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Fixed Point Theorems for Maps With Local
and Pointwise Contraction Properties

Krzysztof Chris Ciesielski and Jakub Jasinski

Abstract. _is paper constitutes a comprehensive study of ten classes of self-maps on metric spaces

⟨X , d⟩ with the pointwise (i.e., local radial) and local contraction properties. Each of these classes

appeared previously in the literature in the context of ûxed point theorems.

We beginwith an overview of these ûxed point results, including concise self contained sketches

of their proofs. _enwe proceed with a discussion of the relations among the ten classes of self-maps

with domains ⟨X , d⟩ having various topological properties that o�en appear in the theory of ûxed

point theorems: completeness, compactness, (path) connectedness, rectiûable-path connectedness,

and d-convexity. _e bulk of the results presented in this part consists of examples of maps that

show non-reversibility of the previously established inclusions between these classes. Among these

examples, themost striking is a diòerentiable auto-homeomorphism f of a compact perfect subset

X of R with f ′ ≡ 0, which constitutes also a minimal dynamical system. We ûnish by discussing a

few remaining open problems on whether the maps with speciûc pointwise contraction properties

must have the ûxed points.
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1 Background

_e well-known 1922 Banach Fixed Point _eorem states that every self-map f of a
complete metric space ⟨X , d⟩ must have a ûxed point, i.e., an ξ ∈ X with f (ξ) = ξ,
provided there exists a constant λ ∈ [0, 1) such that d( f (x), f (y)) ≤ λd(x , y) for all

Received by the editors June 29, 2016.
Published electronically June 22, 2017.
AMS subject classiûcation: 54H25, 37C25.
Keywords: ûxed point, periodic point, contractivemap, locally contractivemap, pointwise contrac-

tivemap, radially contractivemap, rectiûable-path connected space, d-convex, geodesic, remetrization,
contraction mapping principle.



Fixed Point _eorems for Maps With Local and Pointwise Contraction Properties 539

x , y ∈ X. Maps like this are called contractions, and Banach’s theorem is also known
as the Contraction Principle.

_eContraction Principlehas amultitude of generalizationswhere the contraction
assumption on f is weakened. Among them are two 1962 results of Edelstein [15, 16]
that f must have a ûx point provided: (i) X is compact and function f is shrinking,
that is, d( f (x), f (y)) < d(x , y) for all distinct x , y ∈ X; (ii) X is compact-connected
and f is locally shrinking, that is, when for every x ∈ X there exists an ε > 0 such that
f restricted to the open ball B(x , ε), centered at x, and of radius ε, is shrinking. In
particular, (ii) implies that any f on a compact connected space X must have ûxed
point provided f is locally contractive, that is, when for every x ∈ X there exist an
ε > 0 and a λ ∈ [0, 1) such that d( f (y), f (z)) ≤ λd(y, z) for all y, z ∈ B(x , ε). Yet
another group of generalizations involves the functions f that are pointwise contrac-
tive, that is, such that for every x ∈ X there exist an ε > 0 and a λ ∈ [0, 1) for which
d( f (x), f (y)) ≤ λd(x , y) as long as y ∈ B(x , ε). Notice that this notion is closely
related to that of a derivative, see Remark 2.3. Here we have the following results:
(iii) 1978 theorem of Hu and Kirk, with proof corrected in 1982 by Jungck, that f
must have a ûxed point, provided X is rectiûable-path connected and f is uniformly
pointwise contractive, that is, pointwise contractive but such that λ is the same for all
x ∈ X [21,22] and (iv) our 2016 theorem that f must have a ûxed point, provided X is
compact rectiûable-path connected and f is pointwise contractive [11]. Also, another
2016 paper [10] gives a paradoxically-looking example providing a key insight into a
possible behavior of the pointwise contractivemaps.

_e four local and pointwisenotions of contractive and shrinkingmapsmentioned
above, together with their several uniform versions, led to twelve classes ofmappings,
of which only ten are distinct, precisely deûned in Section 2. _e goal of this pa-
per is to fully discuss the ûxed and periodic point theorems available for thesemap-
pings (see §3), as well as the inclusions among these classes of functions (see §4).
We restrict our attention to the mappings deûned in Section 3. _e multitude of
other contraction-like notions that appear in the literature fall outside of the scope
of the present material (see Rhoades’ 1977 paper [31] comparing 125 diòerent global
contraction-like conditions,most of which involve distances of the form d(x , f (x)),
or the more recent works [5, 23, 24]. Section 5 contains the remetrization results on
which the generalizations of the Fixed Point _eorem are based.

_e relations between the considered classes of maps depend on the topological
properties of the space ⟨X , d⟩ on which the maps act. We will restrict our atten-
tion to the topological properties that already appeared in the context of the ûxed
point theorems. _ese include: completeness, compactness, connectedness and path
connectedness, rectiûable-path connectedness, and the so-called d-convexity that en-
compasses convexity in the Banach spaces._ere are eightdiòerent topological classes
that can be deûned in terms of the aforementioned properties. In Section 6, using di-
agrams, we summarize the inclusions between the ten classes of maps we consider
for the eight classes of topological spaces mentioned above. We reference examples
showing that no implication between the classes exist, unless the diagrams force the
implication._ese examples are described in Section 7. All examples are with no ûxed



540 K. C. Ciesielski and J. Jasinski

or periodic points, unless their existence is implied by an appropriate ûxed or peri-
odic point theorem, respectively. _e last section discusses the few remaining open
problems.

We should mention that a large portion of ûxed point theory (including locally
contractive maps) is developed in metric spaces with additional algebraic structure,
like Banach spaces, partially ordered sets, complete lattices, and many other. Such
topics are not discussed in this paper and we refer interested readers to [3,7, 19,24].

2 A Dozen Notions of Contractive Maps

In what follows, all selfmaps we consider are deûned on the completemetric spaces,
with the spaceusually denoted by X and themetric by d. However, thenotionsdeûned
below are valid also formaps f ∶X → Y between arbitrarymetric spaces X and Y .

Deûnition 2.1 Let X be ametric space and let f ∶X → X. _e following properties
are also identiûed with the corresponding classes of functions.

Global notions:

(C) f is contractive (with a contraction constant λ), provided there exists a λ ∈[0, 1) such that d( f (x), f (y)) ≤ λd(x , y) for every x , y ∈ X.
(S) f is shrinking, provided d( f (x), f (y)) < d(x , y) for every distinct x , y ∈ X.

Local notions:

(LC) f is locally contractive, provided that for every y ∈ X there exists an open
U ∋ y such that f ↾U is contractive.

(uLC) f is locally contractive with the same contraction constant, provided that there
exists a λ ∈ [0, 1) such that for every y ∈ X there exists anopenU ∋ y forwhich
f ↾U is contractive with the contraction constant λ. Occasionally we will use
an abbreviation (λ)-(uLC) when we like to stress that (uLC) is satisûed with
a constant λ.

(ULC) f is uniformly locally contractive, provided that there exist ε > 0 and λ ∈ [0, 1)
such that for every y ∈ X the restriction f ↾ B(y, ε) is contractive with a
contraction constant λ.Wewill occasionallyuse an abbreviation (ε, λ)-(ULC)
when we like to stress that (ULC) is satisûed with the constants ε and λ.

(LS) f is locally shrinking, provided that for every y ∈ X there exists an openU ∋ y
such that f ↾U is shrinking.

(ULS) f is uniformly locally shrinking, provided that there exists an ε > 0 such that
f ↾B(y, ε) is shrinking for every y ∈ X. Occasionally we will use the notation(ε)-(ULS) to stress that (ULS) is satisûed with a radius ε.

Pointwise notions:

(PC) f is pointwise contractive, if for every x ∈ X there exist an open U ∋ x and a
λ ∈ [0, 1) such that d( f (x), f (y)) ≤ λd(x , y) for all y ∈ U .1

1_e notions in this group are o�en named local radial contractions, see [20, 21]. We feel that the
term pointwise contraction better describes the nature of these functions, see [12, 18].
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(uPC) f is pointwise contractive with the same contraction constant, if there exists a
λ ∈ [0, 1) such that for every x ∈ X there is an open set U ∋ x for which
d( f (x), f (y)) ≤ λd(x , y) for all y ∈ U .

(UPC) f is uniformly pointwise contractive, if there exist a λ ∈ [0, 1) and an ε > 0 such
that for every x ∈ X, d( f (x), f (y)) ≤ λd(x , y) for all y ∈ B(x , ε).

(PS) f is pointwise shrinking, if for every x ∈ X there exists an open U ∋ x such
that d( f (x), f (y)) < d(x , y) for all y ∈ U , y /= x.

(UPS) f is uniformly pointwise shrinking, if there exists an ε > 0 such that for every
x ∈ X we have d( f (x), f (y)) < d(x , y) for all y ∈ B(x , ε), y /= x.

_e obvious relations among the deûned properties, plus those indicated by Re-
mark 2.2, are shown in Figure 1. We have included notions (UPC) and (UPS) in Def-
inition 2.1 for symmetry. However, as they are redundant, we will drop them from
further considerations (cf. also Figure 3).

(C) (ULC) (uLC) (LC)

(S) (ULS) (LS)

(UPC) (uPC) (PC)

(UPS) (PS)
Figure 1: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a complete metric space. _e upward arrows are justiûed by Re-

mark 2.2. No other implications in the ûgure exist; see_eorem 6.1.

Figure 1, as well as the similar ûgures and the associated theorems for the maps
deûned on the spaces X with other topological properties, will be discussed in detail
in Section 6.

Remark 2.2 (UPC) is equivalent to (ULC) and (UPS) is equivalent to (ULS).

Proof Clearly (ULC) implies (UPC). Now assume that f ∶X → X satisûes (UPC)
with some ε > 0 and λ ∈ [0, 1). Let x ∈ X and suppose that y, z ∈ B(x , ε

2
). _en

d(y, z) ≤ d(y, x) + d(x , z) < ε
2
+ ε

2
= ε, so z ∈ B(y, ε). By the (UPC) property

d( f (y), f (z)) ≤ λd(y, z), which shows that f is (ULC) with the same λ and ε
2
. _e

argument for (UPS) implies (ULS) is similar.



542 K. C. Ciesielski and J. Jasinski

For a self-map f on ⟨X , d⟩ and a limit point x ∈ X, let

D∗ f (x) = lim sup
y→x

d( f (x), f (y))
d(x , y) ,

and for an isolated point x we set D∗ f (x) = 0. In particular, if X is a subset of R
(considered with the standard metric), X has no isolated points, and f is diòeren-
tiable, then D∗ f (x) = ∣ f ′(x)∣. _e (PC) and (uPC) properties can be expressed in
terms of this notion as follows.

Remark 2.3 For every f ∶X → X, the (uPC) property simply says that

sup{D∗ f (x) ∶ x ∈ X} < 1,
and (PC) is equivalent to D∗ f (x) < 1 for all x ∈ X.
Proof (uPC) gives us a number λ < 1 such that D∗ f (x) ≤ λ for all limits x ∈ X

because we have
d( f (x), f (y))

d(x ,y)
≤ λ for y suõciently close but not equal to x. Inversely,

if sup{D∗ f (x) ∶ x ∈ X} = η < 1, then f is (uPC) with any λ such that η < λ < 1. _e
other equivalence follows similarly.

In the next two sectionswe review the ûxed/periodic points theorems utilizing the
above-deûned terminology and further discuss how the classes are related.

3 Fixed and Periodic Point Theorems

For f ∶X → X and a number n ∈ ω = {0, 1, 2, . . .}, the n-th iteration f (n) of f is

deûned as f ○ ⋅ ⋅ ⋅ ○ f , the composition of n instances of f . In particular, f (1) = f and

f (0) is the identity function.
Banach’s [4] nearly century old theorem states the following.

_eorem 3.1 If X is a completemetric space and f ∶X → X is (C), then f has a unique
ûxed point.

Proof Fix an x ∈ X and notice that ⟨ f (n)(x) ∶ n < ω⟩ is a Cauchy sequence, since the
series formed by the distances d( f (n)(x), f (n+1)(x)) ≤ λnd(x , f (x)) is convergent
as it is bounded by the geometric series ∑∞n=0 d(x , f (x))λn , where λ ∈ [0, 1) is a
contraction constant for f . So the sequence converges to a point ξ ∈ X, which is a
ûxed point, since

d(ξ, f (ξ)) = lim
n→∞

d( f (n)(x), f ( f (n)(x)))
= lim

n→∞
d( f (n)(x), f (n+1)(x)) = d(ξ, ξ) = 0,

implying that f (ξ) = ξ. Property (C) also implies the uniqueness of ξ.

_is theorem, o�en called the Banach Contraction Principle, was studied in great
detail [23, 24, 31]. Here we focus solely on the ûxed and periodic point theorems for
themappings f , with properties from Deûnition 2.1.
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An x ∈ X is a periodic point of f ∶X → X provided that f (n)(x) = x for some
n > 0. In particular, x ∈ X is a ûxed point of f if and only if it is a periodic point of

f with period 1, that is, f (1)(x) = x. _e (forward) orbit of an x ∈ X is deûned as

O(x) = { f (n)(x) ∶ n < ω}. Very signiûcant contributions to the study of shrinking
and locally shrinking maps are due to Edelstein [15, 16].

_eorem 3.2 Let ⟨X , d⟩ be compact and let f ∶X → X.

(i) If f is (S), then f has a unique ûxed point.
(ii) If f is (LS), then f has a periodic point.
(iii) If f is (LS) and X is connected, then f has a unique ûxed point.

Proof In case (i), notice that X ∋ x ↦ d(x , f (x)) ∈ R is a continuousmapping on a
compact space. _us, it attains itsminimum at some x ∈ X, which, by (S),must be a
ûxed point. _is ûxed point is clearly unique.

In case (ii), ûrst notice (see_eorem 4.2) that f is actually (ULS) with some con-
stant ε > 0. Fix an x0 ∈ X and notice that there exist i < j < ω such that

d( f (i)(x0), f ( j)(x0)) < ε.
Put n = j − i > 0 and notice that f̂ = f (n) still satisûes (ULS) with the constant ε.

Fix a ξ ∈ X atwhich themapping X ∋ x ↦ d(x , f̂ (x)) ∈ R achieves theminimum.

So d(ξ, f̂ (ξ)) ≤ d( f (i)(x0), f̂ ( f (i)(x0))) = d( f (i)(x0), f ( j)(x0)) < ε, and wemust

have d(ξ, f̂ (ξ)) = 0, since otherwise d( f̂ (ξ), f̂ ( f̂ (ξ))) < d(ξ, f̂ (ξ)), contradicting
the choice of ξ. Hence, f (n)(ξ) = f̂ (ξ) = ξ, that is, ξ is a periodic point of f .

In case (iii), notice that, by Proposition 5.2 (ii), there exists a complete metric D
on X topologically equivalent to d, such that f is (S)with respect to thismetric. _us,
by (i), f has a unique ûxed point.

It is worth noting that Ding and Nadler [14, _eorem 2.6] generalized items (ii)
and (iii) of_eorem 3.2 to locally compact spaces X. See also [13].

Our next theorem is fromHu and Kirk [21], with a proof corrected by Jungck [22]
(see discussion in [2, p 66]). To state it, we need the following deûnitions.

Ametric space X is rectiûably-path connected provided that any two points x , y ∈ X
can be connected in X by a path p∶ [0, 1] → X of ûnite length ℓ(p), that is, by a
continuous map p satisfying p(0) = x and p(1) = y, and having a ûnite length ℓ(p)
deûned as the supremum over all numbers

n

∑
i=1

d(p(t i), p(t i−1)) with 0 < n < ω and 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1.

_eorem 3.3 ([21,22]) If ⟨X , d⟩ is a rectiûable-path connected completemetric space
and amap f ∶X → X is (uPC), then f has a unique ûxed point.

Proof _e assumptions on ⟨X , d⟩ and f imply (see Proposition 5.5 (iii)) that there
exists a complete metric D on X such that f is (C), when X is considered with the
metric D. So, by_eorem 3.1, f has a unique ûxed point (see also [2,_eorem 6]).



544 K. C. Ciesielski and J. Jasinski

It is worth noting that earlier Rakotch [30] andMarjanović [25] both proved_e-
orem 3.3 under the stronger assumption that f is (uLC). _e next theorem is very
recent. It generalizes_eorem 3.3 to the (PC) maps, no uniformity assumption, at the
expense of requiring that the domain of f is compact.

_eorem 3.4 ([11]) Assume that ⟨X , d⟩ is a compact rectiûable-path connectedmetric
space. If f ∶X → X is (PC), then f has a unique ûxed point.

Proof Let D be the distance from Proposition 5.5. By part (iv) of that proposition,
f ∶ ⟨X ,D⟩ → ⟨X ,D⟩ is (S). Let M = inf{D(x , f (x)) ∶ x ∈ X}. _en, by Corollary 5.4
(ii), there exists an x ∈ X such thatD(x , f (x)) = M (which is not completely obvious,
since ⟨X ,D⟩ need not be compact, see the footnote to Proposition 5.5).

To ûnish the proof, it is enough to notice that M must equal 0, since other-
wise D( f (x), f ( f (x))) < D(x , f (x)), contradicting the minimality of M. _us,
D(x , f (x)) = 0 and f (x) = x, as required. _e uniqueness of the ûxed point is en-
sured by the fact that f ∶ ⟨X ,D⟩→ ⟨X ,D⟩ is (S).

Edelstein [15] proved the main part of the following theorem; see also [11] for
the proof of the entire theorem. (We missed this 1961 result of Edelstein when writ-
ing [11].)

_eorem 3.5 Assume that ⟨X , d⟩ is complete and that f ∶X → X is (ULC).

(i) If X is connected, then f has a unique ûxed point [15].
(ii) If X has a ûnite number of components, then f has a periodic point [11].

Proof To see (i), let ε > 0 and λ ∈ [0, 1) be such that f is (ε, λ)-(ULC).ByRemark 5.1

and Proposition 5.2 (i), there exists ametric D̂ on X topologically equivalent to d such

that f ∶ ⟨X , D̂⟩ → ⟨X , D̂⟩ is (C) with constant λ. Hence, by the Banach Contraction
Principle, f has a unique ûxed point.

To see (ii), let C1 , . . . ,Cm be the connected components of X. Since f (n)[C1] is
connected, there must exist i < i + k with f (i)[C1] and f (i+k)[C1] intersecting the

same component of X, call it C. _en f (k)[C] ⊂ C. Applying (i) to f (k)↾C∶C → C,

we can ûnd an x ∈ C with f (k)(x) = x. So x is a periodic point of f .

Notice that _eorems 3.3 and 3.5 are reduced to the Banach Contraction Princi-
ple by using appropriate (but diòerent) remetrization results. Rosenholtz discussed
similar (but diòerent) connections between_eorem 3.2 and the BanachContraction
Principle [32].

4 Implications Among the Contractive Notions

Following Jungck [22], we say that ⟨X , d⟩ is d-convex provided that for any distinct
points x , y ∈ X there exists a path p∶ [0, 1]→ X from x to y such that d(p(t1), p(t3)) =
d(p(t1), p(t2)) + d(p(t2), p(t3)) whenever 0 ≤ t1 < t2 < t3 ≤ 1. Clearly, every
d-convex space is rectiûable-path connected. On the other hand, any convex subset
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of a Banach space is d-convex. In particular, so is any interval considered with the
standard distance.

Part (i) of the next theorem is a particular case of [22, p. 503].

_eorem 4.1 Let ⟨X , d⟩ be d-convex and let f ∶X → X.

(i) If f is (uPC) with a constant λ, then it is (C) with the same constant.
(ii) If f is (PS), then it is (S).

Proof First notice, that for every distinct y, z ∈ X

(⋆) if L = d( f (y), f (z)
d(y ,z)

, then there exist x ∈ X and a sequence ⟨xn /= x ∶ n < ω⟩ in X

converging to x such that
d( f (x), f (xn)

d(x ,xn)
≥ L for all n < ω.

Indeed, let p∶ [0, 1] → X be a path from y to z from the deûnition of d-convexity.
Deûne a nested sequence ⟨[sn , tn] ∶ n < ω⟩ of intervals in [0, 1] such that, for every

n < ω, [sn , tn] has length 2−n and d( f (p(sn)), f (p(tn))
d(p(sn),p(tn))

≥ L.We startwith [s0 , t0] = [0, 1]
and, having [sn , tn], at least one of the halves of [sn , tn] can be chosen as [sn+1 , tn+1].
Let {t} = ⋂n<ω[sn , tn]. _en x = p(t) is as desired, since for every n < ω, there is

un ∈ {sn , tn} for which xn = p(un) /= x and satisûes
d( f (x), f (xn))

d(x ,xn)
≥ L.

Now to see (i), notice that if L = d( f (y), f (z)
d(y ,z)

for some distinct y, z ∈ X then, by (⋆),
L ≤ D∗ f (x) ≤ λ.

To see (ii), assume that f is not (S). _en there exist distinct y, z ∈ X with L =
d( f (y), f (z))

d(y ,z)
≥ 1. Let x be as in (⋆) for this pair. _en f is not (PS) at x.

For the compact spaces we have the following implications. (See [11, Proposi-
tion 4.3], [14,_eorem 4.2].)

_eorem 4.2 (LC) implies (ULC) and (LS) implies (ULS) for maps f ∶X → X with
compact X.

Proof Suppose X is compact. To see that (LC) implies (ULC), for each y ∈ X ûnd
an open set Uy ∋ y such that f ↾ Uy is Lipschitz with a constant λy ∈ [0, 1). By
compactness of X, there is a ûnite X0 ⊂ X such that U0 = {Uy ∶ y ∈ X0} covers X.
Let δ > 0 be a Lebesgue number for the cover U0 of X. (See [27, Lemma 27.5].) _en
ε = δ/2 satisûes (ULC) with the contraction constant λ =max{λy ∶ y ∈ X0}.

_e argument for (LS) implies (ULS), when X is compact, is similar.

_e next result seems never to have been published before.

_eorem 4.3 (S)&(ULC)⇒ (C) formaps f ∶X → X with compact X.

Proof Let ε > 0 and λ ∈ [0, 1) be such that d( f (x), f (y)) ≤ λd(x , y) for any
x , y ∈ X with d(x , y) < ε. Let Z = {⟨x , y⟩ ∈ X2 ∶ d(x , y) ≥ ε} and deûne g on

Z by g(x , y) = ∣ d( f (x), f (y))
d(x ,y)

∣. Since Z is compact, g attains itsmaximum value λ1 on

Z. We must have λ1 < 1, since f is (S). _us, f is (C) with a contraction constant
max{λ, λ1} < 1.
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5 Geodesics and Remetrization Results

For ε > 0, we say that X is ε-chainable, provided for every p, q ∈ X there exists a ûnite
sequence s = ⟨x0 , x1 , . . . , xn⟩, referred to as an ε-chain from p to q, such that x0 = p,
xn = q, and d(x i , x i+1) ≤ ε for every i < n. _e length of the ε-chain s is deûned as
l(s) = ∑i<n d(x i+1 , x i).
Remark 5.1 All connected spaces are ε-chainable for any ε > 0.

Proof (See [17, Exercise 6.1.D (a)]) Fix x , y ∈ X and ε > 0. Deûne ⟨Bn ⊂ X ∶n < ω⟩
by induction on n < ω as B0 = {x} and Bn+1 = {z ∈ X ∶ ∃b ∈ Bn(d(z, b) < ε)}. _e
union ⋃n<ω Bn /= ∅ is a clopen. So, by connectedness of the space X, we have

⋃n<ω Bn = X . _us, y ∈ Bn for some n < ω and so, there exists an ε-chain, with
n + 1 terms, from x to y.

Proposition 5.2 (ii) can be found (with a slightly diòerentproof) inRosenholtz [32].
_e proposition also resembles the results of Jungck [22] and ofHu andKirk [21]. See
also [2, Lemma 2 ].

Proposition 5.2 Let ε > 0 and assume that ⟨X , d⟩ is connected or, more generally,

ε-chainable. _en themap D̂∶X2 → [0,∞) given as

D̂(x , y) = inf{l(s) ∶ s is an ε-chain from x to y}
is a metric on X topologically equivalent to d. If ⟨X , d⟩ is complete, then so is ⟨X , D̂⟩.
Moreover,

(i) If f ∶ ⟨X , d⟩ → ⟨X , d⟩ is (η, λ)-(ULC) for some η > ε, then f ∶ ⟨X , D̂⟩ → ⟨X , D̂⟩ is
(C) with constant λ.

(ii) If ⟨X , d⟩ is compact and f ∶ ⟨X , d⟩ → ⟨X , d⟩ is (ULS) with a constant η > ε, then

f ∶ ⟨X , D̂⟩→ ⟨X , D̂⟩ is (S).
Proof To see that D̂ is ametric on X, it is enough to show that D̂ satisûes the triangle
inequality. So ûx x , y, z ∈ X and δ > 0. _en there exist the ε-chains s = ⟨x0 , . . . , xn⟩
from x to y and t = ⟨y0 , . . . , ym⟩ from y to z with D̂(x , y) ≥ l(s) − δ and D̂(y, z) ≥
l(t) − δ. Since u = ⟨x0 , . . . , xn , y0 , . . . , ym⟩ is an ε-chain from x to z with l(u) =
l(s) + l(t), we have

D̂(x , y) + D̂(y, z) ≥ l(s) − δ + l(t) − δ = l(u) − 2δ ≥ D̂(x , z) − 2δ.

Since the constant δ > 0 was arbitrary, we obtain the desired triangle inequality

D̂(x , y) + D̂(y, z) ≥ D̂(x , z).
Also if d(x , y) ≤ ε, then we have D̂(x , y) = d(x , y), since in that case d(x , y) ≤

D̂(x , y) ≤ l(⟨x , y⟩) = d(x , y). _is implies the topological equivalence and com-
pleteness statements, ûnishing the proof of themain part of the proposition.

To see (i), ûx x , y ∈ X. We need to show that D̂( f (x), f (y)) ≤ λD̂(x , y). For
this, ûx a δ > 0 and let s = ⟨x0 , . . . , xn⟩ be an ε-chain from x to y with D̂(x , y) ≥
l(s) − δ. Notice that, by (η, λ)-(ULC), for every i < n we have d( f (x i+1), f (x i)) ≤
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λd(x i+1 , x i). In particular, t = ⟨ f (x0), . . . , f (xn)⟩ is an ε-chain and

l(t) =∑
i<n

d( f (x i+1), f (x i)) ≤∑
i<n

λd(x i+1 , x i) = λl(s).
Hence, D̂( f (x), f (y)) ≤ l(t) ≤ λl(s) ≤ λ(D̂(x , y)+ δ). Since δ > 0 was arbitrary, we
obtain the desired inequality D̂( f (x), f (y)) ≤ λD̂(x , y).

To see (ii), choose distinct x , y ∈ X. We need to show that D̂( f (x), f (y)) <
D̂(x , y). So let {Uk ∶ k < n} be a cover of X by open sets of d-diameter less than
ε. Notice that if s = ⟨x0 , x1 , . . . , xm⟩ is an ε-chain from p to q and i < j ≤ m are
such that x i and x j belong to the same Uk , then t = ⟨x0 , . . . , x i , x j , . . . , xm⟩ is also an
ε-chain from p to q for which l(t) ≤ l(s). In particular, for any ε-chain s from p to
q there exists an ε-chain t from p to q such that any Uk contains at most two of the
terms in t. In particular,

D̂(x , y) = inf{l(s) ∶ s is an ε-chain from x to y containing 2n terms}.
In other words, if Z ⊂ X2n is the set of all ε-chains ⟨x0 , . . . , x2n−1⟩ from x to y, then

Z is compact (as a closed subset of X2n) and D̂(x , y) = inf{l(s) ∶ s ∈ Z}. _erefore,
the Extreme Value _eorem implies that there exists an ε-chain s = ⟨x0 , . . . , x2n−1⟩
from x to y with D̂(x , y) = l(s). To ûnish the proof, it is enough to notice that by the(η)-(ULS) assumption, ⟨ f (x0), . . . , f (x2n−1)⟩ is an ε-chain from f (x) to f (y) and
so

D̂( f (x), f (y)) ≤ ∑
i<2n−1

d( f (x i+1), f (x i)) < ∑
i<2n−1

d(x i+1 , x i) = l(s) = D̂(x , y)
as needed.

In what follows we will use the following result of Myers [29, p. 219]. For the
reader’s convenience, we include its short self-contained proof.

Lemma 5.3 Let ⟨X , d⟩ be a compact metric space and, for any n < ω, let
pn ∶ [0, 1] → X be a rectiûable path such that ℓ(pn ↾ [0, t]) = tℓ(pn) for any t ∈ [0, 1].
If L = lim inf n→∞ ℓ(pn) <∞, then there exists a subsequence ⟨pnk

∶ k < ω⟩ converging
uniformly to a rectiûable path p∶ [0, 1]→ X with ℓ(p) ≤ L.
Proof Select a countable dense subset U = {um ∶ m < ω} of [0, 1]. By compactness
of X, it is possible to ûnd a subsequence ⟨pnk

∶ k < ω⟩ with ℓ(pnk
) →k→∞ L such

that limk→∞ pnk
(um) = p(um) for all m < ω. _en maps {pnk

∶ k < ω} converge
uniformly to continuous p∶ [0, 1]→ X with ℓ(p) ≤ L.

Indeed, let m ∈ {nk ∶ k < ω} be such that ℓ(pnk
) ≤ ℓ(pm) for all k < ω and notice

that for every 0 ≤ s ≤ t ≤ 1 we have

d(pnk
(s), pnk

(t)) ≤ ℓ(pnk
↾ [s, t]) = (t − s)ℓ(pnk

) ≤ (t − s)ℓ(pm).
To see that the maps pnk

form a uniformly converging sequence, choose an ε > 0.
It is enough to show that there exists an N such that d(pn j

(s), pnk
(s)) < ε for all

s ∈ [0, 1] and j, k > N . So let J be a ûnite cover of [0, 1] by open intervals each of
length not exceeding δ = ε

4ℓ(pm)
. For every J ∈ J, choose a u ∈ U ∩ J and an NJ such
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that d(pnk
(u), p(u)) < ε/4 for all k > NJ . _en, for every s ∈ J and j, k > NJ , we

have

d(pnk
(s), p(u)) ≤ d(pnk

(s), pnk
(u)) + d(pnk

(u), p(u)) < ∣s − u∣ℓ(pm) + ε

4

≤ δℓ(pm) + ε

4
=
ε

2
,

d(pnk
(s), pn j

(s)) ≤ d(pnk
(s), p(u)) + d(p(u), pn j

(s)) < ε.
Hence, pnk

s converge uniformly to a continuous path p.
To see that ℓ(p) ≤ L, notice that for every 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1,

n

∑
i=1

d(p(t i), p(t i−1)) = lim
k→∞

n

∑
i=1

d(pnk
(t i), pnk

(t i−1))
≤ lim

k→∞

n

∑
i=1

(t i − t i−1)ℓ(pm) = ℓ(pm),
so that ℓ(p) ≤ ℓ(pm).

Finally, for every k0 < ω, given a sequence ⟨pnk
∶ k < ω⟩, we can ensure that that

ℓ(pm) = ℓ(pnk0
) by removing a ûnite number of elements. _erefore, we have that

ℓ(p) ≤ ℓ(pnk
) for every k < ω, that is, ℓ(p) ≤ limk→∞ ℓ(pnk

) = L.
Recall that a rectiûable path p∶ [0, 1]→ X from x to y is a geodesic provided ℓ(p) ≤

ℓ(q) for any other path q∶ [0, 1]→ X from x to y. From Lemma 5.3 it is easy to deduce
the following corollary, the ûrst part of which is due to Menger [26].

Corollary 5.4 Let ⟨X , d⟩ be a compactmetric space.

(i) If there is a rectiûable path in X from x to y, then there is a geodesic in X from x
to y.

(ii) If ⟨X , d⟩ is compact rectiûable-path connected, then for every continuous f ∶X →
X there exist an x ∈ X and a path p from x to f (x) such that ℓ(p) ≤ ℓ(q) for any
path q from any x ∈ X to f (x).

Proof First notice that any rectiûable path p∶ [0, 1]→ X admits a reparametrization
p∶ [0, 1]→ X, i.e., a pathwith the same range and same length, satisfying the condition
from Lemma 5.3: ℓ(p ↾ [0, t]) = tℓ(p) for any t ∈ [0, 1]. Indeed, themap

p = {⟨ ℓ(p ↾ [0, t])
ℓ(p) , p(t)⟩ ∶ t ∈ [0, 1]}

is as required, since for any s = ℓ(p↾[0,t])
ℓ(p) ∈ [0, 1], we have ℓ(p↾[0, s]) = ℓ(p↾[0, t]) =

sℓ(p) = sℓ(p).
To see (i), assume that x , y ∈ X can be joint by a rectiûable path. Let L be the

inûmum of the lengths of all such paths and choose rectiûable paths pn ∶ [0, 1] → X
from x to y such that limn→∞ ℓ(pn) = L. Application of Lemma 5.3 to the sequence⟨pn ∶ n < ω⟩ gives a path p∶ [0, 1]→ X from x to y with ℓ(p) = L.

To see (ii), let L = inf{ℓ(q) ∶ q is a path from x ∈ X to f (x)}. _en, there exists
paths pn ∶ [0, 1] → X from xn to f (xn) such that limn→∞ ℓ(pn) = L. Application of
Lemma 5.3 to ⟨pn ∶ n < ω⟩ gives subsequence ⟨pnk

∶ k < ω⟩ converging uniformly to
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a rectiûable path p∶ [0, 1] → X with ℓ(p) ≤ L. If x = p(0) = limk→∞ pnk
(0), then p

is from x = p(0) to p(1) = limk→∞ pnk
(1) = limk→∞ f (pnk

(0)) = f (x). So, x and p
are as needed.

_e following proposition is an elaboration of the results from [21, 22]; see also
[2,_eorem 6].

Proposition 5.5 If ⟨X , d⟩ is a rectiûable-path connected metric space, then the map
D∶X2 → [0,∞) given as D(x , y) = inf{ℓ(p) ∶ p is a rectiûable path from x to y} is a
metric on X. If ⟨X , d⟩ is complete, then so is ⟨X ,D⟩.2
(i) If P is the range of a rectiûable path p in X, λ ≥ 0, and for every x ∈ X, D∗ f (x) ≤ λ

with respect to themetric d, then ℓ( f ○ p) ≤ λℓ(p).
(ii) If λ ≥ 0 and, for every x ∈ X, D∗ f (x) ≤ λ with respect to the metric d, then

f ∶ ⟨X ,D⟩ → ⟨X ,D⟩ is Lipschitz with the constant λ. In particular, if 0 ≤ λ < 1
and f ∶ ⟨X , d⟩ → ⟨X , d⟩ is (λ)-(uPC), then f ∶ ⟨X ,D⟩ → ⟨X ,D⟩ is (C) with the
contraction constant λ.

(iii) If f ∶ ⟨X , d⟩→ ⟨X , d⟩ is (LC), then f ∶ ⟨X ,D⟩→ ⟨X ,D⟩ is (S).
(iv) If X is compact and f ∶ ⟨X , d⟩→ ⟨X , d⟩ is (PC), then f ∶ ⟨X ,D⟩→ ⟨X ,D⟩ is (S).
Proof _e main part is straightforward and seems to be well known. For a proof,
see [21,28].

To show (i), ûx an ε > 0. First notice that

(5.1) d( f (p(t)), f (p(s))) ≤ (λ + ε)ℓ(p ↾ [s, t]) for every 0 ≤ s < t ≤ 1.
Indeed, for every x ∈ [s, t] we have D∗( f ↾ P)(x) ≤ λ, so there exists a proper open
interval Ux = (x − δx , x + δx) such that

(5.2) d( f (p(x)), f (p(x′))) ≤ (λ + ε)d(p(x), p(x′)) for every x′ ∈ Ux ∩ [s, t].
Let J be a ûnite subset of [s, t] such thatU = {Ux ∶ x ∈ J} is a cover of [s, t] containing
no proper subcover. Let ⟨x1 , x3 , . . . , x2n−1⟩ be a list of elements of J in the increasing
order. _en by minimality of U, for every 0 < i < n there exists an x2i ∈ Ux2i−1 ∩
Ux2i+1 ∩ (x2i−1 , x2i+1). Moreover, x0 = s ∈ Ux1 and x2n = t ∈ Ux2n−1 . In particular,
s = x0 ≤ x1 < x2 < ⋅ ⋅ ⋅ < x2n−1 ≤ x2n = t and x2i , x2i+2 ∈ Ux2i+1 for every i < n.
_erefore, by (5.2),

d( f (p(t)), f (p(s))) ≤ ∑
k<2n

d( f (p(xk)), f (p(xk+1)))
≤ ∑

k<2n

(λ + ε)d( p(xk), p(xk+1)) ≤ (λ + ε)ℓ(p ↾ [s, t]),
justifying (5.1).

2Notice that themetrics d and D do not need to be topologically equivalent. For example, let X be
union of the “topologist’s sine curve” (see [27, p. 156]) and a semi-circular curve connecting one end of

the vertical segment with the “end” of the sine curve. If d is the standard metric on R
2 , then ⟨X , d⟩ is

compact rectiûable-path connected, while ⟨X ,D⟩ is not compact, since it is homeomorphic to [0,∞).
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To ûnish the argument for (i), choose the numbers 0 = t0 < t1 < ⋅ ⋅ ⋅ < tn = 1 such
that ℓ( f ○ p) ≤ ∑i<n d( f (p(t i+1)), f (p(t i))) + ε. _en, by (5.1),

ℓ( f ○ p) ≤∑
i<n

d( f (p(t i+1)), f (p(t i))) + ε

≤∑
i<n

(λ + ε)ℓ(p ↾ [t i−1 , t i]) + ε = (λ + ε)ℓ(p) + ε.

Since this holds with any ε > 0, the desired inequality, ℓ( f ○ p) ≤ λℓ(p), follows.
Item (ii) follows from (i). Indeed, for every a, b ∈ X and ε > 0, there is a rectiûable

path p from a to b such that ℓ(p) < D(a, b) + ε. _en, by (i),

D( f (a), f (b)) = inf{ℓ(q) ∶ q is a rectiûable path from f (a) to f (b)}
≤ ℓ( f ○ p) ≤ λℓ(p) ≤ λ(D(a, b) + ε).

Since ε was arbitrary, we get D( f (a), f (b)) ≤ λD(a, b) for every a, b ∈ X.
To prove property (iii), for distinct x , y ∈ X, weneed to show thatD( f (x), f (y)) <

D(x , y). Notice that by (ii), f ∶ ⟨X ,D⟩→ ⟨X ,D⟩ is Lipschitz with the constant 1. Also,
by (LC), there exists an open U ∋ x such that f ↾ U is d-contractive with a constant
λ ∈ [0, 1).

Figure 2: In a rectiûable-path connected space X, if f is (LC) with metric d, then f is (S) in

metric D = inf{l(p) ∶ P is a rectiûable path from x to y}.

Choose a δ ∈ (0,D(x , y)) such that z ∈ U whenever d(x , z) ≤ δ, a rectiûable path
p∶ [0, 1]→ X from x to ywith ℓ(p) < D(x , y)+(1−λ)δ, and pick the smallest ε ∈ (0, 1)
with D(x , p(ε)) = δ (see Figure 2). _en, p(t) ∈ U for every t ∈ [0, ε], since, for
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such t, d(x , p(t)) ≤ D(x , p(t)) ≤ D(x , p(ε)) = δ._erefore by (ii), ℓ( f ○p↾[0, ε]) ≤
λℓ(p ↾ [0, ε]). Hence

D( f (x), f (y)) ≤ D( f (x), f (p(ε))) + D( f (p(ε)), f (y))
≤ ℓ( f ○ p ↾ [0, ε]) + D(p(ε), y) ≤ λℓ(p ↾ [0, ε]) + ℓ(p ↾ [ε, 1])
= −(1 − λ)ℓ(p ↾ [0, ε]) + ℓ(p) ≤ −(1 − λ)D(x , p(ε)) + ℓ(p)
= −(1 − λ)δ + ℓ(p) < D(x , y),

as required.
To see (iv), ûx distinct x , y ∈ X. We need to show D( f (x), f (y)) < D(x , y). By

Corollary 5.4 (i), there exists a path p∶ [0, 1] → X from x to y with D(x , y) = ℓ(p).
Since ℓ( f ○ p) ≥ D( f (x), f (y)), it is enough to prove that ℓ(p) > ℓ( f ○ p).

To see this, let Y = p[[0, 1]]. It is easy to see that for every n < ω, the set
Kn = {x ∈ Y ∶ d( f (x), f (x′)) ≤ n

n+1
d(x , x′) for all x′ ∈ Y with d(x , x′) < 1

n+1
}

is closed in Y . Since f is (PC), we have Y = ⋃n<ω Kn . So by the Baire category
theorem, there is an n < ω such that the interior intYKn of Kn in Y is non-empty.
_us, there exist a < b such that [a, b] ⊂ p−1(intYKn). In particular, D∗ f (x) ≤ n

n+1
for every x ∈ p[[a, b]] and, by (i), ℓ( f ○ p ↾ [a, b]) ≤ n

n+1
ℓ(p ↾ [a, b]). Moreover,

property (S) implies that D∗ f (x) ≤ 1 for every x ∈ Y so, again by (i),

ℓ( f ○ p ↾ [c, d]) ≤ ℓ(p ↾ [c, d])
for every 0 ≤ c ≤ d ≤ 1. _us,

ℓ(p) = ℓ(p ↾ [0, a]) + ℓ(p ↾ [a, b]) + ℓ(p ↾ [b, 1])
> ℓ(p ↾ [0, a]) + n

n + 1
ℓ(p ↾ [a, b]) + ℓ(p ↾ [b, 1])

≥ ℓ( f ○ p ↾ [0, a]) + ℓ( f ○ p ↾ [a, b]) + ℓ( f ○ p ↾ [b, 1])
= ℓ( f ○ p),

as needed.
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6 Discussion of the Relations Among the Contractive Classes

In all theorems in this section we present examples ofmaps that, if possible, have no
ûxed and/or periodic points.

6.1 Complete Spaces

(C)F3.1 (ULC) (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)
Figure 3: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being an arbitrary complete metric space. Maps from (C) are indicated

as (C)F3.1 , to denote that they have the ûxed point property F according to _eorem 3.1. _e

maps from the other classes need not have periodic points, the existence of which will later be

denoted by a superscript P. No other implications in the ûgure exist, see_eorem 6.1.

_eorem 6.1 No combination of any of the properties shown in Figure 3 implies any
other property, unless the graph forces such an implication. In particular, for the classes
in the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(ULC) by Example 27, with no periodic point;(ULC): (ULC)⇍ (S)&(uLC) by Example 16, with no periodic point;(uLC): (uLC)⇍ (S)&(LC)&(uPC) by Example 19, with no periodic point;(LC): (LC)⇍ (S)&(uPC) by Example 20, with no periodic point;(S): (S)⇍ (ULC) by Example 24, with no periodic point;(ULS): (ULS)⇍ (uLC) by Example 18, with no periodic point;(LS): (LS)⇍ (uPC) by Examples 28 and 21, with no periodic point;(uPC): (uPC)⇍ (S)&(LC) by Example 4, with no periodic point;(PC): (PC)⇍ (S) by Example 3, with no periodic point.
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6.2 Connected and Path-connected Spaces

(C)F3.1 (ULC)F3.5 (uLC) (LC)

(S) (ULS) (LS)

(uPC) (PC)

(PS)
Figure 4: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a completemetric space which is either connected or path-connected.

_e le� dashed arrow indicates that, by Proposition 5.2 (i), there exists an equivalent metric

for which anymap that is (ULC) in the oldmetric becomes (C). No other implications in the

ûgure exist, see_eorem 6.2.

_eorem 6.2 No combination of any of the properties shown in Figure 4 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(ULC) by Example 10, with ûxed point;(C)⇍ (S)&(uLC), with no periodic point, see below (ULC)⇍(S)&(uLC);(ULC): (ULC)⇍ (S)&(uLC) by Example 16, with no periodic point;(uLC): (uLC)⇍ (S)&(LC)&(uPC) by Example 19, with no periodic point;(LC): (LC)⇍ (S)&(uPC) by Example 20, with no periodic point;(S): (S)⇍ (ULC) by Example 6, with ûxed point;(S)⇍ (ULS)&(uLC) by Example 17, with no periodic point;(ULS): (ULS)⇍ (uLC) by Example 18, with no periodic point;(LS): (LS)⇍ (uPC) by Example 21, with no periodic point;(uPC): (uPC)⇍ (S)&(LC) by Example 4, with no periodic point;(PC): (PC)⇍ (S) by Example 3, with no periodic point.
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6.3 Rectifiable-path Connected Spaces

(C)F3.1 (ULC)F3.5 (uLC)F3.3 (LC)

(S) (ULS) (LS)

(uPC)F3.3 (PC)

(PS)
Figure 5: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a complete metric space which is rectiûable-path connected. Each

of the dashed (not dotted) arrows indicates that, by Proposition 5.5, there exists another com-

plete rectiûable-path connectedmetric on X thatmakes anymap from the larger class belong

to the smaller class. No other implications in the ûgure exist, see_eorem 6.3.

_eorem 6.3 No combination of any of the properties shown in Figure 5 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(ULC) by Example 10, with ûxed point;(C)⇍ (S)&(LC), with no periodic point, see below (uPC)⇍ (S)&(LC);(ULC): (ULC)⇍ (S)&(uLC) by Example 11, with ûxed point;(ULC)⇍ (S)&(LC), with no periodic point, see (uPC)⇍ (S)&(LC);(uLC): (uLC)⇍ (S)&(LC)&(uPC) by Example 13, with ûxed point;(uLC)⇍ (S)&(LC), with no periodic point, see (uPC)⇍ (S)&(LC);(LC): (LC)⇍ (S)&(uPC) by Example 14, with ûxed point;(LC)⇍ (S)&(PC) by Example 5, with no periodic point;(S): (S)⇍ (ULC) by Example 6, with ûxed point;(S)⇍ (ULS)&(LC) by Example 7, with no periodic point;(ULS): (ULS)⇍ (uLC) by Example 12, with ûxed point;(ULS)⇍ (LC) by Example 15, with no periodic point;(LS): (LS)⇍ (uPC) by Example 9, with ûxed point;(LS)⇍ (PC) by Example 8, with no periodic point;(uPC): (uPC)⇍ (S)&(LC) by Example 4, with no periodic point;(PC): (PC)⇍ (S) by Example 3, with no periodic point.
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6.4 d-convex Spaces

(C)F3.1 (ULC)F3.1 (uLC)F3.1 (LC)

(S) (ULS) (LS)

(uPC)F3.1 (PC)

(PS)
Figure 6: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a d-convex metric space. _e le� and upper portions of the equiva-

lences←→ follow from_eorem4.1. No other implications in the ûgure exist, see_eorem 6.4.

_eorem 6.4 No combination of any of the properties shown in Figure 6 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(LC), see the example below for (uPC);(ULC): (ULC)⇍ (S)&(LC), see the example below for (uPC);(uLC): (uLC)⇍ (S)&(LC), see the example below for (uPC);(LC): (LC)⇍ (S)&(PC) by Example 5, with no periodic point;(uPC): (uPC)⇍ (S)&(LC) by Example 4, with no periodic point;(PC): (PC)⇍ (S) by Example 3, with no periodic point.
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6.5 Compact Spaces

(C)F3.1 (ULC)P3.2 (uLC)P3.2 (LC)P3.2

(S)F3.2 (ULS)P3.2 (LS)P3.2

(uPC) (PC)

(PS)
Figure 7: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a compact metric space. _e le� portions of the equivalences ←→
follow from_eorem 4.2. Moreover, we also have implication (S)&(ULC)⇒ (C), see_eo-

rem 4.3. No other implications in the ûgure exist, see_eorem 6.5.

_eorem 6.5 No combination of any of the properties shown in Figure 7 implies any
other property, unless the graph forces such implication, with the exception of the impli-
cation (S)&(ULC)⇒ (C). In particular, for the classes in the ûgure, listed by rows, we
have the following.(C): (C)⇍ (S)&(ULC), see_eorem 4.3;(C)⇍ (S)&(uPC), with ûxed point, see below for (LC)⇍ (S)&(uPC);(C)⇍ (ULC), with periodic but not ûxed point, see below (S)⇍ (ULC);(C)⇍ (uPC), with no periodic point, see below (LS)⇍ (uPC);(ULC): see the examples below for (LC);(uLC): see the examples below for (LC);(LC): (LC)⇍ (S)&(uPC) by Example 14, with ûxed point;(LC)⇍ (ULS)&(uPC) by Example 26, with periodic but not ûxed point;(LC)⇍ (uPC), with no periodic point, see example for (LS)⇍ (uPC);(S): (S)⇍ (ULC) by Example 23, with periodic, but not ûxed point;(S)⇍ (uPC), with no periodic point, see example for (LS)⇍ (uPC);(ULS): see the example below for (LS);(LS): (LS)⇍ (uPC) by Example 28, with no periodic point;(uPC): (uPC)⇍ (S)&(PC) by Example 2, with ûxed point;(uPC)⇍ (ULS)&(PC) by Example 25, with periodic, but not ûxed point;(uPC)⇍ (PC) by Example 30, with no periodic point;(PC): (PC)⇍ (S) by Example 1, with ûxed point;(PC)⇍ (ULS) by Example 22, with periodic, but not ûxed point;(PC)⇍ (PS) by Example 29, with no periodic point.
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6.6 Compact (Path) Connected Spaces

(C)F3.1 (ULC)F3.2 (uLC)F3.2 (LC)F3.2

(S)F3.2 (ULS)F3.2 (LS)F3.2

(uPC)?8.1 (PC)?8.1

(PS)?8.1
Figure 8: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a compact and either connected or path-connected metric space.

_e dashed arrows indicate that, by Proposition 5.2, there exists a completemetric on X topo-

logically equivalent to the original, which makes any map from the larger class belong to the

smaller class. _e le� portions of the equivalences ←→ follow from _eorem 4.2. Moreover,

we also have implication (S)&(ULC) ⇒ (C), see _eorem 4.3. No other implications in the

ûgure exist, see_eorem 6.6. _e question marks in the graph refer to open problems.

_eorem 6.6 No combination of any of the properties shown in Figure 8 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(ULC), see_eorem 4.3;(C)⇍ (S)&(uPC), with ûxed point, see example for (LC)⇍ (S)&(uPC);(C)⇍ (ULC), with ûxed point, see below (S)⇍ (ULC);(ULC): see the example below for (LC);(uLC): see the example below for (LC);(LC): (LC)⇍ (S)&(uPC) by Example 14, with ûxed point;(S): (S)⇍ (ULC) by Example 6, with ûxed point;(ULS): see the example below for (LS);(LS): (LS)⇍ (uPC) by Example 9, with ûxed point;(uPC): (uPC)⇍ (S)&(PC) by Example 2, with ûxed point;(PC): (PC)⇍ (S) by Example 1, with ûxed point.
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6.7 Compact Rectifiable-path Connected Spaces

(C)F3.1 (ULC)F3.2 (uLC)F3.2 (LC)F3.2

(S)F3.2 (ULS)F3.2 (LS)F3.2

(uPC)F3.3 (PC)F3.4

(PS)?8.2
Figure 9: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a compact and rectiûable-path connected metric space. _e dashed

arrow indicates that, by Propositions 5.2 and 5.5, there exists an equivalent metric that makes

anymap from the larger class belong to the smaller class. _e le� portions of the equivalences

←→ follow from _eorem 4.2. Moreover, we also have implication (S)&(ULC) ⇒ (C), see
_eorem 4.3. No other implications in the ûgure exist, see_eorem 6.7. _e question mark in

the graph refers to an open problem.

_eorem 6.7 No combination of any of the properties shown in Figure 9 implies any
other property, unless the graph forces such implication. In particular, for the classes in
the ûgure, listed by rows, we have the following.(C): (C)⇍ (S)&(ULC), see_eorem 4.3;(C)⇍ (S)&(uPC), with ûxed point, see example for (LC)⇍ (S)&(uPC);(C)⇍ (ULC), with ûxed point, see below (S)⇍ (ULC);(ULC): see the example below for (LC);(uLC): see the example below for (LC);(LC): (LC)⇍ (S)&(uPC) by Example 14, with ûxed point;(S): (S)⇍ (ULC) by Example 6, with ûxed point;(ULS): see the example below for (LS);(LS): (LS)⇍ (uPC) by Example 9, with ûxed point;(uPC): (uPC)⇍ (S)&(PC) by Example 2, with ûxed point;(PC): (PC)⇍ (S) by Example 1, with ûxed point.
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6.8 Compact d-convex Spaces

(C)F3.1 (ULC)F3.1 (uLC)F3.1 (LC)F3.1

(S)F3.2 (ULS)F3.2 (LS)F3.2

(uPC)F3.1 (PC)F3.4

(PS)F3.2
Figure 10: _e relations among the local contractive and shrinking properties for the maps

f ∶ X → X, with X being a compact d-convex metric space. _e le� and upper portions of

the equivalences←→ follow from_eorem 4.1 and_eorem 4.2. No other implications in the

ûgure exist, see_eorem 6.8.

_eorem 6.8 No combination of any of the properties shown in Figure 10 implies any
other property, unless the graph forces such implication. In particular,(C): see the example below for (uPC);(ULC): see the example below for (uPC);(uLC): see the example below for (uPC);(LC): see the example below for (uPC);(uPC): (uPC)⇍ (S)&(PC) by Example 2, with ûxed point;(PC): (PC)⇍ (S) by Example 1, with ûxed point.
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7 The Examples

All examples presented in this section consist of the self-maps of complete metric
spaces. Actually, all thesemetric spaceswill be subsets ofR considered with the stan-
dard topology; however, themetric we use will o�en be a non-standardmetric.

7.1 Examples on Intervals With Standard Metric

Notice that by_eorem 3.2 (i) if X is compact, than anymap f ∶X → X as in Example 1
must have a ûxed point.

Example 1 _e map f ∶ [0, 1] → [0, 1], f (x) = arctan x, is from (S) &¬ (PC). It has
a ûxed point, as f (0) = 0.
Proof It isnot (PC) byRemark 2.3, as f ′(0) = 1. It is (S) by theMeanValue_eorem,
since f ′(x) ∈ (0, 1) for every x > 0.

Notice that, by _eorem 3.2 (i), if X is compact, then any map f ∶X → X, as
in Example 2, must have a ûxed point. Note also that although the map in Exam-
ple 2 is diòerentiable, it cannot be continuously diòerentiable since for C1[0, 1]maps
(PC)⇒(uPC).

Figure 11: _e graph of g∶ [0, 1]→ [0, 1] from Example 2 for which themap f2(x) = ∫
x

0
g(t) dt

is (S) and (PC), but not (uPC).

Example 2 _ere exists amap f2∶ [0, 1]→ [0, 1] from (S)&(PC)&¬(uPC). It has a
ûxed point, as f2(0) = 0.
Construction Choose a sequence b0 > a0 > b1 > a1 > ⋅ ⋅ ⋅ converging to 0 such that
0 is a Lebesgue density point of the complement of⋃n<ω(an , bn). For every n < ω let
gn be amap from [0, 1] onto [0, 1−2−n−1]with support in [an , bn]. For example, take
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a tent-like gn(x) = 2 1−2−n−1

bn−an
dist(x ,R ∖ [an , bn]). _en g = ∑n<ω gn (see Figure 11) is

from [0, 1] onto [0, 1)which is approximately continuous; it is ensured at x = 0 by the
Lebesgue density requirement.

_is implies that f2(x) = ∫
x

0 g(t) dt is diòerentiable from [0, 1] to [0, 1] with
f ′2(x) = g, see [6, _eorem 7.36]. By Remark 2.3, this property of f ′2 implies that
f2 is (PC) and not (uPC). Also, by theMean Value_eorem, f2 is (S).

Notice that by _eorem 3.2 (i), if f ∶X → X is as in Example 3, then X cannot be
compact.

Example 3 _emap f ∶ [0,∞) → [0,∞), f (x) = x + e−x
2

is from (S)&¬(PC) and
has no periodic point.

Proof Notice that f ′(x) = 1 − 2xe−x
2

. _us, f ′(0) = 1 and so, by Remark 2.3,
f is not (PC). Moreover, f ′[(0,∞)] ⊆ (0, 1) so that f is (S) since, for any distinct
x , y ∈ [0,∞), the inequality ∣ f (x) − f (y)∣ < ∣x − y∣ follows from the Mean Value
_eorem. Finally, f has no periodic point, since f (x) > x for every x ≥ 0. _is
inequality also implies that f is indeed into [0,∞).

_enext example comes fromMunkres [27,p. 182]. Notice that, by_eorem 3.2 (i),
if f ∶X → X is as in Example 4, then X cannot be compact.

Example 4 _emap f ∶R→ R, f (x) = 1
2
(x+√x2 + 1) is from (S)&(LC)&¬(uPC)

and has no periodic point.

Proof Notice that f ′(x) = 1
2
(1 + x√

x2+1
). _erefore, for any a ∈ R, f ′[(−∞, a]] =(0, c] for some c ∈ (0, 1). _us, theMeanValue_eorem implies that f is (S)&(LC).

On the other hand limx→∞ f ′(x) = 1, so, by Remark 2.3, f is not (uPC). Finally, f has
no periodic point since f (x) > x for all x ∈ R.

Notice that, by_eorem 3.2 (i), if f ∶X → X is as in Example 5, then X cannot be
compact.

Example 5 _ere exists amap f ∶ [0,∞) → [0,∞) from (S)&(PC)&¬(LC) having
no periodic point.

Construction Let f2∶ [0, 1] → [0, 1] be as in Example 2 and let r = f2(1). Deûne
gr(x) = 1

2
(x + √x2 + 4r + 4r2). _is is a modiûcation of the Munkres’s function

from Example 4. It has the property that gr(1) = r + 1 = f2(1) + 1. Deûne

f (x) = ⎧⎪⎪⎨⎪⎪⎩
f2(x) + 1 for x ∈ [0, 1],
gr(x) for x ∈ [1,∞).

Clearly, f is continuous and f (x) > x for all x ∈ [0,∞), so f has no periodic
points. _e restriction f ↾ [0, 1] is (S)&(PC)&¬(uPC), as these are the properties
of f2 and both functions have the same derivative. In particular, f ↾ [0, 1] cannot be
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(LC), since otherwise, by_eorem4.2, f ↾[0, 1]would be (uLC) and, therefore, (uPC).
Hence, f is not (LC). Notice also that

g′r(x) = 1

2
( 1 + x√

x2 + 4r + 4r2
)

so, as in Example 4, f ↾ [1,∞) = gr is both (S) and (PC). Since f ↾ [0, 1] has the same
two properties, it is easy to verify that the same is true for f , (see discussion in [1]).

7.2 Examples on Intervals With Non-standard Distances

In all examples f ∶X → X presented in Section 7.2, the space X is an interval. How-
ever, in none of these examples can X be equipped with the standardmetric on R, as
justiûed by_eorem4.1 and further elaborated before each example. Nevertheless, all
metrics we use here are complete and topologically equivalent to the standardmetric
onR, i.e., each X can be treated as a path inR2._e only property thatwe did not fully
investigate for these spaces is the question of which of the spaces can be isometric to
a subset of R2 or,more generally, of Rn with n > 1.

7.2.1 Using Simple Rectifiable-path Connected Metrics

Notice that, by _eorem 3.2 (i), if X is compact, then any map f ∶X → X as in Ex-
ample 6 must have a ûxed point. Also, by _eorem 4.1, the metric ρ in the example
cannot be the standardmetric (as, in such case, (ULC)⇒(uPC)⇒(C)⇒(S)).

Example 6 _ere exists a function f ∶ ⟨[0, 4], ρ⟩ → ⟨[0, 4], ρ⟩ from (ULC) &¬ (S),
where ρ is a rectiûable-path connectedmetric on [0, 4] that is topologically equivalent
to the standardmetric. Clearly, f has a ûxed point.

Construction Deûne ρ via ρ(x , y) = min{∣x − y∣, 1} and put f (x) = x/2. It is easy
to see that f is ( 1

2
, 1
2
)-(ULC). It is not (S), since ρ( f (0), f (4)) = ρ(0, 2) = 1 = ρ(0, 4).

Notice that by_eorem 3.2 (i), if f ∶X → X is as in the Example 7, then X cannot
be compact. Also, by_eorem4.1, themetric ρ in the example cannot be the standard
metric (as, in such case, (ULS)⇒(PS)⇒(S)).

Example 7 _ere exists amap f ∶ ⟨[0,∞), ρ⟩→ ⟨[0,∞), ρ⟩, having no periodic point,
from the class (ULS)&(LC)&¬(S), where ⟨[0,∞), ρ⟩ is a rectiûable path connected
and topologically equivalent to [0,∞) with the standardmetric.

Construction _e function f ∶ [0,∞) → [0,∞) from Example 4 has the desired
properties when themetric is deûned as ρ(x , y) = min{∣x − y∣, 1}. Indeed, the prop-
erties (LC) and (ULC) are not aòected by this metric change. However, f is not
(S), since there are 0 < a < b for which b − a > f (b) − f (a) > 1 and we obtain
ρ(a, b) = 1 = ρ( f (a), f (b)).

Notice that by _eorem 3.4, if f ∶X → X is as in Example 8, then X cannot be
compact. Also, by _eorem 4.1, the metric ρ in the example cannot be the standard
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metric (as, in such case, (PC)⇒(PS)⇒(S)⇒(LS)). However, we actually prove that
there is amap h∶ [0,∞) → R for which the domain of f is the graph of h considered
as a subset of R2 with the standard distance.

Example 8 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩, having no periodic
point, from the class (PC)&¬(LS), where ⟨[0,∞), ρ⟩ is a rectiûable path connected
and topologically equivalent to [0,∞) with the standardmetric.

Construction For n < ω let hn ∶ [n, n + 1] → R be deûned by a formula hn(x) =
1

n+1
dist(x , {n, n + 1}). Also, let h = ⋃n<ω hn , see Figure 12, and deûne ρ as

ρ(x , y) = ∥⟨x , h(x)⟩ − ⟨y, h(y)⟩∥.
Let f (x) = x + 1.

Figure 12: _e graph of h∶ [0,∞]→ R from Example 8 for which f (x) = x + 1 is (PC) but not
(LS).

Clearly, ⟨[0,∞), ρ⟩ is rectiûable path connected and f has no periodic points. To
see that f is (PC), it is enough to prove that so is its restriction to any of the intervals[n, n+0.5] and [n+0.5, n+1]. Indeed, if x and y are distinct points of such an interval,
then

ρ( f (x), f (y))
ρ(x , y) =

√
1 + 1

(n+2)2 ∣x − y∣√
1 + 1

(n+1)2 ∣x − y∣ =
√

1 + 1
(n+2)2√

1 + 1
(n+1)2

< 1.

_e function f is not (LS) at any point s = n + 1
2
, since for any ε ∈ (0, 1/2) we have

ρ( f (s − ε), f (s + ε)) = 2ε = ρ(s − ε, s + ε).
Notice that by_eorem 3.3, if f ∶X → X is as in Example 9 and X is compact, then

f must have a ûxed point. Also, by_eorem 4.1, themetric ρ in the example cannot
be the standard metric (as, in such case, (uPC)⇒(C)⇒(LS)). However, we actually
prove that there is a map h∶ [0, 2] → R for which the domain of f is the graph of h
considered as a subset of R2 with the standard distance.

Example 9 _ere exists amap f ∶ ⟨[0, 2], ρ⟩→ ⟨[0, 2], ρ⟩ from (uPC)&¬(LS),where⟨[0, 2], ρ⟩ is rectiûable path connected and topologically equivalent to [0, 2] with the
standardmetric. Clearly, f has a ûxed point, as f (2) = 2.
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Construction Let ρ be the restriction to [0, 2] of the metric from Example 8 and
deûne f (x) =min{2, x + 1}. _e restriction f ↾ [0, 1] is identical for this example and
Example 8. So, as in Example 8, it is not (LS) at x = 1

2
, while it is (uPC)._is ensures

that our f is not (LS). However, it is (uPC), since so are f ↾ [0, 1] and f ↾ [1, 2] (with
f ↾ [1, 2] being a constantmap).

Notice that by _eorem 4.3, if f ∶X → X is as in Example 10, then X cannot be
compact. Also, by _eorem 3.4, the map in the example must have a ûxed point.
Moreover, by_eorem4.1, themetric d in the example cannot be the standardmetric
(as, in such case, (ULC)⇒(uPC)⇒(C)). However, we actually prove that there is a
map h∶ [0,∞)→ R forwhich the domain of f is the graph of h considered as a subset
of R2 with the standard distance.

Example 10 _ere exists a function f ∶ ⟨[0,∞), d⟩ → ⟨[0,∞), d⟩ from the class(S)&(ULC)&¬(C), where d is a rectiûable-path connected completemetric on [0,∞),
topologically equivalent to the standardmetric. _emap f has a ûxed point f (0) = 0.
Construction Deûne d by a formula d(x , y) = ln(1 + ∣x − y∣). It is a metric, since
themap [0,∞) ∋ t ↦ ln(1 + t) ∈ [0,∞) is concave down on [0,∞). It is easy to see
that the metric d is complete and topologically equivalent to the standard metric. It
is rectiûable-path connected since the inequality ln(1+ t) ≤ t implies that the length,
with respect to themetric d, of a path from x to y is atmost ∣x − y∣.

Deûne f ∶ [0,∞)→ [0,∞) by f (x) = x/2. For any x ∈ [0,∞) and z > 0, we have

d( f (x), f (x + z))
d(x , x + z) =

ln(1 + z/2)
ln(1 + z) < 1.

_erefore, f is (S)._emap f is not (C), since, by l’Hôpital’s Rule,

lim
z→∞

d( f (x), f (x + z))
d(x , x + z) = lim

z→∞

1 + z

2 + z
= 1.

On the other hand,

lim
z→0

d( f (x), f (x + z))
d(x , x + z) = lim

z→0

1 + z

2 + z
=
1

2

so, there exists an ε > 0 such that

d( f (x), f (x + z))
d(x , x + z) <

3

4

for every x ≥ 0 and z ∈ (0, ε). But thismeans that f is ( ε
2
, 3
4
)-(ULC).
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Notice that by _eorem 4.2, if f̂ ∶X → X is as in Example 11, then X cannot be

compact. Also, by _eorem 3.3, the map f̂ must have a ûxed point. Moreover, by
_eorem 4.1, the metric ρ in the example cannot be the standard metric (as, in such
case, (uLC)⇒(uPC)⇒(C)⇒(ULC)). We actually prove that there is a subset X ⊆ R2

homeomorphic with R and a function f ∶X → X which has the desired properties
when X is taken with the standardmetric.

Example 11 _ere exists a map f ∶ ⟨R, ρ⟩ → ⟨R, ρ⟩ from (S)&(uLC)&¬(ULC),
where ρ is a rectiûable-path connected complete metric on R topologically equivalent
to the standardmetric. _emap f has a ûxed point.

Construction Choose numbers ⋅ ⋅ ⋅ < a−2 < a−1 < a0 < a1 < a2 < ⋅ ⋅ ⋅ such that
a0 = 0 and if In = [an , an+1] for every n ∈ Z, then for every k < ω

∣I−(k+1)∣ = 1

k + 2
, ∣I2k ∣ = 1

k2 + 1
, and ∣I2k+1∣ = 1

k + 1
.

Notice that this choice ensures that R = ⋃n∈Z In and

(7.1) lim
k→∞
∣Ik ∣ = 0 and lim

k→∞

∣I−k−2∣ + ∣I−k−1∣∣I2k+1∣ + ∣I2k+2∣ + ∣I2k+3∣ .
For every k < ω deûne g ↾ I−(k+1) and g ↾ I4k as a constant 0 function, g ↾ I4k+2 as a
constant 1 function, g ↾ I4k+1 as a linear increasing map onto [0, 1], and g ↾ I4k+3 as
a linear decreasing map onto [0, 1]. Deûne the metric ρ on R via formula ρ(x , y) =∥⟨x , g(x)⟩ − ⟨y, g(y)⟩∥. Also, deûne f ∶R → R as follows. Put f (x) = 0 for every
x ≤ 0 and, for every k < ω, let f map each interval I2k+1 decreasingly and linearly
onto I−k−1 = [a−k−1 , a−k] and each interval I2k onto the singleton {a−k} (see Figure
13). We claim that f is as needed.

Figure 13: Illustration of g and f ↾ [a2k , a2k+4] from Example 11.
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Indeed, f is not (ULC) because, for every k < ω,
ρ( f (a4k+1), f (a4k+4))

ρ(a4k+1 , a4k+4) =
∣a−2k − a−2k−2∣∣a4k+1 − a4k+4∣ =

∣I−2k−2∣ + ∣I−2k−1∣∣I4k+1∣ + ∣I4k+2∣ + ∣I4k+3∣
which, by (7.1), converges to 1, as k →∞, and limk→∞ ρ(a4k+1 , a4k+4) = 0.

To see that the function f is (S), choose x < y inR.We need to show the inequality
ρ( f (x), f (y)) < ρ(x , y). But ρ( f (x), f (y)) = ∣ f (x) − f (y)∣, since f (x), f (y) ∈(−∞, 0] and ρ on (−∞, 0] is the standardmetric. Moreover,

ρ(x , y) = ∥⟨x , g(x)⟩ − ⟨y, g(y)⟩∥ ≥ ∣x − y∣.
Hence, it is enough to show that ∣ f (x) − f (y)∣ < ∣x − y∣, that is, that f is (S) when
considered with the standard metric. However, if ρn is the standard metric on In ,
then the metric ρ on R induced by these metrics, as in Lemma 7.1, is the standard
metric. Clearly, with respect to the standard metric ρ, f ↾ In is (S) since it is linear
and ∣ f [In]∣ < ∣In ∣. Hence, by Lemma 7.1, f is (S)when considered the standardmetric
ρ, ûnishing the argument.

Finally, to see that f is (uLC), it is enough to prove that, for every n ∈ Z,

(7.2) f ↾ (In ∪ In+1) is ( 1
2
) -(C).

Clearly, this is true when n < 0, since then f ↾ (In ∪ In+1) is constant. So assume
that n ≥ 0. We will assume also that n is an odd number 2k + 1, the even case being
essentially identical. _us, to see (7.2), ûx x < y from I2k+1 ∪ I2k+2. We need to show
that ρ( f (x), f (y)) ≤ 1

2
ρ(x , y).

_is inequality is obvious when x , y ∈ I2k+2, since f ↾ I2k+2 is constant. For x , y ∈
I2k+1, this follows from the fact that f ↾ I2k+1 is linear with the slope

ρ( f (a2k+1), f (a2k+2))
ρ(a2k+1 , a2k+2) ≤ ρ( f (a2k+1), f (a2k+2)) = ∣I−k−1∣ = 1

k + 2
≤
1

2
.

_e remaining case is when x < a2k+2 < y. _en the inequality holds, since

ρ( f (x), f (y)) = ρ( f (x), f (a2k+2)) ≤ 1

2
ρ(x , a2k+2) ≤ 1

2
ρ(x , y),

where the last inequality is justiûed by the fact that the angle between the segments
g ↾ I2k+1 and g ↾ I2k+2 is obtuse.

7.2.2 Using More Involved Rectifiable-path Connected Metrics

All remaining examples presented in Section 7.2 will be based on the next lemma.
It will be primarily used for the families J of the form {(an , an+1) ∶ n < ω}, with
0 = a0 < a1 < a2 < ⋅ ⋅ ⋅ . However, in several examples, it will be used also with the
families J ofmore complex format.
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Lemma 7.1 Let J = {(at , bt) ∶ t ∈ T} be a family of pairwise disjoint non-empty open
bounded intervals in R and let J be a closed interval in R containing U = ⋃t∈T(at , bt).
Let d be the standard metric on U c = J ∖ U and, for every t ∈ T , let ρt be a metric on[at , bt] such that ρt(at , bt) = ∣at − bt ∣. Extend the function δ = d ∪ ⋃t∈T ρt to the
metric ρ∶ J2 → R by putting, for every x ≤ y from J,

ρ(x , y) = ρ(y, x) = δ(x , x+) + δ(x+, y−) + δ(y−, y),
where x+ = inf U c ∩ [x ,∞) and y− = supU c ∩ (−∞, y]. _en ρ is a metric on J. It
is complete and topologically equivalent to the standardmetric, provided so is every ρt .
Moreover, for everymapping f from ⟨J , ρ⟩ into ametric space ⟨Y , η⟩, the following hold.(S): f is (S) provided all maps f ↾ [at , bt] are (S) and U c is discrete.(uLC): f is (uLC) with a constant λ ∈ [0, 1) provided all maps f ↾ [at , bt] are (uLC)

with constant λ and U c is discrete.(uPC): f is (uPC)with a constant λ ∈ [0, 1) providedmaps f ↾[at , bt] are (uPC)with
constant λ and U c is discrete.(LC): f is (LC) providedmaps f ↾[at , bt] are (LC)with constant λ andU c is discrete.(C): f is (C)with a constant λ ∈ [0, 1) provided f ↾U c aswell as all maps f ↾[at , bt]
are (C) with constant λ.

Proof It is easy to see that ρ is ametric on J and that it is complete and topologically
equivalent to the standardmetric, when every ρt is such.

To see (S), choose x < y in J. Since U c is discrete, there exists a ûnite sequence
x = x0 < ⋅ ⋅ ⋅ < xn = y such that for all i < n, the pair {x i , x i+1} is contained in one of
the intervals [at i , bt i ] and x j ∈ U

c for all 0 < j < n. _en

ρ(x , y) =∑
i<n

ρt i (x i , x i+1) >∑
i<n

η( f (x i), f (x i+1)) ≥ η( f (x), f (y))
as needed, where the equation is ensured by the deûnition of ρ, while the strict in-
equality is ensured by the assumption on maps f ↾ [at , bt].

To see (uLC), choose z ∈ J. We need to ûnd an open neighborhoodU ⊂ J of z such
that f ↾ U is (C) with the constant λ. If there is an open neighborhood W ⊂ J of z
contained in a single interval [at , bt], then, by our assumption on f ↾ [at , bt], there is
a U ⊂W as needed. Otherwise, there are distinct s, t ∈ T such that z = bs = at . _en,
by our assumption, there are p ∈ (as , bs) and q ∈ (at , bt) such that both f ↾(p, z] and
f ↾[z, q) are (C)with constant λ. _enU = (p, q) is as needed. To see this, take x < y
from (p, q). We need to show that η( f (x), f (y)) ≤ λρ(x , y). If z ∉ (x , y), then this
holds by what we know about f ↾ (p, z] and f ↾ [z, q). Otherwise, z = x+ = y− and
λρ(x , y) = λρ(x , z) + λρ(z, y) ≥ η( f (x), f (z)) + η( f (z), f (y)) ≥ η( f (x), f (y)),
as needed.

_e proofs of parts (uPC) and (LC) are straightforward variations of that for (uLC).
To see (C), notice that for every x ≤ y from J we have

λρ(x , y) = λρ(x , x+) + λρ(x+, y−) + λρ(y−, y)
≥ η( f (x), f (x+)) + η( f (x+), f (y−)) + η( f (y−), f (y))
≥ λη( f (x), f (y)),

as needed.
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By_eorem 3.3, if themap f ∶X → X is as in Example 12, then itmust have a ûxed
point. By_eorem 4.1, themetric ρ on X cannot be the standardmetric (as, in such
case, (uLC)⇒(uPC)⇒(C)⇒(ULS)). Also, by _eorem 3.2 (i), X cannot be compact
since, by_eorem 4.2, in such case any (uLC) map is also (ULC), so it is (ULS).

Example 12 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(uLC)&¬(ULS), where ⟨[0,∞), ρ⟩ is rectiûabe path connected and topologically equi-
valent to [0,∞) with the standardmetric. It has a ûxed point f (0) = 0.

Figure 14: Illustration of the graph of g from Example 12 for which themap f is (uLC) but not
(ULS). Notice that f [I2n+1] ⊆ I2n .

Construction Choose a sequence 0 = a0 < a1 < ⋅ ⋅ ⋅ such that if, for every n < ω,
we put In = [an , an+1], then each interval I2n+1 is centered at 9n+1 and of length 2

n+4
.

Let g∶ [0,∞) → [0, 1] be such that g ↾ In ≡ 0 for every even n < ω, while, for every
odd n < ω, the graph of g ↾ In is an upper semicircle of radius 1

n+4
and centered at⟨9n+1 , 0⟩. See Figure 14.

For each n < ω let ρn be ametric on In deûned as

ρn(x , y) = ∥⟨x , gn(x)⟩ − ⟨y, gn(y)⟩∥
and let ρ be themetricon [0,∞) associatedwithmetrics {ρn ∶ n < ω} fromLemma 7.1.
_en ρ is complete and, clearly, rectiûable-path connected.

Deûne an increasing bijection L∶ [0,∞) → [0,∞) as L(x) = ℓ(g ↾ [0, x]) and let
f ∶ [0,∞) → [0,∞) be deûned as f (x) = L−1( 2

3
L(x)). In other words, f (x) is the

unique point r ∈ [0,∞) such that ℓ(g ↾ [0, r]) = 2
3
ℓ(g ↾ [0, x]) or equivalently,

(7.3) L( f (x)) = 2

3
L(x).

We claim that f is as needed.
To see that f is (uLC), choose an arbitrary η ∈ (1, 3/2). By Lemma 7.1 (uLC), it is

enough to show that, for every n < ω, f ↾ In is (uLC) with constant λ = 2
3
η. Indeed,

if n is odd, then for any x ∈ In , there is an open subset V of In containing x such that
for any y, z ∈ V , we have ∣L(y) − L(z)∣ ≤ ηρ(y, z) and, by (7.3),
ρ( f (y), f (z)) ≤ ∣L( f (y)) − L( f (z))∣ = 2

3
∣L(y) − L(z)∣ ≤ 2

3
ηρ(y, z) = λρ(y, z).

On the other hand, if n is even, then the following holds for every y, z ∈ In :

ρ( f (y), f (z)) ≤ ∣L( f (y)) − L( f (z))∣ = 2

3
∣L(y) − L(z)∣ = 2

3
ρ(y, z) ≤ λρ(y, z).
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To see that f is not (ULS), ûrst notice that

(7.4) f [I2n+1] ⊆ I2n for any n < ω.

Indeed, since ℓ(g ↾ I2k+1) = π 1
k+4
< 1 for every k < ω, for every x ∈ [0, a2n+1]

we have x ≤ L(x) ≤ x + n. In particular, L[I2n+1] ⊆ [a2n+1 , a2n+2 + (n + 1)] and[a2n + n, a2n+1] ⊆ L[I2n], since I2n+1 ⊂ [0, a2(n+1)+1] and I2n ⊂ [0, a2n+1]. Hence,
2

3
L[I2n+1] ⊂ 2

3
[a2n+1 , a2n+2 + (n + 1)]

=
2

3
[9n+1 − 1

n + 4
, 9n+1 +

1

n + 4
+ (n + 1)]

⊆ [9n + 1

n + 3
+ n, 9n+1 −

1

n + 4
](7.5)

⊆ [a2n + n, a2n+1] ⊆ L[I2n],
where (7.5) is justiûed by the inequalities as 9n + 1

n+3
+ n ≤ 2

3
(9n+1 − 1

n+4
) and

2

3
(9n+1 + 1

n + 4
+ (n + 1)) ≤ 9n+1 − 1

n + 4
,

which hold for any n < ω. _erefore, f [I2n+1] = L−1[ 23L[I2n+1]] ⊆ L−1[L[I2n]] = I2n
and (7.4) is proved.

Now, using (7.4), we can see that f is not (ULS). Indeed, for the endpoints y and z
of I2n+1, we have ρ(y, z) = ∣y − z∣ = 2

n+4
→ 0, as n →∞, and

ρ( f (y), f (z)) = ∣L( f (y)) − L( f (z))∣ = 2

3
∣L(y) − L(z)∣ = 2

3
π
∣y − z∣
2
> ρ(y, z),

ûnishing the argument.

By_eorem 3.3, the map from Example 13 must have ûxed point while, by_eo-
rem 4.1, themetric ρ in the example cannot be the standardmetric (as, in such case,
(uPC)⇒(C)⇒(uLC)). Also, by_eorem 3.2 (i), if f ∶X → X is as in the example, then
X cannot be compact.

Example 13 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(S)&(LC)&(uPC)&¬(uLC),where ⟨[0,∞), ρ⟩ is rectiûable-path connected and topo-
logically equivalent to [0,∞) with the standard metric. _e map has a ûxed point
f (0) = 0.
Construction Choose a sequence 0 = a0 < a1 < ⋅ ⋅ ⋅ such that if, for every n < ω, we
put In = [an , an+1], then each interval I2n+1 has length 2. Moreover, the centers cn of
intervals I2n+1 are chosen to ensure

(7.6) [a2k+1 , a2k+2 + 2(k + 1)] ∩ 1
2
[a2n+1 , a2n+2 + 2(n + 1)] = ∅ for every k, n < ω.

For example, (7.6) is satisûed when we pick cn = 9
n+1.

Choose an increasing sequence ⟨mn ∶ n < ω⟩ of positive numbers for which

lim
n→∞

√
1 +m2

n = 2
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Figure 15: Illustration of the graph of g from Example 13 for which themap f is is (S), (uPC),
and (LC), but not (uLC). Notice that f [I2n+1] ⊆ I2n .

and deûne g∶ [0,∞)→ R via formula (see Figure 15)

g(x) = ⎧⎪⎪⎨⎪⎪⎩
mndist(x , {a2n+1 , a2n+2}) when x ∈ I2n+1 for some n < ω,

0 otherwise.

Notice that the segments forming the graph of g ↾ I2n+1 are the sides of isosceles trian-
gles (with basis of length 2), which are approaching the sides of an equilateral triangle,
as n →∞.

For each n < ω, let ρn be ametric on In deûned as

ρn(x , y) = ∥⟨x , g(x)⟩ − ⟨y, g(y)⟩∥
and let ρ be themetricon [0,∞) fromLemma 7.1 associatedwithmetrics {ρn ∶ n < ω}.
_en ρ is complete and, clearly, rectiûable-path connected.

Deûne an increasing bijection L∶ [0,∞) → [0,∞) as L(x) = ℓ(g ↾ [0, x]). _en
for every n < ω,

(7.7) L[I2n+1] ⊂ [a2n+1 , a2n+2 + 2(n + 1)]
as ℓ(g ↾ I2n+1) < 4. Let f ∶ [0,∞) → [0,∞) be deûned as f (x) = L−1( 1

2
L(x)) . In

other words, f (x) is the unique point r ∈ [0,∞) such that

ℓ(g ↾ [0, r]) = 1

2
ℓ(g ↾ [0, x]).

We have

(7.8) L( f (x)) = 1

2
L(x).

We claim that f is as needed.
To see this, ûrst notice that, by (7.6) and (7.7), for every k, n < ω,

f [I2n+1] ∩ I2k+1 = L
−1[ 1

2
L[I2n+1] ∩ L[I2k+1]]

⊆ L−1[ 1
2
[a2n+1 , a2n+2 + 2(n + 1)] ∩ [a2k+1 , a2k+2 + 2(k + 1)]] = ∅.

In particular, for all n < ω,

(7.9) f [I2n+1] ∩ ⋃
k<ω

I2k+1 = ∅.

_e key fact for this construction is the following property.
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(⋆) For every y ∈ (0, 1], themapping

[0, 1] ∋ x η↦ ∣L(cn − x) − L(cn + y)∣
ρn(cn − x , cn + y)

achieves itsmaximum value
√
1 +m2

n for x = y.

(For the proof, put mn = m. _en

η(x) =
√
1 +m2(x + y)√(x + y)2 +m2(x − y)2

and η has only one critical point, at x = y, as

η′(x) = 2m2
√
1 +m2 y(y − x)((x + y)2 +m2(x − y)2)3/2 . 3

_is is themaximum by the First Derivative Test.)
Now, for any p, q ∈ I2n+1, ρ( f (p), f (q)) = ∣ f (p) − f (q)∣ = ∣L( f (p)) − L( f (q))∣,

since, by (7.9), f (p), f (q) ∈ f [I2n+1] ⊂ [0,∞) ∖⋃k<ω I2k+1. From this, (7.8), and (⋆)
we conclude that, for any p, q ∈ I2n+1,

(7.10) ρ( f (p), f (q)) = ∣L( f (p)) − L( f (q))∣ = 1
2
∣L(p) − L(q)∣ ≤ √1+m2

n

2
ρ(p, q),

with the equation holding when p and q are symmetric with respect to the point

x = cn . _is clearly shows that f is not (uLC), as
√

1+m2
n

2
→n→∞ 1.

Notice also that (7.10) implies that f ↾ I2n+1 is (C) for any n < ω. Moreover, for any
n < ω, f ↾ I2n is (C) with the constant 1

2
, since for any numbers y, z ∈ I2n ,

(7.11) ρ( f (z), f (y)) ≤ ∣L( f (z)) − L( f (y))∣ = 1

2
∣L(z) − L(y)∣ = 1

2
ρ(z, y).

_erefore, by parts (S) and (LC) of Lemma 7.1, f is (S) and (LC).
Finally, notice that, for any n < ω, each f ↾ [a2n+1 , cn] and f ↾ [cn , a2n+2] is (C)

with the constant 1
2
since for y and z belonging to one of these intervals, (7.11) holds.

In particular, for any n < ω, f ↾ I2n+1 is (uPC) with the constant 1
2
. So, by (7.11) and

Lemma 7.1 (uPC), f is (uPC).

Notice that by _eorem 4.1, the metric ρ in Example 14 cannot be the standard
metric (as, in such case, (uPC)⇒(C)⇒(LC)).

3Here is the computation:

η′(x) =
√
1 +m2

√
(x + y)2 +m2(x − y)2 − 2(x+y)+2m2(x−y)

2
√
(x+y)2+m2(x−y)2

(x + y)

(x + y)2 +m2(x − y)2

=

√
1 +m2([(x + y)2 +m2(x − y)2] − [(x + y)2 +m2(x2 − y2)])

((x + y)2 +m2(x − y)2)3/2

=

√
1 +m2m2[(x − y)2 − (x2 − y2)]
((x + y)2 +m2(x − y)2)3/2

=
2m2
√
1 +m2 y(y − x)

((x + y)2 +m2(x − y)2)3/2
.
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Example 14 _ere exists amap f ∶ ⟨[0, a], ρ⟩→ ⟨[0, a], ρ⟩ from (uPC)&(S)&¬(LC),
where a > 0 and ⟨[0, a], ρ⟩ is a rectiûable-path connected and topologically equivalent
to [0, a] with the standardmetric. _emap f has a ûxed point f (a) = a.
Construction Choose a sequence 0 = a0 < a1 < ⋅ ⋅ ⋅ such that if, for every n < ω, we
put In = [an , an+1], then each interval I2k has length ∣I2k ∣ = 2−2k and each interval

I2k+1 has length
k+8
k+9

2−2k . In particular, a = limn→∞ an is ûnite.

Figure 16: Illustration of the graph of g from Example 14 forwhich themap f is (S) and (uPC),
but not (LC).

Deûne function g∶ [0, a]→ R for every x ∈ [0, a] as
g(x) = ⎧⎪⎪⎨⎪⎪⎩

√
3dist(x , {a2k , a2k+1}) if x ∈ I2k for some k < ω,

0 otherwise.

See Figure 16. _us, the two segments forming g ↾ I2k constitute the sides of an equi-
lateral triangle and so

(7.12) ℓ(g ↾ [x , y]) = 2∣x − y∣ for every x < y from I2k .

For each n < ω, let ρn be ametric on In deûned as

ρn(x , y) = ∥⟨x , g(x)⟩ − ⟨y, g(y)⟩∥
and let ρ be the metric on [0, a] from Lemma 7.1 associated with the metrics{ρn ∶ n < ω}. _en ρ is complete and, clearly, rectiûable-path connected.

Deûne f ∶ [0, a] → [0, a] as an increasing function mapping linearly each interval
In onto In+1. (So, f (a) = a.) We claim that this f is as required.

Indeed, f is not (LC), as it is not (C) on any open neighborhood of a, since

ρ( f (a2k+1), f (a2k))
ρ(a2k+1 , a2k) =

a2k+2 − a2k+1

a2k+1 − a2k
=
k + 8

k + 9
→k→∞ 1.

To see the property (S), notice that f ↾ In is (S), even (C), for every n < ω. Indeed,
by (7.12) and equation

a2k+3 − a2k+2

a2k+2 − a2k+1
=
2−2(k+1)

k+8
k+9

2−2k
=
1

4

k + 9

k + 8
,
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for every x < y from I2k+1 we have

ρ( f (x), f (y)) ≤ ℓ(g ↾ [ f (x), f (y)]) = 2∣ f (x) − f (y)∣(7.13)

=
1

2

k + 9

k + 8
∣x − y∣ ≤ 9

16
∣x − y∣ = 9

16
ρ(x , y),

while for every x < y from I2k ,

ρ( f (x), f (y)) = ∣ f (x) − f (y)∣ = k + 8

k + 9
∣x − y∣ ≤ 8

9
ρ(x , y).

In particular, by Lemma 7.1, f is (S) on every interval [0, an] and so, on their union[0, a). To ûnish the argument, it is enough to notice that this implies that f is (S) on
the entire [0, a]. Indeed, choose an x ∈ [0, a). To see that ρ(x , a) > ρ( f (x), f (a)),
choose an n < ω such that x < an . For every m > n, we have

ρ(an , am) > ρ( f (an), f (am)),
so, taking the limit as m →∞, we get ρ(an , a) ≥ ρ( f (an), f (a)). So
ρ(x , a) = ρ(x , an) + ρ(an , a) > ρ( f (x), f (an)) + ρ( f (an), f (a)) ≥ ρ( f (x), f (a))
as needed.

To see that f is (uPC), ûrst notice that the maps f ↾ In are (uPC) with the same
constant: for odd n with constant 9

16
as follows from (7.13), for even n = 2k with

constant 8
18
, since for every x < y from the same half of I2k ,

ρ( f (x), f (y)) = ∣ f (x) − f (y)∣ = k + 8

k + 9
∣x − y∣ = k + 8

k + 9

1

2
ℓ(g ↾ [x , y]) ≤ 8

18
ρ(x , y).

_us, by Lemma 7.1, f ↾ [0, a) is (uPC). To ûnish the proof, it is enough to prove that

f is (PC) at a, which will be achieved by ûnding a λ ∈ [0, 1) such that ρ( f (x), f (a))
ρ(x ,a) ≤ λ

for all x ∈ [0, a). For this, ûx an x ∈ In ⊂ I2k ∪ I2k+1 and notice that

ρ(a, x) = ρ(a, an+1) + ρ(an+1 , x) ≤ ρ(a, an+1) + ∣an+1 − an ∣ = a − an ≤ a − a2k .

Hence, ρ(a, x) ≤ a − a2k ≤ 2∑∞i=k 4−i =
8
3
4−k .

Next we will show that there exists an α > 0, independent of k, such that

(7.14) N(x) = ρ(a, x) − ρ(a, f (x)) ≥ α4−k for every x ∈ I2k ∪ I2k+1 .

Indeed, if x ∈ I2k , then we have

N(x) = ρ(a2k+1 , x) + ρ(a2k+1 , f (x)) ≥ ∣a2k+1 − x∣ + ∣a2k+1 − f (x)∣
= f (x) − x ≥ ∣I2k+1∣ = k + 8

k + 9
2−2k ≥

8

9
4−k

indicating that any α ≤ 8
9
works for this case. On the other hand, if

x = a2k+2 − t∣I2k+1∣ ∈ I2k+1
for some t ∈ [0, 1], then

N(x) ≥ t∣I2k+1∣ + ∣I2k+2∣ − ρ( f (x), a2k+3)
≥ t∣I2k+1∣ + ∣I2k+2∣ − ℓ(g ↾ [ f (x), a2k+3])
= t

k + 8

k + 9
4−k +

1

4
4−k − 2t

1

4
4−k ≥ t

8

9
4−k +

1

4
4−k − t

1

2
4−k ≥

1

4
4−k ,
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showing that (7.14) holds with the constant α = 1
4
.

Now to ûnish the proof of (uPC) for f , notice that by (7.14),

ρ( f (a), f (x))
ρ(a, x) = 1 −

ρ(a, x) − ρ( f (a), f (x))
ρ(a, x) ≤ 1 −

α4−k

8
3
4−k
= 1 −

3α

4
.

So, λ = 1 − 3α
8
, with α = 1

4
, is as needed.

All remaining examples presented in Section 7.2 will be constructed on the space⟨[0,∞), ρ⟩with ρ obtained using Lemma 7.1with the family J = {(an , an+1) ∶ n < ω},
where 0 = a0 < a1 < a2 < ⋅ ⋅ ⋅ and an →n→∞ ∞. Moreover, the constructedmappings
f will be non-decreasing andmapping each interval In = [an , an+1] onto In+1.

Notice that by _eorem 3.2 (i), if f ∶X → X is as in Example 15, then X cannot
compact. Also, by _eorem 4.1, the metric ρ in the example cannot be the standard
metric (as, in such case, (LC)⇒(uPC)⇒(C)⇒(ULS)).

Example 15 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(LC)&¬(ULS) having no periodic point,where ⟨[0,∞), ρ⟩ is rectiûable-path connected
and topologically equivalent to [0,∞) with the standardmetric.

Construction Choose a sequence 0 = a0 < a1 < ⋅ ⋅ ⋅ such that if, for every n < ω, we
put In = [an , an+1], then each interval In has the length 1

n+1
when n is even and the

length 2
π

1
n+1

when n is odd. _is ensures that an →n→∞ ∞. Let g∶ [0,∞) → [0, 1] be
such that g ↾ In ≡ 0 for every even n < ω, while, for every odd n < ω, the graph of
g ↾ In is an upper semicircle with its diameter coincidingwith In , see Figure 17. Notice
that our choice ensures that ℓ(g ↾ In) = 1

n+1
for every n < ω.

For each n < ω, let ρn be ametric on In deûned as

ρn(x , y) = ∥⟨x , g(x)⟩ − ⟨y, g(y)⟩∥
and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics{ρn ∶ n < ω}. _en ρ is complete and, clearly, rectiûable-path connected.

Figure 17: Illustration of the graph of g from Example 15 for which themap f is (LC), but not
(ULS).
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For every n < ω and x ∈ In let f (x) be the unique point r ∈ In+1 such that

ℓ(g ↾ [an+1 , r]) = ℓ(g ↾ In+1)
ℓ(g ↾ In) ℓ(g ↾ [an , x]) = n + 1

n + 2
ℓ(g ↾ [an , x]).

In other words f ∶ [0,∞) → [0,∞) maps each In onto In+1 linearly, according to the
length ℓ of g ↾ In and g ↾ In+1. We claim that this f is as required.

Clearly f has no periodic point as f (x) > x for all x ≥ 0. Notice that the equation
above implies that for any x < y from In ,

(7.15) ℓ(g ↾ [ f (x), f (y)]) = n + 1

n + 2
ℓ(g ↾ [x , y]).

To prove that f is (LC), by Lemma 7.1 (LC), it is enough to prove that f ↾ In is (LC)
for every n < ω. _e argument depends on the parity of n. If n < ω is even, then f ↾ In
is (C)with λ = n+1

n+2
. _is follows from the fact that, in this case, g ↾ In ≡ 0 and, for any

x , y ∈ In with x < y, by (7.15) we have

ρ( f (x), f (y)) = ∥⟨ f (x), g( f (x))⟩ − ⟨ f (y), g( f (y))⟩∥
< ℓ(g ↾ [ f (x), f (y)])
=
n + 1

n + 2
ℓ(g ↾ [x , y]) = n + 1

n + 2
ρ(x , y).

So turn to the case when n < ω is odd. We need to reûne the argument above,
as in this case, f ↾ In is only (ULC). To see this, choose an η ∈ (1, 1.5) such that
n+1
n+2

η < 1. Notice that g ↾ In is a semicircle of length 1
n+1

and that there exists an

α ∈ (0, 1
n+1
) such that ρ(x , y) ≥ η−1ℓ(g ↾ [x , y]) whenever x ≤ y are from In and

such that ℓ(g ↾ [x , y]) ≤ α (as
ℓ(g↾[x ,y])
ρ(x ,y) → 1 when ρ(x , y) → 0). Moreover, there

exists an ε > 0 such that ℓ(g ↾ [x , y]) ≤ α whenever x ≤ y are from In and such that∣x − y∣ ≤ ε.4 _en f ↾ In is ( ε2 , n+1
n+2

η)-(ULC): for all x ≤ y from In with ∣x − y∣ ≤ ε, we
have ηρ(x , y) ≥ ℓ(g ↾ [x , y]) and

ρ( f (x), f (y)) = ∥⟨ f (x), g( f (x))⟩ − ⟨ f (y), g( f (y))⟩∥
= ℓ(g ↾ [ f (x), f (y)]) = n + 1

n + 2
ℓ(g ↾ [x , y]) ≤ n + 1

n + 2
η ρ(x , y).

_e function f is not (ULS) since, for all odd indices n > π+4
π−2

,

ρ( f (an), f (an+1)) = ρ(an+1 , an+2) = 1

n + 2
>

2

π(n + 1) = ρ(an , an+1)
and, at the same time, ρ(an , an+1) = 2

π(n+1) → 0 as n →∞.

4If K is the family of all arcs on g ↾ In of length α and, for every κ ∈ K, p(κ) is the projection of κ
on the x-axis, then the number ε is the minimizer of the values of the continuous mapping K ∋ κ ↦
ℓ(p(κ)) ∈ (0,∞) deûned on the compact space K.
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7.2.3 Using Non-rectifiably Path-connected Metrics

_e remaining examples on connected spaces will be constructed with the use of
the following lemma, which is extracted from an example given by Hu and Kirk [21,
p. 123]. It is not diõcult to see that the metrics from this lemma are not rectiûable-
path connected. In what follows the length of an interval I is denoted as ∣I∣.
Lemma 7.2 Let 0 < β0 < β1 < 1 and let f be a linear function from I0 = [a0 , b0] onto
I1 = [a1 , b1]. For each i < 2 let ρ i ∶ I i → R be deûned by a formula

ρ i(x , y) = ∣I i ∣( ∣x − y∣∣I i ∣ )
β i

.

_en ρ i is a complete metric on I i topologically equivalent to the standard metric. _e
map f ∶ ⟨I0 , ρ0⟩ → ⟨I1 , ρ1⟩ is Lipschitz with the constant L = ∣I1∣/∣I0∣. It is also (ULC)
with each constant λ ∈ (0, 1).
Proof Clearly a sequence in I i is Cauchy with respect to themetric ρ i if and only if
it is Cauchy with respect to the standard metric on I i . _us, indeed ρ i is a complete
metric on I i topologically equivalent to the standardmetric.

To see the second part, notice that for every x , y ∈ I0, the linearity of f implies that
∣ f (x)− f (y)∣

∣I1 ∣ = ∣x−y∣∣I0 ∣ . Hence

ρ1( f (x), f (y)) = ∣I1∣( ∣x − y∣∣I0∣ )
β1

=
∣I1∣∣I0∣ ∣I0∣(

∣x − y∣∣I0∣ )
β1

=
∣I1∣∣I0∣ (

∣x − y∣∣I0∣ )
β1−β0

ρ0(x , y).
_us, the inequality ∣I1∣∣I0∣ (

∣x − y∣∣I0∣ )
β1−β0

≤
∣I1∣∣I0∣

implies the Lipschitz condition statement. Also, for every λ ∈ (0, 1), we have
∣I1∣∣I0∣ (

∣x − y∣∣I0∣ )
β1−β0

≤ λ

if and only if

ρ0(x , y) = ∣I0∣( ∣x − y∣∣I0∣ )
β0

≤ ∣I0∣( ∣I0∣∣I1∣ λ)
β0

β1−β0
.

_erefore, f is (ULC) with a constant λ for

ε =
1

2
∣I0∣( ∣I0∣∣I1∣ λ)

β0
β1−β0

.

Notice that, by _eorems 3.2 (i) and 3.3, if f ∶X → X is as in Example 16, then X
can be neither compact nor rectiûable-path connected. An example of a periodic free
mapping f ∶X → X from the class (uLC)&¬(ULC) is also given in [30, Example 1],
where X is a (non-rectiûable, non-compact) curve ofR2 consideredwith the standard
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metric. However, this example is not (S), since for every n < ω itmaps (n, 0) ∈ X to(n + 1, 0) ∈ X.
Example 16 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(S)&(uLC)&¬(ULC) having no periodic point, where ⟨[0,∞), ρ⟩ is a completemetric
topologically equivalent to the standard metric. Moreover, f satisûes (uLC) with every
contraction constant λ ∈ (0, 1).
Construction Choose a strictly increasing sequence ⟨βn ∈ (0, 1) ∶ n < ω⟩ and let
0 = a0 < a1 < ⋅ ⋅ ⋅ be such that each interval In = [an , an+1] has the length 1

n+1
. For

every n < ω, let ρn be ametric on In deûned by the formula

ρn(x , y) = ∣In ∣( ∣x − y∣∣In ∣ )
βn

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics{ρn ∶ n < ω}. _en ρ is complete and clearle-path connected. On each interval
In deûne f to be a linear increasing map onto In+1. _en f is as needed.

Indeed, by Lemma 7.2, for every n < ω the restriction f ↾ In is (C) with a constant
∣In+1 ∣
∣In ∣ =

n
n+1

, so it is (S). Hence, by Lemma 7.1, f is (S).

Next ûx a λ ∈ (0, 1). _en by Lemma 7.2, for every n < ω the restriction f ↾ In is
(ULC)with constant λ, so it also (uLC)with the same constant. Hence, by Lemma 7.1,
f is (uLC).

Finally, f is not (ULC) since, for every λ ∈ (0, 1) and ε > 0, there is an n < ω with

ρ( f (an), f (an+1))
ρ(an , an+1) =

∣In+1∣∣In ∣ =
n + 1

n + 2
> λ and ρ(an , an+1) = ∣In ∣ = 1

n + 1
< ε.

Clearly, f has no periodic points.

Notice that, by _eorem 3.3, if f ∶X → X is as in Example 17, then X cannot be
rectiûable-path connected. Also, by_eorem 4.2, X cannot compact.

Example 17 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(ULS)&(uLC)&¬(S) having no periodic point, where ⟨[0,∞), ρ⟩ is a completemetric
topologically equivalent to the standard metric. Moreover, f satisûes (uLC) with every
contraction constant λ ∈ (0, 1).
Construction Choose strictly increasing sequence ⟨βn ∈ (0, 1) ∶ n < ω⟩ and let
0 = a0 < a1 < ⋅ ⋅ ⋅ be such that if, for every n < ω, we put In = [an , an+1], then ∣I0∣ = 1
and ∣In ∣ = 1/n for every 0 < n < ω. For every n < ω, let ρn be ametric on In deûned
by formula

ρn(x , y) = ∣In ∣( ∣x − y∣∣In ∣ )
βn

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics{ρn ∶ n < ω}. _en ρ is complete and, clearly, path-connected. On each interval In
deûne f as a linear increasing map onto In+1. _en f is as needed.

To see that f is (ULS), ûrst notice that, by Lemma 7.2, for every n > 0 the map
f ↾ In is (S), as it is (C) with constant n

n+1
. So, by Lemma 7.1, f ↾ [1,∞) is (S). Also,
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by Lemma 7.2, f ↾ I0 is (ULC), so also (ULS) with some constant radius ε. _us, f is
(ULS) with the same radius.

To see (uLC), ûx λ ∈ (0, 1) and notice that, by Lemma 7.2, for every n < ω the
restriction f ↾ In is (ULC) with constant λ, so it also (uLC) with the same constant.
Hence, by Lemma 7.1, f is (uLC).

Finally, f is not (S), as ρ( f (a0), f (a1)) = ρ(a1 , a2) = ∣I1∣ = 1 = ρ(a0 , a1). Clearly
f has no periodic points.

Notice that, by _eorem 3.3, if f ∶X → X is as in Example 18, then X cannot be
rectiûable-path connected. Also, by _eorem 4.2 (that any (LS) map on a compact
space is also (ULS)), X cannot compact.

Example 18 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(uLC)&¬(ULS) having no periodic point, where ⟨[0,∞), ρ⟩ is a completemetric topo-
logically equivalent to the standardmetric. Moreover, f satisûes (uLC) with every con-
traction constant λ ∈ (0, 1).
Construction Choose a strictly increasing sequence ⟨βn ∈ (0, 1) ∶ n < ω⟩ and let
0 = a0 < a1 < ⋅ ⋅ ⋅ be such that if, for every n < ω, we put In = [an , an+1], then the
intervals I2k and I2k+1 have length

1
k+1

for every k < ω. For every n < ω, let ρn be a
metric on In deûned by

ρn(x , y) = ∣In ∣( ∣x − y∣∣In ∣ )
βn

and let ρ be the metric on [0,∞) from Lemma 7.1 associated with the metrics{ρn ∶ n < ω}. _en ρ is complete and, clearly, path connected. On each interval In ,
deûne f as an increasing linearmap onto In+1. _en f is as needed.

To see this, ûx λ ∈ (0, 1) and notice that, by Lemma 7.2, for every n < ω the restric-
tion f ↾ In is (ULC) with constant λ, so it also (uLC) with the same constant. Hence,
by Lemma 7.1, f is (uLC).

At the same time, f is not (ULS) since for every ε > 0 there is a k < ω with

ρ( f (a2k), f (a2k+1))
ρ(a2k , a2k+1) =

∣I2k+1∣∣I2k ∣ = 1 and ρ(a2k , a2k+1) = ∣I2k ∣ = 1

k + 1
< ε.

Clearly, f has no periodic points.

Notice that, by _eorem 3.3, if f ∶X → X is as in Example 19, then X cannot be
rectiûable-path connected. Also, by_eorem 3.2 (i), X cannot compact.

Example 19 _ere is amap f from (S)&(LC)&(uPC)&¬(uLC) having no periodic
point,where f ∶ ⟨[0,∞), ρ⟩→ ⟨[0,∞), ρ⟩ and ρ is a completemetric on [0,∞) topolog-
ically equivalent to the standard metric. Moreover, f satisûes (uPC) with an arbitrary
constant λ ∈ (0, 1). Also, there exists a perfect unbounded X ⊂ R such that ρ on X is
the standardmetric on R and f ↾ X belongs to the same class.

Construction Choose a sequence 0 = a0 < a1 < ⋅ ⋅ ⋅ such that each interval In =[an , an+1] has length 1
n+1

. Deûne a function h∶ [0,∞) → [0,∞) approximating f by
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putting, for every x ∈ In ,

h(x) = 1

n + 2
[(n + 1)(x − an)] n+1.5n+1 + an+1 .

Notice that h is strictly increasing andmaps every In onto In+1. Moreover, themaps
hn = h ↾ In are convex, diòerentiable, and with derivatives h′n(an) = 0 and sn =
h′n(an+1) = n+1.5

n+2
. It is important for the construction that

sn = h
′
n(an+1)↗ 1 as n →∞.

Choose a sequence a1 = c
0
0 > c

0
1 > ⋅ ⋅ ⋅ converging to a0 = 0 such that c0k+1/c0k →k→∞ 1,

e.g., c0k =
a1
k+1

, and, for every n, k < ω, let cnk = h(n)(c0k), where h(n) = h ○ ⋅ ⋅ ⋅ ○ h is

the n-th iteration of h. Since, as an easy induction on 0 < n < ω can show, h(n) ↾ I0
is given for every x ∈ I0 by a formula h(n)(x) = 1

n+1
xαn + an , where αn =∏n

i=1
n+0.5

n
,

we have

(7.16)
cnk+1 − an

cn
k
− an

→k→∞ 1 for every n < ω.

Indeed, for n = 0 this is ensured by our choice of numbers c0k , while, for n > 0, we
have

cnk+1 − an

cn
k
− an

=
1

n+1
(c0k+1)αn

1
n+1
(c0

k
)αn

= ( c0k+1
c0
k

) αn →k→∞ 1.

Figure 18: Functions h and f from Example 19 restricted to the interval [a0 , a2].

For every n, k < ω, choose unique bnk ∈ (cnk+1 , cnk ) such that the slope of the seg-
ment joining points ⟨bnk , h(cnk+1)⟩ and ⟨cnk , h(cnk )⟩ is equal to sn . _emap f is deûned
as

f (x) = ⎧⎪⎪⎨⎪⎪⎩
h(x) for x = cnk for some k, n < ω,

h(cnk+1) for x ∈ [cnk+1 , bnk ] for some k, n < ω,

and as a linear function on each interval [bnk , cnk ], see Figure 18.
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To deûnemetric ρ, choose an increasing sequence ⟨βn ∈ (0, 1) ∶ n < ω⟩. For every
k, n < ω deûnemetric ρnk on the closure of the interval Jnk = (bnk , cnk ) by a formula

ρnk(x , y) = ∣Jnk ∣( ∣x − y∣∣Jn
k
∣ )

βn

and notice that ρnk(bnk , cnk ) = ∣Jnk ∣ = ∣bnk − cnk ∣. Let ρ be the metric on [0,∞) from
Lemma 7.1 associated with the metrics {ρnk ∶ k, n < ω}. We claim that f has the
desired properties as a self-mapping of ⟨[0,∞), ρ⟩.

To see this, letU = ⋃k ,n<ω Jnk and X = [0,∞)∖U . Notice that f maps X into X and
that ρ on X is the standard distance. Firstwe prove that f ↾X is not (uLC). Indeed, for
every λ ∈ [0, 1) there exists an n < ω such that λ < sn and on no open neighborhood
V of an in X the map f is (C) with constant λ, since every such V contains points
bnk , c

n
k for some k < ω while

∣ f (bnk) − f (cnk )∣∣bn
k
− cn

k
∣ = sn > λ.

So, neither f ↾ X nor f is (uLC).
Next we will prove

(7.17) for every n < ω, f ↾ In is (C) with a constant λ = sn ∈ (0, 1).
Indeed, for every k < ω, both f ↾[cnk+1 , bnk ] and f ↾[bnk , cnk ] are (C)with constant sn : the
ûrst being constant, the second by Lemma 7.2. Hence, by Lemma 7.1, f ↾ [bnk , an+1] is
(C)with constant sn for every k < ω, and thus, so is f ↾(an , an+1]._is and continuity
of f imply (7.17).

Clearly (7.17) implies that, for every n < ω, f ↾ In is both (S) and (LC). Hence, by
Lemma 7.1, f is (S) and (LC).

To ûnish the proof, choose a λ ∈ (0, 1). We need to show that f is (uPC) with
constant λ. By Lemma 7.1, it is enough to show that, for every n, f ↾ In is (uPC) with
constant λ. So ûx an n < ω and notice that, for every k < ω, both f ↾ [cnk+1 , bnk ]
and f ↾ [bnk , cnk ] are (uPC) with constant λ: the ûrst being constant, the second by
Lemma 7.2. Hence, by Lemma 7.1, f ↾ [bnk , an+1] is (uPC) with constant λ for every
k < ω, and thus, so is f ↾(an , an+1]. _erefore, to ûnish the proof it is enough to show
that there exist an open V ∋ an in In such that

ρ( f (an), f (x))
ρ(an , x) ≤ λ

for every x ∈ V , x /= an . But, for every x ∈ [cnk+1 , cnk ],
ρ( f (an), f (x))

ρ(an , x) ≤
ρ( f (an), f (cnk ))

ρ(an , cnk+1) =
cn+1k − an+1

cn
k
− an

cnk − an

cn
k+1 − an

→k→∞ 0,

since

cn+1k − an+1

cn
k
− an

=
hn(cnk ) − hn(an)

cn
k
− an

→k→∞ h′n(an) = 0
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and, by (7.16),
cnk−an

cn
k+1
−an
→k→∞ 1. _erefore, there exists a k0 < ω such that

ρ( f (an), f (cnk ))
ρ(an , cnk+1) < λ

for every k ≥ k0, implying that V = [an , cnk0) is as needed.
Clearly, f has no periodic points.

Notice that, by _eorem 3.3, if f ∶X → X is as in Example 20, then X cannot be
rectiûable path connected. Also, by_eorem 3.2 (i), X cannot compact.

Example 20 _ere is a map f from (S)&(uPC)&¬(LC) having no periodic point,
where f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ and ρ is a complete metric on [0,∞) topologically
equivalent to the standardmetric. Moreover, f satisûes (uPC)with an arbitrary constant
λ ∈ (0, 1). Also, there exists a perfect unbounded X ⊂ R such that ρ on X is the standard
metric on R and f ↾ X belongs to the same class.

Construction _e example is obtained by a slightmodiûcation of one described as
Example 19. Speciûcally, themodiûcation is obtained by choosing a sequence s0 = t0 <
t1 < ⋅ ⋅ ⋅ converging to 1 and then for every k < ω, choosing the unique b0k ∈ (c0k+1 , c0k)
such that the slope of the segment joining points (b0k , h(c0k+1)) and (c0k , h(c0k)) is
equal to tk . All other parts of the construction from Example 19, including the choice
of points bnk for n > 0, remain unchanged. We claim that f has the desired properties
as a self-mapping of ⟨[0,∞), ρ⟩.

Indeed, as before, we let U = ⋃k ,n<ω Jnk and X = [0,∞) ∖U . Once again, f maps
X into X and ρ on X is the standard distance. To ûnish the proof it is enough to show
that f ↾ X is not (LC) and that f has the remaining two properties.

To see that f ↾ X is not (LC) notice that for every λ ∈ (0, 1) and every open V
containing 0, there exist k < ω such that λ < tk and b0k , c

0
k ∈ V . _en

∣ f (b0k) − f (c0k)∣∣b0
k
− c0

k
∣ = tk > λ.

So, indeed, f ↾ X is not (LC).
By Lemma 7.1, to ûnish the proof it is enough to show that, for every λ ∈ (0, 1) and

n < ω, f ↾ In is (S) and (uPC) with a constant λ = sn ∈ (0, 1). Indeed, for every k < ω,
both f ↾ [cnk+1 , bnk ] and f ↾ [bnk , cnk ] are (S) and (uPC)with a constant λ: the ûrst being
constant, the second by Lemma 7.2. Hence, by Lemma 7.1, for every k < ω the map
f ↾ [bnk , an+1] is (S) and (uPC) with a constant λ. _erefore, f ↾ (an , an+1] has the
same property.

To see that f ↾ [an , an+1] is (S), ûrst notice that the continuity of f implies that,
for every y ∈ (an , an+1], we have ρ( f (an), f (y)) ≤ ρ(an , y). _erefore, for every
x ∈ (an , an+1], if y = cnk = x− for some k < ω, then f (y) = f (x)− and we have

ρ( f (an), f (x)) = ρ( f (an), f (y))+ ρ( f (y), f (x)) < ρ(an , y)+ ρ(y, x) = ρ(an , x),
proving (S) of f ↾ In .

Since f ↾ (an , an+1] is (uPC) with a constant λ, to ûnish the proof it is enough to

show that there exists an openV ∋ an in In such that
ρ( f (an), f (x))

ρ(an ,x) ≤ λ for every x ∈ V ,
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x /= an . But, for every x ∈ [cnk+1 , cnk ],
ρ( f (an), f (x))

ρ(an , x) ≤
ρ( f (an), f (cnk ))

ρ(an , cnk+1) =
cn+1k − an+1

cn
k
− an

cnk − an

cn
k+1 − an

→k→∞ 0,

since
cn+1k − an+1

cn
k
− an

=
hn(cnk ) − hn(an)

cn
k
− an

→k→∞ h′n(an) = 0
and, by (7.16),

cnk−an

cn
k+1
−an
→k→∞ 1. _erefore, there exists a k0 < ω such that

ρ( f (an), f (cnk ))
ρ(an , cnk+1) < λ

for every k ≥ k0, implying that V = [an , cnk0) is as needed. Clearly, f has no periodic
points.

rectiûably path-connected rectiûable-path connected
Notice that, by _eorem 3.3, the space X from Example 21 cannot be rectiûable-

path connected. It is shown in Example 28 that such X can be path-connected. How-
ever, it is not clear if X in such an example can be simultaneously compact and con-
nected, see Problem 8.1.

Example 21 _ere exists a map f ∶ ⟨[0,∞), ρ⟩ → ⟨[0,∞), ρ⟩ from the class(uPC)&¬(LS) having no periodic point, where ρ is a complete metric on [0,∞) topo-
logically equivalent to the standardmetric. Moreover, f satisûes (uPC) with every con-
traction constant λ ∈ (0, 1).
Construction Choose a strictly increasing sequence ⟨βn ∈ (0, 1) ∶ n < ω⟩ and let
0 = a0 < a1 < ⋅ ⋅ ⋅ be such that each interval In = [an , an+1] has length 1

n+1
. For every

n < ω, let ρn be a metric on In deûned by ρn(x , y) = ∣In ∣( ∣x−y∣∣In ∣ )βn and let ρ be the

metric on [0,∞) from Lemma 7.1 associated with the metrics {ρn ∶ n < ω}. _en ρ
is complete and, clearly, path-connected.

Deûne an increasing function g∶ [0,∞) → [0,∞) such that it maps each interval
In onto In+1 linearly (with respect to the standardmetric). _emap f is amodiûca-
tion of g; it coincides with g on [a1 ,∞), while on I0 it is deûned as follows: choose
a sequence a1 = c0 > c2 > c4 > ⋅ ⋅ ⋅ converging to a0 = 0. For every n < ω, put
f (c2n) = g(c2n) and let ℓn ∶R → R be a line through point (c2n+2 , f (c2n+2)) having
a slope which is half of the slope of g ↾ I0. Let c2n+1 ∈ (c2n+2 , c2n) be a solution of
ρ(ℓn(x), f (c2n)) = ρ(x , c2n), see Figure 19. Such a solution exists by the Intermedi-
ate Value_eorem, as

lim
x→c2n

ρ(ℓn(x), f (c2n))
ρ(x , c2n) =∞ and

ρ(ℓn(c2n+2), f (c2n))
ρ(c2n+2 , c2n) <

∣I1∣∣I0∣ < 1.
Deûne f (c2n+1) = ℓn(c2n+1) and on each interval [cn+1 , cn] extend f linearly. _e
function f is as desired.

Indeed, f is not (LS), since any open neighborhood V of 0 contains, for some
n < ω, the points c2n+1 and c2n that satisfy ρ( f (c2n+1), f (c2n)) = ρ(ℓn(x), f (c2n)) =
ρ(x , c2n) = ρ(c2n+1 , c2n).
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Figure 19: Illustration of g and f on [c2n+2 , c2n] from Example 21.

To see (uPC), choose λ ∈ (0, 1). By Lemma 7.2, f is (uPC) with constant λ on each
interval In , for 0 < n < ω, and [cn+1 , cn] for every n < ω. _erefore, by Lemma 7.1,
f is (uPC) with constant λ on (0,∞). Finally, it is (uPC) with constant λ at point 0,
since

ρ( f (x), f (0))
ρ(x , 0) ≤

ρ(g(x), g(0))
ρ(x , 0) < λ

for small enough x, since, by Lemma 7.2, D∗g(0) = 0.
7.3 Examples on Disconnected X ⊂ R With Standard Distance

Notice that, by _eorem 3.2 (iii), if f ∶X → X is as in Example 22, then X cannot be
connected. Also, by_eorem 3.2 (ii), such amap must have a periodic point.

Example 22 _ere exists a compact set X ⊂ R and a map f ∶X → X from(ULS)&¬(PC) having no ûxed point. It has a periodic point, as f (2)(0) = 0.
Construction Let X = [0, 1] ∪ [2, 3] and deûne: f (x) = 2 + arctan x for x ∈ [0, 1]
and f (x) = 0 for x ∈ [2, 3], cf. Example 1. Such f is as needed.

Notice that by_eorem 3.2 (iii), if f ∶X → X is as in Example 23, then X cannot be
connected. Also, by_eorem 3.2 (ii), such amap must have a periodic point.

Example 23 Let X = [−2,−1]∪[1, 2] and letmap f ∶X → X be deûned as f (x) = − x
∣x ∣ .

_en f is (ULC)&¬(S) having no ûxed point. But it has a periodic point, as f (2)(1) = 1.
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Notice that by_eorems 3.2 (i) and 3.5, the space X in Example 24 cannot be com-
pact and itmust have inûnitelymany components.

Example 24 _ere exists a map f ∶X → X from (ULC)&¬(S) having no periodic
point, where X is an unbounded perfect subset of R.

Construction Let X = ⋃n<ω[2n, 2n + 1] and deûne f as f (x) = 2(n + 1) for x ∈[2n, 2n+ 1]. Clearly, f satisûes (ULC)with λ = 0. It is not (S), as f (2)− f (0) = 4−2 =
2 − 0. It has no periodic points since f (x) > x for every x ∈ X.

Notice that by_eorem 3.2 (iii), if f ∶X → X is as in Example 25, then X cannot be
connected. Also, by_eorem 3.2 (ii), such amap must have a periodic point.

Example 25 For X = [0, 1] ∪ [2, 3] there exists a map f ∶X → X, having no ûxed

point, from (ULS)&(PC)&¬(uPC). It has a periodic point, f (2)(0) = 0.
Construction Let f2∶ [0, 1]→ [0, 1]be amap from (S)&(PC)&¬(uPC) constructed
in Example 2. We deûne f (x) = f2(x) + 2 for x ∈ [0, 1] and f (x) = f2(x − 2) for
x ∈ [2, 3]. Such f is as needed.

Notice that by_eorem 3.2 (iii), if f ∶X → X is as in Example 26, then X cannot be
connected. Also, by_eorem 3.2 (ii), such amap must have a periodic point.

Figure 20: Function g∶Y → Y for Example 26.

Example 26 _ere exists a compact perfect set X ⊂ R and a map f ∶X → X from(ULS)&(uPC)&¬(LC) having no ûxed point. Such amap must have a periodic point.

Construction For n < ω, let an = 2
−2n so that an+1 = a

2
n and an ↘ 0. Let b0 = 1 and,

for 0 < n < ω, let bn ∈ (an , an−1) be such that the slope of the segment joining points
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⟨bn , a2n⟩ and ⟨an−1 , a2n−1⟩ is 1 − 5−n . _en the set Y = {0}⋃n<ω[an , bn] is perfect.
Deûne g∶Y → Y by putting g(0) = 0 and g(x) = a2n for every x ∈ [an , bn]. See
Figure 20.

Notice that g is in (uPC) with any constant λ ∈ (0, 1). It is easy to verify that g is
(S). Also g is not (LC), since for any λ ∈ (0, 1) and any open V ∋ 0 in Y , there exists a
non-zero n < ω such that bn , an−1 ∈ V and 1 − 5−n > λ, giving

∣g(bn) − g(an−1)∣∣bn − an−1∣ =
∣a2n − a2n−1∣∣bn − an−1∣ = 1 − 5−n > λ.

Let X = Y ∪ (2 + Y) and deûne f ∶X → X by putting f (x) = g(x) + 2 for x ∈ Y
and f (x) = g(x − 2) for x ∈ (2 + Y). It is easy to see that such f is as needed.

Notice that by_eorems 3.2 (i) and 3.5, the space X in Example 27 cannot be com-
pact and itmust have inûnitelymany components.

Figure 21: Function f ∶ X → X for Example 27.

Example 27 _ere exists amap f ∶X → X from (S)&(ULC)&¬(C) having no peri-
odic point, where X is an unbounded perfect subset of R.

Construction Let X = ⋃n<ω[cn , dn], where we deûne, by induction, c0 = 0, dn =
cn + 2−(n+3), and cn+1 = dn + 1

2
+ 2−(n+1) = cn + 2−(n+3) + 1

2
+ 2−(n+1). _e space

X is complete, since cn ≥
n
2
↗ ∞ as n → ∞. Put f (u) = cn+1 for u ∈ [cn , dn] and

n < ω, see Figure 21. Clearly f has no periodic point and is (ULC) with any λ > 0

and 0 < ε < 1
2
(since the length of any [cn , dn] is 2−(n+3) < 1

2
). To see that f satisûes

(S), choose u < v from X. We need to show that ∣ f (v)− f (u)
v−u

∣ < 1. _is is obvious,
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when u and v belong to the same interval [cn , dn]. So assume that u ∈ [cn , dn] and
v ∈ [cn+k , dn+k] for some k ≥ 1. _en, since 2−(n+k+3) + 2−(n+k+1) − 2−(n+1) < 0, we
have

∣ f (v) − f (u)
v − u

∣ ≤ ∣ cn+k+1 − cn+1

cn+k − dn
∣

= ∣ (cn+k + 2−(n+k+3) + 1
2
+ 2−(n+k+1)) − (dn + 1

2
+ 2−(n+1))

cn+k − dn
∣ < 1,

completing the argument.

Notice that by _eorem 3.3, the space X from Example 28 cannot be rectiûable-
path connected. It is shown in Example 21 that such X can be path-connected. How-
ever, it is not clear if X in such an example can be simultaneously compact and con-
nected, see Problem 8.1.

Example 28 _ere exists a compact perfect X ⊂ R and a map f ∶X → X from(uPC)&¬(LS) having no periodic point that satisûes (uPC)with every contraction con-
stant λ ∈ (0, 1).
Construction In [10, _eorem 1] we presented a perfect compact set X ⊂ R and a
diòerentiable homeomorphism f ∶X → X which is (uPC) with any λ > 0.5

All orbits of the map f are dense in X, so f has no periodic points. Hence, by
_eorem 3.2 (i), f is not (LS).

Figure 22: Relation among the sequences ⟨an ∶ n < ω⟩, ⟨dn ∶ n < ω⟩, and the setX.

5Added at proof stage:_e 8 page construction of such examplewas recently signiûcantly shortened,
to less than 2 pages, by the ûrst author; see http://www.math.wvu.edu/~kcies/publications.html.
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It is not clear if the space X from Example 29 can be simultaneously compact and
connected, see Problem 8.1. However, X can be [0,∞) with the standard metric, as
shown by Example 3.

Example 29 _ere exists a bijection f ∶X → X from (PS)&¬(PC) having no periodic
point, where X is a compact perfect subset of R considered with the standard metric.
Moreover, we will have f ′(x) = 0 for all but one x ∈ X.
Construction Let f∶X→ X be as in [10,_eorem1], that is, f is a periodic, point free,
diòerentiable auto-homeomorphism of a perfect, compact, nowhere dense X ⊆ R

such that f′(x) = 0 for all x ∈ X. Wewill construct an appropriate increasing bijection
g∶R→ R for which X = g[X] and f = g ○ f ○ g−1∶X → X will be as needed.

Translating X, if necessary, we can assume that minX = 0. Now, since f′(0) = 0,
the function ∆∶X→ R deûned as

∆(x) = ⎧⎪⎪⎨⎪⎪⎩
∣f(x)−f(0)∣

x
for x /= 0,

0 for x = 0,

is continuous. In particular, it is an easy task to choose a strictly decreasing sequence⟨an ∈ (0,∞) ∖X ∶ n < ω⟩ converging to 0 and associated numbers

dn = sup∆[[0, an] ∩X]
such that:

● f[X ∩ [0, a0]] is disjoint with [0, a0] (possible, as f(0) > 0 and f is continuous),
● d0 < 1/2,
● dn+1 ≤

1
2
dn for all n < ω. See Figure 22.

Let ⟨bn ∈ (an , an−1) ∶ 0 < n < ω⟩ be a decreasing sequence with [bn , an−1]∩X = ∅.
Deûne function g as the identity on the complement of (0, a0), while, for every 0 <
n < ω, put g(x) = (n+1)dn

n
x on [an , bn] and extend it linearly on [bn , an−1], see Figure

23.
Notice that g is indeed increasing, since

(n + 2)dn+1
n + 1

≤
(n + 2)
n + 1

1

2
dn <

(n + 1)dn
n

for all 0 < n < ω. Moreover,

(7.18) g(x) ≤ x for all x ≥ 0,

since
(n+1)dn

n
≤ 1 for all 0 < n < ω.

To see that f is as desired, ûrst notice that

(7.19) f ′(x) = 0 for every nonzero x ∈ X.

Indeed, for any such x there exists a nonzero s ∈ X with x = g(s). Choose c ∈ (0, x)
with c < f (x) in the case when f (x) /= 0. _en the graph of g ↾ [c,∞) is a union of a
ûnite number of segments of positive slope and so, g↾[c,∞) is bi-Lipschitz with some
constantM > 0, that is,M−1∣a−b∣ ≤ ∣g(a)− g(b)∣ ≤ M∣a−b∣whenever a, b ∈ [c,∞).
Choose y ∈ X ∖ {x} and t ∈ X with y = g(t).
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Figure 23: _e thick line is the graph of g from Example 29.

Now if f (x) /= 0, then for every d < f (x) and y close enough to x, we have
s, t, f(s), f(t) ∈ [d ,∞), so that

∣ f (x) − f (y)∣∣x − y∣ =
∣g(f(s)) − g(f(t))∣∣g(s) − g(t)∣ ≤

M∣f(s) − f(t)∣
M−1∣s − t∣ →t→s 0,

as needed for (7.19). Similarly, for f (x) = 0 and y close enough to x, using (7.18) we
obtain ∣ f (x) − f (y)∣∣x − y∣ =

g(f(t))∣g(s) − g(t)∣ ≤ f(t)
M−1∣s − t∣ = ∣f(s) − f(t)∣

M−1∣s − t∣ →t→s 0,

completing the proof of (7.19).
Clearly, (7.19) implies that f is (PS) at every x ∈ X ∖ {0}. To see that f is (PS)

notice that for every y ∈ X ∩ (0, a0), there exists a t ∈ X ∩ (0, a0) such that y = g(t).
Moreover, t ∈ [an , bn] for some 0 < n < ω and g(f(t)) = f(t), as g is the identity on[a0 ,∞) ∋ f(t). _us

∣ f (y) − f (0)∣∣y − 0∣ =
∣g(f(t)) − g(f(0))∣∣g(t)∣ =

∣f(t) − f(0)∣
(n+1)dn

n
t
=

∣f(t)−f(0)∣
t

dn

n

n + 1
≤

n

n + 1
,

ensuring (PS) of f at 0.
Finally, to see that f is not (PC) at 0, it is enough to notice that by the deûnition of

numbers dn , the inequality≤ in the lastdisplay becomes equality for some t ∈ [an , bn].
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(_e maximum dn of ∆ on [0, an] ∩ X must be attained on [an , bn], since for any
s ∈ [0, an+1] ∩X we have ∆(s) ≤ dn+1 < dn .)

It is not clear if the space X from Example 30 can be simultaneously compact and
connected, see Problem 8.1. However, X can be [0,∞) with the standard metric, as
shown by Example 4.

Example 30 _ere exists a bijection f ∶X → X from (PC)&¬(uPC) having no peri-
odic point,where X is a compact perfect subset ofR consideredwith the standardmetric.
Moreover, f ′(x) = 0 for all but countablymany x ∈ X.

Construction _e construction is a variation of one used in Example 29. A diõ-
culty here is that, instead of having just one point x ∈ X with D∗ f (x) /= 0, we will
need to have a sequence of points ⟨an ∈ X ∶ n < ω⟩, with D∗ f (an)↗ 1 as n →∞.

As before, we start with the function f∶X → X from [10, _eorem 1], so that f
is a periodic, point free, diòerentiable auto-homeomorphism of a perfect compact
nowhere denseX ⊆ R such that f′(x) = 0 for all x ∈ X.Wealso assume thatminX = 0.
We will construct an increasing bijection g∶R → R for which X = g[X] and f =
g ○ f ○ g−1∶X → X are as needed.

Since f(0) > 0, by continuity of f we can ûnd an a−1 ∈ X such that f(x) > a−1 for
every x ∈ [0, a−1] ∩X. Choose a sequence f(0) > a−1 > a0 > a1 > ⋅ ⋅ ⋅ in X converging
to 0 and such that for every −2 < n < ω there exists a cn < an with (cn , an) ∩X = ∅
(so ans are isolated from the le�, but not from the right).

Notice that, for every n < ω, the function ∆n ∶X→ R deûned as

∆n(x) = ⎧⎪⎪⎨⎪⎪⎩
∣f(x)−f(an)∣
∣x−an ∣ for x /= an ,

0 for x = an ,

is continuous as f′(an) = 0. By induction on k < ω, choose a strictly decreasing
sequence ⟨bnk ∈ (an , an−1) ∖X ∶ k < ω⟩ converging to an and the associated numbers

dn
k = max ∆n[[an , bnk ] ∩X] such that bn0 < 2an , d

n
0 ≤

1
2
, and dn

k+1 < d
n
k for all k < ω.

Let ⟨cnk ∈ (bnk , bnk−1) ∶ 0 < k < ω⟩ be such that [cnk , bnk−1]∩X = ∅. Deûne function g as
the identity, i.e., via g(x) = x, on R ∖⋃n<ω(an , bn0 ). For every n < ω and 0 < k < ω,
put g(x) = an+ n+2

n+1
dn
k (x−an) for x ∈ [bnk , cnk ], and extend it linearly on each interval[cnk , bnk−1], see Figure 24.

Notice that g is indeed strictly increasing, since so is g ↾ [an , bn0 ] for every n < ω:
every line ℓnk containing g ↾ [bnk , cnk ] passes through the point ⟨an , an⟩ and the slope
n+2
n+1

dn
k+1 of ℓ

n
k+1 does not exceed the slope n+2

n+1
dn
k ≤ 1 of ℓ

n
k .

Let A = {0} ∪ {an ∶ n < ω}. Notice that, for every n < ω, we have g[[an , bn0 ]] =[an , bn0 ]. _us, the slopes of lines ℓnk being less than one, and that fact that g(x) = x
for all x ∈ R ∖⋃n<ω(an , bn0 ), imply that

(7.20) ∣g(t) − g(a)∣ ≤ ∣t − a∣ for every a ∈ A and t ≥ a.

To see that g, X = g[X], and f = g ○ f ○ g−1∶X → X are as desired, ûrst notice that,
for every n < ω, an = g(an) ∈ X and D∗ f (an) = n+1

n+2
. Indeed, if y ∈ X and ∣y − an ∣ <

δn =min{bn0 − an , an − cn}, then there exists a nonzero k < ω such that y = g(t) for
some t ∈ [bnk , cnk ]. _en by the deûnition of g on [bnk , cnk ], ∣g(t)− an ∣ = n+2

n+1
dn
k ∣t − an ∣.
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Figure 24: _e graph of y = g(x) between an+2 and an .

_erefore, as g(f(x)) = f(x) for any x ∈ [0, a−1] ∩X,

∣ f (y) − f (an)∣∣y − an ∣ =
∣g(f(t)) − g(f(an))∣∣g(t) − an ∣ =

∣f(t) − f(an)∣
n+2
n+1

dn
k
∣t − an ∣ =

∣f(t)−f(an)∣
∣t−an ∣
dn
k

n + 1

n + 2
≤
n + 1

n + 2
,

since
∣f(t)−f(an)∣
∣t−an ∣ ≤ dn

k by the deûnition of dn
k . Hence, D

∗ f (an) ≤ n+1
n+2

. Moreover, the

equality holds, since there exists an s ∈ [an , cnk ] with
dn
k =
∣f(s) − f(an)∣∣s − an ∣ .

Also, s ∉ [an , cnk+1], since dn
k+1 < d

n
k . Hence, s ∈ [bnk , cnk ] and

∣ f (g(s)) − f (an)∣∣g(s) − an ∣ =
n + 1

n + 2
,

proving that D∗ f (an) ≥ n+1
n+2

.

_e equation D∗ f (an) = n+1
n+2

proves that f is not (uPC) and that it is (PC) at

every x = an . So, to ûnish the proof, it is enough to show that f ′(x) = 0 for any
x ∈ X ∖ {an ∶ n < ω}.

So choose such x. We consider the following three cases.

Case 1: x = 0. _en x = 0 = g(0) and, for every y = g(t) ∈ X close enough to x,
we have f (y) = g(f(t)) = f(t). Notice that having bn0 < 2an for all n < ω, gives us
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g(t) ≥ 1
2
t for all t ≥ 0. So for y /= 0, we obtain

∣ f (0) − f (y)∣∣0 − y∣ =
∣f(0) − f(t)∣

g(t) ≤
∣f(0) − f(t)∣

1
2
t

= 2
∣f(0) − f(t)∣∣0 − t∣ →t→0 2 f

′(0) = 0,
giving f ′(0) = 0, as required.
Case 2: x , f (x) ∉ A. _en neither g−1(x) nor f(g−1(x)) belongs to A, as g(a) = a
for every a ∈ A. It is easy to see that every z ∈ R ∖ A admits an open neighborhood
U ∋ z for which the graph of g ↾ U is a union of at most two non-constant linear
functions. In particular, g ↾U is bi-Lipschitz, that is, there exists an L > 0 such that

(7.21) L−1∣a − b∣ ≤ ∣g(a) − g(b)∣ ≤ L∣a − b∣ for all a, b ∈ U .

LetU0 andU1 be the neighborhoods of g
−1(x) and f(g−1(x)), respectively, satisfying

(7.21). Since g and f are homeomorphisms, we can ûnd an open neighborhood V of
x in X such that g−1(V) ⊂ U0 and f(g−1(V)) ⊂ U1. _en for every y ∈ V , y /= x, we
have ∣ f (x) − f (y)∣∣x − y∣ =

∣g(f(g−1(x))) − g(f(g−1(y)))∣∣g(g−1(x)) − g(g−1(y))∣
≤
L∣f(g−1(x)) − f(g−1(y))∣
L−1∣g−1(x) − g−1(y)∣ →y→x L2f′(g−1(x)).

Since f′(g−1(x)) = 0, we obtain f ′(0) = L2f′(g−1(x)) = 0, as required.
Case 3: x ∉ A and f (x) ∈ A. Let a ∈ A be such that f (x) = a and notice that
f(g−1(x)) = g−1( f (x)) = g−1(a) = a. Since a is isolated from the le�, there exists
an open neighborhood U1 of a = f(g−1(x)) in X such that U1 ⊂ [a,∞) and so (7.20)
holds for every t ∈ U1. Moreover, since x ∉ A, we have also g−1(x) ∉ A and so,
there exists an open neighborhood U0 of g

−1(x) in X satisfying (7.21). Now as in the
previous case, we can ûnd an open neighborhood V of x in X such that g−1(V) ⊂ U0

and f(g−1(V)) ⊂ U1. _en for every y ∈ V , y /= x, we have
∣ f (x) − f (y)∣∣x − y∣ =

∣g(a) − g(f(g−1(y)))∣∣g(g−1(x)) − g(g−1(y))∣ ≤ ∣a − f(g−1(y))∣
L−1∣g−1(x) − g−1(y)∣

=
∣f(g−1(x)) − f(g−1(y))∣
L−1∣g−1(x) − g−1(y)∣ →y→x Lf′(g−1(x)).

Since f′(g−1(x)) = 0, we obtain f ′(0) = Lf′(g−1(x)) = 0, as required.

8 Remaining Open Problems and Remarks

_e in-depth analysis of this article, for the most part, presents a clear picture of the
place of ûxed and periodic point theorems among classes of functions described in
Deûnition 2.1, considered in various topological conûgurations. However, there re-
main a few cases, indicated in the problems below, which “locally” cloud this image.
In particular, the ûrst of these problems, seems to be particularly intriguing, especially
for the classes (PC) and (uPC).
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Problem 8.1 Assume that ⟨X , d⟩ is compact and either connected or path-connected.
If the map f ∶ ⟨X , d⟩ → ⟨X , d⟩ is (PS), must f have either a ûxed or a periodic point?
What if f is (PC) or (uPC)?

Note that, for the class (PC), the answer to Problem 8.1 (and Problem 8.2) is aõr-
mative when the space ⟨X , d⟩ is rectiûable-path connected, see_eorem 3.4.

Problem 8.2 Assume that ⟨X , d⟩ is compact and rectiûable-path connected. If the
map f ∶ ⟨X , d⟩→ ⟨X , d⟩ is (PS),must f have either a ûxed or periodic point?

Notice also that a large number of the examples of functions we discussed are de-
ûned on spaces ⟨X , ρ⟩, where X is an interval and ρ cannot be the standard metric
from R. However, in all such cases, with the exception of Example 11, it seems to be
unknown if in these examples the space ⟨X , ρ⟩ can be isometric to a subset of Rn for
some n > 1.Webelieve that in the caseswhen ⟨X , ρ⟩ can be rectiûably path connected,
i.e., in Examples 6, 7, 10, 12, 13, 14, and 15, it is indeed possible to ûnd the examples
with ⟨X , ρ⟩ being isometric to subsets of R3. Verifying this conjecture might be an
interesting project. In the cases when ⟨X , ρ⟩ cannot be rectiûable-path connected,
i.e., in Examples 16, 17, 18, 19, and 20, the possibility of ûnding the examples on the
subsets of Rn still seems possible, but it is less clear to us. Rakotch [30, Example 1] is
somewhat encouraging; see also our comment preceding Example 16.

We would like to ûnish here with a few words on what brought us to pursue the
work on this project since, perhaps surprisingly, it was not our interest in the ûxed
point theorems. Instead, it stemmed from examining diòerentiability of the Peano-
like maps g from the subsets X of R onto X2, see [8–10]. It is easy to see that the
diòerentiability of such g implies that X has Lebesguemeasure 0. But, in [8], we gave
an example of an inûnitely many times diòerentiable function g∶R → R

2 that maps
an unbounded perfect set X ⊂ R (clearly of measure 0) onto X2. We also showed
that for every continuously diòerentiable function g∶R → R

2, X2 /⊂ g[X] for every
compact perfect set X ⊂ R. However, the following problem remains open.

Problem 8.3 Let X ⊂ R be compact perfect and let g be a function from X onto X2.
Can g be diòerentiable? continuously diòerentiable?

If such a g = ⟨ f , h⟩ exists, then f maps X onto X and, as we remarked in [8,
Lemma 3.2], f ′(x) = 0 for all x ∈ X except possibly of a ûrst category subset of X.

Can a surjection with such properties exist? What if f ′(x) = 0 for all (rather than
“almost” all) x ∈ X? Our (false) intuition was that f with this last property, i.e., being
amap from compact perfect X ⊂ R onto X with f ′ ≡ 0, cannot exist. In our attempt
to show such a claim, we proved [10, _eorem 9] that for any such f there exists a
perfect X ⊂ X such that f = f ↾ X has no periodic points, bringing us to the realm
of ûxed point theorems and (uPC) maps. Of course, we eventually discovered (see
[10, _eorem 9] and Example 28) that such a paradoxically behaving function f (see
Figure 25) indeed exists. So onemay say that this entire study stems from Example 28.
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Figure 25: _e result of the action of f2 = ⟨f, f⟩ onX2 = X ×X

Finally, notice that the existence ofmap f seems to indicate that the answer to Prob-
lem 8.3 is aõrmative. However, the delicate construction of f has so far deûed any
attempts to transform it into the example conûrming this indication.
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