−f(p)
x−p exists for all 

p ∈ P ′.
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interest, allows us also to present a self-contained proof of WET, which seems to be simpler than any other 
proofs of WET (for one variable) in existence.

We also construct, in Section 6, the linear extension operators that associate to each Dn(R)-extendable 
f ∈ C(P ) its Dn(R) extension and to each Cn(R)-extendable f ∈ C(P ) its Cn(R) extension.

2. The theorems

Theorem 1 (Generalization of JET). For every n ∈ N and perfect P ⊂ R the following conditions are 
equivalent.

(a) f : P → R admits an extension F ∈ Dn(R).
(b) f ∈ Dn(P ) and if n > 1, then f ′ has an extension φ ∈ Dn−1(R) and for every such extension and the 

map g ∈ Dn(P ) defined for every x ∈ P as g(x) := f(x) −
∫ x

0 φ(t) dt, we have

lim
k→∞

g(bk) − g(ak)
(bk − ak)n−1

(
ak+bk

2 − p
) = 0 (1)

for every one-to-one sequence 〈〈ak, bk〉 ∈ P 2 : k ∈ N〉 converging to a 〈p, p〉 ∈ P 2 and such that
∅ �= (ak, bk) ⊂ R \ P for each k ∈ N.

Since for n = 1 the condition (b) is just a statement f ∈ Dn(P ), Theorem 1 is clearly a generalization of 
JET. Note also that the part of (b) concerning f ′ need not be satisfied for n = 1, since then f ′ need not be 
continuous, in which case it clearly has no Dn−1(R)-extension.

We will also prove the following expanded form of WET.

Theorem 2 (Expanded form of WET). For every n ∈ N and perfect P ⊂ R the following conditions are 
equivalent.

(A) f : P → R admits an extension F ∈ Cn(R).
(B) f ∈ Cn(P ) and the map Qn−i

f(i) : P 2 → R is continuous for every i ≤ n.
(C) f ∈ Cn(P ), f ′ has an extension φ ∈ Cn−1(R), and, for every such extension map φ and function 

g ∈ Cn(P ) defined as g(x) := f(x) −
∫ x

0 φ(t)dt for every x ∈ P , the mapping qng : P 2 → R defined as

qng (a, b) :=

⎧⎨
⎩

g(b) − g(a)
(b− a)n for a �= b,

0 for a = b

is continuous.

Of course the equivalence of (A) and (B) is just a restatement of WET. The condition (C) concerns the 
same function g used in (b), stressing similarity between both theorems. Beside, the property (C) seems 
to be a characterization of Cn(R)-extendable functions that is of independent interest, since its statement 
does not involve the derivatives f (i) for i > 1. In addition, the inclusion of condition (C) in the theorem 
allows us to present a self-contained proof of Theorem 2, which seems to be the simplest proof of WET (for 
one variable) in existence.
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Fig. 1. A graph of function ψ.

Fig. 2. A graph of g (solid line) extended, by dashed lines, to g̃.

3. Canonical extensions

In this section we will describe a simple canonical extension g̃ : R → R of any function g from a non-empty 
closed subset P of R into R. For the functions g satisfying specific properties related to the properties (b) 
and (C) from the theorems, this extension will have the desired smoothness properties. In what follows 
ψ : R → R will be a fixed C∞ non-decreasing function with ψ � (−∞, 1/3] ≡ 0 and ψ � [2/3, ∞) ≡ 1. See 
Fig. 1.

So, fix a non-empty closed P ⊂ R and a function g : P → R to be extended. Let H be the convex hull 
of P , an interval, and {(aj, bj) : j ∈ J} be a list of all connected components of H \ P , with no repetitions. 
For every j ∈ J define the following C∞ maps from R to R:

• the linear map �j(x) := x−aj

bj−aj
(with �j(aj) = 0 and �j(bj) = 1);

• βj := ψ ◦ �j and αj := 1 − βj ;
• g̃j := αjg(aj) + βjg(bj) = g(aj) + [g(bj) − g(aj)]βj .

The desired canonical extension g̃ of g is defined on H as:

g̃ � P := g and g̃ � (aj , bj) := g̃j � (aj , bj) for every j ∈ J . (2)

Moreover, on any unbounded component C of R \ H we define g̃ � C :≡ g(p), where p ∈ P is the only 
endpoint of C. See Fig. 2. This completes the construction of the canonical extension g̃ of g.

Fact 3. If ∅ �= P ⊂ R is closed and g̃ is the canonical extension of g : P → R, then g̃ is C∞ on R \ P and 
also on the closure of any connected component of R \ P .

Proof. This holds, since g̃ � [aj , bj ] = g̃j � [aj , bj ] is C∞ for every j ∈ J . �
For every j ∈ J , let Mj = [cj , dj ] be the middle third of (aj , bj) and put Lj = (aj , cj) and Rj = (dj , bj). 

Also, let L =
⋃

Lj , M =
⋃

Mj , and R =
⋃

Rj .
j∈J j∈J j∈J
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Lemma 4. Let ∅ �= P ⊂ R be perfect and g ∈ D1(P ) be such that g′ ≡ 0. If g̃ is the canonical extension of 
g, then for every p ∈ P , s < ω,4 and sequence 〈xk ∈ R \ (M ∪ P ) : k ∈ N〉 converging to p, we have

lim
k→∞

∣∣∣∣ g̃(s)(xk) − g(s)(p)
xk − p

∣∣∣∣ = 0. (3)

Proof. Since P = {R \H, L, R} is a partition of R \ (M ∪ P ), it is enough to show that (3) holds for any 
sequence 〈xk : k ∈ N〉 as in the lemma which, additionally, is strictly monotone and such that there is an 
S ∈ P for which xk ∈ S for all k ∈ N.

So, let 〈xk : k ∈ N〉 be such a sequence. For simplicity, we assume that it is increasing, the other case 
being similar. We have the following cases.

Case S = R \H. Then all but finitely many xk belong to the same component of R \H and so (3) follows 
from the fact that g̃ is constant on its closure.

Case S ∈ {L, R}. Then, for every k ∈ N there exists unique jk ∈ J such that xk ∈ (ajk , bjk). If the set 
J0 = {jk : k ∈ N} is finite, then all but finitely many xk belong to the same interval (ajk , bjk). Therefore, 
since g̃ is C∞ on [ajk , bjk ], (3) follows. So, we can assume that J0 is infinite. In particular,

ajk < xk < bjk < p for each k ∈ N.

Now, if S = R, then |xk − p| > |bjk − p| and g̃(s)(xk) = g̃
(s)
jk

(xk) = g(s)(bjk). So, (3) holds, as, by g′ ≡ 0,

lim
k→∞

∣∣∣∣ g̃(s)(xk) − g(s)(p)
xk − p

∣∣∣∣ ≤ lim
k→∞

∣∣∣∣g(s)(bjk) − g(s)(p)
bjk − p

∣∣∣∣ =
∣∣∣g(s+1)(p)

∣∣∣ = 0.

Also, if S = L, then |xk − p| > 1
2 |ajk − p| and g̃(s)(xk) = g̃

(s)
jk

(xk) = g(s)(ajk). So, (3) holds, as

lim
k→∞

∣∣∣∣ g̃(s)(xk) − g(s)(p)
xk − p

∣∣∣∣ ≤ 2 lim
k→∞

∣∣∣∣g(s)(ajk) − g(s)(p)
ajk − p

∣∣∣∣ = 2
∣∣∣g(s+1)(p)

∣∣∣ = 0,

completing the proof. �
4. Proof of Theorem 1

First we will prove Theorem 1 under the additional assumption that the function to be extended has 0 
derivative everywhere. It is stated as the following lemma.

Lemma 5. Let n ∈ N, ∅ �= P ⊂ R be perfect, g ∈ D1(P ) be such that g′ ≡ 0, and g̃ be the canonical extension 
of g.

(i) If g satisfies (1), then g̃ ∈ Dn(R).
(ii) If n > 1 and g has an extension ĝ ∈ Dn(R), then g satisfies (1).

Proof. (i): By Fact 3, it is enough to show that for every s ∈ {0, . . . , n − 1} we have g̃(s+1)(p) = 0 for every 
p ∈ P . We will prove this by induction on s. To see this, by Lemma 4 it is enough to prove that (3) holds 
for every monotone sequence 〈xk ∈ R : k ∈ N〉 converging to p such that either all xk belong to P or all of 

4 Here ω stands for the first infinite ordinal. Thus, s < ω is equivalent to s ∈ {0, 1, 2, . . .}.
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them belong to M . In the first of these cases, (3) is clearly implied by our assumption g′ ≡ 0 and, for s > 0, 
the inductive assumption that, for every p ∈ P , g̃(s)(p) = 0 which is equal to g(s)(p). So, in the rest of the 
argument we assume that xk ∈ M for all k ∈ N.

For every k ∈ N let jk ∈ J be such that xk ∈ (ajk , bjk). Without loss of generality we can assume that 
indexes jk are distinct, that is, that the sequence 〈〈ajk , bjk〉 ∈ P 2 : k ∈ N〉 is as in the statement of (1). 
Notice also that |xk − p| > 1

3 |ajk − p| and |xk − p| > 1
3 |bjk − p|. Now, (3) holds for s = 0, since then

lim
k→∞

∣∣∣∣ g̃(s)(xk) − g̃(s)(p)
xk − p

∣∣∣∣
= lim

k→∞

∣∣∣∣ [αjk(xk)g(ajk) + βjk(xk)g(bjk)] − [αjk(xk) + βjk(xk)]g(p)
xk − p

∣∣∣∣
≤ lim

k→∞

[
|αjk(xk)|

∣∣∣∣g(ajk) − g(p)
xk − p

∣∣∣∣ + |βjk(xk)|
∣∣∣∣g(bjk) − g(p)

xk − p

∣∣∣∣
]

≤ 3 lim
k→∞

∣∣∣∣g(ajk) − g(p)
ajk − p

∣∣∣∣ + 3 lim
k→∞

∣∣∣∣g(bjk) − g(p)
bjk − p

∣∣∣∣ = 6 |g′(p)| = 0.

To see that (3) holds for s > 0, notice that in this case β(s)
jk

(xk) = ψ(s)(�jk (xk))
(bjk−ajk

)s and, by the induc-
tive assumption, g̃(s)(p) = g(s)(p) = 0. Also, |ψ(s)(�jk(xk))| ≤ M , where M = supψ(s)[[0, 1]] ∈ R, and
|xk − p| > 1

2

∣∣∣ajk
+bjk
2 − p

∣∣∣. So

lim
k→∞

∣∣∣∣ g̃(s)(xk) − g̃(s)(p)
xk − p

∣∣∣∣
= lim

k→∞

∣∣∣∣∣ g̃
(s)
jk

(xk)
xk − p

∣∣∣∣∣ = lim
k→∞

∣∣∣∣∣ [g(bjk) − g(ajk)]β(s)
jk

(xk)
xk − p

∣∣∣∣∣
= lim

k→∞

∣∣∣∣g(bjk) − g(ajk)
xk − p

ψ(s)(�jk(xk))
(bjk − ajk)s

∣∣∣∣
≤ 2M lim

k→∞

∣∣∣∣∣∣
g(bjk) − g(ajk)

(bjk − ajk)n−1
(

ajk
+bjk
2 − p

)
∣∣∣∣∣∣ = 0,

where in the inequality we use the fact that |bjk − ajk |s ≥ |bjk − ajk |n−1 for k large enough and the last 
equation is justified by (1). This completes the proof of (i).

(ii): Notice that g′ ≡ 0 implies that ĝ(i) � P = g(i) ≡ 0 for every i ∈ N. In particular, we have
Tn−2
ak

ĝ(x) =
∑n−2

i=0
ĝ(i)(ak)

i! (x − ak)i = ĝ(ak) and, by the Lagrange formula for the remainder of this Taylor 
polynomial, for every k ∈ N there exists a ξk ∈ (ak, bk) such that

ĝ(bk) − ĝ(ak) = ĝ(bk) − Tn−2
ak

ĝ(bk) = ĝ(n−1)(ξk)
(n− 1)! (bk − ak)n−1.

Hence, using limk→∞ ξk = p and ĝ(n−1)(p) = ĝ(n)(p) = 0, we get

lim
k→∞

∣∣∣∣∣ ĝ(bk) − ĝ(ak)
(bk − ak)n−1

(
ak+bk

2 − p
)
∣∣∣∣∣ = lim

k→∞

∣∣∣∣∣ ĝ(n−1)(ξk)
(n− 1)!

(
ak+bk

2 − p
)
∣∣∣∣∣

= lim
k→∞

∣∣∣∣∣ ξk − p

(n− 1)!
(
ak+bk

2 − p
)
∣∣∣∣∣
∣∣∣∣ ĝ(n−1)(ξk) − ĝ(n−1)(p)

ξk − p
− ĝ(n)(p)

∣∣∣∣ = 0
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as 
∣∣∣∣ ξk−p

(n−1)!
(

ak+bk
2 −p

)
∣∣∣∣ ≤ 2 and limk→∞

(
ĝ(n−1)(ξk)−ĝ(n−1)(p)

ξk−p − ĝ(n)(p)
)

= 0. �
Proof of Theorem 1. For n = 1 Theorem 1 is a restatement of JET. So, in what follows we assume that 
n > 1.

(b)=⇒(a): We will find an extension φn ∈ Dn(R) of f . Indeed, by (b), there exists an extension
φn−1 ∈ Dn−1(R) of f ′ and gn ∈ Dn(P ) defined as

gn(x) := f(x) −
x∫

0

φn−1(t) dt for x ∈ P , (4)

satisfies (1). Moreover, since φn−1 ∈ Dn−1(R) ⊂ D1(R) is continuous, we have g′n(x) = f ′(x) −φn−1(x) = 0
for every x ∈ P . In particular, gn satisfies (1) and the assumptions of Lemma 5(i). Therefore, there exists 
an extension g̃n ∈ Dn(R) of gn. We claim that φn ∈ Dn(R) given by

φn(x) := g̃n(x) +
x∫

0

φn−1(t) dt, (5)

is as needed. Indeed, clearly it is Dn, as a sum of two such functions. Moreover, for every x ∈ P , we have 
φn(x) = gn(x) +

∫ x

0 φn−1(t) dt = f(x). That is, φn indeed extends f .
(a)=⇒(b): Let F ∈ Dn(R) be an extension of f . We need to show that this implies (1). Indeed, clearly 

f ′ has an extension φ ∈ Dn−1(R), namely φ = F ′. To finish the proof of (1), fix an extension φ ∈ Dn−1(R)
of f ′ and define g ∈ Dn(P ) via

g(x) := f(x) −
x∫

0

φ(t) dt for x ∈ P .

We need to show that g satisfies (1). So, choose 〈〈ak, bk〉 ∈ P 2 : k ∈ N〉 as in its statement, that is, one-to-one, 
converging to a 〈p, p〉 ∈ P 2, and such that ∅ �= (ak, bk) ⊂ R \ P for each k ∈ N.

Clearly, ĝ ∈ Dn(R) defined as

ĝ(x) := F (x) −
x∫

0

φ(t) dt for x ∈ R

is an extension of g. Also, ĝ′ � P ≡ 0, as ĝ′(x) = g′(x) = f ′(x) − φ(x) = 0 for every x ∈ P . So, by 
Lemma 5(ii), g indeed satisfies (1). �
5. Proof of Theorem 2

To prove Theorem 2 we will also need the next lemma.

Lemma 6. Let n ∈ N, ∅ �= P ⊂ R be perfect, g ∈ D1(P ) be such that g′ ≡ 0, and g̃ be the canonical extension 
of g. If qng is continuous, then g̃ ∈ Cn(R).

Proof. First notice that continuity of qng implies (1), since for every p ∈ P and 〈〈ak, bk〉 ∈ P 2 : k ∈ N〉 as in 
this condition, we have
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lim
k→∞

∣∣∣∣∣ g(bk) − g(ak)
(bk − ak)n−1

(
ak+bk

2 − p
)
∣∣∣∣∣ ≤ lim

k→∞

∣∣∣∣ g(bk) − g(ak)
(bk − ak)n−1 1

2 (bk − ak)

∣∣∣∣ = 0,

as limk→∞

∣∣∣ g(bk)−g(ak)
(bk−ak)n−1 1

2 (bk−ak)

∣∣∣ = 2 limk→∞

∣∣∣ g(bk)−g(ak)
(bk−ak)n

∣∣∣ = 2qng (p, p) = 0. So, by Lemma 5(i), g̃ ∈ Dn(R). It 
remains to show that g̃(n) is continuous.

But, by Fact 3, it is continuous on R \ P . So, we need to show that it is also continuous on P . To 
see this, fix p ∈ P . We need to show that for every sequence 〈xk ∈ R : k ∈ N〉 converging to p, we 
have limk→∞

(
g̃(n)(xk) − g̃(n)(p)

)
= 0. But, by Lemma 4, this holds for any such sequence with every 

xk ∈ R \ (M ∪ P ). Also, since g′ ≡ 0, this holds whenever every xk is in P . So, we can assume that 
every xk is in M . In particular, for every k ∈ N there is jk ∈ J such that xk ∈ (ajk , bjk). Hence, using 

β
(n)
jk

(xk) =
ψ(n)(�jk (xk))
(bjk−ajk

)n and for M̄ = supψ(n)[[0, 1]] ∈ R

lim
k→∞

(
g̃(n)(xk) − g̃(n)(p)

)
= lim

k→∞

∣∣∣g̃(n)
jk

(xk)
∣∣∣

= lim
k→∞

∣∣∣[g(bjk) − g(ajk)]β(n)
jk

(xk)
∣∣∣

= lim
k→∞

∣∣∣∣[g(bjk) − g(ajk)]ψ
(n)(�jk(xk))

(bjk − ajk)n

∣∣∣∣
≤ M̄ lim

k→∞

∣∣∣∣g(bjk) − g(ajk)
(bjk − ajk)n

∣∣∣∣ = M̄qng (p, p) = 0,

completing the proof. �
Proof of Theorem 2. (C)=⇒(A): Note that the map g satisfies the assumptions of Lemma 6. So, g̃ ∈ Cn(R)
and F : R → R defined as F (x) = g̃(x) +

∫ x

0 φ(t) dt is the desired Cn(R) extension of f .

(A)=⇒(B): It is enough to show that for every m < ω, if h ∈ Cm(R), then Qm
h is continuous. So, assume 

that h ∈ Cm(R). Clearly Qm
h is continuous at any point 〈a, b〉 ∈ R2 with a �= b. We need to show that Qm

h is 
continuous at every 〈a, a〉. To see this, choose a sequence 〈ak, bk〉k∈N converging to 〈a, a〉. We need to show 
that limk→∞ Qm

h (ak, bk) = 0.
By the Lagrange formula for the remainder of Taylor polynomial, for every k ∈ N there exists a 

number ξk between ak and bk such that h(bk) − Tm−1
ak

h(bk) = h(m)(ξk)
m! (bk − ak)m. Therefore, since

Tm
bk
h(bk) − Tm

ak
h(bk) = h(bk) −

(
Tm−1
ak

h(bk) + h(m)(bk)
m! (bk − ak)m

)
,

Qm
h (ak, bk) =

h(m)(ξk)
m! (bk − ak)m − h(m)(bk)

m! (bk − ak)m

(bk − ak)m
= h(m)(ξk) − h(m)(bk)

m!

converges to 0, as k → ∞, since h(m) is continuous and 〈ak, bk〉 →k→∞ 〈a, a〉. Thus,

lim
k→∞

Qm
h (ak, bk) = 0 = Qm

h (a, a),

as needed.

(B)=⇒(C): First we prove that for every φ ∈ Cn−1(R) extending f ′ and g ∈ Cn(P ) defined, for every 
x ∈ P , as g(x) := f(x) −

∫ x

0 φ(t) dt the map qng is continuous. To see this, let Φ: R → R be given via 
Φ(x) :=

∫ x

0 φ(t) dt. Then Φ ∈ Cn(R) and applying just proved implication (A)=⇒(B) to h := Φ � P , we 
see that Qn

h is continuous. Since, by our assumption, Qn
f is also continuous, to show continuity of qng it is 

enough to prove that
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Fig. 3. A graph of f (solid line) extended to its linear interpolation f̄ .

qng (a, b) = Qn
f (a, b) −Qn

h(a, b) (6)

for all 〈a, b〉 ∈ P 2.
Indeed, for every p ∈ P we have Tn

p f(b) − Tn
p h(b) = f(p) − h(p) = g(p) since f (i)(p) = h(i)(p) for all 

i ∈ {1, . . . , n}. Using this with p = b and p = a, we get 
(
Tn
b f(b) −Tn

a f(b)
)
−
(
Tn
b h(b) −Tn

a h(b)
)

= g(b) −g(a). 
So, for a �= b,

Qn
f (a, b) −Qn

h(a, b) =
(
Tn
b f(b) − Tn

a f(b)
)
−

(
Tn
b h(b) − Tn

a h(b)
)

(b− a)n = qng (a, b)

proving (6), as it clearly holds also for a = b.
To finish the proof, it is enough to show that (B) implies that there is a φ ∈ Cn−1(R) extending f ′. This 

is proved by induction on n ∈ N.
Such φ clearly exists for n = 1. So, assume that the statement holds for some n ∈ N. To see that it also 

holds for n +1 fix an f ∈ Cn+1(P ) satisfying (B). Then, f ′ ∈ Cn(P ) also satisfies (B) and, by the inductive 
assumption, there is a φ ∈ Cn−1(R) extending f ′′. But this means that f ′ satisfies (C) and, as (C)=⇒(A), 
it satisfies also (A). Therefore, f ′ admits Cn(R)-extension, as needed. �
6. Extensions by linear operators

For n < ω and a non-empty perfect subset P of R let Dn(P ) stand for the class of all functions f : P → R

admitting Dn-extensions F : R → R, that is, those characterized in Theorem 1. Similarly, Cn(P ) will stand 
for the functions f : P → R admitting Cn-extensions F : R → R, that is, those characterized in Theorem 2. 
Also, for f ∈ C(P ) let f̄ : R → R be the linear interpolation of f which on each unbounded component of 
R \ P (if any such component exists) is constant. See Fig. 3.

The construction of the extensions presented in the proofs of the theorems can be represented in a 
form of linear operators that assign to each f in Cn(P ) (or Dn(P )) its extension F in Cn(R) (or Dn(R), 
respectively). First, we describe the operators Tn : C(P ) → C(R) such that each Tn(f) extends f and also 
Tn(f) ∈ Cn(R) whenever f ∈ Cn(P ). They are defined by induction on n < ω as follows: for every f ∈ C(P )
and x ∈ R we put

• T0(f) = f̄ ,
• Tn+1(f)(x) = g̃(x) +

∫ x

0 Tn(f ′)(t) dt, where g(y) = f(y) −
∫ y

0 Tn(f ′)(t) dt for every y ∈ P .

It is easy to see that each Tn is indeed a linear operator.

Theorem 7. Let n < ω, P be a perfect subset of R, and the linear map Tn : C(P ) → C(R) be the extension 
operator defined as above. Then Tn maps Dn(P ) ∩ C1(P ) into Dn(R) and Cn(P ) into Cn(R).
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Proof. The proof is by induction on n < ω. For n = 0 the result is obvious. So, we assume it holds for some 
n < ω and prove it for n + 1.

To see this, choose an f ∈ Dn+1(P ) ∩ C1(P ). Then Tn(f ′) is continuous: for n = 0 this follows from the 
continuity of f ′ and f̄ ′ = T0(f ′), while for n > 0 by the inductive assumption, since then f ′ ∈ Dn(P ) ⊂ C(P ). 
Hence, g′(y) = f ′(y) − d

dy

(∫ y

0 Tn(f ′)(t) dt
)

= f ′(y) −Tn(f ′)(y) = 0 on P since, by the inductive assumption, 
Tn(f ′) � P = f ′. Therefore, by Theorem 1 and Lemma 5, g̃ ∈ Dn+1(R). Moreover, if f is in Cn+1(P ), then 
so is g and, by Theorem 2 and Lemma 6, we also have g̃ ∈ Cn+1(R).

The map x �→
∫ x

0 Tn(f ′)(t) dt is Dn+1(R), since Tn(f ′) is continuous and, by inductive assump-
tion, Tn(f ′) ∈ Dn(R); also it is Cn+1(R) whenever f ∈ Cn+1(P ). Therefore, Tn+1(f) is in Dn+1(R)
(in Cn+1(R) for f ∈ Cn+1(P )) as a sum of two such functions. Finally, for every x ∈ P we have
Tn+1(f)(x) = g(x) +

∫ x

0 Tn(f ′)(t) dt =
(
f(x) −

∫ x

0 Tn(f ′)(t) dt
)

+
∫ x

0 Tn(f ′)(t) dt = f(x). In particular, 
Tn+1(f) � P = f , as needed. �

For an arbitrary f ∈ D1(P ) the map T1(f) needs neither extend f nor be differentiable (everywhere), 
since f ′ may be discontinuous in which case the map x �→

∫ x

0 f̄ ′(t) dt is differentiable only almost everywhere. 
However, a linear extension operator T ∗

n from Dn(P ) into Dn(R) can be defined as follows.

(I) Choose a linear basis B of D1(P ) over R and for every f ∈ B let T ∗
1 (f) ⊃ f be a D1(R) map, which 

exists by JET. Then T ∗
1 on D1(P ) can be defined as a unique linear map extending the map T ∗

1 � B.
(II) As above, we can define linear extension operators T ∗

n : Dn(P ) → Dn(R) by induction on n ∈ N, by 
letting T ∗

n+1(f)(x) = g̃(x) +
∫ x

0 T ∗
n(f ′)(t) dt for every x ∈ P , where g(y) = f(y) −

∫ y

0 T ∗
n(f ′)(t) dt for 

every y ∈ P .

An argument as for Theorem 7 shows that these are indeed linear extension operators from Dn(P ) to Dn(R).
There has been a lot of work in literature discussing the existence of bounded smooth extension linear 

operators, that is, such as Tn—see e.g. [10] and the references cited there. In such work, the norm of an 
f ∈ Cn(R) is defined as

‖f‖Cn(R) := max
i≤n

sup
x∈R

|f (i)(x)|

and the study is restricted to the class Cn
b (R) of all functions f ∈ Cn(R) having this norm finite. Also, the 

norm of an f ∈ Cn(P ) is defined as

‖f‖Cn(P ) := inf{‖F‖Cn(R) : F ∈ Cn(R) extends f}

and the study concentrates on the class Cn
b (P ) of all f ∈ Cn(P ) with finite ‖f‖Cn(P ). It would be nice for 

the operator Tn � Cn
b (P ) to be bounded. Unfortunately, this is not the case, as the following example shows.

Example 8. There exists a perfect P ⊂ R and an f ∈ Cn
b (P ) such that T1(f) is unbounded.

Construction. Let P =
⋃

n∈N [2n, 2n +1] and for every x ∈ [2n, 2n +1] define f(x) := x −2n. It is easy to see 
that f ∈ Cn

b (P ). However, T1(f) on each interval [2n, 432n] is still given as x − 2n, so has maximum ≥ 2n/3. 
This ensures that T1(f) is unbounded. �

In spite of the difficulties that Example 8 shows, it seems quite clear that the constructions of Tn and 
T ∗
n could be slightly modified to ensure that the modified Tn is indeed bounded on Cn

b (P ) and similarly for 
T ∗
n . The details of this claim will be examined in our forthcoming paper.
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7. Final remarks on format of Theorem 7

One may wonder if the format of the characterization from Theorem 7 can be further simplified. We 
provide here some results showing that this might be hard to achieve.

We say that a function Q : P 2 → R is continuous with respect to the first (or second) variable, provided 
for every p ∈ P the map R � x �→ Q(x, p) ∈ R (R � x �→ Q(p, x) ∈ R, respectively) is continuous. Also, Q is 
separately continuous, provided it is continuous with respect to both variables, first and second. The study of 
separately continuous functions comes back to the work of Cauchy, Heine, Peano, Baire, and Lebesgue. See 
recent survey [5] for more detailed history. Let us recall here only that a separately continuous Q : P 2 → R

must be of Baire class one, but need not be continuous.
The proof of the following fact is elementary, see e.g. [6, prop. 3.2(i)].

Fact 9. Let n ∈ N. If f ∈ Dn(R), then Qn
f : R2 → R is continuous with respect to the second variable, that 

is, the map R � x �→ Qn
f (a, x) ∈ R is continuous for every a ∈ R.

Fact 9 and WET imply that every Dn(R)-extendable function f : P → R satisfies

(Wn) Qn−1−i
f(i) : P 2 → R is continuous for every i < n while Qn

f is continuous with respect to the second 
variable.

One may wonder, if (Wn) implies also Dn(R)-extendability of f . Although, by JET this implication indeed 
holds for n = 1, the following example shows that it does not for n = 2.

Example 10. There exist a perfect set P ⊂ [0, 1] and an f : P → R such that f ∈ C2(P ) is 
C1([0, 1])-extendable, not D2([0, 1])-extendable, while Q2

f = q2
f is separately continuous. In particular, f

satisfies (W2) but is not D2([0, 1])-extendable.

Construction. For n ∈ N let an := 2−n, bn := 2−n + 4−n, and Jn := (an, bn). Let P := [0, 1] \
⋃

n∈N Jn and 
a0 = 1. We define f(0) := 0 and, for n ∈ N, f � [bn, an−1] ≡ 7−n. Then f is as needed.

To see that f is C1([0, 1])-extendable, define f0 ∈ C0([0, 1]) by f0 � P ≡ 0 and for each x ∈ Jn, n ∈ N, 
as f0(x) = cn dist(x, P ), where cn is such that 

∫ bn
an

f0(t) dt = 1
416−ncn (evaluated as an area of a triangle: 

1
2 · 4−n ·

( 1
24−ncn

)
) equals to f(bn) − f(an) = 7−n − 7−n−1 = 6

77−n. In particular, cn = 24
7
( 16

7
)n and the 

maximum value of f0 on Jn, that is f0
(
an+bn

2
)

= 1
24−ncn = 12

7
( 4

7
)n, converges to 0 = f0(0), ensuring 

continuity of f0. Therefore, the function f̄ : [0, 1] → R defined as f̄(x) :=
∫ x

0 f0(t) dt is C1 and it extends f , 
since f̄(bn) − f̄(an) = f(bn) − f(an) for every n ∈ N.

We have f ∈ C2(P ), as f ′ � P = f0 � P ≡ 0. This also implies that Q2
f = q2

f .
To see that q2

f is separately continuous, first notice that it is continuous at any point except possibly 
at 〈0, 0〉. Indeed, this is obvious at any 〈a, b〉 ∈ P 2 with a �= b, while at 〈p, p〉 with p > 0 this follows 
from WET, as f � P ∩ [p/2, 1] has clearly C∞(R)-extension. The map q2

f is separately continuous at 〈0, 0〉
since for any b ∈ [bn, an−1] we have 0 ≤ q2

f (0, b) = f(b)
b2 < f(b)

a2
n

= 7−n

4−n →n→∞ 0 = q2
f (0, 0). This, with 

q2
f (b, 0) = −f(b)

b2 = −q2
f (0, b), ensures its separate continuity.

Finally, our function f is not D2([0, 1])-extendable, as it does not satisfy (1) for 〈an, bn〉n, since we have 
f(bn)−f(an)

(bn−an) an+bn
2

=
6
77−n

4−n(2−n+ 1
24−n) =

6
7

( 7
8 )n+ 1

2 ( 7
16 )n →n→∞ ∞. �

It might be also natural to wonder, whether we could strengthen Fact 9 to show that, under the same 
assumptions, Qn

f is also continuous with respect to the first variable. The following example shows that such 
strengthening of Fact 9 is false, already for n = 2.
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Example 11. There is an f ∈ D2(R) such that limx→0 Q
2
f (x, 0) �= 0 = q2

f (0, 0).

Proof. The statement holds for

f(x) :=
{
x4 cos

(
x−1) for x �= 0,

0 for x = 0.

Indeed, f ∈ D2(R) with f ′(0) = f ′′(0) = 0 and, for x �= 0,

f ′(x) = 4x3 cos
(
x−1) + x2 sin

(
x−1)

f ′′(x) = 12x2 cos
(
x−1) + 6x sin

(
x−1)− cos

(
x−1) .

In particular, for xk = 1
2kπ ,

lim
k→∞

f(xk)
x2
k

= lim
k→∞

f ′(xk)
xk

= 0 & lim
k→∞

f ′′(xk) = −1.

Therefore,

Q2
f (x, 0) = T 2

0 f(0) − T 2
xf(0)

(0 − x)2

=
f(0) −

(
f(x) + f ′(x)(0 − x) + 1

2f
′′(x)(0 − x)2)

)
(0 − x)2

= −f(x)
x2 + f ′(x)

x
− 1

2f
′′(x)

does not converge to 0, as x → 0, since limk→∞ Q2
f (xk, 0) = 1

2 . �
It would be interesting to find a version of Theorem 1 for the functions of more than one variable. 

However, a simple-minded generalization of Theorem 1 is not valid in such setting since, as we mentioned 
earlier, this is already the case for JET, as proved in [2].
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