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Early in a multivariable calculus class, students are asked to determine if

f (x, y) =
{

xy2

x2+y4 when (x, y) �= (0, 0),

0 otherwise
(1)

is continuous. Although f is discontinuous (along the parabola x = y2), some stu-
dents are likely to think that this function is continuous since f (0, 0) is equal to
the limit along the x- and y-axes. Did you know that an 1821 calculus textbook of
Augustin-Louis Cauchy [1] contains a theorem that seems to contradict the existence
of an example with such properties and to agree with the naı̈ve hypothesis that a two
variable function is continuous if it is continuous in each variable separately?

The apparent contradiction comes from the fact that Cauchy’s text is written for
the set R of real numbers containing infinitesimals (i.e., numbers d with 0 < d <

1/n for every n = 1, 2, 3, . . .), while the standard set R of real numbers does not
contain such objects. The fact that Cauchy’s result is false when R is replaced with
the standard set R of real numbers was first observed by E. Heine and appeared in the
1870 calculus text of J. Thomae [6]; see [5]. The prominent example (1), which appears
in many calculus books, comes from the 1884 treatise on calculus by A. Genocchi
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and G. Peano [4]. (See [3] on more history related to the above-mentioned Cauchy’s
result and Genocchi–Peano’s example.) Not only is (1) continuous separately, it is also
continuous when restricted to any straight line, including those passing through the
origin.

This article will focus on the following questions.

Q1: What are other examples of two variable functions that are discontinuous but
continuous along any straight line?

Q2: Can we generalize (1) to higher dimensions and, if so, in what sense?
Q3: What are the simplest examples of this sort?

In answering the question Q3, we will restrict our attention to the class of rational
functions, one of the simplest classes containing removable discontinuities.

Another clarification: Before discussing question Q2, we need to decide whether to
treat lines in R

2 as the objects of dimension 1, or rather as hyperplanes, that is, objects
of codimension 1 (e.g., hyperplanes in R

3 are standard two-dimensional planes). In
other words, do we want the functions of three or more variables to be continuous
on all hyperplanes? Or just on all lines? The lines option does not lead to anything
truly new, as a natural lift of the original Genocchi–Peano function f (x, y) to the
higher dimensions, defined by G(x1, x2, . . . , xn) = f (x1, x2), is clearly discontinuous,
while continuous on any straight line. Therefore, in what follows, we will require our
examples to be continuous on all hyperplanes. Notice, that, for n > 2, this function G
is not among such examples since it is discontinuous when restricted to the hyperplane
{(x1, x2, . . . , xn) ∈ R

n | x3 = x2}.

Generalized Genocchi–Peano examples
The simplest rational functions g : Rn → R that may have a chance to lead to the
examples we seek are in the form

g(x1, x2, . . . , xn) =
⎧⎨
⎩

x
α1
1 x

α2
2 ···xαn

n

x
β1
1 +x

β2
2 +···+xβn

n
when (x1, . . . , xn) �= (0, . . . , 0),

0 otherwise
(2)

where αi , βi ∈ N = {1, 2, 3, . . .} for all i ∈ {1, . . . , n}. For the rest of the article, we
will assume that every function is 0 at (x1, x2, . . . , xn) = (0, 0, . . . , 0), the origin.

We say that g : Rn → R in the form of (2) and with n > 1 is a Genocchi–Peano
example (abbreviated GPE) if g is discontinuous but has a continuous restriction g � H
to any hyperplane H in R

n . Of course, if all the βi are even, then the maps (2) are
continuous when restricted to the hyperplanes that do not contain the origin. Thus, in
such case, we will restrict our attention to the hyperplanes that contain the origin, that
is, expressible via equations

∑n
i=1 bk xk = 0. One of the main goals of this article is to

investigate the following general question.

For any n > 1, for what values of αi , βi ∈ N, i ∈ {1, . . . , n}, is the function
g(x1, x2, . . . , xn) a Genocchi–Peano example?

It is worth noting that any GPE is, in particular, continuous on any straight line.
Clearly, the function f given by (1) is a GPE. It is also easy to see that

h(x, y) = xy2

x2 + y6
(3)
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constitutes another such example since it is discontinuous on the curve x = y3. These
two examples are essentially different: f [R2] is bounded, as

| f (x, y)| =
√

x2

x2 + y4

√
y4

x2 + y4
≤ 1,

while h[R2] is not (since limy→0+ h(y3, y) = ∞).
A simple GPE for n = 3 is given by

j (x1, x2, x3) = x1x2x2
3

x2
1 + x4

2 + x8
3

. (4)

Indeed, j is discontinuous on {(t4, t2, t) | t ∈ R}. To see that it is continuous on any
hyperplane (containing the origin), notice that

| j (x1, x2, x3)| = |x1|
d1/2

|x2|
d1/4

( |x3|
d1/8

)2

where d = x2
1 + x4

2 + x8
3 . Now, each of the three quotients is bounded above by 1.

Moreover, for a hyperplane x3 = ax1 + bx2, we have

|x3|
d1/8

≤ |a| |x1|
d1/8

+ |b| |x2|
d1/8

≤ |a|d1/2

d1/8
+ |b|d1/4

d1/8
→ 0

as d → 0. So, j is continuous at (0, 0, 0) on this hyperplane. Similarly, j is continuous
on a hyperplane x2 = ax1 since

|x2|
d1/4

≤ |a|d1/2

d1/4
→ 0

as d → ∞. Hence, j is indeed a GPE.
This justification for j (x1, x2, x3) exemplifies well the general argument for our

main theorem characterizing GPEs, stated next. First, note that none of the βi can be
odd if g of the form (2) is to be a GPE. For if βi were odd, then g would be discon-
tinuous on any hyperplane containing a point y = (y1, . . . , yn) ∈ (R \ {0})n satisfy-
ing

∑n
i=1 yβn

i = 0. (To see this more clearly, set y j = 1 for j �= i and yi = βi
√

1 − n.)
Therefore, in the rest of the article, we will assume that all the βi are even, and because
of symmetry in the definition of g, we will also assume β1 ≤ · · · ≤ βn .

Theorem (Characterization of GPEs). Let g be given by (2) with β1 ≤ · · · ≤ βn

positive even numbers.

(i) g is discontinuous if and only if
∑n

i=1 αi/βi ≤ 1.

(ii) g has a continuous restriction to every hyperplane if and only if(
n∑

i=1

αi

βi

)
− αk

βk
+ αk

βk−1
> 1 for every k ∈ {2, . . . , n}.

In particular, g is a Genocchi–Peano example if and only if the conditions from (i) and
(ii) hold.
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Notice, that the values required for the condition in (ii) can be calculated by replac-
ing βk with βk−1 in the expression

∑n
i=1 αi/βi . The proof of the theorem is at the end

of this article.
It is worth pointing out that, for a fixed sequence (β1, . . . , βn), the theorem implies

that there can only be finitely many GPEs, namely those that satisfy
∑n

i=1 αi/βi ≤ 1.

An exhaustive example. We determine all GPEs of the form

f (x1, x2) = xα1
1 xα2

2

x6
1 + x10

2

(5)

for α1, α2 ∈ N. By the theorem, the exponents must satisfy the inequalities from (i)
and (ii), namely α1/6 + α2/10 ≤ 1 and α1/6 + α2/6 > 1. The reader can verify that
there are 23 pairs satisfying 5α1 + 3α2 ≤ 30, equivalent to the first inequality, of which
eight satisfy α1 + α2 > 6, equivalent to the second. These eight solutions correspond
to the GPEs

x1x6
2

x6
1 + x10

2

,
x1x7

2

x6
1 + x10

2

,
x1x8

2

x6
1 + x10

2

,
x2

1 x5
2

x6
1 + x10

2

,

x2
1 x6

2

x6
1 + x10

2

,
x3

1 x4
2

x6
1 + x10

2

,
x3

1 x5
2

x6
1 + x10

2

,
x4

1 x3
2

x6
1 + x10

2

.

A difficulty behind using the characterization is that, for each GPE candidate func-
tion with a fixed denominator, we need to check n inequalities:

∑n
i=1 αi/βi ≤ 1 and

n − 1 from the theorem condition (ii). While it is fairly easy to write a program that, for
fixed β1, . . . , βn , finds all αi satisfying these inequalities in one of the common sym-
bolic algebra systems (e.g., Mathematica, Maple, Matlab), this could be a challenging
task without a computer. The following corollary, though more restrictive than our
characterization of GPEs theorem, reduces the task of checking whether a candidate is
a GPE to a verification of a single equation.

Corollary (Sufficient condition for GPEs). Let g be as in (2) with β1 ≤ · · · ≤ βn.

(a) If g is a Genocchi–Peano example, then the βi must be distinct.

(b) If all βi are even and
∑n

i=1 αi/βi = 1, then g is a Genocchi–Peano example if
and only if all βi are distinct.

Moreover, the functions as in (b) are the only GPEs with g[Rn] bounded.

This follows quite easily from our characterization of GPEs theorem. Indeed, if g
is a GPE, then the βi must be distinct since otherwise there would exist k ∈ {2, . . . , n}
with αk/βk = αk/βk−1, and so the inequalities from parts (i) and (ii) of the character-
ization cannot simultaneously hold. On the other hand, if all the βi are distinct and∑n

i=1 αi/βi = 1, then αk/βk < αk/βk−1 for every k ∈ {2, . . . , n} and

(
n∑

i=1

αi

βi

)
− αk

βk
+ αk

βk−1
>

n∑
i=1

αi

βi
= 1.

Thus, g is a GPE.
We leave the last part of the sufficient condition result as an exercise.
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Exercise 1. Prove, using the characterization result, that the only bounded GPEs are
those for which

∑n
i=1 αi/βi = 1. Hint: Follow the arguments using (3) and (1). For

general n, (11) below might be useful.

Notice, that among the eight GPEs of the form (5) only one, x3
1 x5

2/(x6
1 + x10

2 ), sat-
isfies the sufficient condition. The corollary also implies that each map

gn(x1, . . . , xn) = x1x2 · · · xn−1x2
n

x2
1 + x4

2 + · · · + x2n−1

n−1 + x2n
n

(6)

is a GPE, as

1

2
+ · · · + 1

2n−1
+ 2

2n
= 1.

(The fact that the gn are GPEs was first noticed, without a proof of correctness, in [2].)
Note that the original GPE given in (1) is g2, while j from (4) is g3. Another general
class of GPEs, each for n > 1 variables, is given by

hn(x1, . . . , xn) = x2
1 · · · x2i

i · · · x2n
n

x2n
1 + · · · + x2in

i + · · · + x2n2
n

(7)

where the assumptions of the corollary hold since
∑n

i=1 2i/(2in) = n(1/n) = 1. In
particular, these give the following GPEs of 2, 3, and 4 variables, respectively.

g2(x, y) = xy2

x2 + y4
, h2(x, y) = x2 y4

x4 + y8
,

g3(x, y, z) = xyz2

x2 + y4 + z8
, h3(x, y, z) = x2 y4z6

x6 + y12 + z18
,

g4(x, y, z, w) = xyzw2

x2 + y4 + z8 + w16
, h4(x, y, z, w) = x2 y4z6w12

x8 + y16 + z24 + w32
.

In these examples, the degrees of the denominators of GPEs given by (6) are smaller
than those given by (7). However, 2n is bigger than 2n2 for large values of n, that is,
this trend reverses for as n → ∞. (In fact, already for any n ≥ 7.) These observations
open up a discussion of the simplest GPEs.

The simplest Genocchi–Peano examples
So far, we answered the questions Q1 and Q2, in the class of functions of the form
(2). Now, we tackle the question Q3 about the simplest Genocchi–Peano examples.
But how do you define simplest, even just in the class of the GPEs? We decided to
express simplicity in terms of the degree of the denominator of (2) (i.e., βn) so that
the smaller βn corresponds to the simpler GPE. In general, little is known about the
minimal degrees βn for GPEs of n variables. Of course, we must have βn ≥ 2n since
we know from the corollary that all the βi are even and distinct. Also, we have GPEs
with βn ≤ min{2n, 2n2} considering the maps gn and hn from (6) and (7). Thus, for
any GPE of n variables, the minimal βn satisfies

2n ≤ βn ≤ min{2n, 2n2}. (8)
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However, in general, the upper bound min{2n, 2n2} is far from optimal, as we will see
in some of the following investigations of GPEs for small values of n.

• For n = 2, the inequalities (8) immediately imply that βn = 4. In particular, the
original GPE (1), which we know now as g2, has the denominator of minimal degree.
Moreover, it is easy to see that g2 is the only GPE of two variables with βn = 4.

• For n = 3, we know by (8) that 6 ≤ βn ≤ 8. Any GPE map (2) with βn < 8 would
need to be of the form

xα1
1 xα2

2 xα3
3

x2
1 + x4

2 + x6
3

.

Among such functions, only α1 = α2 = α3 = 1 gives the necessary inequality α1/2 +
α2/4 + α3/6 ≤ 1. However, for this choice, condition (ii) of the characterization fails
for k = 3. Hence, there is no GPE of this form, and βn = 8. This means that, again,
the gn family entry, here

g3(x1, x2, x3) = x1x2x2
3

x2
1 + x4

2 + x8
3

,

is a GPE with the denominator of minimal degree. In fact, g3 has also the smallest
degree numerator among all three-variable GPEs with minimal degree denominator.
This is the case since each of the functions

x1x2x3

x2
1 + x4

2 + x8
3

,
x1x2x3

x2
1 + x6

2 + x8
3

,
x1x2x3

x4
1 + x6

2 + x8
3

fails the theorem condition (ii) for k = 3, as

1 = 1

2
+ 1

4
+ 1

4
>

1

2
+ 1

6
+ 1

6
>

1

4
+ 1

6
+ 1

6
.

Moreover, g3 is the only GPE with βn = 8 and the numerator of degree 4 since none
of the following potential candidates is a GPE:

x2
1 x2x3

x2
1 + x4

2 + x8
3

,
x1x2

2 x3

x2
1 + x4

2 + x8
3

,
x2

1 x2x3

x2
1 + x6

2 + x8
3

(9)

fail (i) of the characterization while one can show that

x1x2
2 x3

x2
1 + x6

2 + x8
3

,
x1x2x2

3

x2
1 + x6

2 + x8
3

,
x2

1 x2x3

x4
1 + x6

2 + x8
3

,
x1x2

2 x3

x4
1 + x6

2 + x8
3

,
x1x2x2

3

x4
1 + x6

2 + x8
3

(10)

fail (ii) for k = 3.

Exercise 2. Prove that the maps listed in (9) fail to be GPEs by showing explicitly
(without using the characterization) that they are continuous at the origin.

Exercise 3. Verify that the functions listed in (10) indeed fail the theorem condition
(ii) with k = 3.

• For n = 4, the inequalities (8) give bounds 8 ≤ βn ≤ 16. We will show that, in
this case, the smallest possible βn of a GPE is 10 if we allow unbounded maps and 12
otherwise.
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First notice that βn > 8 since otherwise

n∑
i=1

αi

βi
≥ 1

2
+ 1

4
+ 1

6
+ 1

8
> 1,

and condition (i) of the characterization fails. Thus, βn ≥ 10. The possibility of equal-
ity is justified by the GPE

x1x2x2
3 x3

4

x4
1 + x6

2 + x8
3 + x10

4

,

which satisfies (i) from the characterization since

1

4
+ 1

6
+ 2

8
+ 3

10
= 29

30
< 1

and the inequalities from (ii) for every k ∈ {2, 3, 4}, respectively

1

4
+ 1

4
+ 2

8
+ 3

10
= 21

20
,

1

4
+ 1

6
+ 2

6
+ 3

10
= 63

60
,

1

4
+ 1

6
+ 2

8
+ 3

8
= 25

24
,

each greater than 1.
To show that there is no bounded GPE with βn = 10, by the corollary, it is enough

to that show a/2 + b/4 + c/6 + d/8 + e/10 = 1 for no a, b, c, d, e ∈ {0, 1, 2, . . .}
with precisely one of a, b, c, d being zero. Writing

a

2
+ b

4
+ c

6
+ d

8
+ e

10
= 120a + 60b + 40c + 30d + 24e

240
,

we see that this number can only be an integer when e is divisible by 5. But if e is
divisible by 5 and precisely one of a, b, c, d ∈ {0, 1, 2, . . .} is zero, then

a

2
+ b

4
+ c

6
+ d

8
+ e

10
≥ a

2
+ b

4
+ c

6
+ d

8
+ 5

10
≥ 0

2
+ 1

4
+ 1

6
+ 1

8
+ 5

10
> 1.

The maps

x1x2x3x4

x2
1 + x4

2 + x6
3 + x12

4

,
x1x2x2

3 x4
4

x4
1 + x6

2 + x8
3 + x12

4

are both bounded GPEs with βn = 12 since, using the sufficiency corollary,

1

2
+ 1

4
+ 1

6
+ 1

12
= 1,

1

4
+ 1

6
+ 2

8
+ 4

12
= 1.

Exercise 4. Use the characterization theorem to show that

x1x2x3x2
4

x2
1 + x6

2 + x8
3 + x10

4

is another example of GPE with βn = 10. Notice that this numerator has smaller degree
than the example above.

Exercise 5. Use the characterization theorem to show that there is no GPE of four
variables with denominator of degree 10 and numerator of degree less than 5.
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Proof of the GPE characterization theorem
Let γ = ∑n

i=1 αi/βi and d = xβ1
1 + · · · + xβn

n . Then g of the form (xα1
1 · · · xαn

n )/d,

g(x1, . . . , xn) = 1

d1−γ

xα1
1

dα1/β1
· · · xαn

n

dαn/βn
= dγ−1

n∏
i=1

xαi
i

dαi /βi
. (11)

To see (i), first assume that γ ≤ 1. Then, for t > 0,

h(t) = g
(
t1/β1, . . . , t1/βn

) = tα1/β1 · · · tαn/βn

nt
= tγ−1

n

so that h does not converge to g(0, . . . , 0) = 0 as t → 0. Thus, g is discontinuous.
Conversely, assume that γ > 1. Since∣∣∣∣ xαi

i

dαi /βi

∣∣∣∣ ≤ |xi |αi(
xβi

i

)αi /βi
= 1

for every i ∈ {1, . . . , n}, the expression for g in (11) implies |g(x1, . . . , xn)| ≤
dγ−1. But lim(x1,...,xn)→(0,...,0) dγ−1 = 0 since γ − 1 > 0. So by the squeeze theorem,
lim(x1,...,xn)→(0,...,0) g(x1, . . . , xn) = 0, i.e., g is continuous at the origin. So indeed, g is
continuous, as desired.

To see that (ii) holds, let

δk =
(

n∑
i=1

αi

βi

)
− αk

βk
+ αk

βk−1

for k ∈ {2, . . . , n}.
First assume that δk ≤ 1 for some k ∈ {2, . . . , n} and consider the hyperplane H =

{x ∈ R
n | xk = xk−1}. We will show that g � H , the restriction g to H , is discontinu-

ous. Indeed, for every t > 0 and i ∈ {1, . . . , n} let

fi(t) =
{

t1/βi if i �= k,

t1/βk−1 if i = k.

Then ( f1(t), . . . , fn(t)) ∈ H . Moreover, since

( fi(t))
αi =

{
tαi /βi if i �= k,

tαi /βk−1 if i = k
and ( fi(t))

βi =
{

t if i �= k,

tβk/βk−1 if i = k

we have

g( f1(t), . . . , fn(t)) = t
γ− αk

βk
+ αk

βk−1

(n − 1)t + tβk/βk−1
= 1

(n − 1) + t (βk/βk−1)−1
t δk−1.

Thus, limt→0 g( f1(t), . . . , fn(t)) �= 0 since limt→0+ t δk−1 ≥ 1 (as δk − 1 ≤ 0) and

lim
t→0+

1

(n − 1) + t (βk/βk−1)−1
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is either 1/(n − 1) (when βk−1 < βk) or 1/n (when βk−1 = βk). Therefore, g � H is
discontinuous at the origin.

To complete the argument, assume that δk > 1 for every k ∈ {2, . . . , n} and let H
be a hyperplane. We need to show that g � H is continuous. This is obvious when H
does not contain the origin. So, assume that it does and that

∑n
i=1 bi xi = 0 on H . Let

k ∈ {1, . . . , n} be the largest for which bk �= 0.
If k = 1, then g � H is identically 0 and thus continuous. Assume k > 1. Then

the equation
∑n

i=1 bk xk = 0 can be written as xk = ∑k−1
i=1 ai xi . In particular, since

1/βi ≥ 1/βk−1 for every i ∈ {1, . . . , k − 1}, for every d ∈ (0, 1) we have

|xk | =
∣∣∣∣∣

k−1∑
i=1

ai xi

∣∣∣∣∣ ≤
k−1∑
i=1

|ai ||xi | ≤
k−1∑
i=1

|ai |d
1
βi ≤

k−1∑
i=1

|ai |d
1

βk−1 = Ad
1

βk−1 (12)

where A = ∑k−1
i=1 |ai |. Since

∣∣∣∣ xαi
i

dαi /βi

∣∣∣∣ =
∣∣∣∣∣ x

βi
i

d

∣∣∣∣∣
αi /βi

≤ 1

for every i ∈ {1, . . . , n}, by (11) and (12), we have

|g(x1, . . . , xn)| ≤ 1

d1−γ

|xk |αk

dαk/βk

≤
(

Ad
1

βk−1
)αk

d
1−γ+ αk

βk

= Aαk d
γ− αk

βk
+ αk

βk−1
−1 = Aαk dδk−1.

But Aαk dδk−1 → 0 = g(0, . . . , 0) as d → 0+ since δk − 1 > 0. Thus, g � H is contin-
uous at the origin and continuous overall.

Summary. We characterize the simple rational functions of arbitrarily many real variables
that are discontinuous but continuous when restricted to any hyperplane. The characterization
is expressed by simple inequalities with respect to the exponents of each variable. Examples
include two infinite families of such Genocchi–Peano examples. We also investigate the small-
est degree of the denominators of such examples.
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