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We present a beautiful but relatively unknown theorem that every differentiable 
function f : P → R, with P ⊂ R being closed, admits differentiable extension 
F : R → R. We present an elementary proof of this result based on a construction 
sketched in a hard-to-access 1923 paper [4] of V. Jarník. Using this construction, we 
also obtain an elegant version of Whitney extension theorem characterizing when 
such an f admits continuously differentiable extension.
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1. Introduction: Continuous and differentiable extension theorems

For a function f : P → R with P ⊂ R let f̃ be its extension to the set P̃ = (−∞, inf(P ) − 1] ∪ P ∪
[sup(P ) + 1, ∞) such that f̃ = 0 on the (possibly empty) set P̃ � P . Also, if P is closed in R, let f̄ : R → R

be the linear interpolation of f̃ , that is, the extension of f̃ such that f̄ is linear on [a, b] for every connected 
component (a, b) of R � P̃ . (See Fig. 1.) If f is continuous, then so is its linear interpolation f̄ : its continuity

Fig. 1. A map f , represented by thick curves, is extended to f̃ via thick dashed ray and to the linear interpolation f̄ by dotted 
segments. The intervals IJ (see Definition 1) marked on the x-axis are added to the domain P̃ of f̃ to obtain P̂ .
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Fig. 2. A format of the graph (thin continuous curve) of F = f̄ + g on a component (a, b) of R � P . The thick segments represent 
the parts of the graph of f .

at every x ∈ R � P is obvious, while its continuity at points x ∈ P follows from the fact that for every 
component (a, b) of R � P̃

f̄(y) is between f(a) and f(b) for every y ∈ (a, b), (1)

so that |f̄(x) − f̄(y)| ≤ max{|f(x) − f(a)|, |f(x) − f(b)|}.
We just proved the following instance of Tietze extension theorem:

Continuous Extension Theorem. Every continuous map f : P → R, where P ⊂ R is closed, admits continu-
ous extension F : R → R.

Did you know, that this result has the following differentiable analog?

Differentiable Extension Theorem. Every differentiable map f : P → R, where P ⊂ R is closed, admits 
differentiable extension F : R → R.

Here differentiability of f : P → R is understood as existence of its derivative: the function f ′ : P ′ → R

where P ′ ⊂ P is the set of all accumulation points of P and f ′(p) = limx→p, x∈P
f(x)−f(p)

x−p for every p ∈ P ′.
Differentiable Extension Theorem, to which we will refer as DE Theorem, was first proved in a 1923 

paper [4] by a prominent Czech mathematician Vojtěch Jarník (1897–1970), in case when P ⊂ R is a 
compact perfect set, that is, when P ′ = P . It also appeared in print in several more recent papers with 
quite involved proofs, as we detail in Section 4.1. Nevertheless, the theorem and the proof we present below 
remain almost completely unknown, even among experts.

As we can see in Fig. 1, the linear interpolation f̄ of a differentiable f need not to be differentiable. 
Nevertheless, f̄ has actually very good differentiability properties, best expressed in terms of the unilateral 
derivatives D−f̄(x) = limy→x−

f̄(x)−(̄y)
x−y and D+f̄(x) = limy→x+

f̄(x)−(̄y)
x−y :

Proposition 1. If f : P → R is differentiable map, where P ⊂ R is closed, then the unilateral derivatives of 
its linear interpolation f̄ exist and are finite everywhere. In particular, f̄ is differentiable at all points x ∈ R

that do not belonging to the set EP of all end-points of connected components of R � P̃ .

Proof. Clearly D+f̄(x) and D−f̄(x) exist for every x ∈ R � P ′. They also exist for every x ∈ P ′, since for 
every component I = (a, b) of R � P̃ with x /∈ [a, b],

|f̄(y) − f̄(x)|
y − x

is between |f(a) − f(x)|
a− x

and |f(b) − f(x)|
b− x

for every y ∈ (a, b), (2)

so that 
∣∣∣f ′(x) − |f̄(y)−f̄(x)|

y−x

∣∣∣ ≤ max
{∣∣∣f ′(x) − |f(a)−f(x)|

a−x

∣∣∣ ,
∣∣∣f ′(x) − |f(b)−f(x)|

b−x

∣∣∣
}

.
The additional remark holds, since D−f̄(x) = D−f̃(x) = D+f̃(x) = D+f̄(x) for every x ∈ P̃ � EP . �
Proposition 1 suggests that F from DE Theorem can be constructed by making small adjustment of f̄ , 

that is, defining F as f̄ + g for some small adjustor map g : R → R such that g = 0 on P̃ , see Fig. 2. Indeed, 
this is precisely the way we will proceed. For function g to have a chance to work properly, it must correct 
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differentiability problems of f̄ at the endpoints of the components of R � P̃ . For this, it should have the 
following property for every component (a, b) of R � P̃ :

(∗̃) g � [a, b] is C1, D+g(a) = f̃ ′(a) − f̃(b)−f̃(a)
b−a , and D−g(b) = f̃ ′(b) − f̃(b)−f̃(a)

b−a .

This ensures that D+F (a) = f̃ ′(a) and D−F (b) = f̃ ′(b). The main difficulty in constructing an adjustor g
that works properly is in ensuring that, after the adjustment, the derivatives D+F and D−F still exist on 
P̃ . Also, a problem with (∗̃) is that it is not well defined when either a or b is an isolated point in P̃ .

We first address this second problem, since it has an easy solution: we extend P̃ to a perfect set P̂ ⊂ R

for which f̄ � P̂ is differentiable and notice that it is enough to find a differentiable extension F of f̄ � P̂ . 
This way we will avoid the problem of isolated points a or b in (∗̃). We will also obtain, as an additional 
benefit, a new way to characterize functions f that admit continuously differentiable extensions F : R → R, 
an alternative formulation of the Whitney’s extension theorem [10], see Section 3.

Definition 1. Let J be the family of all components of R � P̃ . For each J = (a, a + h) ∈ J put IJ =
[a + 1

3h, a + 2
3h] when a ∈ P ′ and let IJ = [a, a + h

2 ], the left half of J , otherwise.1 Then we define 
P̂ = P̃ ∪

⋃
J∈J IJ and f̂ = f̄ � P̂ . We will refer to f̂ as the canonical extension of f . See Fig. 1.

Notice that P̂ is perfect and EP ⊂ EP̂ . Thus, the unilateral differentiability of f̄ , Proposition 1, implies 
immediately the following result.

Proposition 2. If P is a closed subset of R and f : P → R is differentiable, then P̂ is a perfect subset of R
unbounded from both sides and f̂ : P̂ → R is differentiable. In particular, in order to prove DE Theorem it 
is enough to show that it holds for perfect sets P ⊂ R unbounded from both sides.

2. Proof of DE Theorem

Let f be a differentiable function from a closed set P ⊂ R into R. We need to show that it admits 
differentiable extension F : R → R. By Proposition 2 we can assume, without loss of generality, that P is 
perfect and unbounded from both sides.

Let f̄ : R → R be the linear interpolation of f . Let κ ≤ ω be the cardinality of the family J of all 
connected components of R � P and let {(ai, bi) : 1 ≤ i ≤ κ} be an enumeration of J . For every 1 ≤ i ≤ κ

define �i = min{1, bi − ai} and let εi ∈ (0, 3−i�i) be such that

(a)
∣∣∣f ′(ai) − f(x)−f(ai)

x−ai

∣∣∣ < 3−i for every x ∈ P ∩ [ai − εi, ai);

(b)
∣∣∣f ′(bi) − f(x)−f(bi)

x−bi

∣∣∣ < 3−i for every x ∈ P ∩ (bi, bi + εi].

Let g : R → R be a map such that g = 0 on P and, for every 1 ≤ i ≤ κ,

(∗) g � [ai, bi] is C1, D+g(ai) = f ′(ai) − f(bi)−f(ai)
bi−ai

, D−g(bi) = f ′(bi) − f(bi)−f(ai)
bi−ai

;
(c) g = 0 on [ai + ε2

i , bi − ε2
i ] and |g(x)| ≤ ε2

i for x ∈ [ai, bi];
(d) |g(x)| ≤ |g′(ai)(x − ai)| for x ∈ [ai, ai + ε2

i ]; and
(e) |g(x)| ≤ |g′(bi)(x − bi)| for x ∈ [bi − ε2

i , bi].

1 This definition of set IJ is chosen for our version of Whitney extension theorem from Section 3. The proof of DE Theorem will 
also work if we define IJ = ∅ for J = (a, a + h) ∈ J with a ∈ P ′.
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Fig. 3. A format of a map hi.

Such g can be defined on each [ai, bi] as g(x) =
∫ x

ai
hi(r) dr, where hi : [ai, bi] → R, depicted in Fig. 3, is 

such that hi = 0 on [ai + ε2
i , bi − ε2

i ],

• there is an si ∈ (ai, ai+ε2
i ) such that hi is linear on [ai, si] with hi(si) = 0 and hi(ai) = f ′(ai) − f(bi)−f(ai)

bi−ai

while 
∫ si
ai

|hi(r)| dr = 1
2 |hi(ai)|(si−ai) < ε2

i ; on [si, ai+ε2
i ] it is defined as hi(x) = Aidist(x, {si, ai+ε2

i }), 
where constant Ai is chosen so that 

∫ ai+ε2i
ai

hi(r) dr = 0;
• there is a ti ∈ (bi− ε2

i , bi) such that hi is linear on [ti, bi] with hi(ti) = 0 and hi(bi) = f ′(bi) − f(bi)−f(ai)
bi−ai

while 
∫ bi
ti

|hi(r)| dr = 1
2 |hi(bi)|(bi− ti) < ε2

i ; on [bi−ε2
i , ti] it is defined as hi(x) = Bidist(x, {bi−ε2

i , ti}), 
where constant Bi is chosen so that 

∫ bi
bi−ε2i

hi(r) dr = 0.

We claim, that if g satisfies all these requirements, then F = f̄ + g is a differentiable extension of f . To 
see this, fix an x ∈ R. We need to show that F ′(x) exists.

For x ∈ R �P this follows from the first part of (∗) and differentiability of f̄ on R �P . So, in what follows 
we assume that x ∈ P . Next notice that it is enough to show that the unilateral derivatives D+F (x) and 
D−F (x) exist. Indeed, if they exist, than they are equal: for x /∈

⋃
1≤i≤κ{ai, bi} this is ensured by the fact 

that D+F (x) = D+f(x) = D−f(x) = D−F (x), while for x ∈
⋃

1≤i≤κ{ai, bi} by the condition (∗) imposed 
on g.

Since the cases are symmetric, we will show only the existence of D+F (x). Clearly, it exists when x is in 
the set E = {ai : 1 ≤ i ≤ κ}. So, assume that x /∈ E and fix an ε > 0. Then F (x) = f(x) and it is enough 
to find a δ > 0 such that

∣∣∣∣f ′(x) − F (y) − f(x)
y − x

∣∣∣∣ < 5ε whenever y ∈ (x, x + δ). (3)

For this, pick an m ∈ N such that 3−m < ε and choose δ > 0 such that (x, x +δ) is disjoint with 
⋃

i<m[ai, bi]
and 

∣∣∣f ′(x) − f̄(y)−f̄(x)
y−x

∣∣∣ < ε whenever 0 < |y−x| < δ. This choice is possible by Proposition 1. We claim that 

(3) holds for such δ. Since 
∣∣∣f ′(x) − F (y)−f(x)

y−x

∣∣∣ =
∣∣∣f ′(x) − f̄(y)+g(y)−f̄(x)

y−x

∣∣∣ ≤
∣∣∣f ′(x) − f̄(y)−f̄(x)

y−x

∣∣∣ +
∣∣∣ g(y)
y−x

∣∣∣ <
ε +

∣∣∣ g(y)
y−x

∣∣∣, it is enough to show that 
∣∣∣ g(y)
y−x

∣∣∣ < 4ε.

If y /∈
⋃

1≤i≤κ[ai, ai+ε2
i ] ∪ [bi−ε2

i , bi], then 
∣∣∣ g(y)
y−x

∣∣∣ < 4ε holds, since then g(y) = 0. So, we can assume that 
there is an 1 ≤ i ≤ κ such that y ∈ [ai, ai + ε2

i ] ∪ [bi − ε2
i , bi]. This implies that i ≥ m and 3−i ≤ 3−m < ε.

If y ∈ [bi − ε2
i , bi], then y − x ≥ bi − ε2

i − ai ≥ �i − ε2
i ≥ εi and 

∣∣∣ g(y)
y−x

∣∣∣ <
ε2i
εi

< 3−i ≤ 3−m < ε. 

So, assume that y ∈ [ai, ai + ε2
n]. If ai − x ≥ εi, then again 

∣∣∣ g(y)
y−x

∣∣∣ <
ε2i
εi

< 3−i ≤ 3−m < ε. Thus, 

assume that ai − x < εn. Then, by (a), 
∣∣∣f ′(ai) − f(x)−f(ai)

x−ai

∣∣∣ < 3−i ≤ 3−m < ε and |f ′(ai) − f ′(x)| ≤∣∣∣f ′(ai) − f(x)−f(ai)
∣∣∣ +

∣∣∣ f̄(x)−f̄(ai) − f ′(x)
∣∣∣ < 2ε. So, by (d),
x−ai x−ai
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Fig. 4. Graph of a map f : P → R, horizontal thick segments, with f ′ = 0 on P . No differentiable extension F : R → R of f has 
continuous derivatives, unless f(an)−f(bn+1)

an−bn+1
→n→∞ 0.

∣∣∣∣
g(y)
y − x

∣∣∣∣ ≤
∣∣∣∣
g′(ai)(y − ai)

y − x

∣∣∣∣ =

∣∣∣∣∣∣

(
f ′(ai) − f(bi)−f(ai)

bi−ai

)
(y − ai)

y − x

∣∣∣∣∣∣

=

∣∣∣∣∣∣
f ′(ai)(y − ai) − f̄(y)−f(ai)

y−ai
(y − ai)

y − x

∣∣∣∣∣∣
=

∣∣∣∣
f ′(ai)(y − ai) − (f̄(y) − f(ai))

y − x

∣∣∣∣

=
∣∣∣∣
[f ′(ai)(x− ai) + f(ai) − f(x)] + [f ′(ai) − f ′(x)](y − x) + [f ′(x)(y − x) + f(x) − f̄(y)]

y − x

∣∣∣∣

≤
∣∣∣∣f ′(ai) −

f(x) − f(ai)
x− ai

∣∣∣∣
∣∣∣∣
x− ai
y − x

∣∣∣∣ + |f ′(ai) − f ′(x)| +
∣∣∣∣f ′(x) − f̄(y) − f̄(x)

y − x

∣∣∣∣
< ε + 2ε + ε = 4ε.

This completes the proof of DE Theorem.

3. Alternative formulation of Whitney extension theorem

It is well known and easy to see that function f from DE Theorem need not to admit C1 extension, even 
when f ′ is constant. See, for example, Fig. 4. The theorem characterizing functions f : P → R that admit 
C1 extension F : R → R was proved in 1938 by Whitney [10]. The usual characterization of such functions 
f either involves complicated conditions on difference quotients of f , or requires a use of a non-standard 
notion of the derivative of f , see [6, thm W]. Below we present an alternative variant of Whitney extension 
theorem.

Theorem 3. A differentiable map f : P → R, where P ⊂ R is closed, admits a continuously differentiable 
extension F : R → R if, and only if, the canonical extension f̂ : P̂ → R of f (see Definition 1) is continuously 
differentiable.

Proof. Let J be the family of all connected components of R � P̃ .
To show necessity of continuous differentiability of f̂ assume that there exists a continuously differentiable 

extension F : R → R of f . Clearly, by Proposition 2, f̂ is differentiable. Also, f̂ ′ is continuous on P̂ � P ′, 
since f̂ is locally linear on P̂ � P ′ =

⋃
J∈J IJ . Thus, we need to show that f̂ ′ is continuous on P ′. Notice 

that F = f and F ′ = f ′ on P ′.
Fix an x ∈ P ′ and ε > 0. It is enough to find a δ > 0 such that

|f̂ ′(x) − f̂ ′(y)| < ε whenever y ∈ P̂ ∩ (x− δ, x + δ). (4)

Let δ0 ∈ (0, 1) be such that |F ′(x) − F ′(y)| < ε whenever |x − y| < δ0. Choose δ ∈ (0, δ0) such that for 
every J = (a, b) ∈ J : if x ∈ [a, b], then δ < b−a ; if x /∈ [a, b] and [a, b] �⊂ (x − δ0, x + δ0), then (x − δ, x + δ)
3
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is disjoint with [a, b]. To see that such δ satisfies (4) pick y ∈ P̂ ∩ (x − δ, x + δ). If y ∈ P , then (4) holds, 
since then |f̂ ′(x) − f̂ ′(y)| = |F ′(x) − F ′(y)| < ε. So, assume that y /∈ P . Then, y /∈ P̃ , as δ < 1. Thus, 
there exists a J = (a, b) ∈ J such that y ∈ IJ . Note that x /∈ [a, b], since in such case δ < b−a

3 , preventing 
y ∈ IJ . Therefore, [a, b] ⊂ (x − δ0, x + δ0), as (x − δ, x + δ) is not disjoint with [a, b], both containing y. 
By the mean value theorem, there exists a ξ ∈ (a, b) ⊂ (x − δ0, x + δ0) such that F ′(ξ) = F (b)−F (a)

b−a . So 

|F ′(x) −F ′(ξ)| < ε. Also, f̂ ′(y) = f̄ ′(y) = f(b)−f(a)
b−a = F ′(ξ). Therefore, |f̂ ′(x) − f̂ ′(y)| = |F ′(x) −F ′(ξ)| < ε, 

proving (4).
The sufficiency of continuous differentiability of f̂ is proved by finding continuously differentiable exten-

sion F : R → R of f̂ . This F is constructed by a small refinement of the construction of F in Section 2, 
in which we extend function f equal to f̂ from Theorem 3. More specifically, let {(ai, bi) : 1 ≤ i ≤ κ}
be an enumeration of the family of all connected components of R � P̂ . For every 1 ≤ i ≤ κ, let αi

and βi be the endpoints of [ai, bi] such that f̂ ′(αi) ≤ f̂ ′(βi) and, when choosing maps hi, ensure that 
their range is contained in 

[
f̂ ′(αi) − f(bi)−f(ai)

bi−ai
− 3−i, f̂ ′(βi) − f(bi)−f(ai)

bi−ai
+ 3−i

]
. This can be achieved 

by choosing si and ti so close to, respectively, ai and bi that the resulted constants Ai and Bi have 
magnitude ≤ 3−i. We claim, that such constructed F has continuous derivative. To see this, choose 
an x ∈ R. We will show only that F ′ is right-continuous at x, the argument for left-continuity being 
similar.

Clearly, the definition of F ensures that F ′ is right-continuous at x if there exists a y > x such that 
(x, y) ∩ P̂ = ∅. So, assume that there is no such y. Choose an ε > 0. It is enough to find a δ > 0 such 
that

|F ′(x) − F ′(y)| < 2ε whenever y ∈ (x, x + δ). (5)

Let δ0 > 0 be such that |f̂ ′(x) − f̂ ′(y)| < ε whenever y ∈ (x, x + δ0) ∩ P̂ . Choose n ∈ N such 
that 3−n < ε and let δ ∈ (0, δ0) such that: (0, δ) is disjoint with every (ai, bi) for which i < n; if 
(ai, bi) intersects (0, δ), then [ai, bi] ⊂ (0, δ0). To see that such δ satisfies (5) pick y ∈ (x, x + δ). If 
y ∈ P̂ , then (5) holds, since then |F ′(x) − F ′(y)| = |f̂ ′(x) − f̂ ′(y)| < ε. So, assume that y /∈ P̂ . 
Then, y ∈ (ai, bi) for some i ≥ n. Since βi ∈ [ai, bi] ⊂ (0, δ0), we have |f̂ ′(x) − f̂ ′(βi)| < ε and 
f̂ ′(βi) < f̂ ′(x) + ε. So, F ′(y) = f̄ ′(y) + g′(y) = f(bi)−f(ai)

bi−ai
+ hi(y) ≤ f̂ ′(βi) + 3−i < f̂ ′(x) +

ε + 3−i ≤ F ′(x) + 2ε. Similarly, F ′(y) ≥ f̂ ′(αi) − 3−i > f̂ ′(x) − ε − 3−i ≥ F ′(x) − 2ε. So, (5)
holds. �
4. History and related results

4.1. Differential extension theorem in literature

DE Theorem first appeared in print in 1923 paper [4] of Vojtěch Jarník, for the case when P ⊂ R

is compact perfect. Unfortunately, [4] appeared in little known journal, Bull. Internat. de l’Académie des 
Sciences de Bohême is written in French, and only sketches the construction of the extension. A more 
complete version of the proof, that appeared in [5], is written in Czech and is even less accessible. Therefore, 
this result of Jarník was unnoticed by the mathematical community until mid 1980s. DE Theorem was 
rediscovered by György Petruska and Miklós Laczkovich and published in 1974 paper [9]. Its proof in [9] is 
quite involved and embedded in a deeper, more general research. A simpler proof of the theorem appeared 
in 1984 paper [7] of Jan Mařík; however, it is considerably more complicated than the one we presented 
above and it uses Lebesgue integration tools. Apparently, the authors of neither [9] nor [7] have been aware 
of Jarník’s paper [4] at the time of publication of their articles. However [4] is cited in 1985 paper [1] that 
discusses multivariable version of DE Theorem. Also, two recent papers [8,6] that address generalizations 
of DE Theorem cite [4].
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4.2. DE Theorem for functions on Rn

There is no straightforward generalization of DE Theorem to differentiable functions f defined on closed 
subsets P of Rn. This is the case, since the derivative of any extension F : Rn → R is Baire class one, as 
it is a pointwise limit of continuous functions Fn(x) = n 

(
F
(
x + 1

n

)
− F (x)

)
. Therefore the derivative f ′

of any differentiable extendable function f ′ : P → R must be also Baire class one. However, there exists a 
differentiable function f : P → R, with P ⊂ R

2 being closed, for which f ′ is not Baire class one, see [1, 
thm 5]. Clearly this f admits no differentiable extension to R2. However, in [1] the authors prove that 
this is the only obstacle to generalize DE Theorem to multivariable functions. More specifically, they prove 
that differentiable function f : P → R, with P being a closed subset of Rn, admits differentiable extension 
F : Rn → R if, and only if, f ′ : P → R is Baire class one.

4.3. What else is known about differentiable maps on closed P ⊂ R?

If we exclude results assuming that P has positive Lebesgue measure, what we discussed above includes 
essentially all “positive” results. Everything else seems to be concentrated on different examples, some 
surprising, even weird. Perhaps, the most unexpected among them is one described in the following 2016 
theorem.

Theorem 4. (Ciesielski, Jasinski [3]) There exists a compact perfect set X ⊂ R and a differentiable bijection 
f : X → X such that f ′(x) = 0 for every x ∈ X. Moreover, the forward f-orbit of every x ∈ X is dense in X.

Of course, such X cannot be an interval. In fact, X must be of Lebesgue measure 0, as f[X] is of measure 
0 whenever f ′ ≡ 0. By DE Theorem, the map f can be extended to a differentiable F : R → R. However, 
such extension cannot be C1, since for C1 maps F : R → R we have (see [2, lemma 3.3]): If P is a compact 
perfect subset of R such that P ⊂ F [P ], then there exists an x ∈ P such that |F ′(x)| ≥ 1.

Another strange example comes from 2014 paper [2] and concerns Peano-like maps, that is, continuous 
maps from a space P onto its square P 2.

Theorem 5. (Ciesielski, Jasinski [2]) There exists a perfect subset P of R and a differentiable f = 〈f1, f2〉
from P onto P 2 with f ′

1 = f ′
2 = 0. Moreover, f can be extended to a C∞ map F : R → R

2.

Once again, P must be of measure 0, since P 2 = f [P ] have plane measure 0. The set from Theorem 5
is unbounded. It is unknown, if such an example can exists when P is compact, even when we assume only 
that f is differentiable, see [2]:

Problem 1. Let P ⊂ R be compact perfect and let f be a function from P onto P 2. Can f be differentiable? 
Continuously differentiable?

By DE Theorem the differentiable version of the problem can be rephrased as: Do there exist a differen-
tiable function F : R → R

2 and a compact perfect set P ⊂ R such that f [P ] = P 2? In this last version of 
the problem, the map F : R → R

2 cannot be C1, as proved in [2, theorem 3.1].
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