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Abstract For any positive integer M, M-object fuzzy con-
nectedness (FC) segmentation is a methodology for finding
M objects in a digital image based on user-specified seed
points and user-specified functions, called (fuzzy) affinities,
which map each pair of image points to a value in the real
interval [0, 1]. The theory of FC segmentation has proceeded
along two tracks. One track, developed by researchers includ-
ing the first author, has used two kinds of FC segmentations:
RFC segmentation and IRFC segmentation. The other track,
developed by researchers including the second and third
authors, has used another kind of FC segmentation called
MOFS segmentation. In RFC and IRFC segmentation the
M delineated objects are pairwise disjoint. In contrast, the
M objects delineated by MOFS segmentation may overlap,
though in many practical applications the tie-zone (i.e., the
set of points that do not lie in just one object) is extremely
small. Another difference between (I)RFC and MOFS seg-
mentation is that the former types of segmentation are defined
in terms of just one affinity (regardless of the value of M),
whereas MOFS segmentation is defined in terms of M dif-
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ferent affinities with each of the M objects having its own
affinity. Moreover, the affinity used in (I)RFC segmentation
has almost always been assumed in the (I)RFC-track lit-
erature to be a symmetric function, but the affinities used
in MOFS segmentation need not be symmetric. This paper
presents the first unified mathematical study of FC segmenta-
tion that encompasses both (I)RFC and MOFS segmentation.
We generalize the concepts of RFC and IRFC segmentation
to the case where the affinity is not necessarily symmetric,
explain just how the three different segmentation methods
relate to each other, and give very concise mathematical (i.e.,
nonalgorithmic) path-based characterizations of the objects
delineated by (I)RFC and MOFS segmentation. Our primary
path-based characterization of MOFS objects depends on the
concept of a recursively optimal path, which we introduce
in this paper. Using another new concept—the core of an
MOFEFS object—we prove results which show that MOFS
segmentation is robust with respect to seed choice even
when different affinities are used for different objects and
the affinities are not necessarily symmetric. Two of these
results substantially generalize known (I)RFC-track robust-
ness results that previously had no MOFS-track counterpart.
The fast MOFS algorithm in this paper (our Algorithm 5),
which is reminiscent of Dijkstra’s shortest path algorithm
for weighted digraphs, is one of the most computation-
ally efficient segmentation algorithms. It can be used to
efficiently compute IRFC segmentations as well as MOFS
segmentations: This is because it emerges quickly from our
work that if a single affinity is used then IRFC objects
are just MOFS objects from which all tie-zone points have
been removed. When M > 2, this fast MOFS algorithm
is likely to compute an M-object IRFC segmentation more
quickly than commonly used IRFC segmentation algorithms
that compute IRFC objects one at a time (except possi-
bly when the tie-zone of the segmentation is very large, in


http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-015-0623-7&domain=pdf

J Math Imaging Vis (2016) 55:304-342

305

which case we show that the IRFC segmentation must be
unstable).

Keywords Image Processing - Segmentation - Fuzzy
connectedness - Robustness

1 Introduction

Image segmentation is an important and challenging task for
which a multitude of different techniques have been devel-
oped; see, e.g., Sect. 1.6 of [23] and the survey articles in
Part IV of that book. This paper deals with the segmentation
methodology known as fuzzy connectedness (or FC) segmen-
tation, which has been used with considerable success—see,
e.g., Fig. 1—on biomedical and other images [5-21,25-
27,29,30,32-39]. The earliest uses of FC segmentation that
the authors are aware of were in geophysical data process-
ing [12-15]. Udupa and Samarasekera [38] were the first to
apply FC segmentation to medical imaging.

Much of the theory of FC segmentation has developed
along two different tracks. In one of the tracks [5,6,16-21,
25,32,33,37,39] two kinds of segmentation are used: RFC
segmentation and IRFC segmentation. The other track [7-11,
26,29] uses a third kind of segmentation that is called MOFS
segmentation. Accordingly, we will refer to the former track
as the (I)RFC-track, and refer to the latter track as the MOFS-
track.!>? In this paper, we present a general theory of FC
segmentation that encompasses both tracks and unifies them.

Let V be the set of all points of a digital image (so
that V is finite and nonempty), let M be a positive integer,
and let S, ..., Sy be pairwise disjoint nonempty subsets
of V. Then FC segmentation can be understood as one
method of identifying M subsets Oq, ..., Oy of V such
that S; € O; C S; U(V\ Uj S;)for1 <i < M.Each of the
sets 01, ..., Oy that is identified is called an object, and
(for 1 <i < M) each point in the originally specified set S;

1" A simpler FC segmentation method, called absolute fuzzy connect-
edness (AFC) segmentation, predates (I)RFC and MOFS segmentation.
In AFC segmentations each object consists of those points that are con-
nected to the object’s seed set by a path whose strength is no less than a
user-specified threshold. An important motivation for the development
of (I)RFC and MOFS segmentation was to eliminate the need for users
to specify such thresholds.

2 IRFC segmentation is closely related to one version of the watershed
transform. Specifically, in the case where each seed set S; consists of
just one seed point, Audigier and Lotufo observed in [2] that the objects
of an IRFC segmentation are the catchment basins of the tie-zone IFT
watershed transform generated by the same seeds and a path cost func-
tion that is a strictly decreasing function of the path’s strength (with
respect to the affinity used to create the segmentation). The set of points
that do not lie in any of the IRFC objects is the tie-zone of the same
watershed transform. Tie-zone IFT watershed transforms are discussed
in [1-4], though the path cost function used in [1] and [4] is not directly
relevant to IRFC segmentation.

is called a seed point or simply a seed for the ith object O;.
In practical applications each of the seed sets Sy, ..., Sy is
usually small and might well consist of just a single point. In
many applications one of the M objects is called the back-
ground.

In addition to using the term FC segmentation to refer to
the process by which the objects Oy, ..., Oy are found,
we will also call the sequence of objects Oy, ..., Oy an
FC segmentation or an M-object FC segmentation of the set
V of image points.

This terminology implies that an FC segmentation is not
necessarily a segmentation in the most typical sense because
it is not necessarily a partition of the set V' of image points: It
is not required that the O; be pairwise disjoint nor that their
union be the whole of V. However, FC segmentation is the
only kind of segmentation we discuss in this paper, and we
will often refer to FC segmentations as “segmentations.”

We also note here that our concept of object is simpler
than that used in much of the literature on FC segmentation:
In the FC segmentation literature objects are often fuzzy sets
defined by a membership function valued in the real unit
interval [0, 1]—see, for example, the definition of an M-
semisegmentation in [10]—whereas our objects O; are sets
in the ordinary sense (i.e., they are “crisp” or “hard” sets in the
language of fuzzy set theory). While it would be reasonably
straightforward to reformulate our work in terms of fuzzy
sets> this would complicate our notation and terminology
unnecessarily: Our goal is to give a unified theory of FC
segmentation in which our mathematical results are stated as
simply and concisely as possible.

The objects O; that are found by FC segmentation depend
on user-specified mappings called fuzzy affinities or just
affinities. We define an affinity (on V) to be a mapping®
Y VxV — [0, 1]such that (v, v) = 1 forallv € V. For
all u, v € V we call the value ¥ (u, v) € [0, 1] the ¥-affinity
value of (u, v).

An affinity on V may be regarded as an edge-weight func-
tion of the complete digraph (with loops) on V. Affinity
values are described in [38] and elsewhere as (user-specified)
measures of the “hanging togetherness” of pairs of image

3 This can be done by replacing each of our crisp objects 0; with
the fuzzy set whose membership value at each point v € O; is the
strength of the strongest O;-path from O;’s seed set S; to v, and whose
membership value at each point v € V\O; is 0. This definition of the
membership value at each point v is quite simple, but other definitions
(e.g., definitions which depend directly on the image intensity value at v)
may give membership values that are more useful in some applications.
One reason to define objects as crisp sets rather than fuzzy sets is that
there is no standard way to define the membership value at a point.

4 Affinities whose values need not be numbers (e.g., affinities whose
values are n-tuples of real numbers) are considered in [17,18,31]. In par-
ticular, in [31] affinity values may be elements of any partially ordered
set and the strength of connectedness of one point to another is an ele-
ment of a free distributive lattice over the partially ordered set.
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Fig. 1 A slice of an MRI image
of a patient’s brain and a
4-object MOFS segmentation of
the slice. The four objects are
shown in red, blue, green, and
yellow in the electronic version
of this paper. (Reproduced from
[10]) (Color figure online)

points. Most affinities y that are used for FC segmen-
tation in imaging have the property that v (u, v) can be
nonzero only when the points # and v are near each other.
For example, when V is the set of elements of a 3D
image array I[ ][ ][ ], it is quite common to use affini-
ties v such that ¥ (I[/][j1[k], I[i'1[j’1[k']) = O whenever
max(li —i'[, |j — j'l. Ik = k') > 1.

FC segmentation is unlikely to identify useful objects
unless the affinity or affinities we use are appropriate for our
application. The important problem of how to define appro-
priate affinities is discussed, e.g., in [7,11,17,18,28,29,34]
but will not be considered here. In this paper, we make no
assumptions regarding the affinities that are used; our math-
ematical results are valid for all affinities.

RFC segmentation and IRFC segmentation differ from
MOFS segmentation in two ways. One difference is that the
objects in any RFC or IRFC segmentation are pairwise dis-
joint, whereas objects in an MOFS segmentation may overlap
(though in many practical applications, including all appli-
cations in which segmentations are stable in the sense of
Sect. 2.5, the overlap areas are extremely small). The other
difference is that, for any seed sets Si, ..., Sy, the RFC
and IRFC segmentations of V are determined by a single
afﬁnity5 Y 1V xV — [0, 1], whereas the MOFS segmenta-
tion of V depends on M affinities ¥, ..., ¥y—one affinity
for each of the M objects. Moreover, in the MOFS-track lit-
erature affinities have not been assumed to be symmetric
functions (i.e., affinities ¢ have not been assumed to satisfy
Y (u,v) = ¥ (v, u) for all image points # and v) and non-
symmetric affinities have sometimes been used in MOFS
segmentation [7], but in the (I)RFC-track literature affinities
have almost always been assumed to be symmetric (though
nonsymmetric affinities are considered in [6]).

> The single affinity used for (I)RFC segmentation is often created from
M distinct components, each specific to one object.

@ Springer

In spite of these differences, RFC, IRFC, and MOFS seg-
mentations are very closely related. In the sequel we will
explain just how they relate to each other, and give concise
path-based characterizations of these segmentations that are
purely mathematical in the sense that they make no refer-
ence to any algorithm. (Our first path-based characterization
of MOFS segmentations is stated in terms of recursively opti-
mal paths, a new concept that will be introduced in Sect. 3.2.)
We will then establish new results which imply that MOFS
segmentation is robust with respect to seed choice even when
different affinities are used for different objects and the affini-
ties are not symmetric. Two of these results can be viewed
as substantial generalizations of (I)RFC-track robustness
results that previously had no counterpart in the MOFS-track
literature.

Some Key Results of This Paper

Given an affinity ¥ : V. xV — [0, 1]on V and A, B, W C
V, a W-path from A to B of length / is any sequence
p = (wo,...,w;) of points in W such that wg € A and
w; € B; the y-strength of p = (vo, ..., v;), denoted by
V¥ (p), is defined by ¥ (p) = min|<;<; ¥ (vj_1,v;) if [ >0
and ¥ (p) = 1 if [ = 0; the y-strength of connectedness
of A # @toB # ¢ via W is defined as " (A, B) =
max {Y(p) | pisa (W U A U B)-path fromA to B}. We
say the seed sets S, ..., Sy are consistent with the affinity
vif vV (S, S;) < 1forall distincti and j in {1, ..., M};
similarly, we say Sy, ..., Sy are consistent with the affini-
ties ¥y, ..., ¥y if 1//iv (8i, §;) < 1 for all distinct i and j
in {1, ..., M}.

The following theorem gives some concise mathematical
characterizations of RFC, IRFC, and MOFS objects; OZ.RFC,
OI.IRFC, and OIMOFS, respectively, denote the RFC, IRFC, and
MOFS objects associated with the ith seed set.

Theorem 1.1 Suppose that Sy, ..
disjoint nonempty seed sets. Then:

., Sy C 'V are pairwise
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1. Assuming S1, ..., Sy are consistent with the affinity \,
the RFC object OI-RFC given by Sy, ..., Sy and ¥ satis-
fies

OZ-RFC ={v eV | max;jx wV(Sj, v) < V(S v))
(1.1)

and also satisfies

ORFC = (v e V | max;z ¥V (S;.v) < p O (51, v).
(1.2)
2. Assuming Sy, ..., Sy are consistent with the affinity ¥,

the IRFC object OiIRFC given by S1, ..., Sy and ¥ is
the unique set O that satisfies

0 =1{veV |maxj. ¥ \°S;,v) < ¢V, vl
(1.3)

Moreover, OiIRFC is also the unique set O that satisfies

0=1{veV | max ¥ \0(S;, v) < v, vl
(1.4)

3. Assuming Sy, ..., Sy are consistent with the affinities

Y1, ..., Yy, the sequence of MOFS objects
(O}VIOFS, R OAI\;OFS) given by Si,..., Sy and
Y1, ..., Yy istheunique sequence of sets (O1, ..., Op)
such that

0= {veV | max;z ! (S;.v) < ¥ (5. v) #0)

forl <i <M. (1.5)
Moreover, if yry = --- = Yy =V, then the IRFC object
Ol.IRFC given by Sy, ..., Sy and r is
IRFC __ ~MOFS MOFS
ORFC = O \U#,- OYOrs., (1.6)

Even though some readers who are familiar with the theory
of FC segmentation might feel they recognize (1.1) and the
first assertion of statement 3 as facts they were already aware
of, no part of the theorem is an immediate consequence of
results that have been explicitly stated in the literature, for the
following reason: The unified theory of FC segmentation we
present in this paper defines RFC, IRFC, and MOFS segmen-
tations in a new way (as the results of Algorithms 1-3 below)
that is intended to immediately reveal (1.6), to convey a quick
understanding of the nature of the objects found by each
type of segmentation, and to facilitate parallel development
of the mathematics of (I)RFC and MOFS segmentations. So
all parts of the above theorem must be understood as math-
ematical results about the segmentations defined by our new

definitions. However, as a result of proving (1.1) and the first
assertions of statements 2 and 3 of the above theorem, we are
able to conclude that our new definitions of RFC, IRFC, and
MOFS segmentations are in fact equivalent to definitions of
these segmentations that have been used in previous work.

The fact (1.6), which is restated as Corollary 2.7 below,
implies that efficient algorithms for computing MOFS
objects, such as Algorithm 5 in Sect. 4, can be used to effi-
ciently compute IRFC objects as well. In the past, IRFC
segmentations have often been computed using algorithms
that compute IRFC objects one at a time. For segmentation
into more than two objects, we believe the use of Algorithm 5
(which computes all the objects simultaneously) will typi-
cally be a faster way to compute IRFC segmentations. When
the affinity is symmetric, the TZWS by union-find method
of Audigier and Lotufo [2] is another way to compute all
the objects of an IRFC segmentation simultaneously. That
method will be briefly described in Sect. 4.2.

Interestingly, there seems to be no really easy way to
deduce (1.6) from results in the literature about MOFS
and IRFC segmentations, even though this fact is almost
immediately evident from our new definitions of these seg-
mentations.

Statement 1 follows from the second statements of Theo-
rem 3.6 and its corollary. Statement 2 and the first assertion
of statement 3 are parts of Theorems 3.8 and 3.10. These
three theorems are key results of this paper that give con-
cise path-based characterizations of RFC, IRFC, and MOFS
segmentations.

The first statements of Theorems 3.6, 3.8, and 3.10 give
alternative characterizations, which we consider to be at
least as useful as the characterizations stated in Theorem 1.1
above, but which we did not include in the above theorem to
avoid having to define certain concepts (specifically, the con-
cepts of hereditarily optimal and recursively optimal paths)
in this subsection.

Since ¥V (S}, v) > ¥V\9(S;, v) for any set O and point
v € V,itis easy to see from (1.1), (1.3), and (1.6) that,
for any given affinity i and seed sets consistent with the
affinity, ORFC < ORFC < OMOFS forall i € {1,..., M}
(assuming the same affinity v is used for all objects in the
MOFS segmentation).

From (1.2), (1.4), and (1.5) we see at once that that any
element v belonging to one of these objects, say O;, is con-
nected to the object’s seed set via an internal path (i.e., an
O;-path) of strength 1//0f (Si, v) > 0. This is an important
property. Indeed, one reason (I)RFC segmentation has not
been extended to use different affinities for different objects
is that the resulting (I)RFC objects would not always have
this property. The fact that MOFS segmentation allows dif-
ferent affinities for different objects but (I)RFC segmentation
does not has been a major obstacle to the reconciliation of
the two tracks of FC segmentation theory.

@ Springer
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Another fundamental result of this paper is the fol-
lowing theorem (which follows from Proposition 5.3 and
Theorem 5.4). As will be seen in Sect. 5, this theorem
implies Corollaries 5.5 and 5.6, and Remark 5.7, which
tell us that MOFS segmentations are totally robust when
we make “small” changes in the seed sets; here “totally
robust” means that the segmentations do not change at
all.

In the statement of the theorem we use the notation
OlMOFS(\IJ, S) for the ith MOFS object given by the
sequences W = (y,...,¥y) of affinities and § =
(S1, ..., Sy) of seed sets. Also, Core;p’s - OlMOFS(\II, S)
is a set of considerable size that we will describe in more
details after stating the theorem.

Theorem 1.2 Let ¥ = (Yq,...,¥y) be a sequence of
affinities on V and S = (S1, ..., Sy) a sequence of pair-
wise disjoint nonempty seed sets consistent with the affinities.
Let R = (Ry, ..., Ry) be such that S;  R; < Core!" for
1 <i < M. Thenthe sequence R is consistent with the affini-
ties and OMOFS (W, R) = OMOPS (W, S) for 1 <i < M.

We prove (as Proposition 5.9) that the set Core;y’s contains
the set

0% = {ve oM. SN, 0y w.s)

OMOFS (1. 5)

v, (51.)
= v 0., 0w},

and that, for symmetric ¥, Core?/’s is exactly Q;P’S. More-
over, if all the affinities v; are equal to the same symmetric
affinity v, then (as stated in Proposition 5.11) Core;P’S is
exactly the IRFC object O[.IRFC(w, S). This fact, together
with the above Theorem 1.2, implies immediately robust-
ness results for IRFC segmentation that constitute one of the
pillars of (I)RFC segmentation theory.

Notice that the results discussed in this subsection do
not require affinities to be symmetric (not even in the
case of (DRFC segmentations), except where symmetry
of affinities is an explicitly stated hypothesis. This is sig-
nificant because almost all of the theory of (I)RFC-track
FC segmentation has been developed solely for symmetric
affinities.

2 RFC, IRFC, and MOFS Segmentations
2.1 Preliminaries
In the rest of this paper V will denote an arbitrary nonempty

finite set. As in Sect. 1, we think of V as the set of all points
of a digital image.

@ Springer

We have already defined the concepts of a W-path from
a nonempty set A to a nonempty set B and also defined (for
any affinity ¥ on V) the ¥ -strength of connectedness of
A to B via a (possibly empty) set X (which is denoted by
vX(A, B)).Fora, b € V,a W-path from {a} to {b} will also
be called a W-path from a to b. Similarly, we write WX (a, B),
vX(A, b), and ¥¥X(a, b) for vX({a}, B), ¥X(A, {b}), and
¥X({a}, {b}), respectively. Note that ¥ (a, b) = ¢’ (a, b) <
YX(a,b) < ¥V (a,b), that yX(A,B) = 1if AN B # 0,
and that ¥?(A, B) = max v (a,b).

acA,beB

If p is a V-path of length / > O from « to v, and g is a
V-path of length I/ > 0 from v to w, then p - g will denote
the V-path of length / + I’ from u to w that is obtained by
concatenating p and g. Thus p - ¢ is obtained by removing
the initial point v from ¢ and then appending the rest of ¢ to
p. (For example, (a, b, c) - (c,d, e, f) = (a,b,c,d,e, f).)
Note that p - g is undefined if the final point of p is different
from the initial point of ¢g. The - operation is associative on
V-paths in the sense that if p - ¢ and g - r are defined then
(p-q)-r = p-(q-r). Aproperty of ¥ (p) which will be used
many times in the sequel is that if the final point of each of
the V-paths p’ and p” is the initial point of the V -path ¢, and
V(p') = Y (p"), then ¥ (p’ - q) = ¥(p” - q). This follows
from the fact that Y (p - ¢) = min(¥ (p), ¥ (g)) whenever
p - q is defined.

The next two propositions state important properties of
¥X(A, B) that will be used later.

Proposition 2.1 Let  be any affinityon'V and let A, A’, B,
B', X, and X' be subsets of V suchthat A D A’, B 2 B’, and
XUAUB D X'UA'UB'. Then X (A, B) > vX (A, B)).

Proof The conclusion follows from the definition of %X
(A, B), since the set of (X U A U B)-paths from A to
B contains the set of (X’ U A’ U B’)-paths from A’ to
B'. O

Proposition 2.2 Let  be any affinity on V, let A, B,
and X be subsets of V, and let u € X U A U B.
Then y* (A, B) = min(y* B (A, ), y* A, B) =
min(t/fX(A, u), I/fX(u, B)). In particular, ifl//X(A, u) > o
and yX (u, B) > «, then yX(A, B) > a.

Proof As the third sentence is an immediate consequence
of the second we need only verify the second sentence.
Let p; be an (X U A U B)-path from A to u such that
v(p1) = ¥XYB(A u), let pp be an (X U A U B)-path
from u to B such that ¥ (p2) = ¥XY4(u, B), and let
p be the (X U A U B)-path p; - p» from A to B. Then
v(p) = min(YXYB(A, u), yXY4(u, B)) and so the first
inequality holds (by the definition of %% (A, B)). The sec-
ond inequality holds because ¥ XYB (A, u) > ¥X(A, u) and
YXY4u, B)) > ¥X(u, B) (by Proposition 2.1). O
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2.2 Simple Algorithms That Compute RFC, IRFC, and
MOFS Segmentations

Algorithms 1-3 below compute the M-object RFC, IRFC,
and MOFS segmentations of the set V for pairwise disjoint
nonempty seed sets S, ..., Sy C V and an affinity ¥ on V
(in the RFC and IRFC cases) or M affinities ¥{, ..., ¥ on
V (in the MOFS case): In this paper we define RFC, IRFC,
and MOFS segmentations as the results of these three algo-
rithms.

These algorithms are not intended to be efficient. Rather,
they are intended to be simple and concise, so as to give
readers who are new to the subject a quick (yet completely
accurate) understanding of the nature of the objects that are
found by each of these types of segmentation. More efficient
algorithms that compute the same segmentations will be pre-
sented in Sect. 4.

Recall that the seed sets Sy, ..., Sy are said to be consis-
tent with ¥ or ¥y, ..., ¥y justif there do not exist distinct
S; and S; such that there is a V-path of v/-strength or ;-
strength 1 from S; to §;. The seed sets would normally satisfy
this consistency condition in all practical applications of FC
segmentation that the authors are aware of. Assuming the
condition is satisfied, the segmentations found by Algorithms
1-3 in this subsection will be the same as the segmenta-
tions found by RFC, IRFC, and MOFS algorithms in the
literature; this will follow from the results of Sect. 3.3. (How-
ever, whereas the literature on RFC and IRFC segmentations
has almost always assumed that the affinity i is symmet-
ric, our discussion of these segmentations will not assume
this.) Regardless of whether or not the consistency condition
is satisfied, the objects Oy, ..., Oy found by Algorithms
1-3 will have the property that S; € O; € S; U (V\ Uj Si,
for | < i < M. But the objects found by some FC seg-
mentation algorithms in the literature will not have this
basic property if the seed sets do not satisfy the consistency
condition.

The three algorithms can be formally stated as follows,
where |A| stands for the number of elements in the set A:

Algorithm 1: RFC Segmentation of a Nonempty Finite
Set V into M Objects

Data: M pairwise disjoint nonempty seed sets Sy, . .

an affinity ¢ on V

Result: The RFC segmentation (OFFC, e, OE,IFC) of V
1fori < 1toMdoT; < S;
2sort A=vy[V x VI\{O}into | =« > ...
3 forn < 1to|A| do /*
4 fori < 1to M do

newT; < T;U{ve VAU; Tj | ¥V (T;, v) = an)
5 fori < 1to M do T; < newT;

6 fori < 1to M do OFC — T\, T;

LSy CV;

the main loop */

Algorithm 2: IRFC Segmentation of a Nonempty Finite
Set V into M Objects

Data: M pairwise disjoint nonempty seed sets Sy, ..
an affinity ¢ on V
Result: The IRFC segmentation (O{RFC, A O}WRFC) of V

1fori < 1toMdoT; < S;

2sort A=y[V x VI\{O}into I =a; > ... >

3 forn < 1to|A|do /* the main loop */
4 fori < 1to M do

newT; eTiu{veV\Uj T; | wV\U-fT’(ﬂ,U)Zan}
5 fori < 1to M do T; < newT;
6 for i <—1tonoOl.IRFC<—T,-\U/-#iTj

LSy CV;

Algorithm 3: MOFS Segmentation of a Nonempty
Finite Set V into M Objects

Data: M pairwise disjoint nonempty seed sets S, . .
M affinities ¥y, ..., ¥y on'V
Result: The MOFS segmentation (O?’IOFS, o O%IOFS) of V

1fori < 1toMdoT; < S;
2 sort A = Uj ¥ilV x VI\{O}into | = a1 > ...
3 forn < 1to|A| do /* the main loop */
4 fori < 1to M do

WU Tj

newT; < T;U{ve VAU; T; | ¢,
5 fori < 1to M do T; < newT;

6 fori < 1to M do OMOFS — T;

LSy CV;

(T, v) > o}

It will be obvious from even a cursory inspection of the
three algorithms that they are extremely similar. For example,
the only difference between the RFC and IRFC algorithms
is on the fourth line, where wV(Ti, v) in the RFC algorithm
is replaced by v Ui T (T;, v) in the IRFC algorithm. The
IRFC and MOFS algorithms are also very similar. In RFC
and IRFC segmentation we do not use different affinities for
different objects. But if we assume that each of the M affini-
ties ¥, ..., ¥y in the MOFS algorithm (i.e., Algorithm
3) is equal to the single affinity ¥ in the IRFC algorithm
(Algorithm 2), then the only difference between the IRFC
and MOFS algorithms is that OiIRFC < Ti\U, Tj onthe
last line of the IRFC algorithm is replaced by OlMOF ST
in the MOFS algorithm: Each IRFC object consists of those
points of the corresponding MOFS object which do not lie
in any of the other M — 1 MOFS objects.

The underlying idea of Algorithms 1-3 is to have the M
objects compete with each other to occupy image points over
aseries of iterations. At any given time, each image point will
either be unoccupied or be occupied by one or more objects.
The set of points that are occupied by the ith object at that
time will be referred to as the ith object’s territory and is
represented by the variable 7;. Thus a point is unoccupied if,
and only if, that point lies in V\ {J; 7;.

A fundamental property of these algorithms is that, once
a point has been occupied by one or more objects at an itera-

@ Springer



310

J Math Imaging Vis (2016) 55:304-342

tion of the main loop, the point will be occupied by just those
objects during all subsequent iterations of that loop; it can
never be occupied by any other object. Equivalently, a point
that lies in 7;\ T} (for some i and j) at the end of one itera-
tion of the main loop will lie in 7;\T; during all subsequent
iterations.

In each algorithm, the territory of each object is initialized
to consist just of that object’s seed points. Every iteration of
the main loop expands the ith object’s territory (for 1 <i <
M) to also include all currently unoccupied points which can
be reached from the ith object’s current territory viaa V -path
that has the following properties:

1. The y-strength (in the RFC and IRFC cases) or ;-
strength (in the MOFS case) of the V-path is not less
than the affinity threshold used at that iteration.

2. In the IRFC and MOFS algorithms, the V-path is a
T; U(V\ Uj T;)-path—i.e., each of its points either was
already occupied by the ith object or was unoccupied at
the beginning of the current iteration.

The affinity threshold in property 1 decreases from one iter-
ation to the next: The affinity threshold at the nth iteration
is «,, which in the RFC and IRFC cases is the nth-largest
nonzero value in the range of our affinity v; in the MOFS
case o, is the nth-largest nonzero value in the union of the
ranges of our M affinities 1, ..., ¥uy.

We mention that “> o,” on line 4 of all three algorithms
really means “= «,,” because no point v in V'\ U.,' T can
satisfy the condition with “> «,,” in place of “> «,.” (This
fact will be more formally stated in Sects. 6.1 as (6.2)—(6.3)
and (6.6)—(6.7).)

We have already mentioned that, for any given affinity
and seed sets consistent with the affinity, Ol.RFC C O,.IRFC -
OIMOFS foralli € {1,..., M} (assuming the same affinity
Y is used for all objects in the MOFS segmentation). In the
following simple example (for which the affinity is as shown
in Fig. 2) we have that ORFC C O[RFC ¢ oMOFS;

Example 2.3 Let M =2,V = {d, s1,c, s2}, S1 = {s1}, and
S> = {s2}. Let ¥ be the symmetric affinity on V such that
Y(d,s1) = ¥(s1,d) = Y, s1) = Y(si,0) = ¥, 82) =
Y(s2,¢) = 0.5 and ¥ (x, y) = 0 in all other cases where x
and y are distinct points of V. (See Fig. 2.) For Algorithm 3,
let Y11 = Yp = . Then, readily, OFFC ={s1} € OIRFC =
{s1,d} € OMOFS = {51, ¢, d} and ORFC = OIRFC = {5} C
O%’IOFS = {82, c}.

d ) S ) c ) 85

Fig. 2 Affinity values for Example 2.3
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The tie-zone of an IRFC segmentation is the set of all
points of V that do not lie in any of the objects of the seg-
mentation. The tie-zone of an MOFS segmentation is the set
of all points of V that do not lie in just one object of the
segmentation. (We will not define the tie-zone of an RFC
segmentation.) Looking again at Algorithms 2 and 3, we
see that the tie-zone of the IRFC segmentation given by the
affinity ¢ and seed sets Sy, ..., Sy is the same as the tie-
zone of the corresponding MOFS segmentation (which is
given by executing Algorithm 3 with the same seed sets and
Y1 = --- = Yy = ) and consists of the points that lie in
two or more of the MOFS objects as well as the points that
lie in none of those MOEFES objects. (It is fairly easy to see
from Algorithm 3 that a point v lies in none of those MOFS
objects if, and only if, there is no V-path from [ J jSjtovof

nonzero v -strength.®)

2.3 Simple Nonalgorithmic Characterizations and
Related Properties of RFC, IRFC, and MOFS
Segmentations

While the RFC, IRFC, and MOFS segmentations of V
have been defined as the segmentations created by Algo-
rithms 1, 2, and 3 above, it is not difficult to characterize these
segmentations nonalgorithmically. Statement 1 of each of
Theorems 2.4-2.6 below shows how this can be done in terms
of the values assumed by the variables 71, ..., Ty during
execution of Algorithms 1, 2, and 3: Statement 1(a) of each
theorem shows how the sequence Ti0 C Ti1 c...C Tiw of
values assumed by each variable 7; could be defined induc-
tively, without reference to Algorithms 1-3, while statement
1(b) of each theorem shows how the objects of the corre-
sponding segmentation are determined by the final values
T]‘A‘, e, Tllf Lof T, ..., Ty. These characterizations of the
RFC, IRFC, and MOFS segmentations will play an important
role in our derivations of the concise path-based characteri-
zations of the same segmentations that we present in Sect. 3.
The rest of Theorems 2.4-2.6 state related properties of the
segmentations. Statement 2 of each theorem implies that “=
a,” in the second part of statement 1(a) could be replaced by
“> ap.” In Theorems 2.5 and 2.6, statement 3 gives variants
of the second part of statement 1(a) that are more concise but
cannot be used to give an inductive definition of 7;" (as the
right sides of these variants involve Tik for some k > n).
Theorems 2.4-2.6 will be proved in Sect. 6.1.

Theorem 2.4 Let (OFFC, ey Of,IFC) be the segmentation
of 'V found by Algorithm 1 for an affinity ¥ on V and pair-
wise disjoint nonempty seed sets Si, ..., Sy C V. Let

6 To see the “only if” part, consider the final iteration of Algorithm 3’s
main loop in the case ¥ = --- = Yy = ¢ and then observe that
¥ (u, v) = 0 whenever u lies in an MOFS object but v lies in no MOFS
object.
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A = Y[V x VI\{0} and let 1| = a1 > > oy be
the sequence obtained by sorting A into decreasing order.
For1 <i < Mand0 < n < |A|, let T" be the value of
the variable T; at the beginning of the n + lst iteration of
the main loop when Algorithm 1 is executed, and let TilA| be
the value of T; at the end of the |Alth iteration of the main
loop (which is the value of T; when Algorithm I terminates).
Then S; € OFFC < S; U (V\U;S)) for 1 <i < M.
Moreover:

1. For 1 <i < M we have that

(a) T = §;,and, forevery 1 <n < |A[,T]" = Tl."_1 U
e V\U; T/ 1Y (Si, v) = ).
RFC _ IAI \AI
(b) Ol' \Uj;él j o

2. {v e V\U; T;’—‘ | vV (Si,v) > a,) = ¥ for every
l<i<Mand1 <n <|A|.

Theorem 2.5 Let (ORFC, .| be the segmentation
of V found by Algorithm 2 for an affinity  on V and pair-
wise disjoint nonempty seed sets Sy, ..., Sy C V. Let

= Y[V x VI\{O} and let 1 = a1 > > oy be
the sequence obtained by sorting A into decreasing order.
For1 <i <Mand0 <n < |A|, let T be the value of the
variable T; at the beginning of the n + 1st iteration of the
main loop when Algorithm 2 is executed, and let Tl-‘A‘ be the
value of T; at the end of the | A|th iteration of the main loop
(which is the value of T; when Algorithm 2 terminates). Then
S; C OiIRFC C S U (V\ Uj S;) for1 <i <M. Moreover:

OIIVIRFC>

1. For1 <i < M we have that
(@) T = S, and T = T U{v € V\J, T;’_l |

n—1 n—1
sz U(V\L‘J‘;‘TJ‘ )(Si7 UI% =y} forl =n <|Al
(b) ORFC =T"\U,;, T

2 wen\U; 1t 1y NS ) > a) =
Bfor1 <i <Mandl <n <|A|.

3T =T""UweV\U,T!" VLT (i v) = a) for
1<l<Mand1<n<k<|A|

Theorem 2.6 Let (OMOFS, .. OMOFS)

be the segmenta-

tion of V found by Algorithm 3 for affinities 1, ..., Ypyyon'V
and pairwise disjoint nonempty seed sets Sy, ..., Sy C V.
Let A = Uj VilV x VI\{O}and let | = a1 > ... > o

be the sequence obtained by sorting A into decreasing order.
Forl <i <Mand0 <n < |A|, let Tl” be the value of the
variable T; at the beginning of the n + 1st iteration of the
main loop when Algorithm 3 is executed, and let Ti‘A‘ be the
value of T; at the end of the | A|th iteration of the main loop
(which is the value of T; when Algorithm 3 terminates). Then
Si € OMOFS < S;U(V\ U, Sj) for 1 <i < M. Moreover:

1. For1 <1i < M we have that

(a) T? = S, and T/ = T/""Ufv e V\U,; T/ |

vy, !
p! YT 6 — ) for L < n < AL

(b) OMOFS T|A|
Tn IUV Tn l)
2. wen\U; T |y, Ml
@f0r1<l<Mand1<n<|A|
Tk
3T =T U e V\U; T/ 1y, (Siyv) = ) for
1<i<Mandl <n<k<]|A|

(Sisv) > an} =

2.4 An MOFS Algorithm Can be Used to Compute
IRFC Segmentations

IRFC segmentations can be easily found using any algorithm
that computes MOFS segmentations. This follows from the
following corollary, which is an immediate consequence of
statement 1 of Theorem 2.5 and statement 1 of Theorem
2.6 (and which is also evident from a quick inspection of
Algorithms 2 and 3):

Corollary 2.7 Let (O{RFC, el be the segmenta-
tion of V found by Algorithm 2 for an affinity  on V and
pairwise disjoint nonempty seed sets S1, ..., Sy C V. Let
(O}VIOFS, ceey OAI\,/IIOFS) be the segmentation of V found by
Algorithm 3 for the same M seed sets S1, ..., Sy inthe case
where each of the M affinities V1, ..., Yy is the affinity .
Then OJR"C = OMOTS\ |, OYO"S for 1 <i < M.

OII‘I;FC >

IRFC segmentations have commonly been computed one
object at a time (e.g., by executing the GCyp,x or IRFC-IFT
algorithm of [20] a total of M times as explained in foot-
note 14 below), whereas MOFS segmentations have been
computed using methods akin to Dijkstra’s shortest path algo-
rithm [24] to compute all of the M objects simultaneously.
Algorithm 5 below is an MOFS algorithm of this kind, and
when M > 2itis likely to be more efficient to compute an M-
object IRFC segmentation using this MOFS algorithm than
using a one-object-at-a-time IRFC algorithm M times, except
possibly when a large proportion (e.g., more than 20 %) of the
points of V lie in the IRFC segmentation’s tie-zone. More-
over, in cases where the tie-zone of an IRFC segmentation
does constitute such a large fraction of V, the segmentation
is unstable with respect to tiny changes in affinity values, as
we will see in Sect. 3.4.

Using an MOFS algorithm to compute the IRFC segmen-
tation provides additional information about the segmenta-
tion’s tie-zone, because it identifies the IRFC objects (if any)
that are “in contention for” each tie-zone point: Once the
MOFS segmentation has been computed, we may regard an
IRFC object as being in contention for a tie-zone point p just
if p belongs to the corresponding MOFS object.
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As mentioned earlier, in the case where the affinity is sym-
metric the TZWS by union-find method of [2], which we will
discuss further in Sect. 4.2, is another method of computing
all the objects of an IRFC segmentation simultaneously.

2.5 Perturbing MOFS Affinity Values to Eliminate
Small Overlaps Between Objects, and Instability of
MOFS Segmentations in Which Different Objects
Overlap Substantially

An advantage of MOFS segmentation over (I)RFC segmen-
tation is that the former allows different affinities to be used
for different objects. But distinct objects of an MOFS seg-
mentation may possibly intersect, whereas the objects of any
RFC or IRFC segmentation are pairwise disjoint.

In many applications of MOFS segmentation, any inter-
sections of distinct objects are so small as to be negligible.
However, complete disjointness of objects may be desirable
(e.g., because we wish to use software tools which assume
different objects never intersect). For this reason one might
consider “hybrid” segmentations that would be produced by
a modified version of Algorithm 3 in which the assignment
OMOFS  T; is replaced by O; < T;\ |J;; T;. While the
objects O; of the resulting segmentations would of course
be pairwise disjoint, a drawback of this kind of segmenta-
tion would be that the objects might sometimes have parts
which are disconnected from their seeds: The ith object O;
might contain points which cannot be reached from its seed
set S; via an O;-path whose ¥;-strength is nonzero. A sim-
ple example of this is shown in Fig. 3. As mentioned above,
the same thing cannot happen in RFC, IRFC, and MOFS
segmentations.

*d
4 |i.6
S 6 ¢ 6 s,

Fig. 3 Let V = {s1,s2,¢,d}, M = 2, §1 = {51}, and S» = {s2}.
Let ¢1 and v, be the symmetric affinities on V such that ¥ (¢, d) =
Yi(d,c) = 04, Yri(s1,c) = Yi(e, s1) = Y2(s2,¢) = Yalc,s2) =
Yo(c,d) = Yn(d, ¢) = 0.6, and ¥; (x, y) = 0 in all other cases where
i € {1,2} and x and y are distinct points in V. Then execution of
Algorithm 3 terminates with 77 = {sy, ¢} and 7> = {s2, ¢, d}. Soif in
Algorithm 3 we replace OZMOFS <« T; with O; <« T;\ Uj# T; then
the resulting algorithm will produce an object Or = T>\T| = {52, d}
that is “disconnected” (as ¢ ¢ O and so there is no O-path of nonzero
Yrp-strength from S, tod € 0»)
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Another way to eliminate small intersections of distinct
objects, which does not have the above-mentioned drawback,
is to perturb very slightly the MOFS affinity values ¥, (u, v)
in such a way that the resulting perturbed values ¥/ (u, v)
satisfy the condition

(Y ,v) |u,veVandu#v}N{Y, ) uveV
and 1 £ VI\{0) = @ if i) % in. @.1)

For example, if affinity values are represented as floating
point binary values and M = 4, and if ¥;(u,v) < 1
(1 < i < 4) whenever u # v,” then whenever u # v
and ¥; (u, v) # 0 we can set the two least significant bits of
Y¥i(u, v) to 00, 01, 10, or 11 according to whether i = 1, 2,
3, or 4. The condition (2.1) ensures that the objects of the
MOFS segmentation computed from the perturbed affinity
values will be pairwise disjoint.?

This method is appropriate for any application in which
MOFS segmentations are stable with respect to tiny changes
in affinity values—i.e., any application in which tiny changes
in affinity values are very unlikely to appreciably affect the
segmentations that are produced.

We can also conclude from the same line of thought that
different objects of an MOFS segmentation cannot overlap
in any substantial way if the segmentation is stable in this
sense (because overlapping of objects can always be entirely
eliminated by making arbitrarily small changes in the affinity

7 The condition that Yi(u,v) < 1 (1 <i < M) whenever u # v
is needed only because we do not want any perturbed affinity value
to exceed 1. From a mathematical perspective there is no real loss of
generality when we assume this condition. Indeed, if the condition is
not satisfied we can define affinities ¥ (u, v) such that 1/11.* (u,v) =
¥ (u, v)/2 whenever u # v, and then use the ¥*s in place of the vs:
The *s evidently satisfy the condition, and it is not hard to see from
Algorithm 3 that using the v*s in place of the s will not change the
segmentations that are produced, because for all V-paths p and g of
nonzero length and all i, j € {1, ..., M} we have that ¥*(p) < w;‘(q)
if and only if ¥; (p) < ¥ (q). (See [17, Prop. 1] for more examples of
different affinities that are equivalent for FC segmentation purposes.)
From a computational perspective, we mention that many MOFS seg-
mentation algorithms, including our Algorithm 5 below, can be easily
modified to produce correct segmentations even if some affinity values
exceed 1. If we use a modified algorithm of this kind, then the perturba-
tion described here can be applied even if the condition is not satisfied.

8 Indeed, suppose not: Suppose v € OZMOF SN O?AOFS where
(O?’IOFS, cees OAI\f,[OFS) is the MOFS segmentation derived from
Y1, ..., ¥y, and pairwise disjoint seed sets Sy, ..., Sy, and i # j.
Then we see from the main loop of Algorithm 3 that v must be incor-
porated into 7; and 7 at the same iteration of that loop. Assuming
v is incorporated into 7; and 7; at the nth iteration of the loop,
and using the notation of Theorem 2.6, we have that v € T/\T/" -
and v € TJ."\T;HI, whence we see from Theorem 2.6 that there
is a V-path from S; to v of v/-strength o, and there is also a V-
path from S; to v of w}-strength a,. But this would imply «, €
{$/(u,v) |u,v e Vandu #v}n {1//}(14, v) |u,v €V and u # v},
which contradicts (2.1).
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values). Equivalently, if different MOFS objects have sub-
stantial overlap, then the MOFS segmentation is unstable.

Affinity perturbation as described here is proposed as a
method of eliminating overlaps between objects only when
all such overlaps are small; it is not recommended when
different objects have substantial overlap.

An unexpected substantial overlap of MOFS objects may
indicate that an affinity or seed was poorly chosen. In any
application where different MOFS objects would be expected
to overlap substantially, the instability of such MOFS seg-
mentations with respect to tiny changes in affinity values
should be borne in mind when considering whether MOFS
is a suitable method for that application.

In Sect. 3.4 we will see that these remarks about substantial
overlaps of objects in MOFS segmentations apply as well to
large tie-zones in IRFC segmentations, because any IRFC
segmentation that has a large tie-zone is also unstable with
respect to tiny changes in affinity values.’

3 Concise Path-Based Characterizations of Fuzzy
Connectedness Segmentations

In Sect. 2 we defined RFC, IRFC, and MOFS segmentations
as the segmentations produced by Algorithms 1-3, and also
characterized each of the segmentations mathematically in
terms of inductively defined sets. In this section, we give
more concise path-based mathematical characterizations of
these segmentations, both for their independent interest and
because other properties of the segmentations can be conve-
niently deduced from these characterizations.

3.1 (¢, S)-Optimal V-paths and Hereditarily
(¢, S)-Optimal V -paths

As we shall see in Theorems 3.6 and 3.8 below, RFC and
IRFC segmentations can be characterized in terms of the
concepts of optimal and hereditarily optimal paths which
we now introduce.

Let ¢ : V xV — [0, 1] be an affinity and let § C
V. Then we say that a V-path p = (vg, ..., v;) is (¢, S)-
optimal if vo € S and ¥ (p) = ¥ (S, v;), and we say p
is hereditarily (¥, S)-optimal if p and all nonempty proper
initial segments of p are (v, S)-optimal. Thus a V-path p =
(vo, ..., vy) is hereditarily (i, S)-optimal just if vg € §
and ¥ ((vg, ..., vg)) = wV(S, vg) forl < k < [. When ¢
is symmetric, a V-path is hereditarily (v, S)-optimal just if
its reverse is what [21] calls a nice pathin V to S.

9 Note that this cannot be shown by considering affinity perturbations
of the kind we have discussed in the above paragraphs, because IRFC
segmentation uses just a single affinity.

If S # ¢ then for any v in V it is evident that there is at
least one (Y, S)-optimal V-path to v, and we will see from
the next proposition that there is at least one hereditarily
(¢, S)-optimal V-path to v.

Proposition 3.1 Let v : V x V. — [0, 1] be an affinity
and let ) # S C V. Then for each v € V there exists a
hereditarily (r, S)-optimal V -path to v.

This follows easily from Lemma 3.3 in [21] (whose proof
is readily confirmed to be valid even if the affinity is not
symmetric). For the convenience of readers we will give a
self-contained proof of the proposition here.

Proof of Proposition. Suppose the proposition is false.
Among those points v € V for which no V-path to v is hered-
itarily (1, S)-optimal pick a point v* for which vV (S, v*) is
maximal, and let (v, ..., v;) be a V-path from S to v; = v*
such that ¥ ({vog, ..., v)) = WV(S, v7). Let k be the great-
est index for which ¥ ((vo, ..., vx)) # ¥V (S, v); k exists
since (vg, ..., v;) cannot be hereditarily (v, S)-optimal.
Now ¢V(S, v) > ¥((vo, ..., u) = ¥({vo,...,u) =
wV(S, v7), so it follows from our definition of v; = v* that
there exists a V-path p to v; such that p is a hereditarily
(yr, S§)-optimal V-path. Forall ¥’ € {k + 1, ..., 1} let py be
the V-path p- (v, ..., vp) from S to vy. Then, since Y (p) =
wV(S, ) > v ({vg, ..., v)), forallk’ e {k+1,...,1} we
have that Y (px) = ¥ (p - (k. - .., o)) = ¥ ({vo, ..., Vk) -
V- o)) = Y (o, .ooe) = ¥V (S ve) = Y (pr)
(where the equality ¥ ((vg, ..., o)) = ¥V (S, vp) fol-
lows from the definition of k), which implies ¥ (py) =
wV(S, vg’). From this (and the fact that p is a hereditar-
ily (¢, S)-optimal V -path) it follows that the V-path p; is a
hereditarily (v, §)-optimal V-path to v; = v*, a contradic-
tion. O

3.2 ¥s(p), Recursively (¥, §)-Optimal V -paths, and
the Sets 0,‘,1,1 S

As mentioned above (and as we will see in the next sub-
section) RFC and IRFC segmentations can be characterized
in terms of the concepts of optimal and hereditarily optimal
paths, which raises the question of whether MOFS segmen-
tations can be characterized in a similar way.

The answer is “yes,” but it is not immediately obvious
how this can be done because optimal and hereditarily opti-
mal paths are defined for a single affinity y», whereas MOFS
segmentation uses M affinities ¥y, ..., ¥p: In MOFS seg-
mentation each of the M objects has its own affinity, which
is used to define the strengths of paths from that object’s seed
set. The main purpose of this subsection is to introduce the
concept of a recursively optimal path, which generalizes the
concept of a hereditarily optimal path to this broader context.

Our definition below of recursive optimality may not
seem, at first sight, to be a very natural generalization of
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hereditary optimality. But the definition will be justified by
Theorem 3.10, which will characterize MOFS segmentations
in terms of recursively optimal paths in a way that is clearly
similar to our characterizations of RFC and IRFC segmenta-
tions in terms of optimal and hereditarily optimal paths. Just
as importantly, we will find that it is a definition which is
convenient to use in inductive arguments.

Let ¥ = (¥1,...,¥y) be a sequence of affinities on
Vand S = (Sy,..., Sy) a sequence of (pairwise disjoint
nonempty) seed sets. For any V -path p from jSjwe define
the (W, S)-strength of p to be ¥, (p), where m is the unique
element of {1,..., M} such that p is a V-path from S,,;
this value will be denoted by Ws(p). Note that Ws(p) is
undefined if the V-path p is not a V-path from | J S

Now there is an easy but rather unsatisfactory way to gen-
eralize our concept of a hereditarily (¥, S)-optimal V -path:
We first define Wg(v) for each v € V to be the maximum
value attained by Ws(q) as g ranges over all V-paths from
Uj S; tov. Then we say thata V-path (v, ..., v)is (¥, S)-
optimal if vy € Uj S; and Ws((vo, ..., v1)) = Ws(v),
and say that a V-path p is hereditarily (V, S)-optimal if p
and all nonempty proper initial segments of p are (¥, S)-
optimal. Unfortunately, this more general concept turns out
to be less useful than the single-affinity concept of hereditary
(¢, S)-optimality, because Proposition 3.1 fails to generalize
to hereditarily (W, S)-optimal V-paths: It is not true that for
each v € V there must exist a hereditarily (¥, S)-optimal
V-path to v, as the following example illustrates:

Example 3.2 Let V. = {s,s2,¢,d}, M = 2, and § =
(81, 82), where Sy = {s1} and Sy = {s2}. Let W = (y1, ¥2),
where 11 and i, are the symmetric affinities on V defined
by ¥1(s1, ¢) = ¥1(c, s1) = 0.7,¢1(c, d) = ¥1(d, ¢) = 0.4,
Ya(s2, ¢) = Yn(c, 52) = Yale,d) = yn(d,c) = 0.6, and
Y¥i(x, y) = 01in all other cases where i € {1, 2} and x and y
are distinct points in V. (See Fig. 4.) Then no V-path to d is
hereditarily (¥, S)-optimal: Indeed, if p is a (¥, S)-optimal
V-path to d then p is a V-path from s;, so p has an initial
segment that ends at ¢ and is not (¥, S)-optimal (because
Ys((s2,¢)) =0.6 < 0.7 =Ys((s1,))).

*d
4 |i.6
S 7 ¢ 6T s,

Fig. 4 Scene and affinity values for Example 3.2
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It is readily confirmed (by inspection of Algorithm 3) that
in this example the objects of the MOFS segmentation are
01 = {s1,c,d} and O> = {s2}: Thus d € O1, even though
there is no (¥, S)-optimal V-path from S; to d because
v/ (S1,d) = 0.4 < Ws(d) = ¥) (52, d) = 0.6. Examples
such as this one strongly suggest that MOFS segmentations
do not have simple characterizations in terms of (¥, S)-
optimal and hereditarily (¥, S)-optimal V -paths.

We now define the class of recursively (¥, S)-optimal
V -paths, which generalizes the class of hereditarily (¢, S)-
optimal V-paths in a more useful way. Recursively (¥, S)-
optimal V-paths will be defined by induction on their
(W, S)-strength, starting with the strongest such paths (those
of (W, S)-strength 1).

For this purpose, let 1 = oy > --- > o be (as in
Algorithm 3) the sequence obtained by sorting the finite set
A= UiV x V1\{0} into decreasing order, and define
a)a|+1 = 0. (It follows that the (¥, §)-strength of every V-
path is «r, for some n € {1, ..., |A|, |A| + 1}.)

We define the recursively (W, S)-optimal V-paths of
(W, S)-strength @y = 1 to be just the V-paths from
Uj S; whose (W, S)-strength is 1: Every V-path from
Uj §; whose (W, S)-strength is 1 is recursively (¥, S)-
optimal. Once we have defined the recursively (¥, S)-
optimal V-paths of (W, S)-strength > «, for some n €
{2,...,]A| + 1}, we define the recursively (¥, S)-optimal
V-paths of (W, S)-strength «;, to be the V -paths (v, ..., v;)
from | iSi of (¥, S)-strength «, that satisfy the following
condition:

e For 1 < k < [ there is no recursively (¥, §)-optimal
V-path to vy of (¥, S)-strength > Ws({(vg, ..., k).

Note that in this condition “recursively (¥, S)-optimal
V-path to vx of (¥,S)-strength > Ws((vg,...,vk))”
has already been defined because Ws({vop,...,vr)) >
WYs({vo, ..., V) = o, and we are assuming we have already
defined the recursively (W, S)-optimal V-paths of (¥, S)-
strength > «,.

More formally, a V-path (vg,...,v;) is recursively
(W, S)-optimal if (and only if) the following condition
ROY ((vo, .. ., vr)) holds:

ROS ((vo. ..., v): vo € U; S; and, for I < k < [,
no V-path p to vy satisfies both RO‘E, (p) and Ys(p) >
Ws((vo, - - -5 Vk))-

It is evident that any two recursively (¥, S)-optimal V-
paths to the same point must have the same (¥, S)-strength.
It is also evident that any nonempty initial segment of a
recursively (W, S)-optimal V-path is itself a recursively
(W, S)-optimal V-path. We will see in Corollary 3.5 that
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this concept is indeed a generalization of the concept of a
hereditarily (v, S)-optimal V -path.

For V-paths p from Uj S; of (¥, S)-strength <1, the
property of being recursively (W, S)-optimal can be char-
acterized in terms of p’s longest initial segment of greater
strength: Let (v, ..., v;) be any V-path from Uj S; such
that Ys((vg,...,v)) = a < 1, and let (vg,...,v,)
be the longest initial segment of (v, ..., v;) such that
Ys((vo,...,vr)) > « (so that ¥s({vg, ..., vr)) = « for
each k € {r + 1,...,1}). Then, readily, (vg,...,v;) is a
recursively (¥, §)-optimal V-path if and only if both of the
following are true:

1. (vg, ..., v,) is arecursively (¥, S)-optimal V-path.
2. No vx with r < k < [ is the last point of a recursively
(W, S)-optimal V-path of (¥, S)-strength > «.

As mentioned above, one weakness of the concept of a
hereditarily (¥, S)-optimal V-path as a generalization of
the concept of a hereditarily (v, S)-optimal V-path is that
there may be points v € V for which there is no hereditarily
(¥, S)-optimal V-path to v, as we showed in Example 3.2.
But it is very easy to see that the concept of a recursively
(W, S)-optimal V-path does not have this drawback:

Proposition 3.3 Let ¥V = (Y1, ..., Yy) be any sequence
of affinities on V and S = (Sy, ..., Sy) any sequence of
pairwise disjoint nonempty subsets of V. Then for eachv € V
there exists a recursively (W, S)-optimal V -path to v.

Proof Let vy be any point in | S Then for eachv € V

either ROS ((vg, v)) holds or RO (p) holds for some V-
path p to v such that ¥s(p) > ¥s((vg, v)). O

For any sequence of affinities ¥ = (i1, ..., ¥u) on V, any
sequence S = (Sy, ..., Sy) of pairwise disjoint nonempty
subsets of V, and every m € {1, ..., M} we define

O;,I,J S = {v € V| there exists a recursively

(W, S)-optimal V -path from S, to v}.

Evidently, S, € On'®, and Op® S V\U,, Si if
S1,..., Sy are consistent with the affinities ¥, ..., ¥y.
Moreover, Proposition 3.3 implies | J f O}IJ’S = V. This is
an important concept, because we will see later (from Theo-
rem 3.10) that the mth object found by MOFS segmentation
with affinities ¥, ..., ¥ and seed sets Sy, ..., Sy that are
consistent ~ with_  the affinities is the set
w.S, oS

{ve 0 | Ym" (Sm,v) >0}

Our next theorem tells us that if S is consistent with W,
then the recursively (¥, S)-optimal V -paths from S,,, are just
the hereditarily (v, | 05 VS S )-optimal 0,,\5 ’S—paths.

Here v, | OYS, VS denotes the affinity on 0,3 S that is
obtained by restricting the affinity v, to 0,;11' S % 0,\5 S 10
Theorem 3.4 Let V = (Y1, ..., Yuy) be any sequence of
affinities on V and S = (S, ..., Sy) any sequence of pair-
wise disjoint nonempty subsets of V that are consistent with
the affinities. Then, for allm € {1, ..., M}:

1. A recursively (W, S)-optimal V-path is an 0,3;’5—path
just if it is a V-path from Sy,.

2. An O,l,l,)’s-path is a recursively (W, S)-optimal V -path
just if it is a hereditarily (1,//m|0;5/,sX .S, Sm)-optimal

Om\y 'S—path.

3. Forallv € O,;I;‘S, the (¥, S)-strength of every recur-
wS
sively (W, S)-optimal V -path to v is 1/f,8"’ (S, v).

0,

A proof of this theorem will be given in Sect. 6.2. One
important implication of this result is that in the case where
Y1 =--- = ¥y = ¥ (ie., the same affinity i is used for
each of the M objects, as in (I)RFC segmentation) recursive
(W, S)-optimality is equivalent to hereditary (v, |J iSi)-
optimality:

Corollary 3.5 Let WV = (Y, ..., V) be a sequence of M
occurrences of the same affinity ¥ on 'V, andlet (Sy, ..., Sy)
be any sequence of pairwise disjoint nonempty subsets of V.
Then a V-path is recursively (wY, (S1, ..., Sm))-optimal
just if it is hereditarily (, Uj S)-optimal.

Proof Since \I]Zgl,---,SM)(p) = Y (p) for every V-path p
from j Si;, we see that a V-path is recursively
(WY, (S, ..., Sy))-optimal just if it is recursively
(), (Uj S;))-optimal. Putting ¥ = (), S = (Uj Si),

and m = M = 1, we see from Proposition 3.3 that

AU; S
(0] EW) Ui s = V and then see from statement 2 of Theo-

rem 3.4 that a V-path is recursively ((y), (U j S;))-optimal
justif it is hereditarily (v, |J; S;)-optimal. O

3.3 Path-Based Characterizations of RFC, IRFC, and
MOFS Segmentations

The following theorem gives two (extremely similar) char-
acterizations of RFC segmentations:

Theorem 3.6 Let M > 2, andlet (ORFC, ..., ORFC) be the
segmentation of V found by Algorithm 1 for an affinity  on V
and pairwise disjoint nonempty seed sets Sy, ..., Sy C V.
Suppose further that the seed sets Sy, ..., Sy are consistent
with the affinity . Then the following are true for 1 <i <
M:

10 Note that an On\f’s-path to v that is (Ymlyw.s, ov.s, Sm)-optimal
need not be a V-path to v that is (¥,,,, S,,)-optimal: It may have lower

Y, -strength than a V-path from S, to v that is not an 0,\,':’8-path.
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1. v e OiRFC just if every (¥, Uj S;j)-optimal V -path to v
is a V-path from §;.
2. ORFC = (v e V | max;z ¥ (S;,v) < ¥V (S, v)).

Theorem 3.6 will be proved in Sect. 6.3. Statement 2 of the
theorem has been used as a definition of RFC segmentations
in the (DRFC-track literature—see, e.g., [21] or [33]. It fol-
lows that, under the hypotheses of the theorem, Algorithm 1
does indeed produce the same segmentations as are produced
by RFC segmentation algorithms in the literature.

From Theorem 3.6 it is easy to deduce two basic properties
of RFC objects:

Corollary 3.7 Under the hypotheses of Theorem 3.6, the fol-
lowing are true for 1 <i < M:

1. Forallvin OZ.RFC, every (Y, Uj §;)-optimal V -path to
v is an Ol.RFC—path.

2. For all v in OIRFC, we have that wOIRFC
YV (Si, v) > max;z ¥V (S;, v).

Si,v) =

Proof Statement 2 follows from statement 1, so we need
only prove statement 1. To do this, fix a v in OiRF Candani
in{l,..., M}, andlet (vg, ..., vg) bea (Y, Uj S ;)-optimal
V-pathto v. We claim thatv,, € 01.RFC for0 < n < k.Indeed,
suppose not. Then there is an n < k such that v, ¢ OZ.RFC,
so by statement 1 of Theorem 3.6 (applied to v,) there
exists a (¥, Uj S;)-optimal V-path p to v, from Uj#i S;.
Thus p - (v, ..., vk) is a V-path from Uj#- S; to v with
Y(p-{vn,...,vr)) > ¥ ({vg, ..., vk))andsoisa (¥, Uj Si)-
optimal V-path to v that is not from S;, which contradicts
statement 1 of Theorem 3.6. O

Our next theorem gives three characterizations of IRFC seg-
mentations:

Theorem 3.8 Let M > 2, and let (ORFC,
be the segmentation of V found by Algorithm 2 for an
affinity W on V and pairwise disjoint nonempty seed sets
Sty -.., Sy C V. Suppose further that the seed sets
S1, ..., Sy are consistent with the affinity . Then the fol-
lowing are true for 1 <i < M:

IRFC
’ OM )

1. ve OiIRFC Jjust if every hereditarily (¥, Uj S)-optimal
V-path to v is a V-path from S;.
2. OiIRFC is the wunique set O that satisfies
={veV max;4 ¥"\(S;,v) < ¢S, v)h
3. OiIRFC is the wunique set O that satisfies
0 ={veV|max;z ¥y (S v) < ¥V (S, vk

Theorem 3.8 will be proved in Sect. 6.5. It follows from this
theorem that, under its hypotheses, Algorithm 2 produces the

@ Springer

same segmentations as IRFC algorithms from the (I)RFC-
track literature.!!

Corollary 3.9 below is an IRFC analog of Corollary 3.7. Its
statement 1 can be deduced from statement 1 of Theorem 3.8
in very much the same way as statement 1 of Corollary 3.7
was deduced from statement 1 of Theorem 3.6. Its statement 2
follows from its statement 1 and statement 3 of Theorem 3.8.

Corollary 3.9 Under the hypotheses of Theorem 3.8, the fol-
lowing are true for 1 <i < M:

1. Forallvin OI.IRFC, every hereditarily (, Uj S;)-optimal
V-path to v is an OiIRFC-path.

2. For all v in OiIRFC, we have that wogRFC(S,-,
WY (S;,v) > max; VN0 (S, ).

v) =

The following theorem gives characterizations of MOFS
segmentations that are similar in flavor to the first two char-
acterizations of IRFC objects in Theorem 3.8:

Theorem 3.10 Let (OPOFS, be the segmen-
tation of V found by Algorithm 3 for a sequence V =
(V1, ..., ¥m) of affinities on V and a sequence S =
(S1, ..., Sm) of pairwise disjoint nonempty seed sets. Sup-
pose further that the seed sets S1, ..., Sy are consistent
with the affinities V1, ..., Wy. Then:

MOFS
’ OM >

1. Forl <i<M,ve OZMOFS just if there is a recursively
(W, 8)-optimal V -path of nonzero (¥, S)-strength from
S; to v.

2. OMOFS — (, ¢ o¥S
1<i<M.

v,.S

|y (Siv) > O} for every

I Tt is enough to verify that OI!RFC is the same set as the ith IRFC object
according to [20]. To see this, let X; = Uj ;Sj (1 <i < M)and let
f  P(V\X;) — P(V\X;) be the set function defined by f(0) =
{veV|y"\oX;, v) < y¥V(Si, v)}forall O € V\X,. Consider the
sequence O?, O,-], Oiz, ... where 0? = {J and OZ‘“ = f(O{‘) for0 <
k < o00. Since f is monotonic (i.e., f(0) C f(O’) whenever O C O’)
and = 0 C 0}, we see that OF = f(0F™") c f(0F) = OF"!
fork =1,2,3,.... Writing Ol."o to denote the union (i.e., the largest
set) of the chain ¢ = O? - Ol.1 - 01.2 C ... of subsets of the finite
set V\X;, we have that O7° = f(0;°). Equivalently, 07° = {v e V |
YUNOT X < YV (S0) = v € V| maxj v VO (S 0) <
¥V (S;, v)}and so by statement 3 of Theorem 3.8 we have that 0IRFC

O7°. But since the ascending chain ¢ = O0 - Ol - O2 .
satisfies OF ' = 0F U OFF! = OF U f(Ok) = 0" Ufve V\Ok |
wV\Of (Xi,v) < ¥V (S;,v)} for 0 < k < oo, this chain satisfies the
inductive definition of the chain ¢ = P0 7 C P1 T C P cC ...
that is given by equation (12) of [20] in the case where the afﬁmty sy
and C, m, and T; are respectively equal to our V, M, and X;. So in this
case the set Pbl“(,-,T,- of [20] is equal to O;‘ for 0 < k < oo, whence the

set U X Pé‘i T which is the ith IRFC object according to [20, Sect. 4.3],
is Uy OF = 07° = ORFC
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3. (0}\40FS, ey OAI\;OFS) is the unique sequence of sets
(01, ..., Opy) such that

O ={veVmaxz )’ (Sj.v) < ¥ (Si.v) #0)
forl<i<M. 3.1

Theorem 3.10 will be proved in Sect. 6.4. We can deduce
from Theorem 3.10 and Theorem 1 of [10] that, under the
hypotheses of Theorem 3.10, Algorithm 3 produces the same
segmentations as are produced by MOFS algorithms from the
MOFS-track literature.'?

Some easy consequences of Theorem 3.10 are stated in
the following two corollaries:

Corollary 3.11 Under the hypotheses of Theorem 3.10, the
following are true for 1 <i < M:

1. Forall v € OIMOFS, every recursively (W, S)-optimal
V-path from S; to v is an OIMOFS-path.

2. An OI.MOFs—path is a recursively (W, S)-optimal V -path
just if it is a hereditarily (1//,'|011\40st0}\40}:5, Si)-optimal

OlMOFS -path.

MOFS
3. Forallv € OIMOFS, I//ioi (S;, v) isthe (¥, S)-strength
of any recursively (¥, S)-optimal V -path to v.

Proof Statement 1 follows from statement 1 of Theo-
rem 3.10, as every nonempty initial segment of a recursively
(W, S)-optimal V-path from S; is itself a recursively (¥, S)-
optimal V-path from ;.

From statement 2 of Theorem 3.10 we see that an OI.MOFS-

path is an Oi\p’s—path, and also see that an OlMOF S-path

is a (] omors  ovors, S;)-optimal OMOFS-path if and only

if it is a (Y;

OMOFS
l

low.s, ov.s, Si)-optimal Oi‘y"s—path (whence

-path is a hereditarily (¥;|,moFs  oMOEs, S;)-
MOFS : '
0;

an

optimal -path if and only if it is a hereditarily

Wil gus, pvs, S;)-optimal Oi\p’s-path). These observa-
tions and statement 2 of Theorem 3.4 together imply state-

(OMOFS )
ment 2 of the corollary. As ;" (§;, v) is the (¥, S)-

strength of a hereditarily (3| ,mors, omoFs, S;)-optimal

12 Tndeed, let OBJ; denote the ith object (in the sense of this paper)
of the segmentation produced by the MOFS algorithm of [10] for our
affinities ¥, ..., vy and seed sets Sp, ..., Suy. Then what we want
to verify is that OBJ; = OIMOFS for 1 < i < M. In the notation of
[10], OBJ; = {c € V | of # 0}. Theorem 1 of [10] uses the notation
Vi to denote the seed set we refer to as S; and uses sl‘ to denote the

value 1//iOBJ' (S;,c). For1 <i < M and all ¢ € V, statement (i) of that

theorem implies that o # O just if max ; s;.' <s{ # 0. Equivalently,

for 1 <i < M we have that ¢ € OBJ; just if max;; wOBJ'/(Sj, c) <

J
wl.OBJf (Si,c) # 0, whence we see from statement 3 of Theorem 3.10
that OBJ; = OIMOFS, as required.

OZMOFS—path toany v € OiMOFS, and all recursively (¥, S)-
optimal V-paths to a point v have the same (¥, S)-strength,

statement 3 follows from statement 2. O

Corollary 3.12 Under the hypotheses of Theorem 3.10, if for
somei € {1,..., M}andv, w € V we have thatv € OlMOFS
and yi(v, w) > 0, then w € |J; O?AOFS. Equivalently, for
1 <i < M we have that ; (v, w) = O wheneverv € OlMOFS
and w € V\ |J; O?AOFS.

Proof Tt is quite easy to see that this corollary is true just by
considering the final iteration of Algorithm 3’s main loop.
However, we will deduce the corollary from Theorem 3.10.

Suppose v € OlMOFS and v; (v, w) > 0. Then, by The-
orem 3.10, there is a recursively (¥, S§)-optimal V-path p
from S; to v such that ¥; (p) > 0. Let p’ be the V-path from
S; to w obtained by appending w to p, so that ¥;(p’) =
min(y; (p), ¥i(v, w)) > 0. As p is a recursively (¥, S)-
optimal V-path, either p’ is a recursively (¥, S)-optimal
V-path, or there is a recursively (¥, S)-optimal V-path ¢
from Uj S; to w such that Ws(q) > ¥s(p') = ¥i(p') > 0.
In both cases there is a recursively (¥, S)-optimal V-path
of nonzero (¥, S)-strength from Uj Sj to w, and so w €

U; O}VIOFS by statement 1 of Theorem 3.10. |

3.4 Instability of IRFC Segmentations That Have Large
Tie-Zones

We now show that the tie-zone of any IRFC segmentation
can be completely eliminated by making arbitrarily small
changes in affinity values.

Let us write (OIRFC(y, S), ..., ORFC(y, S)) to denote
the IRFC segmentation given by an affinity ¥ on V and a
sequence S of M pairwise disjoint nonempty seed sets in
V., write TZ(, S) to denote V\ J; OFR"“(y, S) (which is
the segmentation’s tie-zone), and write || — /|| to denote
the value maxy yey | (u, v) — ¥'(u, v)| (for any affinities
Y and ' on V). Then a precise statement of our result is as
follows:

(%) For any affinity ¥ on V, any sequence S of pairwise
disjoint nonempty seed sets in V, and any € > 0, there
exists an affinity ¥" on V such that || — ¥|| < e,
TZ(',S) =@, and ' is symmetric if ¥ is.

It follows from this result that any IRFC segmentation whose
tie-zone is large must be unstable with respect to tiny changes
in the affinity values.

For any affinity ¢ on V and any sequence & =
(S1, ..., Su) of pairwise disjoint nonempty seed sets in
V, we define a (v, S)-bottleneck point to be a point b €
T Z(y, S) for which there exists a hereditarily (i, Uj Sp-
optimal V-path to b such that no other point of the V-path
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lies in TZ(y, S). (Here we are thinking of TZ (¥, S) as
a multiple-necked bottle whose necks are the places where
hereditarily (v, | j Sj)-optimal V-paths enter the bottle.) If
TZ(y,S) # 0 then there is at least one (v, S)-bottleneck
point, by Proposition 3.1 and the fact that every initial
segment of a hereditarily (v, |J j Sj)-optimal V-path is a
hereditarily (¢, [J; S;)-optimal V-path.

The fact (&) is a straightforward consequence of the fol-
lowing theorem (which is a weaker version of (&)). This
theorem will be proved in Sect. 6.6.

Theorem 3.13 Let  be an affinity on V and § =
(S1,...,Sm) a sequence of pairwise disjoint nonempty
subsets of V such that TZ(y, S) # @. Let b be any (¥, S)-
bottleneck point, and let § be any positive constant. Then
there exists an affinity W' on V such that |' — ¥|| < 6,
TZW',8) € TZW, S\{b}, and ' is symmetric if ¥ is
symmetric.

To deduce (&) from this theorem, let ¢, S, and € be any affin-
ity on V, any sequence of pairwise disjoint nonempty subsets
of V, and any positive value. Let 8y, 81, &2, ... be an infinite
sequence of positive values such that Z?O:() §; < €. Then
we see from the theorem that we can define a sequence of
affinities 9, Y1, ¥, ... on V in the following way: Define
Yo = v, and define ¢; fori = 1,2,3,... as follows: If
TZ(i,S) # @ then let b; be any (v;, S)-bottleneck point
and let 1/; 41 be any affinity on V such that ||y +1 — ¥l < &,
TZWiv1,S) S TZWi, S)\{bi}, and ;1 is symmetric if
Vi is;butif TZ (Y, S) = Athenlet ;1 = ;. Now () fol-
lows from the fact that [|y; — || = | 352 (11— ¥))ll <
Z;_:lo Vi1 — ¥l < Z;_:loéj <eforl <i < oo, and
the fact that there must be some i for which T Z (y;, §) = @.

4 Efficient Fuzzy Connectedness Segmentation
Algorithms

4.1 Efficient Computation of RFC Segmentations

The following variant of Dijkstra’s well known algorithm
[24] for finding shortest paths in a weighted digraph can be
used to compute RFC segmentations. A very similar algo-
rithm is described on p. 76 of [8], and the paper [25] discusses
algorithms of this general kind.

For any seed set S and affinity ¢ on V, Algorithm 4 com-
putes the y-strength of a (1, S)-optimal V -path to each point
vin V: It computes " (S, v) for every v in V. Given seed
sets (S1, ..., Sm), we can apply this algorithm M times (once
with § = S; foreachi € {1, ..., M}) to compute /" (S;, v)
for 1 < i < M and all v in V. Then the RFC objects
(OFFC, el O}f,IFC) for the seed sets Sy, ..., Sy and affinity
Y can all be found by applying statement 2 of Theorem 3.6,
assuming the seed sets are consistent with the affinity.

@ Springer

Line 6 of this algorithm assumes that we have identified a
set E C {(v,v) € VxV |v#v}suchthaty(v,v) =0
whenever v # v’ and (v,v') ¢ E. Each member of E is
called a yr-edge. We can always take this set E of r-edges to
be the whole of {(v, v") € V x V | v # v'}, but the algorithm
will be more efficient if for every u € V the set of all y-edges
(u, v) is small and the algorithm can quickly iterate over that
set.

Algorithm 4: Finds, for each v € V, the y-strength of
a (, S)-optimal V-path to v

Data: a finite set V, a nonempty subset S of V, and an affinity ¢
onV
Result: an array o[ ] such that, forv € V, o[v] = WV(S, v)

1 foreachv € V doo[v] < 0 /* initialization loop 1 */
2 foreachs € Sdoo[s] < 1 /* initialization loop 2 */
3 create a max-priority queue H that contains every v in V, with
key o[v]
4 while H is not empty do /* the main loop */
remove an element W of arg max,.yo[u] from H
foreach X such that (w, X) is a Y-edge and o [W] > o[X] do
o’ < min(o[W], ¥ (W, X))
if 0’ > o[x] then o[X] < o’
/* o[X] < o’ involves update of H, because x € H
*/

5
6
7
8

Let us assume that, for each v € V, there are only O (1)
points x for which (v, x) is a ¥-edge and those points can all
be found in O(1) time. Then, if H is represented as a binary
max-heap [22, Sect. 6.1] (so line 3 takes O(|V]) time and
each iteration of the main loop can be executed in O (log | V)
time), the running time of Algorithm 4 is O(|V|log|V]).
But we can do better if all values of ¢ are (or can safely be
rounded to) multiples of 1/N for an integer N thatis O(|V]),
by using an array of doubly linked lists instead of a heap to
represent the priority queue H: For example, we can create
a doubly linked node Node[v] for each v € V and maintain
an array Harr such that, for n € {1,..., N}, Harr[n] is a
(possibly null) doubly linked list which contains Node[v]
for each v € V that currently satisfies o [v] = n/N. Priority
queues are frequently implemented in this kind of way both in
MOFS-track and in (I)RFC-track FC segmentation [10,20].
Assuming this representation of H, each execution of line 8
requires only O (1) time, and the |V| executions of line 5
require a total of O(|V])-time, so we see that the running
time of Algorithm 4 is O (| V).

Standard justifications of Dijkstra’s algorithm can be
adapted to prove that Algorithm 4 achieves what its Result
line promises. But we will see that this also follows from the
correctness of Algorithm 5 below.

It would be easy to modify Algorithm 4 so it also creates
an array pred[ ] such that, for every point v ¢ S, when the
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Algorithm 5: Finds, foreach v € V,allthosei € {1, ..., M} forwhichv € OIMOFS; also finds the value of tpiO

MOFS
1

(Si.v)

for each such i

Data: a finite set V and a sequence S = (S, ..
Data: a sequence ¥ = (Y, ..
Result: an array o[ ] and Boolean arrays I, ...

Comment:

., Sy) of pairwise disjoint nonempty subsets of V

., ¥y ) of affinities on V

,XM[] such that, for 1 <i < M andallv € V,

o[v] = the (¥, S)-strength of every recursively (W, S)-optimal V-path to v

Xi[v] = true if there is a recursively (W, S)-optimal V-path from S; to v and o[v] # 0; Xi [v] = false otherwise
At termination, assuming S is consistent with W, Theorem 3.10 and Corollary 3.11 imply

. (OMOFS
{ve V| x'[v] =true} = OMOFS and olv] =y,
1 foreachv € V do
2 o[v] <0
L fori < 1to M do Xi[v] <« false

fori < 1to M do
foreach s € Sj do
L o[s] « 1

xi[s] <« true
create a max-priority queue H that contains every v in V, with key o[v]
while H is not empty do
remove an element W of arg max, o [u] fromH
foreach x such that (w, x) is a W-edge and o[w] > o[x] do
foreachi € {1, ..., M} such that Xi[w] = true do
o’ < min(o [W], ¥i(W, X))
if 0’ > o[x] then
o[x] <— ¢’ /* involves update of H, because x € H
for j < 1to M do xi[x] < false

N v B

®

10
11
12
13
14
15
16
Xi[x] <« true

else if o' =o[x]and ¢’ > 0 and x'[x] = false then
L x'[X] < true

18
19

20 if x ¢ HthenH < HU {x}

(S;,v) forl <i<Mandallv e OZMOFS.

/* initialization loop 1 */

/* initialization loop 2 */

/*

the main loop */

*/

algorithm terminates pred[v] is the predecessor of v on a
(¢, S)-optimal V -path to v.

While M-object RFC segmentations can be computed in
the manner described above using M separate applications
of Algorithm 4, they can often be computed more efficiently
(e.g., by using the idea presented by Badura and Pietka in
[5, Sect. 2.3]). However, we will leave this matter for future
exploration.

4.2 Efficient Computation of MOFS and IRFC
Segmentations

Algorithm 5 below, like Algorithm 4 above, can be regarded
as a variant of Dijkstra’s shortest path algorithm, but it is
necessarily less simple because it needs to allow the use of a
different affinity for each of the M objects. The algorithm
is similar to some other MOFS segmentation algorithms,
such as the algorithms in Sects. 3 and 5 of [10]. It will be
seen from the Result lines and Theorem 3.10 that, when
Algorithm 5 terminates, each object OZMOFS of the MOFS
segmentation for seed sets S = (Si, ..., Sy) and affinities

v = (Y1,...,¥uy) is given by

OMOFS — (v € V | x'[v] = true}

assuming the seed sets are consistent with the affinities.

It follows from this (and Corollary 2.7) that the IRFC
segmentation for an affinity i and seed sets S1, ..., Sy con-
sistent with ¥ can be found by executing Algorithm 5 with
Y1 =--- =¥y = ¥ At termination, each object 01.IRFC of
the segmentation is given by

ORFC — QMOFS\ U#,- OYOFS = (v e V | x'[v] = true

and x/[v] = false forall j € {I,..., M}\{i}}.

Line 11 of this algorithm assumes that we have identified a
set E C {(v,v") € V x V | v # v'} such that ¥; (v, v') =0
foralli € {1,..., M} whenever v # v’ and (v,V) ¢ E.
Each member of E is called a W-edge. As with the r-edges
of Algorithm 4, if for every u € V the set of all W-edges
(u, v) is small, and the algorithm can quickly iterate over
that set, then the algorithm will run more efficiently.

In this algorithm, as in Algorithm 4, H consists of points
whose labels carry potentially important new information,
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and when a point is removed from H its relevant information
is passed on to other points (whose labels are updated accord-
ingly). An important difference between this algorithm and
Algorithm 4 is that in this algorithm labels of points that are
no longer in H may still be updated (by line 19); when that
happens the point in question is reinserted into H (by line 20)
so that information carried by the updated label can be passed
on to other points at a later iteration of the main loop.

It would be quite easy to modify Algorithm 5 so it also cre-
ates an array pred|[ ][ ] such that, for each i € {1, ..., M} and
each point v € OiMOFS\Si, when the algorithm terminates
pred[i][v] is the predecessor of v on a recursively (¥, S)-
optimal V-path from S; to v.

Efficiency of Algorithm 5

We assume that, for each v € V, there are only O (1) points
x for which (v, x) is a W-edge and those points can all be
found in O(1) time. We also assume the priority queue H
is implemented in such a way that it only takes O(1) time
to determine whether X ¢ H is true or false when line 20 is
executed.

As explained in Sect. 4.1, if all values of the ;s are (or
can safely be rounded to) multiples of 1/N for an integer N
that is O(]V]), then we can use an array of doubly linked
lists to represent the priority queue H. This is how we would
represent H in most of the applications we have in mind.

However, let us first consider the case where the values of
the ¥;s need not satisfy the above condition, and H is rep-
resented as a binary max-heap [22, Sect. 6.1]. Then line 8
can be executed in O(|V]) time. The main loop iterates at
most M|V| times; this follows from observation (viii) in
Sect. 6.8. Under the above assumptions, at each iteration of
the main loop it takes O(log|V]) time to execute line 10,
and then the inner loop on lines 11 — 20 iterates O (1) times
at a time cost of O (M (log |V | + M)). The latter bound fol-
lows from the fact that the “foreach i € {1,..., M} such
that Xi[W] = true” loop iterates at most M times, and it
takes O (log | V|4 M) time to execute its body (i.e., lines 13—
20) once: Indeed, the structure of the heap H can only
be modified by lines 15 and 20, execution of which takes
O (log |V]) time in each case, while the time cost of line 16
is O(M) and that of the rest of lines 13 — 20 is O(1). So
it takes a total of O(M|V|(log |V |+ M(og|V| + M))) =
O(M?|V|log|V| 4+ M?|V])) time to execute all iterations
of the main loop. Since execution of lines 1-8 only takes
O(M|V]) time, the total running time of the algorithm is
also O(M?|V|log|V|+ M3|V]), and so is O(|V|log|V|)
for any given value of M, assuming H is represented as a
binary max-heap.

In the more usual case where we use an array of doubly
linked lists instead of a heap to represent H, each execution
of line 10 takes O(1) amortized time, and each execution
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of line 15 or line 20 takes O(1) time. So when we redo
the analysis in the previous paragraph we see that the total
running time is O(M?3|V|). Thus the running time of the
algorithm is O(|V]) for any given value of M.

However, Algorithm 5 is typically even more efficient than
may be suggested by a quick look at the algorithm and the
above analysis, because the factors of M which appear in
the analysis reflect the behavior of the algorithm in unusual
worst-case scenarios or when M is unusually large. For exam-
ple, even though execution of “for j <— 1 to M do Kx] <
false” (line 16) takes ® (M) time, when M is small this loop
is responsible for only a small part of the algorithm’s running
time. Still more importantly, in most current applications of
MOFS segmentation the number of iterations of the main
loop will usually be close to |V | (whereas the upper bound
M|V | was used in the above analysis), and very few execu-
tions of the inner

foreach i € {1, ..., M} such that x'[w] = true

loop will consist of more than one iteration (as there will
rarely be more than one i for which x i [w] = true).

In particular, this will be true for all MOFS and IRFC
applications in which segmentations are stable with respect
to tiny changes in affinity values. To see this, note that the
number of iterations of the main loop is 1|V where p is the
average, over all points v in V, of the number of times v is
removed from H. Assuming the seed sets are consistent with
the affinities and the MOFS or IRFC segmentation is stable
with respect to tiny changes in affinity values, the value of
n will be close to 1 regardless of the value of M: Indeed,
a point v can be removed from H a total of k > 2 times
only if that point lies in k different MOFS objects!? and,
as we saw in Sects. 2.5 and 3.4, this will be the case only
for a small proportion of the points in V if the segmentation
is stable. Similarly, if the seed sets are consistent with the
affinities and the segmentation is stable, then the “foreach i €
{1, ..., M} such that Xi[w] = true” inner loop will rarely
iterate more than once, because Xi[w] can be true for more
than one value of i only in rare cases where W lies in more
than one MOFS object.

Moreover, when M is large and the time needed to deter-
mine just which values of i satisfy x'[w] = true and to
execute “for j < 1 to M do Xj[x] <« false” are significant
issues, the information Algorithm 5 stores in the M Boolean
arrays x I, ..., xM[v] canbe represented more efficiently.
For example, we might use an integer array x [v] and an array
x list[v] with the following properties: For each v € V, x[v]
is the value of i € {1, ..., M} for which the value of Xi[v]
would have been true, provided there is just one such value

13 This follows from observations (iv), (vi), and (vii) in Sect. 6.8, state-
ment 2 of Proposition 6.12, and Theorem 3.10.
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of i. When there is no such value of i or more than one such
value, x[v] = 0 and xlist[v] is a (possibly null) list of all
such values of i. We may also choose to use such arrays x [v]
and xlist[v] instead of the Boolean arrays x '[v], ..., x ¥ [v]
if the latter would use too much memory.

Two Other Efficient Ways to Compute IRFC Objects

The GCpax algorithm of [20] will efficiently compute any
single object of an M-object IRFC segmentation. While
GCpnax would need to be executed M times to compute all the
objects of an M-object IRFC segmentation, it may be faster
than Algorithm 5 when we need to compute just one of the
M objects.'*

When the affinity is symmetric, the TZWS by union-find
method of [2], which was developed as a way to com-
pute tie-zone IFT watershed transforms—see footnote 2—is
another way to compute IRFC segmentations.'> Like Algo-
rithm 5 and other MOFS algorithms, the TZWS by union-find
method computes all the objects of an IRFC segmentation
simultaneously. To briefly describe this method (which we
will do in terms of IRFC segmentation rather than tie-zone
IFT watershed transform computation), let y» be a symmetric
affinity on V and let Sy,...,Sy C V be pairwise dis-
joint nonempty seed sets that are consistent with . Let
~ be the binary relation on V such that x ~ y just if
P WU; 850 = ¥V (WU, S0 = Y. y). Since v s
symmetric, ~ is symmetric and its transitive closure is an
equivalence relation, each of whose equivalence classes is
called a flat-zone.

Itis not hard to show that each flat-zone either lies entirely
within a single object of the IRFC segmentation generated by
Y and (S1, ..., Sy) orliesentirely within the segmentation’s
tie-zone. The TZWS by union-find method is somewhat sim-

14 Given an affinity on V and pairwise disjoint nonempty seed sets
S1, ..., Sy C V, we can compute the IRFC object OiIRFC associated
with the seed set S; by executing the GCp,,x algorithm of [20, p. 386]
with W = Uj S and a priority map A such that A(c) = Oif ¢ € S; and
Mc) = lifc € U ;. This will compute a forest in which the nodes
of the trees rooted at points in §; are exactly the points of Ol.IRF C. To
compute the entire IRFC segmentation (O{RFC, ol O,I\,I}F C) we do this
M times, withi = 1, ..., M. A modified version of GCy,ax, Which uses
a priority map A that satisfies A(c) = j —1forallc € §; (1 < j < M),
will compute a forest such that, for 1 < j < M, the nodes of the trees
rooted at points in §; include all points of O;RFC but possibly also some
points of the tie-zone if j 7 1. When the tie-zone is very small, a good
approximation to the entire IRFC segmentation (O{RFC, e O,I\,I}FC)
can be obtained by executing such a modified version of GCp,x just
once.

15 We are grateful to a referee for bringing this method to our attention.
We think the method is sound and quite clever, but it seems to us that the
corresponding pseudocode [2, Pseudocode 1] does not anticipate every
situation that might arise in an image and may in certain cases fail to
identify some tie-zone points, though we think it would not be difficult
to modify the pseudocode to correctly handle such cases.

ilar to Algorithm 5, but as it runs it takes full advantage of the
fact stated in the previous sentence by using a union-find data
structure to represent all the maximal ~-connected sets (i.e.,
all “fragments of flat-zones”) that have so far been discov-
ered: For example, whenever a point v is found to lie in the
tie-zone, v’s representative in the union-find data structure
(which is the representative of all points that have so far been
discovered to be ~-connected to v) is labeled to indicate that
the entire flat-zone fragment it represents lies in the tie-zone.

Two important differences between the TZWS by union-
find method and our Algorithm 5 are that TZWS by
union-find’s main loop will never iterate more times than
there are points in the image, and that TZWS by union-find
does not have any analog of Algorithm 5’s “foreach i €
{1, ..., M} such that Xi[w] = true” inner loop. For these
reasons, it will outperform Algorithm 5 in some cases. But
in applications where the average number of MOFS objects
that contain a point is close to 1 (which includes most of the
applications we have in mind, in which tie-zones are typically
small) the time saved as a result of the above two differ-
ences may be outweighed by the time cost of maintaining
and accessing the union-find data structure. This is because
when Algorithm 5 is used in such applications the inner
loop “foreach i € {1, ..., M} such that Xi[w] = true” will
rarely iterate more than once (i.e., when this loop is executed
there will rarely be more than one i for which x i[w] = true),
few points will be placed into the priority queue more than
once, and the total number of iterations of Algorithm 5’s main
loop will be close to | V|.

5 Robustness of MOFS Segmentation with Respect
to Small Changes in Seed Sets

RFC and IRFC segmentation are known to be robust with
respect to small changes in the seeds [21, Sect. 2.4]. In this
section we show that MOFS segmentations are also robust
in this sense.

Let ¥ = (y,...,¥y) be any sequence of affinities
onV and let S = (Sy,...,Sy) be any sequence of M
pairwise disjoint nonempty subsets of V. Then we write
(OMOES (g, 8), ..., OMOFS (W, S)) to denote the MOFS
segmentation (O}VIOFS, R OMOFS) that is produced when
either Algorithm 3 or Algorithm 5 is carried out with affini-
ties Y1, ..., ¥y and seed sets S1, ..., Sy.

One might expect that, if S = (S, ..., Sy) and S* =
(ST...., Sy are such that each seed set SF is “suffi-
ciently close” to the seed set S;, then the segmentation
(O{VIOFS(\II, S), ..., O%OFS (¥, S)) will be exactly the same
as the segmentation (OIIVIOFS(\II, S, ..., OMOFS(\IJ, S*)).
We will see from Corollaries 5.5 and 5.6, and Remark 5.7,
that MOFS segmentation is indeed robust in this sense. These
robustness properties of MOFS will be shown to follow from
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Theorem 5.4, a special case of Corollary 5.5 that is the main
result of this section. Theorem 5.4 and Corollary 5.5 can be
viewed as MOFS analogs of known robustness results for
IRFC segmentation—specifically, as MOFS analogs of the
first assertions of [21, Thm. 2.5] and [21, Cor. 2.6].

Our results will be stated in terms of sets Corelp’s, R

Corqu;’S which we now define:

Definition 5.1 Let ¥ = (1, ..., ¥y) be any sequence of
affinities on V and S = (Sy, ..., Sy) any sequence of M
pairwise disjoint nonempty subsets of V' that are consistent
with the affinities. Then, for 1 < i < M, we define P; (¥, S)
to be the collection of all subsets P of V that satisfy both of
the following conditions:

@ P < OMOBS W, S\, OYOS W, S).
OIMOFS(\I,’S)

(b) ¥, (Si,v) = ¥, V\P) forevery v € P.
The core of Ol.MOFS (¥, S), denoted by Core?”s, is defined
as the union of all the sets in P; (W, S).

Since S; € OMOFS (W, S)\ U, OYO™S (W, ) (as S <
oMW, 8) < S U((V\U,;S$)) for 1 < i < M, by
Theorem 2.6), we see that S; € P;(V,S) and therefore
S; C Core;y’s forl <i <M.

It is also clear that Core;y’s C OZMOFS(\I', SN\
Ujzi o}WOFS(\y, S) for 1 < i < M. This implies that
the cores of distinct MOFS objects are always disjoint:
Core;p’s N Core‘]y’s = () whenever i # j.

Moreover, the union of two sets in P; (¥, S) is a set in
Pi(¥, S). (Indeed, if P, P, € P;(V,S) then P = P U P,
clearly satisfies (a), and also satisfies (b) as wl.“(v, VAPj) >
¥/, V\P) for j = 1,2.) So Core! € Pi(¥,S):
Core;p’s is the largest member of P;(W¥, S) and contains
all other members of P; (¥, S).

Significantly, for typical affinities and seed sets we will
have that {v € V | in(Si, v) > «a} C Core;y’s for
any « that is large enough. We can express this more pre-
cisely. Given affinities ¥ = (v, ..., ¥ ) and seed sets
S =(S1,...,Su), letus say (for any i € {1, ..., M}) that
avalue ¢ € (0, 1]is (W, S, i)-large if

e Vv (Siv=al
mU#i{v eV Iy (Sj,v)=a}=0.

Then the following is true:

Proposition 5.2 Let WV = (Y1, ..., ¥y) be a sequence of
affinitieson'Vand S = (S1, ..., Sm) a sequence of pairwise
disjoint nonempty subsets of V that are consistent with V.
Leti € {1,...,M}andleta € (0, 1] be any (¥, S, i)-large
value. Then {v € V | I//iV(Si, v) >a} C Core;y’ .
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Proof We claim that, foreachvin{v € V | ¥ (S;,v) > o},
every hereditarily (i, S;)-optimal V-path to v is recur-
sively (W, S)-optimal. Indeed, suppose not. Then there exists
a hereditarily (y;, S;)-optimal V-path p = (vg, ..., v)
such that W,-V (Si, v1) > « and p is not recursively (¥, S)-
optimal. As p is not recursively (¥, S)-optimal, there is
some k € {1,...,1} and some recursively (¥, S)-optimal
V-path ¢ to vx such that Ws(g) > vi({vo, ..., V).
Since (vo, ..., vk) is hereditarily (v, S;)-optimal, g can-
not be a V-path from S; and so g is a V-path from
U,z Sj- Now vi((vo, ..., v)) = ¥i(p) = &, s0 vy €
{v e V|]vyrSiv) > a) But g is a V-path from
U#i S; to v such that Ws(q) > ¥;((vo, ..., %) > a,
SO Vg € Uj#i{v eV | W}/(Sj, v) > «}. This is a contra-
diction (as « is (¥, S, i)-large), and so we have proved our
claim.

Now let P = {v € V | ¥'(Si,v) > «a}. Then
it follows from the claim that, for each v € P, there
is a recursively (W, S)-optimal V-path of (¥, S)-strength
> « from S; to v, whence there is no recursively (¥, S)-
optimal V-path from (J;; Sj to v (as any such V-path
from Uj#i S to v would also have (¥, S)-strength > «
and so could not exist, since « is (W, S, i)-large). From
this, Theorem 3.10, and Corollary 3.11 we see that P C

MOFS MOFS OMOFS (g, 5)
Ol‘ (‘“Ilv S)\ U];éz 0/ (‘Il, S) and Kb,' (Sia U)
> o for all v € P. We also see from the definition of P that
(v, V\P) < aforallv € P.So P € P;(¥,S) and

therefore P C Corew’s O

T
The characterizations of MOFS segmentations given by The-
orem 3.10 assume the seed sets are consistent with the
affinities. The next proposition tells us that consistency is pre-
served when seed sets are replaced with new sets contained
in the cores of the objects of the original segmentation:

Proposition 5.3 Let WV = (Y1, ..., ¥y) be a sequence of
affinitieson’Vand S = (S1, ..., Sm) a sequence of pairwise
disjoint nonempty seed sets consistent with the affinities. Let
S* = (S}, ..., S}y) be any sequence of nonempty sets such
that S} C Core;y’s for1 < i < M. Then S8* is consistent
with the affinities.

Proof Suppose S* is not consistent with the affinities. Then
for some distinct i and j there is a V-path (vg , ..., v;) from
A Core;p’s to S;? - Corej”s - V\Core;p’s such that
¥ ({vo,,...,v)) = 1. Let k be an index such that vy €
Core;l”s but vr4] € V\Core;p’s. Then in’MOFS(\P’S)(Si, vk)
> 9w, V\CoreS) = ¥r(ve, vern) = ¥ ({vo.. ... 1)
= 1 (since Core;p’s € P;(¥, S)), whence there is a V-path
p from S; to vg such that ¥;(p) = 1. Now p - (v, ..., v;)
is a V-path from S; to v;, and since ¥; (p - (vk, ..., V1)) =
min(y¥; (p), ¥i (v, ..., v7))) = 1 this V-path is recursively
(¥, S)-optimal. So v; € OMOFS(W, S), by Theorem 3.10.
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But this is impossible since v; € S;? C Core}y’s -

OV (W, S\ U,e; ONO5 (W, S). a]

We now state our main robustness theorem, which specifies
an extent to which the seed sets Sy, ..., Sys can be enlarged
without changing the MOFS objects. Note that the theorem
assumes the affinities remain unchanged when we change
the seed sets (Sy, ..., Sy) to (Ry, ..., Ry), so it does not
apply to seed-set-dependent affinities (such as those used
in the experiments presented in [10]). Object-feature-based
affinities of the kind discussed in [18, Sect. 2.2] are examples
of affinities to which this theorem and Corollaries 5.5 and 5.6
would apply (even if different affinities are used for different
objects).

Theorem 5.4 Let ¥ = (Yq,...,V¥y) be a sequence of
affinities on V and S = (S1, ..., Sy) a sequence of pair-
wise disjoint nonempty seed sets consistent with the affinities.
Let R = (Ry, ..., Ry) be such that S; < R; < Core}"S
for 1 <i < M. Then OMO¥S (W, R) = OMOFS (W, S) for
1<i<M.

This theorem will be proved in Sect. 6.7. It implies a far more
general robustness result:

Corollary 5.5 Let WV = (Y1, ..., ¥y) be a sequence of
affinities on 'V, and let S = (Sy,...,Sy) be a sequence
of pairwise disjoint nonempty subsets of V consistent with
the affinities. Let S* = (S},..., Sy,) be any sequence of
nonempty sets that satisfy the conditions SF C Core;p’s
and S; C Core;P’S* for 1 < i < M. Then we have that
OMOFS (p, §*) = OMOFS(p, S) for 1 <i < M.

Proof Define R; = Core?/’s N Core;y’s* forl <i < M,
so S; € R, C Core;D’S and Si* C R C Coreiw’s*.
Then, by Proposition 5.3 and Theorem 5.4, OlMOF S v, S) =
OMOFS (p, R) = OMOFS (@, §*) for 1 <i < M. o

The following is a notable special case of Corollary 5.5:

Corollary 5.6 Let ¥V = (Y1, ..., ¥m) be a sequence of
affinities on V, let S = (S1,...,Su) be a sequence of
pairwise disjoint nonempty subsets of V consistent with the
affinities, and for 1 < i < M let a; be a value in (0, 1] that
is (W, S, i)-large. Let S* = (S}, ..., S};) be any sequence
of nonempty sets such that

Vie(l,...,.M}: Sf ClveV|y) (S, v)=>a)

and S; C{v eV |y (S v) > a). (5.1

Then we have that OMOFS (W, §*) = OMOFS(w, ) for 1 <
i<M.

Proof We claim q; is (W, §*,i)-large for 1 < i < M.
Indeed, let 7, j € {1,..., M} and let ¢ = min(q;, a;).

Then Sf € {v € V | ¥ (Si,v) > a} andso {v € V |
vY(SFv) > a) € {v eV |y)(Siv) > a). Similarly,
veV |y/Sf v zal S{veV|y/s; v =ah
Therefore

eV Iy (S vzalnveV |y (S)v) = a)
CleV |y S =an{veV |y (S, v) =al

As a = min(a;, a;), the intersection on the rightis {v € V |
v (Sv) zayNveV Iy (S v) zaorisfveV |
¥y (Si,v) = aj}N{v e V [ ¢/ (S, v) = a;}, and these
intersections are empty ifi # j sinceq; is (¥, S, i)-large and
ajis (¥, S, j)-large. Thus {v € V | ¢,V (S¥,v) > a;}N{v €
V| 1/ij (S;f, v) > a;} = @ ifi # j. This justifies our claim.
The corollary follows from this claim, Propositions 5.2 and
5.3, and Corollary 5.5. O

Remark 5.7 If the affinities ¥, ..., ¥y in Corollary 5.6
are symmetric, then the corollary can be understood as
saying that the segmentations (O{WOFS(\IJ, S*), ..., O%IOFS
(¥, %)) and (OMOFS(p, S), ..., OMOFS (W, S)) are iden-
tical whenever the sets S} satisfy

; .ok
Vie(l,...,M}: Sf = Usesi P(s) (5.2)
for some sets P(s) such that
Viel{l,...,M},Vs €S;:

W#P@s)SfveV ]y (s, =a) (5.3)

(Indeed, assuming 1, ..., ¥y are symmetric, conditions
(5.2) and (5.3) imply (5.1), and conversely (5.1) implies that
(5.2) and (5.3) hold when P(s) = {v € S} | 1//iv(s, v) >
a;}.) Here the points in P(s) may be thought of as resulting
from “perturbations” of the point s of S; within the region
eV Iy e.v=a).

The next proposition tells us that the cores of MOFS objects
are robust (with respect to small changes in seed sets) in the
same way that the MOFS objects themselves are robust:

Proposition 5.8 The hypotheses of Theorem 5.4 imply
Core;p’R = Core;p’s for 1 < i < M. Similarly, the
hypotheses of Corollary 5.5 imply Core;ll’s* = Core;p’sfor
1<i<M.

Proof Let W = (Y, ..., ¥y) be any sequence of affini-

tieson V and S = (Sy, ..., Si) any sequence of pairwise
disjoint nonempty subsets of V. We first establish that

OMOFS (¢, 5) OMOFS (1, 85)
W,‘ (Si7 w) = 1//1' (Ri’ w)
S

whenever S; € R; C Core;p’s andw € V\Core?” .
5.4
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LetS; C R; C Corefp’s
OMOFS(W S)

v (Si,

values are equal, let (xo, . . ., x;) be an(OlMOFS(\IJ, S)U{w})-

path from xo € R; to x; = w such that ¥; ({xg, ..., x;)) =
OMOFS (g S) . .

v, (Ri, w),letk be the leastindex for which x;41 ¢

Core;y’s (so that x; € Core?”s C OIMOFS(\I/, S)), and let p

be an OIMOFS(\IJ, S)-path from S; to xi such that ¥; (p) =

OMOFS \I},S
v ( )(Si,xk). As x; € Core?/’s e Pi¥,S)

and xp41 € V\Coreq' ‘S, condition (b) of Definition 5.1

O,MOFS(W S)
implies ¥;(p) = ¥, (Sisxx) = i (e, Xpg1) >
Vi ((Xk, ..., x1)), and so (since p - (x, . .., x;) is an (OMOFS

(v,S) U {w})-path from S; to w) we must have that

OINIOFS(\I},S)
v; Sis w) =i (p-(xks .o x0) =i (X, - -, x1)
OMOFS(\II,S)

MOFS
> il o) = 90 Rew) =y
(S;, w). This establishes (5.4).
Next, we prove the first assertion of the proposition. Sup-
pose the hypotheses of Theorem 5.4 are satisfied and i €

{1,.. M }. We first show Core\p Sisnota proper subset of
Core LR,

and w € V\Core;y’s. As S; C R;,

MOFS
w) < v P (R w). To show the

Indeed suppose otherwise and let P = Core;,
SO thatCorei g P and hence V\Corei 2 V\P.AsP e
Pi(W, R), we have that P € OMOFS (W, R)\ U, OYOFS
(W, R) = OMOSW, S\ U, OV (W, 5) where the
equality follows from Theorem 5.4. As Core Se Pi(¥,S)

MOFS(q, S)
and V\Core 2 V\P, we have that v, (Si, v)

>y, V\Coref’ Sy > ¥, V\P) for all v € Core""S.

MOFS MOFS
Similarly, v V(S v) = wlo @SR vy =

w (v, V\P) forall v € P\Core because of (5.4), the

fact that OMOFS (W, R) = olMOFS(LIJ, S), and the fact that

MOFS
P € P;(¥, R). Hence we have that wioi (w’S)(Si, v) >

¢/ (v, V\P) for all v € P. Therefore P € Pi(¥,S),
whence P C Core;p’s. This contradiction establishes that

is not a proper subset of Core;y’R. On the other
OMOFS(\IJ, 8)

Core;I"S
hand, since S; € R; and OMOFS(\I/ R) =

MOFS(
for 1 < j < M (which imply v, 0 (R,-,

MOFS
wio W.5) (S;, v) forallv € V), we see from Definition 5.1

that P; (¥, S) € P; (¥, R), whence Core;p’ C Core\IJ R,
Thus Core;y’s = Core;D’R. This proves the first assertion.
To prove the second assertion, suppose the hypotheses of
Corollary 5.5 are satisfied. For | < i < M define R; =
Coreqj s N Core‘ys Then W, S, and R = (Ry, ..., Ry)
sat1sfy the hypotheses of Theorem 5.4. So we see from the
first assertion that Core‘.y"s = CoreW’R (1 <i<M).Sym-

.5 —Core‘PR O

v) >

metrically, Core;,

The following two propositions will give the reader a sense
of how big the sets Core:.y’ are. In particular, the next propo-

@ Springer

sition defines a set Q;p S that will typically be much larger
than S;, but which is still a member of P; (¥, S) and there-
fore a subset of Core}p’s. When the affinity v; is symmetric,

vS . .S
Core; '“ is exactly Q,

Proposition 5.9 Let ¥ = (Yq,...,V¥y) be a sequence
of affinities on V, and let S = (Si,...,Su) be a
sequence of pairwise disjoint nonempty subsets of V that
are consistent with the affinities. For 1 < i < M
let 0% = {v e OMOFS(W S\, OMOFS (@, 5) |

OMOFS(q, S)
v (Si,v) = ¥ (v, U OO (W, 8))). Then:

1. 0" € Py(V,S), and hence Core"*S
eachi e {l,..., M}.

2. Core;p’s = Q;I/’Sfor eachi € {1,...,
is symmetric.

> 05, for

M} such that

Proof For brevity we will write 0}.\40}:5 for O;‘/IOFS (¥, S)in

this proof.

Leti € {1,..., M}. First we will establish statement 1
by verifying that, when P = Q;p ’S, condition (b) of Defi-
nition 5.1 holds. (It is evident that (a) holds.) Letv € P =

Q;I”S andw € V\P =V\ Q;I”S. What we need to show is

(OMOFS
that ;" (Si,v) = ¥i(v, w).
Now either w € Uj# O}VIOFS, orw € V\ Uj O}VIOFS,
orw € OMOFS\ Uz O?AOFS. Ifwe ;4 O}VIOFS, then
OMOFS

Y (Si,v) = ¥i (v, w) holds because v € QS Tf w €
7\ U ; OYOFS then ¢; (v, w) = 0 by Corollary 3.12 (as v €

MOFS

Q S c OMOFS) 50 we certainly have that w (Si,v) >
. OMOFS,

¥ (v, w). Suppose finally that w € OIMOFS\ U/#t
OMOFs ’
(Si,v) < Yi(v,w) is again impossible: It
MOFS OFS

would imply O (Si,w) > I/f
MOFS

MO
12 (S w) = m1n(1ﬂl. (Si, v), ¥i(v, w))),and since
MOFS oers .S
lﬂ,- (W,Uj;,gi Oj )>1ﬁ,-’ (S,-,w)(aswgéQi’
MOFS
would then have that ¥, (w, U ; O.II.VIOFS)> wl.o" (Si,v),
whence ¥ (v, U4 OYOFS) > min(yi (v, ). ) (w,

MOFS OMOrs
Ujz 0777 > ¥,
v € Q;I”S. So statement 1 holds.
To establish statement 2, we assume ; is symmetric. We
have shown that Core;y’s ) Q;p’s, but must now prove that

Core;D’S - Q;D’S. For this, fixav € Core;y’s. We need to
show that v € Q\P’S

Then ¢

(S;, v) (because

) we

(S;, v), which would contradict

MOFS
Suppose not. Thenlp (Si, v)< 1//iv(v, U, O}VIOFS)

and so there exists a V-path (vg, ..., v;) from v = vg to
MOFS
Ujzi 0}‘40“ with ¥; ((vo, ..., v)) > 1// (Si,v). Letk

be the greatest index for which (vo, ..., vx) is a Core\p S
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Fig. 5 Affinity values for Example 5.10

path. Then k < [ (since v; € ;4 O}V[OFS - V\Core;p’s)

.., V) is an OlMOFS—path.
OMOFS ]
As Vi (U, ver1) = Yi((uo, ..o, v) > 0 (SiL, ), it
OMOFS OMOFS
is impossible that ;' (Si,v) = ¢, (S;, vx), because

MOFS
we would then have that ; (vg, vk+1) > ¥; i (S;, vr) and
so condition (b) of Definition 5.1 would be violated when

P = Core;y"S (since vx € Core;ll"'3 € but viyg ¢ Core;p"g).
OMOFS OMOFS
We therefore have that ¥, " (S;,ve) > ¥, " (S;,v),

whence there exists an OlMOFS-path p from S; to v for
) OMOFS
which ¥;(p) > ;' (S;, v). But now p - (vg, ..., vo)

is an OIMOFS-path from S; to v, and (since v; is symmetric)
we have that

and (v, .

![fz(l’ . (vkv D) UO)) = mln(%(}’)» 1/’i(<Uk, ey U0>))
= min(¥; (p), ¥i ({vo, ..., vk)))
> min(¥; (p), ¥i ({vo, ..., v1)))
OMOFS
>y (S,
a contradiction. O

Regarding statement 2 of this ‘groposition, we now give an
example which shows that Q;y’ = Core;y’s need not hold
even if all the affinities v; are equal to the same affinity i,
if the affinity i is not symmetric:

Example 5.10 Suppose V = {c, s1, 52}, S = (S1, $2), and
¥ = (¢, ¥), where S| = {s1}, S2 = {s2}, ¥ (s1,¢) = 0.5,
v(c,s1) = 1, ¥(sy, s2) = 0.7, and ¥ (u, v) = 0 in all other
cases where u, v € V are distinct (e.g., ¥ (c, s2) = 0): See
Figure 5. Then Core‘llj’s = {s1, c}—i.e.,Core}y’s = O{VIOFS.
Butc ¢ Q‘ly‘s because the ¥ -strength of a yr-strongest V-
path from c to S is 0.7, which exceeds the -strength of a
Y-strongest V-path from Sj to c.

In the important case where the affinities 1, ..., ¥y are
all equal to the same affinity ¥ and this affinity ¢ is sym-
metric, the next proposition tells us that Core;y’s = Q;I"S
is exactly the ith object of the IRFC segmentation for affin-
ity ¢ and seed sets S = (S, ..., Sy), which we denote by

ORFC (4, ) as in Sect. 3.3.

Proposition 5.11 Ler v be a symmetric affinity on V,
let ¥ be a sequence (Y, ..., ) of M occurrences of
v, let S = (S1,...,Sy) be any sequence of pairwise
disjoint nonempty subsets of V that are consistent with

Y. Then for 1 < i <M we have that Corel‘-y’s

OMOFS (s S)\ Uz 0}\’101;5(\11, S) = OFFC(y, S).

Proof For brevity we will write O}MOFS for O}VIOFS w,S)
in this proof. For 1 < k < M, Corollary 3.5 and Theo-
rem 3.10 imply that x € O}C\/IOFS just if there is a hereditarily
W, U is j)-optimal V -path of nonzero v -strength from Sy
to x, whence (by Corollaries 3.5 and 3.11) if p is any hered-
itarily (¥, |J; S;)-optimal V-path from S to x € OpMOFS
then 0 < y(p) = ¥V (U, Sj.0) = O (S, ).

Leti € {1,...,M}. We see from Definition 5.1 that
Core;p"s - OIMOFS\ U i O?AOFS, and from Corollary 2.7
that ORFC(yr, §) = OMOPS\ U 0}“0“. It remains only
to show OlMOFS\ U i O}VIOFS - Core;y S For this purpose
it is enough to show OIMOFS\ Uj#i O}\mFS e Pi(¥,S).
So it is enough to verify that condition (b) of Defini-
tion 5.1 holds when P = OMOTS\ | i 0;’101;5 (since
condition (a) obviously holds). To do this, let v be any
point in OZ.MOFS\ Uj#i O?AOFS and let w be any point in
V\(OZMOFS\ Uz O?/[OFS). What we need to show is that

YOI (S ) = v, w).

Suppose not. Then ¥ (v, w) > thMOFS (Si,v). Sow €
U; O}VIOFS by Corollary 3.12, and therefore w € (J;
o;WOFS (as w € V\(OMOFS\{J, oyOFS)). Since v €
OlMOFS, we see from the remarks in the first paragraph
that there is a hereditarily (v, ; Sj)-optimal V-path p,

from S; to v such that 0 < ¥ (p,) = wV(Uj Sj,v) =
YO (S v) < Y(v.w). Similarly, since w € U,
O;VIOF S, there is a hereditarily (v, | J ; Sj)-optimal V-path

pwfromJ;; S tow thatsatisfies y (py,) = ¥V (U, S, w)
> ¥ (py-{v, w)) = min(¥ (po), ¥ (v, ) = ¥ (py) > Oand
therefore satisfies ¥ (py-(w, v)) = min(Y (py), ¥ (w, v)) =
min(y (pw), ¥ (v, w)) = min(y (py), ¥ (v, w)) = Y (py) =
1/fV(Uj S;,v). This and the hereditary (v, Uj S;)-optima-
lity of py, imply that py, - (w, v) is hereditarily (v, U; S;)-
optimal. But, since v ¢ |J i O?/IOFS , the remarks in the
first paragraph imply there is no hereditarily (v, Uj S;i)-
optimal V-path of nonzero ¥ -strength from | J jziSjtov,a
contradiction. O

When the seeds sets are consistent with the affinity, the IRFC
robustness results mentioned earlier (i.e., the first assertions
of [21, Theorem 2.5] and [21, Corollary 2.6]) can be deduced
from this proposition, Theorem 5.4, and Corollary 5.5.

We end this section with an example which shows that
Proposition 5.11 is not true (i.e., Core;p"s need not be the
whole of OMO™S (W, S)\ U ; OO (W, 8)) if we drop the
hypothesis that the affinities v, .. ., ¥y are all equal, even
if we assume every affinity v/; is symmetric:

Example 5.12 Let V. = {s1,s2,¢c,d,e}, M = 2, S =
(S1,82) = ({s1}, {s2}), and ¥ = (¢, ¥2), where ¥; and
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Yrp are the symmetric affinities on V such that vy (s1,c) =
Vile,s1) = Yild,e) = Yile,d) = 0.7, yi(e,d) =
Vi(d,c) = 04, Ya(s2,c) = Yalc,s2) = Yals2,e) =
Yale, 52) = Ya(c,d) = Y2(d,c) = 0.6, and ¥ (u, v) = 0
in all other cases where u and v are distinct points in V
and i € {1, 2}. (See Fig. 6.) Then it is readily confirmed
that OMOFS (W, S) = {51, ¢, d} and OYOFS (W, S) = {57, e},
and so we have that OMOFS (W, §)\ Uz O}\mFS(\IJ, S) =

OIIVIOFS(\IJ, S) = {s1, ¢, d}. But the set Core;p’s = Q;I/,S is
smaller: Core‘ly’s = QII"S = {s1, ¢}. Moreover, if we define
R = O{VIOFS(\I/, S) ¢ Coref}"s and R, = S5, then the

conclusion of Theorem 5.4 would not hold any more, since
OMOS (W, (R1, Ra) = {s1. ¢, d, e} # OO (W, 5).

6 Proofs of Theorems and Justification of
Algorithm 5

6.1 Proofs of Theorems 2.4, 2.5, and 2.6

We claim that, when Algorithm 1, 2, or 3 is executed, those
of the conditions (6.1)-(6.10) below which apply to that
algorithm will hold immediately before execution of line
5 at the nth iteration of the algorithm’s main loop (for all
nef{l,...,|Al}and i € {1,..., M}). The three theorems
will be deduced from this claim.

Although Algorithm 2 uses just a single affinity 1,
whereas Algorithm 3 uses M affinities 1, ..., ¥, these
two algorithms share some important properties. To avoid
having to state these shared properties twice, we adopt the
following convention: When we are considering Algorithm 2,
the notation ¥; will mean the single affinity ¥ of Algo-
rithm 2, regardless of the value of the subscript i (which
should be ignored). This convention is used, for example, in
(6.6)—(6.10) below and in the statements of Propositions 6.3
and 6.4.

for Algorithms 1, 2, and 3: T, € newT; € T; U (V\UjTj) 6.1)
for Algorithm 1: newT; =T; U{v € V\UjTj | V(T v) > ) (6.2)
=T U{v e VAU,T; | Y V(T v) = oy} (6.3)
1//V(u, V) < oy if u € newT; and v € (V\ Uj Tj)\newT; (6.4)
¥V (u,v) <@, ifueTiandve V\U;T; (6.5)
. VAU, Tj
for Algorithms 2 and 3: newT; =T;Ujv e V\UjTj | ¥, (T;,v) > ay (6.6)
VU, 7
=T Uve V\U;T; | ¥, (Ti, v) = an 6.7
VAU, T; .
v (u,v) < ay, if u € newT; and v € (V\ Uj Tp)\newT; (6.8)
WU, T;
b v <@ ifue T and ve ViU, T 6.9)
YT (T;, v) = @, whenever v € newT;\T; (6.10)
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Now we justify our claim. It is readily confirmed by
inspection of each algorithm that our claim is valid in the
cases of (6.1), (6.2), and (6.6). It is also easy to see that
(6.2) implies (6.4): Indeed, if we suppose (6.2) holds and
u € newT; (so that ¥V (T}, u) > ), then if v € V\ Uj T;
satisfied ¥V (u, v) > «, we would have that ¥V (T}, v) > a,
(by Proposition 2.2) and hence that v € newT;. Similarly,
(6.6) implies (6.8).

Since a1 = 1, (6.5) and (6.9) cannot be false whenn = 1.
Now suppose n > 1. Let us write chur and newT ™" for the
values of 7; and newT; immediately before execution of line
5 at the nth iteration of the main loop, and write TJP " and

newT ™ for the values of T; and newT; at the same stage
of the n — 1st iteration. Then we see from (6.4) and (6.8) that

¥V (u,v) < ooy if
u€newT and v e (V\| T )\new ™
j

for Algorithm 1 (6.11)
le\U/ e (U, v) < ap_q if
ue nele-prevand v e (V\ Uj T]Prev)\newTiprev
for Algorithms 2, 3 (6.12)

Since T = new Tip i) Tl.p "V, we have that V\ | J iT ]P rev
2 V\U; Ti"" and therefore also have that (V'\ U; TjPreV)\
newT? 2> (V\U; TC“r)\neprrev = (V\U,; T5")\
T = V\ U TCur Moreover an affinity value is < o,
justifitis < . So we deduce from (6.11) and (6.12) that

YV, v) <oy if ue TMand ve VA T
J

for Algorithm 1

\ UI Teur

v 7 (u,v) < ay if u € T and v € V\ U TCur

for Algorithms 2, 3

Thus we have shown that (6.5) and (6.9) are true immediately
before execution of line 5 at the nth iteration of the main loop.
Evidently, (6.3) and (6.7) follow from (6.2), (6.5), (6.6), and
(6.9).

To see that our claim is valid in the case of (6.10), let
i € {l,..., M} and consider the values of 7; and newT;
immediately before execution of line 5 at the nth iteration
of the main loop of Algorithm 2 or 3. Let v be any point
in newT;\T;. Then, by (6.7), we have that v € V\; T}

and that v; U J(T,, v) = «a,, whence there is a (7; U
(V\U]T)) path (vg,...,v;) from T; to vy; = v such
that ¥; ((vo, ..., v1)) = «,. Now for each point vi of this

(T; U (V\ Uj T;))-path we have that ¥; ((vo, ...
Yi((vo, ...,

DU =
u)) = o, andsove € T Ufv € VAU, T; |

VAU, T;
v VU (T;,v) > ay}, whence vy € newT; by (6.6).

This shows that (v, ..., v;) is a newT;-path from T; to
v, so that Y/ ““"(T;, v) > Yi({vo, ..., 1)) = . How-
ever, since (6.1) implies newT; < T; U (V\U T;) we

also have that """ (T;, v) < y, "V 7 (T1, v) = ay (by
Proposition 2.1). This confirms that our claim is valid in
the case of (6.10) and completes the justification of our
claim.

Deduction of Theorems 2.4, 2.5, and 2.6 from (6.1)—(6.10)

As in Theorems 2.4 — 2.6, we will write 7" (1 <i < M,
0 < n < |A|) to denote the value of the variable 7; at the
beginning of the n + 1st iteration of the main loop when
Algorithm 1, 2, or 3 is executed, and write TilA| to denote
the value of T; at the end of the | A|th iteration (i.e., the final
value of T;).

In each of Theorems 2.4-2.6, inspection of Algorithm 1,
2, or 3 will convince the reader of the truth of statement 1(b),
the first part of statement 1(a), and the claim that the ith object
of the segmentation contains the seed set S;. The other parts
of these theorems will then follow from propositions that are
proved below: In all three theorems, the claim that the ith
object of the segmentation is contained in S; U (V\ | j S;)
will follow from (the case n = 1 of statement 1 of) Propo-
sition 6.1. In the case of Theorem 2.4, statement 2 and
the second part of statement 1(a) will follow from Propo-
sition 6.2 and (statement 2 of) Proposition 6.1. In the cases
of Theorems 2.5 and 2.6, statement 2 and the second part
of statement 1(a) will follow from Propositions 6.1 and 6.4;
statement 3 of each of those theorems will follow from state-
ment 2 of Proposition 6.4 and Propositions 6.1 and 2.1 (since
Proposition 6.1 implies 7' € T* Ti”_1 UW\U; T;'_l)
forl <n <k <|A).

Proposition 6.1 When Algorithm 1, 2, or 3 is executed, the
following are true for 1 <i < M and1 <n < |A|:

]. Tvii’l—l g Tn C Tn IU(V\U Tn 1
2. Ti"_IU(V\U T/~ ho T”U(V\ U‘, ")
S 7

> Mo\, T‘A‘)

Proof Statement 1 holds since (6.1) holds immediately
before execution of line 5 of the nth iteration of the main loop
(and Tl."_1 and Tl” are the values of 7; and new1T; at that time).
Readily, statement 1 implies 7" —lu (V\U j Tj"_l) 2TV
(V\ Uj Tf) for 1 < n <|A|, whence 7" U (V\ Uj T;’) o)

r'u oy, . O

Proposition 6.2 When Algorithm 1 is executed, the follow-
ingholdfor1 <i <Mand1 <n <|A|:
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LveV\U; T 19V (Siv) > an) =0
2. TT! = e VAU, T7 7 19V (S, 0) = an)

Proof Let 1 < i < M and 1 < n < |A|. Then
e VU, T7" 1 9/ (@ v) > an) = 0, by (6.5).
Statement 1 follows from this, Proposition 6.1 (which implies
S; = TiO - Tl."_l), and Proposition 2.1.

Moreover, it follows from (6.3) and (6.4) that

forl <i <M,1<n<|Al: T"\T"!

-1 \% —1
Z{UGV\UJ_T;' | v (Tln ,v)z()ln}
forl <i<M,1<n<|Al:¢" W v) <a

whenever u € 7" and v € (V\ U _ T]”_l) \T"  (6.14)
J

1

(6.13)

We will deduce from (6.13) that

forl <i <M, 1<n<|Al:¢" (S, v)>a,

whenever v € T/ (6.15)

Letv € Ti”. Then we can define points vy, ..., v, such that
vo = v and such that, for 1 < k < n, v is a point in
T ~* that is defined in terms of v;_; in the following way: If
Vk_1 € Ti'“k then we define vy = vg_1, and if vy ¢ Tl."fk
then we define v; to be an arbitrary point in Tl.”fk such
that 1//V(vk, Vk—1) = o—k—1). (Note that in the latter case
Vk—1 € 7}"_(](_1)\7}"_1{, and so (6.13) implies the existence
of a point vg in Tl."_k such that ¥" (vg, vi—1) = Qp—(k—1)-)
Now (v, ...,v0) is a V-path from Tl.0 = §; to v, and
Y {vy, ..., v0) > oy since Y (v, vk—1) > o, for 1 <k <n.
Hence " (S;, v) > a,,. This establishes (6. 15)

Now T\ € (v e VAU, T771 1 9V (S0, v) = o)
by (6.13) and (6.15). On the other hand we must have that
vewv\U;T}" Iy VS, v) = apd € TT . Indeed,
since YV (T, v) > ¢¥V(S;,v) (as S; = T? € T") we see
that {v € VAU, T/ 1 V(S0 v) = NI\ T 1) s
a subset of {v € (V\J; T;’_l)\Ti" | V(T v) > ),
but the latter set is empty because of (6.14). This shows that
TNT' ! = e VAU T 1 Y (Siiv) = an). State-
ment 2 follows from this and statement 1. |

Proposition 6.3 When Algorithm 2 or 3 is executed, state-
ments 1 — 3 below are true for1 <i < M and1 <n < |A|:

. WV\U] 7" l(u,v) < ap whenever u € T/ and v €
VAU, T/~ O\T

2 65 sy = s =yl I )
=y forallv e T'\T;"~ L

s s =y s =y YT 6

> ay forallv e T,

@ Springer

Proof Statement 1 follows from the fact that (6.8) holds
immediately before execution of line 5 of the nth iteration of
the main loop. Similarly, it follows from (6.7) that

forl <i <M,1<n<|Al: T"\T""!

\U nl _
T ) = )

(6.16)

=wen\U 177"y,

We will use (6.10) and (6.16) to establish statement 2. The
first step is to observe that
forl <i<M,1<n<I|Al:y" (I v)=a,

whenever v € T} \Tl.”_1 (6.17)

because (6.10) holds immediately before execution of line 5
of the nth iteration of the loop.

The next step will be to deduce from (6.17) that
forl <i<M,1<n<]|Al:

whenever v € T/

v (S v) = a
(6.18)

Suppose as an induction hypothesis that (6.18) holds in
the case n = k — 1 for some k € {l,...,|A|}, so that

k k—1
wiTi (Si,x) > I/IiTi (S;, x) > or_1 > «ar whenever x €
7). We will show this implies (6.18) also holds in the

case n = k. To do this, let v be any point in Tik; now what
k

AP T .. .
we must verify is that v, ' (S;, v) > ag. This is certainly
true if v € Tik_1 (as we have just seen), so we may assume
v € Tl.k\Tik_l. Then, on putting n = k in (6.17), we see

. _ T* .
there is some x € Tik ! such that Y, ' (x,v) = o, and since
Tk _
;' (Si, x) > o whenever x € Tl.k ! (as we have seen) we

see from Proposition 2.2 that l/fl.Tik (Si, v) > ai, as required.
Moreover, (6.18) holds when n = 1 because (6.17) holds. So
(6.18) holds in all cases.

Forv € Tl.”\Ti”_1 it follows from (6.18), Propositions 2.1
and 6.1, and (6.16) that

n 1Al
an =t (Siv) =yt (S )

Tn IU(V\U n— l)

<y, i1 (Si,v)
v T!H

<y VT 1 ) 2,

which implies statement 2.

Statement 3 is plainly valid if v € Tl.0 = S;. To
prove that statement 3 holds in all other cases, let v €
Tl."\Tl.O and let k be the least m such that v € Tim,

sothat 1 < k < mnand v € Tik\Tl.k_l. It now fol-
k Al
lows from statement 2 that 1/fiTi (Si, v), wiT" (S;, v), and
Tk ]U(V\U Tl\ l
v, (Sl-, v) are all equal to ox. We deduce
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= ]U(V\ U] "= 1

from this that v, i (Sl, v) and 1// (S,-, v) must

also be equal to oy, because we have that I/IiTi (Si, v)

<
™ Tn IU(V\U Tn l

v, (Si,v) = v ! (Si, v) =<
Tlywv\ Y, TF!

v, MU )(S,-, v) by Propositions 2.1 and 6.1. Thus
™" T,‘A‘ Tn IU(V\U Tn 1

V(S v) = ¢ (Sisv) =y ! (Si,v) =

o > o and so statement 3 holds. O

Proposition 6.4 When Algorithm 2 or 3 is executed, the fol-
lowing are true for 1 <i < M and 1 <n < |A|:

"= 1 (V\U/ "= 1)

1. {v e V\U;, Tn1|l/f (Si,v) > ay}
=0

2.TN\T" ' ={v e V\U; T"‘l | wT"n_ (Sisv) = an}

={ve V\U; T” H I/ITn U(V\U] (Si, V) = oy}

Proof Letl <i < M and 1 < n < |A|. Then (6.9) implies:

\U] J (T‘in_l,v)>an}=®-

{veV\ U T/~ Yy,
Statement 1 follows from this and Propositions 2.1 and 6.1.
To prove statement 2, it is now enough to verify:

Tn IU(V e I
TNT" ‘D{veV\U T |y i

(510 = an) (6.19)
Swen\U, 17 v (s 2 ) 620

=l AV S 6.21)

"= IU(V\ U/ "= ]
Suppose (6.19) is false. Then 1// (Si, vg) >

o, for some vo e V\ U T” ! such that vy ¢ Ti”, whence

WU, T - vy, T h
v, / (Tl",vo) > lﬁ (Si,vo) > o, (as

S; = Tl.0 C T"). But statement 1 of Proposition 6.3 implies

ny; ! _
v, (@) < ay forallv e (V\U;T] DIV

This contradiction establishes (6.19). The inclusion (6.20)
follows from Propositions 2.1 and 6.1. As Ti"\Tl."_1 -
VAU, T;’_l (by statement 1 of Proposition 6.1) the inclu-
sion (6.21) follows from statement 3 of Proposition 6.3. O

6.2 Proof of Theorem 3.4

Let m be any element of {1, ..., M}. To see that statement 1
is true, we first recall that every nonempty initial segment of
a recursively (W, §)-optimal V-path is recursively (¥, S)-
optimal. It follows from this and the definition of 0,‘,15 S that
if a recursively (W, S)-optimal V-path p is a V-path from
S, then p is an O,\,I,J * -path. The converse is also true, as S is
consistent with ¥ and so no pointin (J;_,, S; lies in onS

For brevity in proving statement 2, let us write ¥, for
Ymlyv.s 0"’ s. To show that every hereditarily (o, , Sm)-

optimal Om -path isa recurswely (W, S)-optimal V-path,
suppose (vg, ..., V) is an 0 —path that is hereditarily
(Yo,,, Sm)-optimal but is not a recursively (¥, S)-optimal

V-path. Then vy € S, and there is some j € {1, ...,/} and
some V-path p to v; such that RO‘E,( p) and
Us(p) > Us({vo, ..., vj)) =¥o,{vo, ..., vj)). (622)

As (vg, ..., v) is an O,f’s-path, we have that v; € 0,;5’8
and so there also exists a V-path p’ from S, to v; that satis-
fies RO‘E, (p'); note that p’ is an O,y ’S-path, by statement 1.
Now RO, (p) and RO, (p') imply Ws(p') = Ws(p). This
and (6.22) imply o, (p)) = Ws(p)) > Vo, (v, - - -, v;)),
which contradicts the hereditary (¥ o,,, Sm)-optimality of
(vo, ..., v) since p’ is an OH\g’S-path from S, to v;.
This contradiction establishes that an 0,‘,1: ’S—path is a recur-
sively (¥, S)-optimal V -path if it is hereditarily (V¥o,,, Sm)-
optimal.

To establish the converse, suppose (vg,...,v;) is an
O -path that is not hereditarily (v¢,,, Sn)-optimal but
is a recursively (W, S)-optimal V-path. Then vy € Sy,
(by statement 1) and, since (vo, ..., v;) iS an 0,‘,1,' ’S—path
from S, that is not hereditarily (¥ ¢,,, S»)-optimal, there
is some j € {l,...,[} such that (vg,...,v;) is not
(Yo, Sm)-optimal. Let p be a hereditarily (¥o,,, Sn)-
optimal O,\,If ’S-path to v;. (The existence of p follows
from Proposition 3.1, applied with Oy S in place of V,
when we put (¢,S) = (Yo,,Sn).) Then Ws(p) =
vo,(p) > Yo, {vo,...,v;)) = ¥s((vo, ..., v))), since
p is (Yo,,, Sm)-optimal but (vo, ..., v;) is not. But p is a
recursively (W, §)-optimal V-path (as we showed above that
any hereditarily (¥¢,,, Sy )-optimal 0 -path is a recur-
sively (W, §)-optimal V-path) and (vg, ..., v;) is also a
recursively (W, §)-optimal V -path, so it is in fact impossible
that Ws(p) > Ws({vo, ..., v;)). This contradiction estab-
lishes that an O, ’S—path is hereditarily (v ¢,,, Sy )-optimal
if itis a recursively (¥, S)-optimal V-path. So statement 2 is
proved.

To prove statement 3, letv € O,\ny ’S, so that there is arecur-
sively (W, §)-optimal V-path from S, to v. Any such V-path
p is a hereditarily (I/Im|0,‘,‘{*3x0,‘,‘,"5’ Sm)-optimal O,,\I;’S-path
from S, to v (by statements 1 and 2) and so must satisfy

,S
Ws(p) = Pm(p) = 2% (S v). o

6.3 Proof of Theorem 3.6

We will use the notation of Theorem 2.4. Recall that T,.0 =5
forl <i < M and
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Tin _ Tin—l U {U eV\ Uj Tj”—l | 1ﬁV(Si, v) = O{n}

forl<i<Mand1<n<|A| (6.23)

by statement 1(a) of Theorem 2.4. We now prove by induction

that the following is true forn =1, ..., |A[:
° Tl” = Z;‘ for 1 < i < M, where

Z= eV |yYSiv=v"U;Sjv) = ).

The property e holds for n = 1: We see that Tl.l - Zi1
because if v € Ti1 then, by (6.23), 1 > WV(U‘,’ Si,v) >
¥V (S;,v) =a; = landsov € Z!. To show that Z! C T},
letv € Z. Then ¥ (S;, v) = a; = 1. Now if v € V\ U, T/Q
then v € {v € V\U; T]Q | ¥V(Si,v) = oy} C T by
(6.23). If on the other hand v € |J; TJQ = J; S; then, since
¥ (S;, v) = 1 and the seed sets are consistent with the affinity,
ves; = Ti0 - Til. So e holds forn = 1.

Next, assume as an induction hypothesis that, for some
nel{2,..., |A|},Tl.”_1 = Zfl_lforl <i < M.Tocomplete
the proof of e, we will deduce from the induction hypothesis
that 7' = Z} for 1 <i < M. For this purpose, we now fix
aniin {1,..., M}, show that 7" C Z, and then show that
T

To see that 7" < Z?, let v be an arbitrary point
in 7). We need to show that v € Z! If v € Ti"_1
then, by the inductive assumption, v € Zl’.’_l C Z! as
required. Now suppose v ¢ Tl."_l, so that v € Tl."\Ti”_l.
Then, by (6.23), vV(UU;S;.v) = ¢V (Siv) = a
and v € V\{J j T;_l. Moreover, it is not possible that
wV(Uj Si,v) > ¥V (S;, v), since this would imply that,
if k is any index for which wV(Uj Si,v) = ¥V (Sk, v), then
V(S0 = ¥V, S0 > ¥Y(Si,v) = an, so that
YV (S v) =vV(U; Sj.v) = @i (e, v € Z; ") which,
by the inductive assumption, would mean that v € T} -1

. -1 1%
contradicting v € V\J; T;' - Hence ¥" (UJ; Sj.v) =
wV(Si, v) = o, and we again have that v € Zlf’. So, indeed,
]‘;_n g Z,n

To see that Zlf’ C Tl” let v be an arbitrary point in Z;’. We
need to show that v € T". As v € Z we either have that
V(S v) =¢V(U; S), v) = @, or have that ¥V (S;, v) =
wV(Uj S;,v) > ay_1. In the former case v € V\ Uj Z;?_l
andsov € V\ | j Tj"_l by the induction hypothesis, whence
(VNS Tl” by (6.23) since wV(Si, v) = «,. In the latter case
v €E Zf'_l =T “lc T/ by the induction hypothesis. This
completes the proof of e.

For 1 <i < M wehave that OR'C = 7"\ |J,, 7/ =
Zl‘.AI\ U i Z‘jA‘ by statement 1(b) of Theorem 2.4 and
e, and we see from the definition of Z! that Z}A‘
fv eV | yYSi,v) = max; ¥V (Sj,v) > 0} because

@ Springer

vV, Sj.v) = max; ¥ (S}, v). Hence ORFC =z
A

Ujwi 2 = v e V19V (S, v) > maxjz ¢ (S, v)} for

1 <i < M, which proves statement 2 of Theorem 3.6 and

readily implies statement 1 of the theorem.

6.4 Proof of Theorem 3.10

The equivalence of statements 1 and 2 of the theorem follows
from statement 3 of Theorem 3.4 and the definition of O;I"S.
Lemmas 6.6 and 6.7 below will show the equivalence of
statements 1 and 2 to statement 3. The following result, which
may be of some independent interest, will be used in the proof
of Lemma 6.6:

Proposition 6.5 Let V = (Y1, ..., ¥uy) be any sequence
of affinities on V, let S = (S1, ..., Sy) be any sequence of
pairwise disjoint nonempty subsets of V, and let (v, . . ., V)
and {wo, ..., wy) be any recursively (¥, S)-optimal V-
paths. Then Ys((vo, ..., vk, wi)) < Ys((wo,..., wr)),
and these two values are equal if and only if (v, . . ., Vk, W)
is also recursively (W, S)-optimal.

Proof We have that Ys((vo, ..., vk, wi)) = Ys(wo, ...,
wyr)) if (v, ..., vk, wy) is recursively (¥, S)-optimal be-
cause two recursively (W, S)-optimal V-paths to the same
point must have the same (¥, §)-strength. There is nothing
else to prove unless

Ys((vo, ..., Vg, wir)) > Ys((wo, ..., wr)). (6.24)
We now assume (6.24) and complete the proof by deduc-
ing that (vg,..., vk, wy) is recursively (W, S)-optimal
(whence we actually have that Ws((vo, ..., vk, wy)) =
Ys((wo, ..., wr)). As ROﬁ((wo, ..., wy)) holds, there
is no V-path p to wy such that ROg (p) and ¥s(p) >
Ws((wo, ..., wy)). This and (6.24) imply there is no V -path
p to wp such that ROg(p) and Ys(p) >
Ys((vo, ..., vk, wi)). Moreover, since RO‘\IS,((UQ, /%))
holds, for 1 < j < k, there is no V-path p to v;
such that RO, (p) and Ws(p) > Ws({vo, ..., v;)). Hence
ROY ((vo, - . ., v, wyr)) holds. O

In Lemmas 6.6 and 6.7, O (¥,S),..., Oy (¥, S) will
denote the sets for which statements 1 and 2 of Theorem 3.10
would be true if we replaced OiMOFS in each those statements
with OF (¥, S). In other words, O} (¥, S), ..., O} (¥, S)
are the sets that satisfy the following (equivalent) conditions:

(@ Forl <i < M,v e Of(¥,S) just if there is a recur-
sively (W, S)-optimal V -path of nonzero (¥, S)-strength

from S; to v.
oS

(b) OF(¥,S8) ={ve Oi\y’s (72 P (8;, v) > 0} for every
1<i<M.
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Lemma 6.6 Let ¥V = (Y1,...,V¥uy) be any sequence of
affinities on V and S = (Sy,...,Su) any sequence of
pairwise disjoint nonempty subsets of V that are consistent
with the affinities. Then (3.1) holds when (O1, ..., Oy) =
(07 (9, S5), ..., O3 (¥, 9)).

Proof Readily, (b) implies

* v.S
p 2 (s 0y = % (S v) foralli € (1..... M)
andall veV. (6.25)
Let (01, .... Oy) = (OF(W.S). ... O (V. S)). letv €

V,and leti € {1,..., M}. To prove that (3.1) holds, it is
enough to show that

. 0; .
(i) If v € Oy, then max;; ¥’ (S, v) < ¥ (Si, v) #0.
(ii) If v ¢ O;, then either max ; w;)" (Sj,v) > wioi (S;, v)

or .7 (S;,v) = 0.

Forl <j <M, letpj,p;.,p}/, andp;.”be(OjU{v})-paths
with the following properties:

e pjis ashortest (O; U {v})-path from §; to v such that
Vi) = v (S). ).

° p} is the O ;-path obtained from p; by omitting its last
point v.

° p;./ is arecursively (¥, §)-optimal O ;-path from S to the
last point of p;.. (Since O; = O;f(\IJ, S), the existence
of p;./ is ensured by (a); moreover, (p;.) <y; (p/j/), by
statement 2 of Theorem 3.4.)

° p}” is the (O; U {v})-path from §; to v obtained by
appending v to p}’.

Then v/ (p;) = wjoj (Sj,v) > w.j(p}”). But since p}” is
obtained by appending v to p}’, whereas p; can be obtained
by appending v to p}, and since v/ (p;./) > (p;), we also

have that ¥; (p;.”) > ¥(p;). Thus:

(S50 = ¥ () forl < j < M. (6.26)

Toestablish (i), suppose v € O; = Ol.*(\IJ, S), sothatthere

is a recursively (W, S)-optimal V-path p of nonzero (¥, S)-
w8

strength from S; to v (by (a)), and Vs (p) = lﬁioi (S;,v) =
1/fl.0i (Si,v) # 0 (by Theorem 3.4 and (6.25)). Moreover,
forall j € {1,..., M}\{i}, on applying Proposition 6.5 to
the recursively (¥, S)-optimal V -paths p’/.’ and p we deduce
that ¥;(p/) = Ws(p}) < Ws(p) = ¥ (Si.v) # 0.
This and (6.26) imply w;)j(Sj, v) < wioi Si,v) # 0
for all j € {1..... M}\{i}, whence max, 4 | (S}, v) <
v (Si.v) #0.

To establish (ii), suppose v ¢ O; = O} (¥, S). By Propo-
sition 3.3, there is a recursively (¥, S)-optimal V-path p
from Sy to v, for some k € {1,..., M}. We know from

v.S

Theorem 3.4 and (6.25) that Ws(p) = wko"’ Sk, v) =
tﬂko ¥(Sk,v). So, on applying Proposition 6.5 to the recur-
sively (W, S)-optimal V-paths p’ and p, we deduce that

either i (p]") = Ws(p]') < Ws(p) = ¥ (St v) or p]is
recursively (W, S)-optimal. In the former case (6.26) implies

U5 0) < (S v), so that max ¥ (S5, 0) >

wio,- (Si, v). In the latter case p;” is a recursively (¥, S)-
optimal V-path from S; to v, and so (since v ¢ O; =
OF (¥, S)) we see from (a) that Ws(p!”) = 0; this and The-
orem 3.4 imply % (S;, v) = 0. O

Lemma 6.7 Let V = (Y1, ..., ¥uy) be any sequence of
affinities on V and S = (S, ..., Sy) any sequence of pair-
wise disjoint nonempty subsets of V that are consistent with
the affinities. Let Oy, ..., Oy be subsets of V that satisfy
(3.1).Then(Oy, ..., Oy) =(OF (W, S), ..., Oy (¥,S5)).

Proof We will deduce the lemma from the following claim:

Claim: For all m € {1,..., M} and v € V, a V-path
p from S, to v such that ¥,,(p) # 0 is a recursively
(W, S)-optimal V-path if and only if p is a hereditarily
(Ymlo,,x0,,» Sm)-optimal O,,-path.

As (3.1) implies S;, € Oy, this claim is valid if the length
of p is O: In that case p = (v), v € S, Ys(p) = 1, and
1//,,? " (Sm,v) = 1, so p is both a recursively (¥, S)-optimal
V-path and a hereditarily (¢, , Si)-optimal O,,-path. We
now assume as an induction hypothesis that, for some « €
(0, 1] and some integer [ > O:

e The claim is valid whenever Vg5 (p) > «.
e The claim is valid whenever s (p) = « and the length
of p is less than /.

We will deduce from this induction hypothesis that the claim
is valid whenever Ws(p) = « and the length of p is /. This is
enough to prove the claim, since there are only finitely many
possible values of Ws(p).

Soletm € {1,...,M} and v € V. Let p be a V-path
from S, to v such that ¥s(p) = « > 0 and the length of p
is/ > 0.Forl < j < M letus write o, for ¥/j[0;x0,. The
cases we must rule out are as follows:

(1) p is a recursively (¥, S)-optimal V-path but is not a
hereditarily (¥¢,,, Sn)-optimal O,,-path.

(i) p is not a recursively (¥, S)-optimal V-path but is a
hereditarily (¥ ¢,,, Sn)-optimal O,,-path.

To derive a contradiction in case (i), let p’ be the V-
path of length [ — 1 obtained from p by omitting its last

@ Springer



332

J Math Imaging Vis (2016) 55:304-342

point, v. Since p is a recursively (W, S)-optimal V-path
from S, so is p’. Moreover, ¥s(p') > W¥s(p) = «. So
it follows from our induction hypothesis that p’ is a heredi-
tarily (Y o,,, Sm)-optimal O,,-path. Therefore, since p itself
is not a hereditarily (y¢,,, Sim)-optimal O,,-path, either (1)
v € O, but ¢n?"’(sm, v) > Ym(p),or Q) v ¢ Op. If (2)
applies, then (since wn?’" S, v) = Yu(p) > 0) we see
from (3.1) that there is some j € {l,..., M}\{m} such
that 1//].0" Sj,v) > w,f'"(sm, v) > Y, (p). So, regard-
less of whether (1) or (2) applies, max; 1//j0j Sj,v) >
Ym(p). Let k € {1,..., M} be such that I/Ikok(Sk, v) =

max wjgj (Sj,v) > Ym(p). Then v € Ok by (3.1), and
so (by Proposition 3.1) there exists a hereditarily (Yo, , Sk)-
optimal O-path p” to v. Now Y (p”) = ¥ *(Sk, v) >
Y (p), so the induction hypothesis implies p” is a recur-
sively (W, §)-optimal V-path to v. But this is a contradiction,
since p is also a recursively (W, S)-optimal V-path to v and
k(") > Ym(p).

To derive a contradiction in case (ii), let p = (vg, ..., v;),
so that vg € S, and v; = v. Since p is not a recursively
(W, S)-optimal V-path, there is some i € {1,...,1} for
which there exists a recursively (¥, S)-optimal V-path p”’
to v; such that Wg(p”) > Ws((vy, ..., v;)) > ¥s(p) = .
By the induction hypothesis, p”” is a hereditarily (Yo, , Sk)-
optimal Ok-path forsomek € {1, ..., M}.So wko" (Sk,vi) =
Us(p”) > Ws((vo,...,v)) = ¥m((vo,....v;)) =
wn? " (Sm,vi), where the last equality follows from the
hypothesis that p is a hereditarily (Yo, , S)-optimal O,,-
path. Thus wkok (S, vi) > w,f,)’”(Sm, v;), which contradicts
(3.1) because p is an Op,-path and so v; € Oy,.

We have now justified the claim. The lemma follows
from the claim and the following two facts. Firstly, for all
m € {1,..., M} we see from (a) that v € O, (¥, S) if
and only if there is a recursively (W, S)-optimal V-path
p from S, to v such that i,,(p) # 0. Secondly, for all
m € {l,..., M} we have that v € O,, if and only if there
is a hereditarily (¥ |0,,x0,,» Sm)-optimal O,,-path p to v
such that ¥, (p) # 0: The “if” part is trivial (as all points
of an Oy,-path lie in O,,); the “only if” part follows from
Proposition 3.1, since (3.1) implies 1/fm0”’ (Sm,v) # 0O for all
v € Op. |

Completion of the Proof of Theorem 3.10

Theorem 3.4 and Lemmas 6.6 and 6.7 imply the equivalence
of statements 1, 2, and 3, so it is now enough to prove state-
ment 1. In fact we will make a more general claim, which
uses the notation of Theorem 2.6:

Claim For 1 <n < |A|,1 <i < M,andv € V, we
have that v € T/ if and only if there is a recursively (¥, S)-
optimal V-path of (¥, S)-strength > «,, from S; to v.

@ Springer

As statement 1 is just the case n = |A| of this claim, Theo-
rem 3.10 will be proved if we can justify the claim.

We see from statement 1(a) of Theorem 2.6 that the claim
is valid when n = 1: The “only if” part is true because if
v e Tl.1 then there is a V-path of ;-strength oy = 1 from
Tl.0 = §; to v, and any such V-path is recursively (¥, S)-
optimal. The “if” partis true because the seed sets Sy, . .., Sy
are consistent with the affinities 1, ..., ¥y, whence a V-
path from S; to v of (W, S)-strength «; = 1 must be an
(S;U(V\U; $j)-path (e, a (T U(V\ U, T}))-path) and
so the existence of such a V-path would imply v € Til.

‘We now assume as an induction hypothesis that the claim
isvalidforn = k—1 (where k is some integerin {2, ..., |A[})
and complete the proof by deducing that the claim is also
valid when n = k.

To establish the “if”” part of the claim in the case n = k,
leti € {l,..., M} and v € V, and suppose there is a recur-
sively (¥, S)-optimal V-path (v, ..., v;) from vy € §; to
v; = v such that ¥; ((vo,...,v;)) > ar. What we need
to show is that v € Tik. If ¥i((vo,...,v)) > ak—1, then
v E Tl.k_1 - Tik by the induction hypothesis. Soletus assume
vi((vo, ..., v1)) = ak. Let m be the least index in {1, ..., [}
such that v; ((vo, ..., Um)) = o, so that ¥; ((vo, ..., V) =
ar form < r < [. Then for m < r < | we must have
that v, € V\U; T}~", forif v, € U; T/~" the induction
hypothesis would imply there is a recursively (W, S)-optimal
V-path of (¥, S)-strength > a1 > Ws((vo,...,vr))
from Uj S; to vy, which is impossible since (v, ..., v;)
is recursively (¥, S)-optimal. Moreover, for 0 < r < m,
(vo, - .., vp)is arecursively (¥, S)-optimal V-path from S;
to v, such thaty; ({vo, ..., v;)) > ar—_1,and so the induction
hypothesis implies v, € T/‘*l. It follows that (vg, ..., v;) is
a (Tl.k_1 U (V\ Uj T;‘_l))-path from vy € S; to v = vy, and
that v = v € V\J; T;‘—l. Since ¥; ((vo, ..., v)) = ak,
we see from statement 1(a) of Theorem 2.6 that v € Tik , as
required.

To establish the “only if” part of the claim in the case n =
kdeti € {1,...,M}andv € TF.1f v € T then the claim
is valid (by the induction hypothesis) so let us assume v €
Tik\Tik_l. Now we see from statement 1(a) of Theorem 2.6

TFluw\ . 76!
that v € V\Uj T;‘_l and ¥, ' MU T )(Sivv) = ag.

Let (v, ..., v;) bea (Tik_1 U\ Uj T}‘_l))-path fromvg €
S; to v = v such that ¥; ({vo, ..., v;)) = &, and let m
be the greatest index in {0, ..., [} such that v, € Tl.k_l,
so that v, € V\UjT;‘_l form+1<r <[ Asv, €
Tl.k_l, the induction hypothesis implies there is a recursively
(W, S)-optimal V-path (ug, ..., us) from ug € S; to ug =
vy, such that ¥; ((uo, .. ., us)) > or—1. Now consider the V-
path (uqg, ..., us = U, Vg1, ..., V). Form+1 <r <1
we have that
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wi((u()v"'aux = UI’H9UWl+19""vV>)
= min(¥; (o, ..., us)), Yi((Um, ..., vr)))
Z min(lﬁli((u()? cet uS))’ 1/H((v()a M} vl))) = 0

so it follows from the induction hypothesis (and the fact
that v, ¢ U i T}‘_l) that no recursively (W, S)-optimal
V-path ¢ to v, satisfies Ws(q) > WYs({ug,...,us =
Ums Um+1s - - - » Ur)). This and the recursive (¥, S)-optimality
of (ug, ..., us) imply that (uq, ..., Us = Un, Unt1, ..., V1)
is a recursively (W, S)-optimal V-path, and so we have
shown that there is a recursively (¥, S)-optimal V-path of
(W, S)-strength > a4 from S; to v; = v, as required.

6.5 Proof of Theorem 3.8

In this proof we assume the hypotheses of Theorem 3.8 are
satisfied. In addition, we will use the notation

def
=) S
J#

for 1 <i < M. For every Q C V we see from the defin-
ition of wQ that max ; wQ(Sj, v) = wQ(X,-, v). So a set
O C V satisfies the condition of statement 2 of Theorem
38 justif O = {v eV [yV\9(X;,v) < ¢¥9(Si,v)}, and
satisfies the condition of statement 3 of the theorem just if
0={veV|y"\9X;, v) <" (S, v)}. (Note that each
of these conditions implies X; € V\0.) We will deduce
Theorem 3.8 from these simple observations and three lem-
mas.

Lemma 6.8 Leti € {1,...,M} and let O C V be such
that O = {v e V | ¢\ (X;, v) < ¢V(Si,v)}. Then O =
{veV | y"\oX;v) <O, v}

Proof We first claim that, for any v € O, every hereditar-
ily (¢, S;)-optimal V-path to v is an O-path. To justify this
claim, let p = (vo, ..., v;) be a hereditarily (v, S;)-optimal
V-path to a point in O and, by way of contradiction, suppose
p is not an O-path. Let k € {0,...,] — 1} be the largest
index such that vy ¢ O. As vy ¢ O, ¥vV\O(X;, n) £
YV (Si,v) = ¥ ((vo,...,vx)) and so there is a (V\O)-
path ¢ from X; to v such that ¥ (q) = ¥\ (X;, vx) &
¥ ((vo, ..., vk)). But now vgyy is the only point of g -
(Vk, Vg+1) that lies in O, and so wV\O(Xi, Vk+1) £
V(g - (v vks1) £ (o, ve1) = ¥V (S, vk as
(vo, ..., vy) is hereditarily (¥, S;)-optimal. As this contra-
dicts the fact that v+ € O, the claim is established. The
claim implies that ¥V (S;, v) = w2 (S;, v) forall v € O. So
if v € O then we have that ¥V\9(X;, v) < ¥ 9(S;, v); the
converse is evidently true because ¥ (S;, v) < ¥V (S;, v)
forallv e V. O

Lemma 6.9 Leti € {1,..., M} and let O C V be such
that O = {v e V [ "\ (X;, v) < ¥ (S, v)}. Then O =
{veV y"\oXiv) <yV(S v}

Proof Let 0' = {veV|yV\9%X;,v) <y (S, v}
Clearly O C O/, as WO(Si, v) < wV(Si, v). To see the
other inclusion, let v € O’ and, by way of contradiction,
suppose v ¢ O.

Let (vg,...,v;) be a hereditarily (¥, S;)-optimal V-
path from v9 € S; to vy = v € O\O, and let
k be the least index such that vy ¢ O. Then, since
v ¢ 0, vV\OX; v = oS, v) and so there
exists a (V\O)-path g from X; to vy such that ¥ (g) >
wO(Si, vx). Moreover, since v; € O for0 < j < k, we
have that ¥ 2 (S;, vi) > ¥ ((vo, ..., vr)). Hence ¥ (g) >
¥ ({vo, ..., vk)). Now let k + m be the least index greater
than or equal to k such that viy,, € O’. Then vii, is
the only point of g - (vg, ..., Vk4n) that might lie in O C
0, and so "\ (Xi, vkym) = ¥ (g - (k- Vi)
Yo, .y Vi) = ¥V (Si, vkam) as (vo,...,v) is
hereditarily (v, S;)-optimal. But this contradicts the fact that
Vk+m € 0. O

v

Lemma 6.10 Let i € {l1,...,M}, and let O and O’
be subsets of V that, respectively, satisfy the conditions
0 =1{eV|yv"\%;,v) < ¢S, v)}and O =
eV | y\oX;, v) < ¥V (S, v)). Then O = O'.

Proof As the statement of the lemma is symmetric with
respect to O and O’, it is enough to show that O’ € O.
To do this, let v be any point in V\ O. Then what we need to
show is that v € V\O'.

Suppose not. Then v € O’. But, since v € V\O and X; C
V\ O, there must exist a hereditarily (¥'|(v\0)xv\0), Xi)-
optimal (V\O)-path (vg, ..., v;) fromvg € X;tovyy = v €
O’ (by Proposition 3.1). Let k be the least index such that v €
O’. Then (v, ..., v) isa (V\O') U {v;})-path from X; to
v, 50 Y ((vo, -, vi)) < VN0 (X, wp) < Y (Si, ) the
second inequality holds because vy € O’. But (v, ..., v;)
is a hereditarily (¥'|(v\0)x(v\0), Xi)-optimal (V\ O)-path,
so we have that ¥ ((vo, ..., ) = vV\OX;, v) >
wV(S,', Vg ); the inequality holds since vy € V\ O. This con-
tradiction proves the lemma. O

Completion of the Proof of Theorem 3.8

Leti € {1,..., M}. Lemma 6.10 implies that if there is a set
O which satisfies the condition of statement 3 then it is the
unique set with that property. Lemmas 6.8 and 6.9 imply that
the condition on O in statement 2 is equivalent to the condi-
tion on O in statement 3. Thus the proof of Theorem 3.8 will
be complete if we can show that Ol.IRFC satisfies statement 1
and also prove that Ol.IRFC is aset O that satisfies the condition
of statement 2. For this purpose, let (O{VIOFS, el O},’IIOFS)
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be the MOFS segmentation of V found by Algorithm 3 for
seed sets (S1, ..., Sy) and affinities (Y, ..., ¥).

To see that OiIRFC satisfies statement 1, fix av € V. By
Corollary 2.7, O/RF C = OiMOFS\ Uj i O?AOFS. Hence, by
statement 1 of Theorem 3.10 and Corollary 3.5, v € OiIRFC
if, and only if, i is the unique index k € {1, ..., M} for which
there exists a hereditarily (¥, | j Sj)-optimal V-path from
Sk to v. (Here we are also using the fact that if i is the unique
index k € {1, ..., M} for which there exists a hereditarily
w, U ; Sj)-optimal V-path from Sy to v, then such a V-path
has nonzero ¥ -strength: For if its i-strength were O then
¥ (U; Sj, v) = 0 and so a V-path of length 1 from any Sy
to v would be hereditarily (v, | j Sj)-optimal.) So we have
proved that OiIRF C satisfies statement 1.

It remains to prove that OiIRF C is a set O which satisfies
the condition of statement 2. To do this, fixani € {1, ..., M}
andlet 0% = {v € V | maxjz ¥V \0" (S;,v) < pO
(S;, v)}. Then what we need to show is that OiIRFC = 0*.To
show this, we first observe that statement 3 of Theorem 3.10
readily implies:

IRFC MOFS MOFS
0 = 0; \Uj;éi 0;
(MOFs (OMOFS
= U€V|man#,'1/f J (Sj,v)<w i (S;,v)t.

6.27)

Since V\OiIRFC ) O}MOFS whenever j # i, and since
OiIRFC C OiMOFS, for every v € O* we have that
max;z p O (S, v) < maxs VNS, v)
OiIRFC(Si, v) < szMOFS(Si, v), whence v € OiIRFC by
(6.27). Thus O* C OI.IRFC. The reverse inclusion OERFC -
O* is a consequence of (6.27) and the following two facts,
which we establish below:

MOFS
If v e ORFC, then max;y 0 (Sj,v)

IRFC
= max lﬁv\oi (Sj, V). (6.28)
If v e OFC then w0 (S, v)
IRFC
=0 (S, v) = ‘/’V(Uj S;,v). (6.29)

To establish (6.28) and (6.29), fix a v € O/RFC. The first

step in justifying (6.28) is to observe that max j; 1//V\OIIRFC

OMOFS IRFC
(Sj,v) = maxjz ¥/ (Sj,v) because V\O; 2
O;VIOFS for all j € {1,..., M}\{i}. But we must show
MOFS
max j woj (Sj’ v) > max wV\O}RFCIIEIi/, v). This is
plainly true if v € (J; 4; §j ormax ;i ¢\ (Sj,v) =0,
so we assume v ¢ J;; S and max wV\OERFC(Sj, v) >
0. Let n be any element of {1,..., M}\{i} such that
Y\ (S,, v) = maxj4 v\ (). v) > 0 and let
p = (vo, ..., v;) be ashortest ((V\OZ.IRFC) U {v})-path from

@ Springer

S, to v with ¥ (p) = ¥V\""(5,, v) > 0. Then vy € S,
andvy =v ¢ S,,s0l > 0. Also, vy, ..., v_1 € V\OiIRFC
and so vg, ...,V € Uj O?AOFS\O}RFC = Uj# OyOFS
by Corollary 3.12, since ¥(p) > 0. Hence v;_; € O}CVIOFS
for some k # i. For this k it follows from Theorem 3.10
and Corollary 3.5 that there exists a hereditarily (v, |J; S;)-
optimal V-path ¢ from S to v;_1, and by Corollary 3.11
q is an OMOFS_path. Now ¥ (q) > ¥ ({vo, ..., vi—1)) as g
is (¥, U; S;)-optimal. So g - (v—1, v) is a (OO U {v})-
path from S to v with ¥/ (g - (vi—1, v1)) = ¥ ({vo, ..., V1)) =
¥ (p). We therefore have that

MOFS
max O (S5, 0) = Yy (S v)
1

J#
> Y(g - (v—1,v) = ¥(p)
= (S, 0)

= max wV\OiIRFC (Sj,v).
J# |

So max IﬁO}VIOFS (Sj,v) > max;y wV\OiIRFC(Sj, v),
and (6.28) is proved.

To establish (6.29), let p = (v, ..., v;) be a hereditarily
Y, Uj S;)-optimal V-path to v € OiIRFC. Then ¥ (p) =
wV(Uj S, v),and vy € S; by statement 1 (of this theorem).
We claim pisan OI.IRFC-path. To see this, fixak € {0, ...,[}
and, by way of contradiction, assume vi ¢ OI.IRFC. Then, by
statement 1, there exists a hereditarily (v, | j Sj)-optimal
V-path g from S; to v for some j # i. This readily implies
q - (Vk, ..., ) is a hereditarily (¢, Uj S;j)-optimal V-path
from S; to v, which contradicts statement 1 as j # i and v €
O}RFC. Thus p is indeed an OZ.IRFC-path (from vy € §; tov),
and so since OZMOFS ) OiIRFC we have that 1/;01M ors (S;,v) >

v S, = () = vV S = 0 (s, ),
which implies (6.29).

6.6 Proof of Theorem 3.13

Let us assume for the moment that ¥ (1, v) < 1 for all dis-
tinct # and v in V. After we prove the theorem under this
hypothesis (which implies S is consistent with ), we will
deduce that the theorem is true even if this hypothesis is not
satisfied.

As b is a (Y, S)-bottleneck point, there is a hereditarily
Y, Uj S;)-optimal V-path (vo, ..., v) such that v; = b
and none of vy, ..., v_1 lies in TZ(y, S), so that v, €
U, 0§RFC(¢, S)for0 < k < [ — 1. Let i be the ele-
ment of {1,..., M} such that v9 € S;. Then for 0 <
k < | — 1 we see from statement 1 of Theorem 3.8 that
ve & U O}RFC(w, S), because the V-path (vg, ..., vg) is
a hereditarily (v, j Sj)-optimal V-path from S§; to vy. So,
since v € Uj O}RFC(V/, S) for0 < k <[ —1, we have that
v € ORFC(y, S) for0 <k <1—1.
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Now let € be a positive constant such that € < § and such
that

1. ¥ (u,v) + € < 1 for all distinct points # and vin V.
2. € < |x — y| for every pair (x, y) of distinct values in the
range of .

Let v/ be the affinity on V such that ¥'(v;, viy1) =
Y (i, vip1) + € and ' (vig1, v) = Y (vig1, v;) + € for
0 <i <l and ¥/ (u, v) = ¥ (u, v) for all other pairs (u, v)
inV x V,sothat || — || =€ < § and ¥’ is symmetric if
Y is symmetric. Note that ¥/ (u, v) < ¥ (u,v) + € < 1 for
all distinct # and v in V, by property 1. Hence S is consistent
with /',

For all V-paths p, it follows from property 2 that the
value of ¥/ (p) is either ¥ (p) or ¥ (p) + €. From this and
property 2 we deduce that ¥'(p) < ¥’(g) for all V-paths
p and g such that ¥ (p) < ¥(q), and hence that every
hereditarily (', (J; Sj)-optimal V-path is also a heredi-
tarily (v, U j Sj)-optimal V-path. This and statement 1 of
Theorem 3.8 imply that ORC(y, §) € ORFC(y’, ) for
1<j<M,whence TZ(y/',S) C TZ(y,S).

We claim there is no hereditarily (v', | ; Sj)-optimal V-
path from J j#i Sj to b.Indeed, suppose p is such a V-path
(so that each initial segment of p is also such a V-path). Then
no point of OiIRFC(I/f, S) is a point of p (by statement 1 of
Theorem 3.8), whence none of vy, ..., v;—1 is a point of p
and so ¥'(p) = ¥ (p). Moreover, since p is a hereditarily
(', U; Sj)-optimal V-path to b, p is also a hereditarily
W, Uj S;j)-optimal V-path to b (just as (v, ..., vy) is) and
therefore ¥ (p) = ¥ ((vo, ..., v)) = ¥ ({vg, ..., v;)) — €.
Hence ¥/ (p) = ¥'({vo, ..., v;)) — €, which contradicts the
W', Uj S;)-optimality of p, as (v, ..., v;) and p are both
V-paths from J; S; to b. So our claim is valid.

It follows from the claim (and statement 1 of Theorem 3.8)
that b € OZ.IRFC(W,S), whence b ¢ TZ(y',S) and so
(since TZ(y',S) C TZ(,S)) we have that TZ (', S) C
TZ(y, S)\{b}. This completes the proof of the theorem
under the additional hypothesis that ¥ («, v) < 1 for all dis-
tinct u and vin V.

To prove that the theorem holds even without this extra
hypothesis, let ¥ * be the affinity on V such that ¥*(u, v) =
A (u, v) for all distinct # and v in V, where X is a positive
constant in the open interval (1 —§/2, 1). Then ||y — ¢/ || <
1 —A < §/2 and ¥*(u, v) < 1 for all distinct points u
and v in V. Readily, (OIRFC(y*, S), ..., ORC(y* §)) =
(ORFC(y, S), ..., O'RFC(y, S)) and hence TZ(y*, S) =
TZ(Yy,S) # . Moreover, a V-path is hereditarily
(¥*, Uj S;)-optimal just if it is hereditarily (1, Uj Si)-
optimal, and so a point is a (¢*, S)-bottleneck point just
if itis a (¢, S)-bottleneck point. As we have already shown
that the theorem is true if ¥ (u, v) < 1 for all distinct u
and v in V, we know the theorem is true with ¥* and

8/2 in place of ¥ and 8. Moreover, ¥* is symmetric if
Y is symmetric. Hence there is an affinity ¥’ on V such
that || — ¥*| < 8/2 (which implies ||y — ¥| < §),
TZW',8) € TZY*, SH\b} = TZ(Y, S)\{b}, and ¥ is

symmetric if ¢ is symmetric. This proves the theorem.
6.7 Proof of Theorem 5.4

We will deduce the theorem from the following lemma:

Lemma 6.11 Let V = (y1,...,V¥y) be any sequence
of affinities on V, and let S = (S1,...,5u), R =
(R1, ..., Ry), and P = (P1, ..., Py) be three sequences
of pairwise disjoint nonempty subsets of V that have the fol-
lowing properties for 1 <i < M:

(i) Si SR € P;.
(ii) Foreachv € P; there is a recursively (W, S)-optimal V -
path p, from S; to v such that 1/fl.®(v, VAP;) < ¥i(py).
(iii) There is no recursively (V,S)-optimal V-path from
Uj;éi Sj to P;.

Then for 1 <i < M we have that

1. If (wo, ..., wg) is any V-path in which wy € P; and
wy € V\P;, then:

Vi (Pwy - (Wo, ..., we)) = i ((wo, . .., Wg)).

2. Forallv € V\P; and & € [0, 1], there is a recursively
(W, 8)-optimal V-path of (¥, S)-strength & from S; to
v if and only if there is a recursively (¥, R)-optimal V -
path of (¥, R)-strength & from R; to v.

3. Forallv € Pand & € [0, 1], if i (py) = & then there is
a recursively (W, R)-optimal V -path from R; to v whose
(Y, R)-strength is > &.

Proof Leti € {1,..., M}. Then under the hypotheses of
statement 1 it follows from property (ii) that ¥;(py,) >
¥ (wo, V\P;) > v (wo, wy). Hence,

Vi (puy - (wo, - .., wi))
= min(Y; (puy), Vi(wo, wi), ¥i((wi, ...
= min(y; (wo, w1), ¥i (wi, ..., wk)))
= ¥i((wo, ..., V).

, Wi)))

This proves statement 1.

Now we prove statements 2 and 3. As before, let i €
{1, ..., M}. Bearing in mind that every V-path from S; is a
V-path from R; (since S; € R;) and that every V -path from
R; of y;-strength 1 is recursively (¥, R)-optimal, we see
that statement 3 and the “only if” part of statement 2 are true
when & = 1. To see that the “if” part of statement 2 is true

when & = 1, suppose there is a V-path p of (¥, R)-strength

@ Springer



336

J Math Imaging Vis (2016) 55:304-342

1 from R; to v € V\P;. Then there are two consecutive
points a and b of p such thata € P; and b € V\P;, and
it follows from property (ii) that v; (pg) > wiw (a, V\P;) >
Yi(a,b) > Y (p) = 1, whence ¥ (p,) = 1. Concatenation
of p, with the part of p that consists of a and all subsequent
points produces a V -path from S; to v whose (¥, S)-strength
is 1, and which is therefore recursively (W, S)-optimal.

Having verified that statements 2 and 3 hold when & = 1,
we now assume as an induction hypothesis that (for some
a € [0, 1)) statements 2 and 3 hold whenever & > «. We
will complete the proofs of statements 2 and 3 by deducing
from this induction hypothesis that statements 2 and 3 hold
when § = «. (This proof method depends on the fact that
if statement 2 or 3 were false then there would have to be
a greatest value of & for which that statement is false, since
there are only finitely many values of £ for which there exists
a V-path whose (¥, S)- or (W, R)-strength is &.)

We first deduce from the induction hypothesis that state-
ment 3 and the “only if” part of statement 2 are true when
& = «a. Suppose there is a recursively (¥, S)-optimal V-
path p = (vo, ..., v;) from §; to v = v; such that ¥g(p) =
¥i(p) = a. We will deduce from the existence of p that

(a) Thereexistsarecursively (W, R)-optimal V -path g from
R; to v; = v such that VR (¢) > «.

(b) If vy = v € V\ P;, then this recursively (¥, R)-optimal
V-path g satisfies U (¢) = «.

Note that if we can establish (a) and (b), then we will have
deduced that both statement 3 and the “only if” part of state-
ment 2 are true when £ = «.

Now (a) and (b) are certainly true if p itself is recur-
sively (W, R)-optimal, so let us assume p is not recursively
(W, R)-optimal. Then there is a greatestindex m in {1, ..., [}
for which there exists a recursively (¥, R)-optimal V-
path p’ to vy, such that ¥ (p") > Wr((vy,..., V) =
vi((vo, ..., vm)) = ¥i(p) = «. Since (vg, ..., vy) 1s a
recursively (W, S)-optimal V-path from S; to vy, it follows
from property (iii) that v, € V\;,; P;. If p’ were a V-
path from R; for some j # i, then (since v, € V\P;))
the induction hypothesis would imply there is a recur-
sively (W, S)-optimal V-path p” from S; to v, such that
Ys(p”) = Yr(p) > ¥i({vo,...,vn)), contrary to the
recursive (¥, §)-optimality of p.

Hence p’isa V-path from R;, so thaty; (p') = YR (p') >
Yi((vo, ..., vm)). Let ¢ = p' - (vm,...,v;). Then g is
recursively (W, R)-optimal: Otherwise, since p’ is recur-
sively (¥, R)-optimal but ¢ = p’ - (U, ..., ;) is not,
there would be some k in {m + 1,...,[} for which there
exists a recursively (W, R)-optimal V-path g’ to vy such that
YR(G) > YR(P - (Vm, s vk) = Vi (P (Vs -+, k) =
¥ ((vo, ..., vr)) (where the > holds because ¥;(p’) >
¥i({vo, ..., vm))), contrary to our definition of m. More-
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over, Vr(q) = Vi(g) = ¥i({vo, ..., v)) = ¥i(p) = «
because ¥; (p") > Vi ({vo, ..., vy)). This establishes (a).

If vy = v € V\P;, then we cannot have that ¥ (g) =
¥i(q) > o, forin that case it would follow from the induction
hypothesis that there is a recursively (W, S)-optimal V -path
q" from §; to v such that ¥g(g") = V(q) > a = ¥Ys(p),
which would contradict the recursive (W, S)-optimality of p.
This establishes (b). Thus we have shown that if statements
2 and 3 hold when & > «, then statement 3 and the “only if”
part of statement 2 hold when § = «.

It remains to deduce from the induction hypothesis that
the “if” part of statement 2 is true when & = «. Suppose
p = (ug,...,u;) is a recursively (W, R)-optimal V-path
from R; to v € V\ P; such that ¥ (p) = «. (Thus ug € R;
and u; = v.) We need to deduce that there is also a recursively
(W, S)-optimal V-path of (¥, S)-strength « from S; to u; =
v.

Let 7 be the greatest index in {0, ...,[/} such that u; €
P;, and let g be the V-path py,, - (u;,...,u;) from S; to
u; = v. By statement 1, ¥;(q) = v¥i((us, ..., u;)) >
¥i(p). On the other hand, since (ug, ..., u;) is a recur-
sively (W, R)-optimal V-path from R; to u; € P; such
that ¥; ((uo, ..., us)) > ¥i(p) = «, and statement 3 holds
when &€ > « (by the induction hypothesis), we cannot
have that ¥;(py,) > Vi((uo, ... us)). Hence ¥i(py,) <

Vi{uo, ..., u;)) and so ¥i(q) = Vi(pu, - (ur ..., u1)) <
Vi((uo, ..., wm)) = vi(p) = a. Therefore ¥i(q) =
vi(p) = a.

We claim that ¢ is recursively (¥, S)-optimal. Suppose
not. Then, since p,, is recursively (¥, S)-optimal but g =
Pu, - (Us, ..., uy) is not, there is some k € {r +1,...,1}
for which there exists a recursively (W, §)-optimal V-path
g’ to uy such that Us(q") > Ws(py, - (Ur, ..., ux)) =
Yi((uygy ... uk)) = Wr(p) = o, where the first equal-
ity follows from statement 1. As Ws(g') > «, it follows
from the induction hypothesis that there is a recursively
(W, R)-optimal V-path ¢” to u; such that W(q”) >
Vs(q) > vilus, ... uk)) = Yr({uo, ..., ux)), contrary
to the recursive (W, R)-optimality of p = (uo, ..., u;). This
contradiction justifies our claim. Thus we have shown that if
statements 2 and 3 hold when & > «, then the “if” part of
statement 2 holds whenever £ = «. This completes the proof
of the lemma. O

Deduction of Theorem 5.4 from Lemma 6.11

We claim that, for | < i < M and all points v € V,
there exists a recursively (¥, R)-optimal V-path of nonzero
(W, R)-strength from R; to v if and only if there exists
a recursively (W, S)-optimal V-path of nonzero (¥, S)-
strength from S; to v. As this claim, Proposition 5.3, and
Theorem 3.10 imply OlMOFS(‘-Il, S) = Ol.MOFs(LIJ, R) for
1 <i < M, it remains only to justify the claim.
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Define P; = Core}y’s for 1 < j < M. Then we see from
Definition 5.1, Theorem 3.10, and Corollary 3.11 that the sets
P, ..., Py and Ry, ..., Ry have the properties (i), (ii), and
(iii) of Lemma 6.11. Now let i € {1, ..., M}. Then it fol-
lows from statement 2 of the lemma that the claim is correct if
v € V\P;. Next, suppose v € P;,sothatv € OIMOFS v, S).
Then there exists a recursively (W, S)-optimal V-path of
nonzero (¥, S)-strength from S; to v (by Theorem 3.10),
and so it follows from statement 3 of the lemma that there
also exists a recursively (¥, R)-optimal V-path of nonzero
(W, R)-strength from R; to v. Thus the claim is correct if
v € P;. We have now shown that the claim is correct for all
v € V, and so the theorem is proved.

6.8 Justification of Algorithms 4 and 5

We now show that Algorithm 5 achieves what is promised
by its Result lines. This will be deduced from:

Proposition 6.12 The following statements are true for
everya € (0,1, v € V,andi € {1,..., M} at the end
of each iteration of the main loop of Algorithm 5:

1. If o[v] = «, then there is a recursively (V, S)-optimal
V-path p, from Uj S; to v satisfying Vs(py) > a.

2. Ifo[vl]=aand x'[v] = true, and H no longer contains
any point u such that olu] > «, then there is a recur-
sively (¥, S)-optimal V -path pf) from S; to v satisfying
Ws(ph) =vi(p)) = a. ,

3. Ifthereis arecursively (W, S)-optimal V -path p!, from S;
to v satisfying \Ilg(pf)) = l/fl-(pf)) = «, and H no longer
contains any point u such that o[u] > «, then o[v] = o
and x'[v] = true.

As a first step in proving this proposition, we make some
simple observations regarding the algorithm:

(i) Immediately after execution of line 10, the value of
max,cH o [u] is < the value of o [w]. During execution
of lines 11 — 20, the value of max,cH o[u] can change
only when line 15 or line 20 is executed, and when
max,cH o [u] changes the new value of max,cH o [u]
is also < the value of o[W].

(i1) Itfollows from (i) that the value of max, cH o [u] imme-
diately after an iteration of the main loop is < the
value of o[w] at that iteration (which is just the value
of max,cH o[u] immediately before the iteration in
question). Consequently, the value of o [w] at the next
iteration (if H # ) is < the value of o[w] at this
iteration.

(iii) Foreachpointv € V,the value of o [v] never decreases
during execution of the main loop. Moreover, the value
of o[v] cannot change at an iteration of the main loop

at which the point w that is removed from H satisfies
o[w] < o[v].

(iv) For each point v € V, once v has been removed
from H, the value of o [v] will never change again and
o[v] > o[w] > max,cH o[u] will always hold (even
if v is subsequently reinserted into H by line 20 one or
more times). This follows from (i) and the second sen-
tences of (ii) and (iii), since o[v] = o[W] (as W = v)
when v is removed from H.

(v) Foreachpointv € Vandi € {1, ..., M}, the value of
Xi [v] can change from true to false during execution
of the main loop only when line 16 is executed after
o[v] has been increased by execution of line 15, and
we see from (iv) that this can never happen once v
has been removed from H, even if v is subsequently
reinserted into H.

(vi) At the end of each iteration of the main loop, for
each point v € V such that o[v] > O there is some
je{l,..., M}suchthat x/[v] = true. (This follows
from (v), as one of the values x Iy, ..., XM[v] is set
to true by line 7 or line 17 whenever the value of o [v]
changes.)

(vii) For each point v € V, it follows from (v) that the
number of true values in the set {Xl[v], el XM[v]}
will never decrease once v has been removed from H,
evenif v is subsequently reinserted into H. On the other
hand, each time v is reinserted into H the number of
true values in the set {x'[v], ..., x™[v]} must have
just been increased by 1 (by line 19).

(viii) It follows from (vi) and (vii) (and the fact that no point
x such that o[x] = 0 is ever reinserted into H) that
each point v € V can be removed and reinserted into
H at most M — 1 times, so that v can be removed at
most M times. Since just one of the |V| points of V is
removed from H at each iteration of the main loop, the
loop iterates at most M|V | times before the algorithm
terminates.

We now establish two lemmas that will be used to prove
Proposition 6.12.

Lemma 6.13 Let o™ be any element of Uj Y[V x VI\{O}.
Suppose further that whenever a > a™ statement 3 of Propo-
sition 6.12 holds for every v € V andi € {1, ..., M} at the
end of each iteration of the main loop (of Algorithm 5). Then,
for o = a*, statements 1 and 2 of Proposition 6.12 hold for
everyv e Vandi € {1, ..., M} at the end of each iteration
of the main loop.

Proof Letv € V, and suppose we are at the end of an itera-
tion of the main loop. Suppose further that o [v] = o™ at this
time. By observation (vi) there mustbe some j € {1, ..., M}
such that x/[v] = true. Let x/[v] = true. To prove the
lemma, what we need to show is that:
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A. Thereexists arecursively (W, S)-optimal V -path p,, from
U, Sj to v satistying Ws(py) > o™

B. If H no longer contains any point « such that o [u] > «*,
then there exists a recursively (¥, §)-optimal V -path pf)
from S; to v satisfying \Ilg(pf)) = wi(pf)) =a*

Let x € V be any point such that o[x] > «* and x/[x] =
true. We now define a V-path from S; to x that we will call
the x'-chain for x. Roughly speaking, the x’-chain for x is
the V-path from S; to x such that the x’ value of the k + 1st
point (for each k& > 0 which does not exceed the V-path’s
length) was last set to true when w was equal to its kth point.
We will now give a more precise definition of this V-path.
If x € §;, then we define the Xi-chain for x to be the
V-path (x). Now suppose x ¢ S;. Then either the current
iteration or some earlier iteration of the main loop must have
set x![x]to true by executing line 17 or line 19 when the vari-
able X was equal to the point x and the variable i was equal to
i. We write w (x) to denote the point W that was removed from
H by line 10 at the most recent iteration of the main loop that
set Xi [x] to true. When Xi [x] was set to true at that iteration,
Xi [w(x)] = Xi [w] was true (since lines 13-20 execute only
when Xi [w] = true) and the value of o [x] satisfied o[x] =
o’ = min(o[W], ¥;(W, X)) = min(o[@ ()], ¥i(w(x), X))
(as we see by inspection of lines 13—19). Note that o [x] can-
not have changed since that time—otherwise that iteration
would not be the most recent iteration that set x’[x] to true,
since x![x] is set to false by line 16 each time the value of
o [x] changes during execution of the main loop. By obser-
vations (iv) and (v), the values of o [w (x)] and Xi [w(x)] also
cannot have changed since that time. Hence we still have that

¥ [w(x)] = true and o[x]

= min(o[w(x)], ¥i (w(x), x)) (6.30)

which implies o[w(x)] > o[x] > «*. Moreover, the
most recent iteration at which Xi[w(x)] was set to true
must be an earlier iteration than the most recent iteration
at which Xi[x] was set to true. So, if w(x) ¢ S;, then the
point w(w(x)) exists and is not equal to x or w(x), and, if
o(w(x)) ¢ S;, then w(w(w(x))) exists and is not equal to
x, w(x), or w(w(x)), and so on. Thus, we can construct a
V-path (x, w(x), w(w(x)),...) from x to S;. We define the
x'-chain for x to be the reverse of this V-path.

If the x!-chain for x is (x, ..., x;), then x; = x, o'[xo] =
1 (because of initialization loop 2), and for 0 < k <[ —1
we have that o [x;+1] = min(o [x¢], Vi (xk, xk+1)) by (6.30),
whence o [x;] = ¥; ({x0, ..., xx)) for 0 < k < [. Hence, the
;-strength of the x’-chain for x is o'[x], and if y is the last
point of a proper initial segment of the x’-chain for x, then
the ;-strength of that initial segment is o[y] > o[x] > a*.

For any such y there is no recursively (¥, S)-optimal V-
path p, to y such that Ws(py) > o[y]: Indeed, if such a
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recursively (¥, §)-optimal V -path p{, from S to y exists and
a=Wg( pi) > o[y], then we see from observation (iv) that
H no longer contains any point u such that o [u] > a > o[y]
(since y # x lies on the x‘-chain for x and must therefore
have already been removed from H at least once) and so
statement 3 does not hold when @« = a > o*, v = y, and
i = j (as o[y] # a), a contradiction. Hence, every proper
initial segment of the yx’-chain for x is recursively (¥, S)-
optimal, and so one of the following holds:

Case I: The x!-chain for x (whose (¥, S)-strength is o [x])
is recursively (¥, S)-optimal.

Case II: There is a recursively (¥, S)-optimal V-path p, to
x such that ¥g(py) > o[x].

We conclude from this that A holds, since o[x] > o™ and we
can choose the point v of A as our point x.

Now suppose H no longer contains any point u such that
o[u] > a*. Then Case II is impossible: Indeed, if a > o[x],
then ¢ > «™* and so H no longer contains any point u such
that o[u] > a, whence the existence of a recursively (W, S)-
optimal V-path p{ from S to x such that Ws(py) = a would
imply that statement 3 does not hold when & = a, v = x,
and i = j, a contradiction. So, Case I is the only possibility,
and we conclude that B holds (since we can choose the point
v of B as our point x, and the 1;-strength of the x’-chain for
that point v is o[v] = a®). O

Lemma 6.14 Let a* be any element of Uj Y[V x VI\{0}.
Suppose further that whenever @ > a™ statement 1 of Propo-
sition 6.12 holds for every v € V andi € {1, ..., M} at the
end of each iteration of the main loop (of Algorithm 5). Then,
whena = a*, statement 3 of Proposition 6.12 holds for every
veVandi € {l,..., M} at the end of each iteration of the
main loop.

Proof Letv € V andi € {1,..., M}, and suppose there
exists a recursively (¥, S)-optimal V-path p from S; to v
satisfying Ws(p!) = v (pi) = o*. Suppose further that we
are at the end of an iteration of the main loop and that H no
longer contains any point u such that o[u] > «*. To prove
the lemma, what we need to show is that the following is
currently true:

o[v] = ¥i(p) = a* and x'[v] = true. (6.31)

Let p! = (v, ..., v), where vy € S; and v; = v, and for
0 < k <[ let pi denote the initial segment of pf} that is of
length k (and ends at vg), so that p; = pf). Then we claim
that the following is currently true:
olvk] < ¥i(pr) for 0 <k <. (6.32)
Indeed, if o[vk] > ¥i(pr), then (since statement 1 holds
when o = o] > ¥i(p) = ¥i(p) = «aF) there



J Math Imaging Vis (2016) 55:304-342

339

would exist a recursively (¥, S)-optimal V-path to vy whose
(W, S)-strength is at least o[vg] > ¥;(px), and this would
contradict the recursive (W, S)-optimality of p; = p{). So,
our claim is correct. We will now use (6.32) to show, by
induction on k, that the following is currently true:

olvg] = ¥i(pr) and Xi[vk] =true for 0 <k <I[. (6.33)

This will prove the lemma, since (6.31) is just the case k = [
of (6.33).

Readily, (6.33) is currently true for k = 0, since vy € S;
and so o[vg] = 1 = ¥;(po) and ¥ [vo] = true (because
of initialization loop 2). Now we suppose as our induction
hypothesis that (6.33) is currently true for k = x — 1 (where
k € {1,...,1}) and deduce that (6.33) is currently true for
k=x«.

The induction hypothesis is that currently
o[ve—1] = ¥i(pe—1) and x'[ve—1] = true (6.34)
which implies o[v,—1] > ¥; (pf)) = «a®*. So, since H no
longer contains any point u such that o[u] > «*, we must
have that v,_; ¢ H. Let iteration I be the most recent iter-
ation of the main loop at which v,_; was the point w that
was removed from H, so that v,_; has never been in H since
its removal from H at iteration /. (Iteration / might be the
iteration we are currently at the end of.)

By observation (iv), o[vc—1] = ¥i(pe—1) was already
true at iteration /; and (6.32) was also true at iteration /, by
observation (iii).

We claim that Xi [ve—1] = true must have been true at
iteration / as well: Otherwise, since Xi [w] does not change
at the iteration that removes W from H, there would have to
have been a more recent iteration than I at which x'[ve_1]
was set to true; but this is impossible as it could not have
been done by line 17 (because, in that case, line 15 would
have changed o[v,_1], contrary to observation (iv)) and it
also could not have been done by line 19 (because, in that
case, v,—1 would have been reinserted into H by line 20,
contrary to the definition of iteration /). Thus, our claim is
valid.

During iteration / we had that w = v,_j, and so, our
claim implies x![w] was true when the inner foreach loop on
lines 12 —20 was executed at iteration /. So, at iteration /, the
body of that inner loop was executed once with X = v, and
i = i. (This follows from the fact that (v, _1, vy) is a W-edge
because ¥ (ve—1, v¢) = Yi(pe) = Vi(p) = a* > 0.) At
that iteration of the inner foreach loop, line 13 would have set
o’ to min(o [W], ¥i(W, X)) = min(o[ve-1], i (ve—1, Vi),
whence we see from the induction hypothesis (6.34) that the
following would have been true immediately afterwards (as
both o[ve—1] = ¥i(pe—1) and (6.32) were true at iteration
I):

o’ = min(Yi (pe—1), Yi (Ve—1, Vi)
= Yi(pe) = olve] = o[X].

Thus, 0’/ > o[X] and ¢’ = ¥;(pr) > a* > 0 at that time,
and so, one of the following must have been true too: Either
o' > o[X] = o[ve], or o/ = o[X] = o[ve] and xi[ve] =
x'[X] = false, or 6’ = o [X] = o[ve] and x'[ve] = x'[X] =
true. After executing line 13, the same iteration of the inner
foreach loop would have executed lines 15—-17 in the first
case, lines 19-20 in the second case, and none of those lines
in the third case. So, it is readily confirmed that, in all three
cases, immediately after that iteration of the inner foreach
loop it must have been true that o[v,] = o[X] = o' =
Vi(pe) and x'[ve] = x'[X] = true.

Moreover, o[v,] = v¥i(py) and x'[ve] = true would
have remained true thereafter, since o[v,] cannot have
increased further (otherwise we would have that o[vy] >
¥, (pr) now, a contradiction of (6.32)) and so x[v,] cannot
have changed to false (by observation (v)). Thus, we have
deduced that (6.33) is currently true for k = «, and so our
inductive proof is complete. O

Completion of the Proof of Proposition 6.12

For any V-path p from |J;S; we have that Ws(p) €
U j VIV x V]. Moreover, it is readily confirmed that, every
time an element of the array o[ ] is given a new value during
execution of Algorithm 5, that value lies in | J j Y[V xV]IU
{0}. Thus, ifa € (0, 1] but o ¢ Uj Y[V x V], then each of
the statements 1, 2, and 3 is vacuously true. So, since the set
U j Y[V x V]is finite, if one or more of these statements
were false forsome o € (0, 1],v € V,andi € {1,..., M}at
the end of some iteration of the main loop, then there would
have to be a greatest value of « for which this happens. But
Lemmas 6.13 and 6.14 imply that such a value of o cannot
exist.

Completion of the Proof of Correctness of Algorithm 5

We first verify that the algorithm achieves what is promised
by its Result lines for every v € V such that o[v] = 0
when the algorithm terminates. For any such v, since H = ¢
when the algorithm terminates, we see from statement 3 of
Proposition 6.12 that there is no recursively (W, S)-optimal
V -path of nonzero (¥, S)-strength to v, and so the (¥, S)-
strength of every recursively (W, S)-optimal V-path to v is
o[v] = 0, which is in accordance with the Result lines.
Moreover, if o[v] = 0 when the algorithm terminates, then
it follows from observation (iii) that o [v] = 0 has been true
at all times during execution of the algorithm. This in turn
implies that lines 6—7 have not been executed with s = v,
and that neither lines 15—17 nor line 19 have been executed at
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a time when X = v, so that no statement which assigns true
to one of the array elements {x'[v], ..., x™[v]} can ever
have been executed and therefore Xi [v] must still be false
forevery i € {1, ..., M} when the algorithm terminates, as
promised by the Result lines.

For all other v in V we have that o[v] € (0, 1] when
the algorithm terminates. For all such v, since H = ¢ when
the algorithm terminates, we see from observation (vi) and
statements 2 and 3 of Proposition 6.12 that the values o [v]
and x Iy, ..., %M [v] will then have the properties stated by
the Result lines.

Correctness of Algorithm 4

It is readily confirmed that the array o[ | which results from
executing Algorithm 4 is the same as the array o[ ] which
results from executing Algorithm 5 in the case M = 1,
Y1 = y,and S| = .16 Thus, the correctness of Algorithm 4
follows from the correctness of Algorithm 5.

7 Concluding Remarks

Fuzzy connectedness (FC) image segmentation, which finds
objects based on user-specified seed sets and fuzzy affin-
ity functions, is a computationally efficient segmentation
methodology that is commonly used in practical image
segmentation tasks (especially in biomedical imaging). An
example of a fast FC segmentation algorithm is our Algo-
rithm 5, which is reminiscent of Dijkstra’s shortest path
algorithm for weighted digraphs [24] but is necessarily less
simple because it allows the use of a different fuzzy affin-
ity function for each of the objects to be delineated. For any
fixed positive integer M, under mild assumptions (that are
usually satisfied in practical applications) which allow its
priority queue to be efficiently implemented as an array of
doubly linked lists, the algorithm will segment an image into
M objects in linear time with respect to the number of points
in the image.

16 Indeed, suppose M = 1, ¥; = v, and S| = S in Algorithm 5. As
M = 1, the effect of line 16 of Algorithm 5 is undone by line 17, so
we can omit line 16. Also, each i on lines 13-19 can be replaced by 1.
Moreover, for each point v € V the value of o[v] can become nonzero
only if line 6 or line 15 is executed when S or X is the point v, and
when that happens x '[v] will be set to true by line 7 or line 17. So
line 12 can be omitted; this allows execution of lines 13 — 20 even if
x'[w] = false, but in that case execution of those lines would have
no significant effect—for if x!'[w] = false we see from the previous
sentence that o [W] is zero, so execution of line 13 would set ¢’ to zero
and then the conditions on lines 14 and 18 would not be satisfied. In
fact the condition on line 18 is never satisfied since x![x] = true if
o[X] is nonzero, and so lines 18 — 20 can be omitted too. After these
simplifications there are no statements whose execution is conditional
on the contents of the array x 117, and if we ignore the lines that only
involve x ![] then the algorithm is equivalent to Algorithm 4.
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Previous work on FC segmentation has developed along
two tracks: the MOFS and (I)RFC tracks. This paper presents
a unified mathematical theory of FC segmentations which
shows how MOFS and (I)RFC-track segmentations relate to
each other. We generalize (I)RFC segmentations to allow the
use of affinity functions that are not necessarily symmetric,
and provide new path-based mathematical characterizations
of IRFC and MOFS segmentations. One fact which emerges
quickly from our theory is that, when the same single affinity
function is used for MOFS as well as IRFC segmentation,
each IRFC object consists of those points of the correspond-
ing MOFS object which do not lie in any of the other MOFS
objects. It follows from this fact that any MOFS segmentation
algorithm can also be used to compute IRFC segmentations.
When M > 2, a fast MOFS algorithm such as Algorithm 5
is likely to compute an M-object IRFC segmentation more
quickly than commonly used IRFC segmentation algorithms
that compute IRFC objects one at a time (except possibly
when the tie-zone of the segmentation is very large, in which
case we show that the IRFC segmentation must be unstable
with respect to tiny changes in affinity values).

Our analysis of MOFS segmentation (which, unlike
(DRFC segmentation, allows each object to have its own
affinity function) is based on two new theoretical con-
cepts: recursively optimal paths and the core of an MOFS
object. Using these new concepts, we prove results that show
how MOFS segmentations are robust with respect to small
changes in seed sets (in the sense that the objects of these
segmentations usually stay the same when the seed sets are
slightly changed) even when different affinities are used for
different objects and the affinities are not necessarily sym-
metric. Our results include MOFS analogs of (I)RFC-track
robustness results that previously had no counterpart in the
MOFS-track literature.
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