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This paper concerns three kinds of seemingly paradoxical real valued functions 
of one variable. The first two, defined on R, are the celebrated continuous 
nowhere differentiable functions, known as Weierstrass’s monsters, and everywhere 
differentiable nowhere monotone functions—simultaneously smooth and very 
rugged—to which we will refer as differentiable monsters. The third kind was 
discovered only recently and consists of differentiable functions f defined on a 
compact perfect subset X of R which has derivative equal zero on its entire domain, 
making it everywhere pointwise contractive, while, counterintuitively, f maps X
onto itself. The goal of this note is to show that this pointwise shrinking globally 
stable map f can be extended to functions f, g : R → R which are differentiable and 
Weierstrass’s monsters, respectively. Thus, we pack three paradoxical examples into 
two functions. The construction of f is based on the following variant of Jarník’s 
Extension Theorem: For every differentiable function f from a closed P ⊆ R into R
there exists its differentiable extension f̂ : R → R such that f̂ is nowhere monotone 
on R \ P .

© 2018 Elsevier Inc. All rights reserved.

1. Background

The number of counterintuitive examples that are known in mathematical analysis is very large, see e.g. 
book [9]. However, few have as much interesting history as Weierstrass’s monsters—everywhere continuous 
nowhere differentiable functions from [a, b] to R—and differentiable monsters—the maps from [a, b] to R
that are everywhere differentiable but monotone on no interval. Shortly, the first published example of 
Weierstrass’s monster was given by K. Weierstrass and appeared in the 1872 paper, see [7] or [22]. At that 
time, mathematicians commonly believed that a continuous function must have a derivative at a “significant” 
set of points. Thus, the example was received with disbelief and such functions eventually became known 
as Weierstrass’s monsters. One of the most elegant examples of such maps comes from the 1930 paper [21]
of van der Waerden. It can be defined, on R, as
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f(x) :=
∞∑

n=0
4nfn(x), (1)

where fn(x) := mink∈Z

∣∣x− k
8n

∣∣ is the distance from x ∈ R to the set 1
8nZ =

{
k
8n : k ∈ Z

}
. (See [4] or [19, 

thm. 7.18].) A large number of simple constructions of Weierstrass’s monsters can be also found in [20] or 
a recent book [10].

The history of differentiable monsters is described in detail in the 1983 paper of A. M. Bruckner [2]. 
The first construction of such a function was given in 1887 by A. Köpcke [13]. (A gap in [13] was corrected 
in [14,15].) The most influential study of this subject is the 1915 paper [6] of A. Denjoy. Two relatively 
simple constructions of differentiable monsters come from the 1970s papers [12,23]. A considerably simpler 
construction was recently found by the first author [4]. Specifically, a differentiable monster in [4] is defined 
on R as

f(x) := h(x− t) − h(x), (2)

where h a strictly increasing differentiable function from R onto R for which G := {x ∈ R : f ′(x) = 0}
contains a countable dense set1 D and t is chosen from a dense Gδ-set 

⋂
d∈D

(
(−d + G) ∩ (d −G)

)
.

The third paradoxical example we consider was first constructed in the 2016 paper [5] of the first author 
and J. Jasinski. Since then, the construction was further generalized, in [1], and simplified, see [4]. The 
example is a differentiable self-homeomorphism f of a compact perfect subset X of R with f′(x) = 0 for all 
x ∈ X. Thus, f is shrinking at every x ∈ X and so, one would expect that the diameter of f[X] should be 
smaller than that of X, which evidently is not the case. Of course, X must have Lebesgue measure zero, 
since f ′ ≡ 0 implies that f[X] must have measure zero, see for example [8, p. 355]. The construction of f
from [4] is also simple enough to be described in few lines. Specifically, it can be defined as

f := h ◦ σ ◦ h−1 (3)

from X := h[2ω] onto itself, where σ : 2ω → 2ω is the add-one-and-carry adding machine,2 while h(s) :=∑∞
n=0 2sn3−(n+1)N(s�n), while N(s � n) is defined as N(s � n) :=

∑
i<n−1 si2i +(1 −sn−1)2n−1 +2n. Notice, 

that X = h[2ω] is a subset of the Cantor ternary set, denoted in what follows as C.
To extend f to a differentiable monster, we will use the following result, that was first proved in the 

1923 paper [11] of V. Jarník and independently rediscovered in the 1974 paper [17] of G. Petruska and 
M. Laczkovich. Its simplified proof, as well as a history of this result, can be found in a recent paper [3] of 
M. Ciesielska and the first author.

Proposition 1. (Jarník’s Extension Theorem) Every differentiable function f : P → R, where P ⊆ R is 
closed, admits a differentiable extension f̄ : R → R.

The differentiability of f : P → R is understood as the existence of its derivative, that is, a function 
f ′ : P ′ → R where P ′ ⊆ P is the set of all accumulation points of P and f ′(p) := limx→p, x∈P

f(x)−f(p)
x−p for 

every p ∈ P ′.
In our proof we will also use the following well known result.

Proposition 2. (Folklore) For every closed K ⊆ R, there exists a C∞ function g : R → R such that g(x) =
g′(x) = 0 for all x ∈ K and g(x) > 0 on Kc = R \K.

1 Such a map h was first constructed in the 1907 paper [18] of D. Pompeiu. It can be defined as the inverse of a function 
g(x) := ∑∞

i=1 2−i(x − qi)1/3, where {qi : i ∈ N} is an enumeration of rational numbers such that |qi| ≤ i for all i ∈ N.
2 For s = 〈s0, s1, s2, . . . 〉 ∈ 2ω it is defined: σ(s) := 〈0, 0, 0, . . . 〉 when si = 1 for all i < ω and, otherwise, σ(s) :=

〈0, 0, . . . , 0, 1, sk+1, sk+2, . . . 〉, where sk = 0 and si = 1 for all i < k.
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Proof. By [16, prop. 2.25], for every n ∈ N there is a C∞ map gn : R → [0, 1] such that gn = 1 on 
{x ∈ R : dist(x, K) ≥ 1

n} and gn = 0 on {x ∈ R : dist(x, K) ≤ 1
n+2}. Then g =

∑
n∈N

cngn is as needed, 
provided cng

(i)
n [R] ⊂ [0, 2−n] for all i ≤ n. �

2. Differentiable monster extending f

The existence of such a function will be deduced from the following version of Jarník’s Extension Theorem.

Theorem 3. For every closed set P ⊆ R and differentiable f : P → R, there exists a differentiable extension 
f̂ : R → R of f such that f̂ is nowhere monotone on R \ P . In particular, if P is nowhere dense in R, then 
f̂ is monotone on no interval.

Of course, applying Theorem 3 to our pointwise shrinking globally stable map f : X → X ⊆ R, the 
resulting extension f̂ : R → R is a differentiable monster.

Corollary 1. There exists a differentiable monster f : R → R extending the mapping f : X → X from (3). �
Our proof of Theorem 3 will be based on the following two lemmas, the first of which is a variant of the 

squeeze theorem.

Lemma 4. Let g : R → [0, ∞) and f̄ : R → R be differentiable such that g′(x) = 0 on the set [g = 0] :=
{x ∈ R : g(x) = 0}. If f̂ : R → R is such that 

∣∣∣f̂(x) − f̄(x)
∣∣∣ ≤ g(x) for every x ∈ R, then f̂ is differentiable 

on [g = 0].

Proof. It is enough to show that limh→0
f̂(x+h)−f̂(x)

h = f̄ ′(x) for every x ∈ [g = 0]. Indeed, if 
Q(x, h) = f̂(x+h)−f̂(x)

h − f̄(x+h)−f̄(x)
h , then limh→0 Q(x, h) = 0 since 0 ≤ |Q(x, h)| =

∣∣∣ f̂(x+h)−f̄(x+h)
h

∣∣∣ ≤∣∣∣ g(x+h)−g(x)
h

∣∣∣ h→0−→ g′(x) = 0. Therefore, limh→0
f̂(x+h)−f̂(x)

h = limh→0 Q(x, h) + limh→0
f̄(x+h)−f̄(x)

h = f̄ ′(x), 
as needed. �

In the next lemma, we consider C([a, b]) with the sup norm ‖ · ‖.

Lemma 5. For every ε > 0 and continuous function f̄ : [a, b] → R, there exists a differentiable nowhere 
monotone f : [a, b] → R such that 

∥∥f − f̄
∥∥ < ε, f(a) = f̄(a), f(b) = f̄(b), and f ′(a) = f ′(b) = 0.

Proof. First notice that

(∗) There exists a differentiable nowhere monotone ϕ : [0, 1] → [0, 1] such that ϕ(0) = ϕ′(0) = ϕ′(1) = 0
and ϕ(1) = 1.

To see this, take an arbitrary differentiable nowhere monotone function Φ: R → R (e.g. the map f from 
(2)) and notice that the set [g′ = 0] := {x ∈ R : Φ′(x) = 0} is dense. Since Φ is not constant, there exist 
p, q ∈ [Φ′ = 0] such that Φ(p) �= Φ(q). Let L1, L2 : R → R be linear functions such that L1(0) = p, L1(1) = q, 
L2(Φ(p)) = 0 and L2(Φ(q)) = 1. Then ϕ = L2 ◦ Φ ◦ L1 satisfies (∗).

Let M := ‖ϕ‖ and notice that M ≥ 1. By uniform continuity of f̄ , there exists a δ > 0 such that for 
every x, y ∈ [a, b],

|x− y| < δ implies
∣∣f̄(x) − f̄(y)

∣∣ < ε
. (4)
5M
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Choose a = x0 < x1 < · · · < xn = b with n ≥ 2 such that xi+1 − xi < δ for every i < n. Then

∣∣f̄(x) − f̄(xi)
∣∣ < ε

5M ≤ ε

5 for every i < n and x ∈ [xi, xi+1]. (5)

Define y0 = f̄(a), yn = f̄(b), and choose, by induction, numbers y1, . . . , yn−1 with the property that, for 
every i < n, we have yi+1 �= yi and 

∣∣yi − f̄(xi)
∣∣ < ε

5M ≤ ε
5 .3 In particular,

|yi+1 − yi| ≤
∣∣yi+1 − f̄(xi+1)

∣∣ +
∣∣f̄(xi+1) − f̄(xi)

∣∣ +
∣∣f̄(xi) − yi

∣∣ < 3ε
5M . (6)

For every i < n, let Li : R → R be a linear function such that Li(xi) = 0 and Li(xi+1) = 1. Define 
fi : [xi, xi+1] → R via formula

fi(x) := (yi+1 − yi)ϕ(Li(x)) + yi for every x ∈ [xi, xi+1]. (7)

Then f =
⋃

i<n fi is as needed.
Indeed, differentiability of f follows from the differentiability of each map fi and the fact that they, as 

well as their derivatives, agree on the end points: for every i < n we have fi(xi) = yi, fi(xi+1) = yi+1, and 
f ′
i(xi) = f ′

i(xi+1) = 0. It satisfies 
∥∥f − f̄

∥∥ < ε since, we see that for every x ∈ [xi, xi+1],

∣∣f(x) − f̄(x)
∣∣ ≤ |f(x) − yi| +

∣∣yi − f̄(xi)
∣∣ +

∣∣f̄(xi) − f̄(x)
∣∣

= |(yi+1 − yi)ϕ(Li(x))| +
∣∣yi − f̄(xi)

∣∣ +
∣∣f̄(xi) − f̄(x)

∣∣
< |yi+1 − yi| ‖ϕ‖ + ε

5 + ε

5 ≤ 3ε
5MM + 2ε

5 = ε.

This also ensures f(a) = f̄(a), f(b) = f̄(b), and f ′(a) = f ′(b) = 0. �
Proof of Theorem 3. Let f̄ : R → R be the differentiable extension of f , which exists by Jarník’s theorem, 
see Proposition 1. Let K := P ∪ Z, where Z is the set of all integers, and let g : R → [0, ∞) be as in 
Proposition 2. We will define f̂ : R → R so that

∣∣∣f̂(x) − f̄(x)
∣∣∣ ≤ g(x) for every x ∈ R. (8)

This, by Lemma 4, will ensure that f̂ is differentiable on the set [g = 0] = K.
Since (8) demands f̂ = f̄ on K, we need to define f̂ only on Kc = R \ K. Let J be the collection 

of all connected components of Kc. Notice that each interval in J is bounded, since Z ⊆ K. So, fix a 
J = (a, b) ∈ J . We will define f̂ on J as the following function fJ .

Choose an increasing sequence 〈ck : k ∈ Z〉 such that limk→−∞ ck = a and limk→∞ ck = b. Then (a, b) =⋃
k∈Z

[ck, ck+1]. For each k ∈ Z, let εk := inf g[ck, ck+1] and notice that εk > 0 since g is positive on (a, b). 
Using Lemma 5 to f̄ � [ck, ck+1] and εk choose differentiable nowhere monotone functions fk : [ck, ck+1] → R

such that fk(ck) = f̄(ck), fk(ck+1) = f̄(ck+1), f ′
k(ck) = f ′

k(ck+1) = 0, and

|fk(x) − f̄(x)| < εk for all x ∈ [ck, ck+1].

This ensures that functions fk and their derivatives agree at the endpoints, so that fJ =
⋃

k∈Z
fk is a 

differentiable function. It is clearly nowhere monotone, since so is each fk. Finally, notice that

3 We can choose yi = f̄(xi), unless some consecutive numbers f̄(xi) are equal.
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∣∣fJ(x) − f̄(x)
∣∣ ≤ g(x) for every x ∈ J (9)

since for every k ∈ Z and x ∈ [ck, ck+1], we have 
∣∣fJ(x) − f̄(x)

∣∣ =
∣∣fk(x) − f̄(x)

∣∣ < εk ≤ g(x).
To finish the proof, define f̂ on K as f̄ � K and on each J ∈ J as fJ . We claim, that such f̂ is as needed.
Indeed, this definition and (9) ensure that (8) holds so, by Lemma 4, f̂ is differentiable on K. It is 

differentiable on Kc, since it is differentiable on each of its components. Also, since f̂ is nowhere monotone 
on each J ∈ J , it is also nowhere monotone on every interval I for which I ∩ K is nowhere dense in I
(as then, the sets {x ∈ I : f̂ ′(x) < 0} and {x ∈ I : f̂ ′(x) > 0} are dense in I). In particular, f̂ is nowhere 
monotone on R \ P and, in the case when P is nowhere dense in R, also on R. �
3. Weierstrass’s monster extending f

The main goal of this section is to prove the following theorem, where C is the Cantor ternary set.

Theorem 6. There exist Weierstrass’s monsters f, h : R → R such that h(x) = 0 for all x ∈ C and f extends 
the function f : X → X from (1).

The construction of these functions will be based on the following lemma.

Lemma 7. Let f : [0, 1] → R be non-constant, continuous, with f(0) = 0 = f(1). Let K be the family of all 
connected components of [0, 1] \ C. If h0 : [0, 1] → R is defined as

h0(x) :=
{

(b− a)f(x−a
b−a ) for x ∈ (a, b) ∈ K,

0 for x ∈ C,

then h0 is continuous but not differentiable at any x ∈ C.

Proof. For every n ∈ N let Kn := {(a, b) ∈ K : b − a = 1
3n } and hn : [0, 1] → R be defined as

hn(x) :=
{

(b− a)f(x−a
b−a ) for x ∈ (a, b) ∈ Kn

0 otherwise.

Then hn is continuous, ‖hn‖ = ‖f‖
3n , and so h0 =

∑∞
n=1 hn is continuous by Weierstrass M-test.

Next choose an arbitrary x ∈ C. Since f is non-constant, M = ‖f‖ > 0 and M = f(x0) for some 
x0 ∈ (0, 1). For every n ∈ N choose an xn ∈ (a, b) with |h0(xn)| = M . Then, by the construction of C, 
0 < |xn − x| < 2(b − a) = 2

3n so that xn →n x. Moreover,
∣∣∣∣h0(xn) − h0(x)

xn − x

∣∣∣∣ = |h0(xn)|
|xn − x| = (b− a)M

|xn − x| ≥ (b− a)M
2(b− a) = M

2 ,

so the finite derivative h′
0(x) indeed does not exist. �

Proof of Theorem 6. Let f be the restriction of the Weierstrass’s monster from (1) to [0, 1] and notice that 
f(0) = f(1) = 0. Let h0 be the function from Lemma 7. Then h0 is a Weierstrass’s monster with h0 � C ≡ 0. 
It is easy to extend it to a Weierstrass’s monster h on R.

To construct f , let f̄ : R → R be an arbitrary differentiable extension of the function f : X → X from (1). 
Such an extension exists by Jarník’s theorem, see Proposition 1. Define f := f̄ + h, where h is as above. 
Clearly f is continuous and, since X ⊆ C and h � C ≡ 0, we also have f � X = f̄ � X + h � X = f. Finally, f
cannot be differentiable at any x ∈ R, since otherwise h = f − f̄ would be. �
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