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Abstract For any positive integer M , M-object fuzzy con-
nectedness (FC) segmentation is a methodology for finding
M objects in a digital image based on user-specified seed
points and user-specified functions, called (fuzzy) affinities,
which map each pair of image points to a value in the real
interval [0, 1]. The theory of FC segmentation has proceeded
along two tracks.One track, developed by researchers includ-
ing the first author, has used two kinds of FC segmentations:
RFC segmentation and IRFC segmentation. The other track,
developed by researchers including the second and third
authors, has used another kind of FC segmentation called
MOFS segmentation. In RFC and IRFC segmentation the
M delineated objects are pairwise disjoint. In contrast, the
M objects delineated by MOFS segmentation may overlap,
though in many practical applications the tie-zone (i.e., the
set of points that do not lie in just one object) is extremely
small. Another difference between (I)RFC and MOFS seg-
mentation is that the former types of segmentation are defined
in terms of just one affinity (regardless of the value of M),
whereas MOFS segmentation is defined in terms of M dif-
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ferent affinities with each of the M objects having its own
affinity. Moreover, the affinity used in (I)RFC segmentation
has almost always been assumed in the (I)RFC-track lit-
erature to be a symmetric function, but the affinities used
in MOFS segmentation need not be symmetric. This paper
presents the first unifiedmathematical study of FC segmenta-
tion that encompasses both (I)RFC andMOFS segmentation.
We generalize the concepts of RFC and IRFC segmentation
to the case where the affinity is not necessarily symmetric,
explain just how the three different segmentation methods
relate to each other, and give very concise mathematical (i.e.,
nonalgorithmic) path-based characterizations of the objects
delineated by (I)RFC andMOFS segmentation. Our primary
path-based characterization ofMOFS objects depends on the
concept of a recursively optimal path, which we introduce
in this paper. Using another new concept—the core of an
MOFS object—we prove results which show that MOFS
segmentation is robust with respect to seed choice even
when different affinities are used for different objects and
the affinities are not necessarily symmetric. Two of these
results substantially generalize known (I)RFC-track robust-
ness results that previously had no MOFS-track counterpart.
The fast MOFS algorithm in this paper (our Algorithm 5),
which is reminiscent of Dijkstra’s shortest path algorithm
for weighted digraphs, is one of the most computation-
ally efficient segmentation algorithms. It can be used to
efficiently compute IRFC segmentations as well as MOFS
segmentations: This is because it emerges quickly from our
work that if a single affinity is used then IRFC objects
are just MOFS objects from which all tie-zone points have
been removed. When M > 2, this fast MOFS algorithm
is likely to compute an M-object IRFC segmentation more
quickly than commonly used IRFC segmentation algorithms
that compute IRFC objects one at a time (except possi-
bly when the tie-zone of the segmentation is very large, in
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which case we show that the IRFC segmentation must be
unstable).

Keywords Image Processing · Segmentation · Fuzzy
connectedness · Robustness

1 Introduction

Image segmentation is an important and challenging task for
which a multitude of different techniques have been devel-
oped; see, e.g., Sect. 1.6 of [23] and the survey articles in
Part IV of that book. This paper deals with the segmentation
methodology known as fuzzy connectedness (orFC) segmen-
tation, which has been used with considerable success—see,
e.g., Fig. 1—on biomedical and other images [5–21,25–
27,29,30,32–39]. The earliest uses of FC segmentation that
the authors are aware of were in geophysical data process-
ing [12–15]. Udupa and Samarasekera [38] were the first to
apply FC segmentation to medical imaging.

Much of the theory of FC segmentation has developed
along two different tracks. In one of the tracks [5,6,16–21,
25,32,33,37,39] two kinds of segmentation are used: RFC
segmentation and IRFC segmentation. The other track [7–11,
26,29] uses a third kind of segmentation that is calledMOFS
segmentation. Accordingly, we will refer to the former track
as the (I)RFC-track, and refer to the latter track as theMOFS-
track.1,2 In this paper, we present a general theory of FC
segmentation that encompasses both tracks and unifies them.

Let V be the set of all points of a digital image (so
that V is finite and nonempty), let M be a positive integer,
and let S1, . . . , SM be pairwise disjoint nonempty subsets
of V . Then FC segmentation can be understood as one
method of identifying M subsets O1, . . . , OM of V such
that Si ⊆ Oi ⊆ Si ∪ (V \ ⋃

j S j ) for 1 ≤ i ≤ M . Each of the
sets O1, . . . , OM that is identified is called an object, and
(for 1 ≤ i ≤ M) each point in the originally specified set Si

1 A simpler FC segmentation method, called absolute fuzzy connect-
edness (AFC) segmentation, predates (I)RFC andMOFS segmentation.
In AFC segmentations each object consists of those points that are con-
nected to the object’s seed set by a path whose strength is no less than a
user-specified threshold. An important motivation for the development
of (I)RFC and MOFS segmentation was to eliminate the need for users
to specify such thresholds.
2 IRFC segmentation is closely related to one version of the watershed
transform. Specifically, in the case where each seed set Si consists of
just one seed point, Audigier and Lotufo observed in [2] that the objects
of an IRFC segmentation are the catchment basins of the tie-zone IFT
watershed transform generated by the same seeds and a path cost func-
tion that is a strictly decreasing function of the path’s strength (with
respect to the affinity used to create the segmentation). The set of points
that do not lie in any of the IRFC objects is the tie-zone of the same
watershed transform. Tie-zone IFT watershed transforms are discussed
in [1–4], though the path cost function used in [1] and [4] is not directly
relevant to IRFC segmentation.

is called a seed point or simply a seed for the i th object Oi .
In practical applications each of the seed sets S1, . . . , SM is
usually small and might well consist of just a single point. In
many applications one of the M objects is called the back-
ground.

In addition to using the term FC segmentation to refer to
the process by which the objects O1, . . . , OM are found,
we will also call the sequence of objects O1, . . . , OM an
FC segmentation or an M-object FC segmentation of the set
V of image points.

This terminology implies that an FC segmentation is not
necessarily a segmentation in the most typical sense because
it is not necessarily a partition of the set V of image points: It
is not required that the Oi be pairwise disjoint nor that their
union be the whole of V . However, FC segmentation is the
only kind of segmentation we discuss in this paper, and we
will often refer to FC segmentations as “segmentations.”

We also note here that our concept of object is simpler
than that used in much of the literature on FC segmentation:
In the FC segmentation literature objects are often fuzzy sets
defined by a membership function valued in the real unit
interval [0, 1]—see, for example, the definition of an M-
semisegmentation in [10]—whereas our objects Oi are sets
in the ordinary sense (i.e., they are “crisp” or “hard” sets in the
language of fuzzy set theory). While it would be reasonably
straightforward to reformulate our work in terms of fuzzy
sets3 this would complicate our notation and terminology
unnecessarily: Our goal is to give a unified theory of FC
segmentation in which our mathematical results are stated as
simply and concisely as possible.

The objects Oi that are found by FC segmentation depend
on user-specified mappings called fuzzy affinities or just
affinities. We define an affinity (on V ) to be a mapping4

ψ : V ×V → [0, 1] such thatψ(v, v) = 1 for all v ∈ V . For
all u, v ∈ V we call the value ψ(u, v) ∈ [0, 1] the ψ-affinity
value of (u, v).

An affinity on V may be regarded as an edge-weight func-
tion of the complete digraph (with loops) on V. Affinity
values are described in [38] and elsewhere as (user-specified)
measures of the “hanging togetherness” of pairs of image

3 This can be done by replacing each of our crisp objects Oi with
the fuzzy set whose membership value at each point v ∈ Oi is the
strength of the strongest Oi -path from Oi ’s seed set Si to v, and whose
membership value at each point v ∈ V \Oi is 0. This definition of the
membership value at each point v is quite simple, but other definitions
(e.g., definitionswhich depend directly on the image intensity value at v)
may give membership values that are more useful in some applications.
One reason to define objects as crisp sets rather than fuzzy sets is that
there is no standard way to define the membership value at a point.
4 Affinities whose values need not be numbers (e.g., affinities whose
values are n-tuples of real numbers) are considered in [17,18,31]. In par-
ticular, in [31] affinity values may be elements of any partially ordered
set and the strength of connectedness of one point to another is an ele-
ment of a free distributive lattice over the partially ordered set.
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Fig. 1 A slice of an MRI image
of a patient’s brain and a
4-object MOFS segmentation of
the slice. The four objects are
shown in red, blue, green, and
yellow in the electronic version
of this paper. (Reproduced from
[10]) (Color figure online)

points. Most affinities ψ that are used for FC segmen-
tation in imaging have the property that ψ(u, v) can be
nonzero only when the points u and v are near each other.
For example, when V is the set of elements of a 3D
image array I [ ][ ][ ], it is quite common to use affini-
ties ψ such that ψ(I [i][ j][k], I [i ′][ j ′][k′]) = 0 whenever
max(|i − i ′|, | j − j ′|, |k − k′|) > 1.

FC segmentation is unlikely to identify useful objects
unless the affinity or affinities we use are appropriate for our
application. The important problem of how to define appro-
priate affinities is discussed, e.g., in [7,11,17,18,28,29,34]
but will not be considered here. In this paper, we make no
assumptions regarding the affinities that are used; our math-
ematical results are valid for all affinities.

RFC segmentation and IRFC segmentation differ from
MOFS segmentation in two ways. One difference is that the
objects in any RFC or IRFC segmentation are pairwise dis-
joint, whereas objects in anMOFS segmentationmay overlap
(though in many practical applications, including all appli-
cations in which segmentations are stable in the sense of
Sect. 2.5, the overlap areas are extremely small). The other
difference is that, for any seed sets S1, . . . , SM , the RFC
and IRFC segmentations of V are determined by a single
affinity5 ψ : V ×V → [0, 1], whereas theMOFS segmenta-
tion of V depends onM affinitiesψ1, . . . , ψM—one affinity
for each of the M objects. Moreover, in the MOFS-track lit-
erature affinities have not been assumed to be symmetric
functions (i.e., affinities ψ have not been assumed to satisfy
ψ(u, v) = ψ(v, u) for all image points u and v) and non-
symmetric affinities have sometimes been used in MOFS
segmentation [7], but in the (I)RFC-track literature affinities
have almost always been assumed to be symmetric (though
nonsymmetric affinities are considered in [6]).

5 The single affinity used for (I)RFC segmentation is often created from
M distinct components, each specific to one object.

In spite of these differences, RFC, IRFC, and MOFS seg-
mentations are very closely related. In the sequel we will
explain just how they relate to each other, and give concise
path-based characterizations of these segmentations that are
purely mathematical in the sense that they make no refer-
ence to any algorithm. (Our first path-based characterization
ofMOFS segmentations is stated in terms of recursively opti-
mal paths, a new concept that will be introduced in Sect. 3.2.)
We will then establish new results which imply that MOFS
segmentation is robust with respect to seed choice even when
different affinities are used for different objects and the affini-
ties are not symmetric. Two of these results can be viewed
as substantial generalizations of (I)RFC-track robustness
results that previously had no counterpart in theMOFS-track
literature.

Some Key Results of This Paper

Given an affinity ψ : V × V → [0, 1] on V and A, B,W ⊆
V , a W -path from A to B of length l is any sequence
p = 〈w0, . . . , wl〉 of points in W such that w0 ∈ A and
wl ∈ B; the ψ-strength of p = 〈v0, . . . , vl〉, denoted by
ψ(p), is defined by ψ(p) = min1≤ j≤l ψ(v j−1, v j ) if l >0
and ψ(p) = 1 if l = 0; the ψ-strength of connectedness
of A 
= ∅ to B 
= ∅ via W is defined as ψW (A, B) =
max {ψ(p) | p is a (W ∪ A ∪ B)-path from A to B}. We
say the seed sets S1, . . . , SM are consistent with the affinity
ψ if ψV (Si , S j ) < 1 for all distinct i and j in {1, . . . , M};
similarly, we say S1, . . . , SM are consistent with the affini-
ties ψ1, . . . , ψM if ψV

i (Si , S j ) < 1 for all distinct i and j
in {1, . . . , M}.

The following theorem gives some concise mathematical
characterizations of RFC, IRFC, and MOFS objects; ORFC

i ,
O IRFC
i , and OMOFS

i , respectively, denote the RFC, IRFC, and
MOFS objects associated with the i th seed set.

Theorem 1.1 Suppose that S1, . . . , SM ⊂ V are pairwise
disjoint nonempty seed sets. Then:
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1. Assuming S1, . . . , SM are consistent with the affinity ψ ,
the RFC object ORFC

i given by S1, . . . , SM and ψ satis-
fies

ORFC
i = {v ∈ V | max j 
=i ψ

V (S j , v) < ψV (Si , v)}
(1.1)

and also satisfies

ORFC
i = {v ∈ V | max j 
=i ψ

V (S j , v) < ψORFC
i (Si , v)}.

(1.2)

2. Assuming S1, . . . , SM are consistent with the affinity ψ ,
the IRFC object O IRFC

i given by S1, . . . , SM and ψ is
the unique set O that satisfies

O = {v ∈ V | max j 
=i ψ
V \O(S j , v) < ψV (Si , v)}.

(1.3)

Moreover, O IRFC
i is also the unique set O that satisfies

O = {v ∈ V | max j 
=i ψ
V \O(S j , v) < ψO(Si , v)}.

(1.4)

3. Assuming S1, . . . , SM are consistent with the affinities
ψ1, . . . , ψM, the sequence of MOFS objects
〈OMOFS

1 , . . . , OMOFS
M 〉 given by S1, . . . , SM and

ψ1, . . . , ψM is theunique sequenceof sets 〈O1, . . . , OM 〉
such that

Oi = {v ∈ V | max j 
=i ψ
Oj
j (S j , v) ≤ ψ

Oi
i (Si , v) 
= 0}

for 1 ≤ i ≤ M. (1.5)

Moreover, if ψ1 = · · · = ψM = ψ , then the IRFC object
O IRFC
i given by S1, . . . , SM and ψ is

O IRFC
i = OMOFS

i \
⋃

j 
=i
OMOFS

j . (1.6)

Even though some readers who are familiar with the theory
of FC segmentation might feel they recognize (1.1) and the
first assertion of statement 3 as facts they were already aware
of, no part of the theorem is an immediate consequence of
results that have been explicitly stated in the literature, for the
following reason: The unified theory of FC segmentation we
present in this paper defines RFC, IRFC, andMOFS segmen-
tations in a newway (as the results of Algorithms 1–3 below)
that is intended to immediately reveal (1.6), to convey a quick
understanding of the nature of the objects found by each
type of segmentation, and to facilitate parallel development
of the mathematics of (I)RFC and MOFS segmentations. So
all parts of the above theorem must be understood as math-
ematical results about the segmentations defined by our new

definitions. However, as a result of proving (1.1) and the first
assertions of statements 2 and 3 of the above theorem, we are
able to conclude that our new definitions of RFC, IRFC, and
MOFS segmentations are in fact equivalent to definitions of
these segmentations that have been used in previous work.

The fact (1.6), which is restated as Corollary 2.7 below,
implies that efficient algorithms for computing MOFS
objects, such as Algorithm 5 in Sect. 4, can be used to effi-
ciently compute IRFC objects as well. In the past, IRFC
segmentations have often been computed using algorithms
that compute IRFC objects one at a time. For segmentation
intomore than two objects, we believe the use of Algorithm 5
(which computes all the objects simultaneously) will typi-
cally be a faster way to compute IRFC segmentations. When
the affinity is symmetric, the TZWS by union-find method
of Audigier and Lotufo [2] is another way to compute all
the objects of an IRFC segmentation simultaneously. That
method will be briefly described in Sect. 4.2.

Interestingly, there seems to be no really easy way to
deduce (1.6) from results in the literature about MOFS
and IRFC segmentations, even though this fact is almost
immediately evident from our new definitions of these seg-
mentations.

Statement 1 follows from the second statements of Theo-
rem 3.6 and its corollary. Statement 2 and the first assertion
of statement 3 are parts of Theorems 3.8 and 3.10. These
three theorems are key results of this paper that give con-
cise path-based characterizations of RFC, IRFC, and MOFS
segmentations.

The first statements of Theorems 3.6, 3.8, and 3.10 give
alternative characterizations, which we consider to be at
least as useful as the characterizations stated in Theorem 1.1
above, but which we did not include in the above theorem to
avoid having to define certain concepts (specifically, the con-
cepts of hereditarily optimal and recursively optimal paths)
in this subsection.

Since ψV (S j , v) ≥ ψV \O(S j , v) for any set O and point
v ∈ V , it is easy to see from (1.1), (1.3), and (1.6) that,
for any given affinity ψ and seed sets consistent with the
affinity, ORFC

i ⊆ O IRFC
i ⊆ OMOFS

i for all i ∈ {1, . . . , M}
(assuming the same affinity ψ is used for all objects in the
MOFS segmentation).

From (1.2), (1.4), and (1.5) we see at once that that any
element v belonging to one of these objects, say Oi , is con-
nected to the object’s seed set via an internal path (i.e., an
Oi -path) of strength ψOi (Si , v) > 0. This is an important
property. Indeed, one reason (I)RFC segmentation has not
been extended to use different affinities for different objects
is that the resulting (I)RFC objects would not always have
this property. The fact that MOFS segmentation allows dif-
ferent affinities for different objects but (I)RFC segmentation
does not has been a major obstacle to the reconciliation of
the two tracks of FC segmentation theory.
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Another fundamental result of this paper is the fol-
lowing theorem (which follows from Proposition 5.3 and
Theorem 5.4). As will be seen in Sect. 5, this theorem
implies Corollaries 5.5 and 5.6, and Remark 5.7, which
tell us that MOFS segmentations are totally robust when
we make “small” changes in the seed sets; here “totally
robust” means that the segmentations do not change at
all.

In the statement of the theorem we use the notation
OMOFS
i (�,S) for the i th MOFS object given by the

sequences � = 〈ψ1, . . . , ψM 〉 of affinities and S =
〈S1, . . . , SM 〉 of seed sets. Also, Core�,S

i ⊆ OMOFS
i (�,S)

is a set of considerable size that we will describe in more
details after stating the theorem.

Theorem 1.2 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V and S = 〈S1, . . . , SM 〉 a sequence of pair-
wise disjoint nonempty seed sets consistent with the affinities.
LetR = 〈R1, . . . , RM 〉 be such that Si ⊆ Ri ⊆ Core�,S

i for
1 ≤ i ≤ M.Then the sequenceR is consistent with the affini-
ties and OMOFS

i (�,R) = OMOFS
i (�,S) for 1 ≤ i ≤ M.

We prove (as Proposition 5.9) that the set Core�,S
i contains

the set

Q�,S
i =

{
v ∈ OMOFS

i (�,S)\
⋃

j 
=i
OMOFS

j (�,S)

| ψ
OMOFS
i (�,S)

i (Si , v)

≥ ψV
i (v,

⋃

j 
=i
OMOFS

j (�,S))
}

,

and that, for symmetric ψi , Core
�,S
i is exactly Q�,S

i . More-
over, if all the affinities ψi are equal to the same symmetric
affinity ψ , then (as stated in Proposition 5.11) Core�,S

i is
exactly the IRFC object O IRFC

i (ψ,S). This fact, together
with the above Theorem 1.2, implies immediately robust-
ness results for IRFC segmentation that constitute one of the
pillars of (I)RFC segmentation theory.

Notice that the results discussed in this subsection do
not require affinities to be symmetric (not even in the
case of (I)RFC segmentations), except where symmetry
of affinities is an explicitly stated hypothesis. This is sig-
nificant because almost all of the theory of (I)RFC-track
FC segmentation has been developed solely for symmetric
affinities.

2 RFC, IRFC, and MOFS Segmentations

2.1 Preliminaries

In the rest of this paper V will denote an arbitrary nonempty
finite set. As in Sect. 1, we think of V as the set of all points
of a digital image.

We have already defined the concepts of a W -path from
a nonempty set A to a nonempty set B and also defined (for
any affinity ψ on V ) the ψ-strength of connectedness of
A to B via a (possibly empty) set X (which is denoted by
ψ X (A, B)). For a, b ∈ V , aW -path from {a} to {b}will also
be called aW -path froma to b. Similarly,wewriteψ X (a, B),
ψ X (A, b), and ψ X (a, b) for ψ X ({a}, B), ψ X (A, {b}), and
ψ X ({a}, {b}), respectively. Note that ψ(a, b) = ψ∅(a, b) ≤
ψ X (a, b) ≤ ψV (a, b), that ψ X (A, B) = 1 if A ∩ B 
= ∅,
and that ψ∅(A, B) = max

a∈A,b∈B ψ(a, b).

If p is a V -path of length l ≥ 0 from u to v, and q is a
V -path of length l ′ ≥ 0 from v to w, then p · q will denote
the V -path of length l + l ′ from u to w that is obtained by
concatenating p and q. Thus p · q is obtained by removing
the initial point v from q and then appending the rest of q to
p. (For example, 〈a, b, c〉 · 〈c, d, e, f 〉 = 〈a, b, c, d, e, f 〉.)
Note that p · q is undefined if the final point of p is different
from the initial point of q. The · operation is associative on
V -paths in the sense that if p · q and q · r are defined then
(p ·q) ·r = p ·(q ·r). A property ofψ(p)which will be used
many times in the sequel is that if the final point of each of
the V -paths p′ and p′′ is the initial point of the V -path q, and
ψ(p′) ≥ ψ(p′′), then ψ(p′ · q) ≥ ψ(p′′ · q). This follows
from the fact that ψ(p · q) = min(ψ(p), ψ(q)) whenever
p · q is defined.

The next two propositions state important properties of
ψ X (A, B) that will be used later.

Proposition 2.1 Letψ be any affinity on V and let A, A′, B,
B ′, X, and X ′ be subsets of V such that A ⊇ A′, B ⊇ B ′, and
X ∪ A∪ B ⊇ X ′ ∪ A′ ∪ B ′. Then ψ X (A, B) ≥ ψ X ′

(A′, B ′).

Proof The conclusion follows from the definition of ψ X

(A, B), since the set of (X ∪ A ∪ B)-paths from A to
B contains the set of (X ′ ∪ A′ ∪ B ′)-paths from A′ to
B ′. ��

Proposition 2.2 Let ψ be any affinity on V , let A, B,
and X be subsets of V , and let u ∈ X ∪ A ∪ B.
Then ψ X (A, B) ≥ min(ψ X∪B(A, u), ψ X∪A(u, B)) ≥
min(ψ X (A, u), ψ X (u, B)). In particular, if ψ X (A, u) ≥ α

and ψ X (u, B) ≥ α, then ψ X (A, B) ≥ α.

Proof As the third sentence is an immediate consequence
of the second we need only verify the second sentence.
Let p1 be an (X ∪ A ∪ B)-path from A to u such that
ψ(p1) = ψ X∪B(A, u), let p2 be an (X ∪ A ∪ B)-path
from u to B such that ψ(p2) = ψ X∪A(u, B), and let
p be the (X ∪ A ∪ B)-path p1 · p2 from A to B. Then
ψ(p) = min(ψ X∪B(A, u), ψ X∪A(u, B)) and so the first
inequality holds (by the definition of ψ X (A, B)). The sec-
ond inequality holds because ψ X∪B(A, u) ≥ ψ X (A, u) and
ψ X∪A(u, B)) ≥ ψ X (u, B) (by Proposition 2.1). ��
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2.2 Simple Algorithms That Compute RFC, IRFC, and
MOFS Segmentations

Algorithms 1–3 below compute the M-object RFC, IRFC,
and MOFS segmentations of the set V for pairwise disjoint
nonempty seed sets S1, . . . , SM ⊂ V and an affinityψ on V
(in the RFC and IRFC cases) or M affinitiesψ1, . . . , ψM on
V (in the MOFS case): In this paper we define RFC, IRFC,
and MOFS segmentations as the results of these three algo-
rithms.

These algorithms are not intended to be efficient. Rather,
they are intended to be simple and concise, so as to give
readers who are new to the subject a quick (yet completely
accurate) understanding of the nature of the objects that are
found by each of these types of segmentation. More efficient
algorithms that compute the same segmentations will be pre-
sented in Sect. 4.

Recall that the seed sets S1, . . . , SM are said to be consis-
tent with ψ or ψ1, . . . , ψM just if there do not exist distinct
Si and S j such that there is a V -path of ψ-strength or ψi -
strength 1 from Si to S j . The seed setswould normally satisfy
this consistency condition in all practical applications of FC
segmentation that the authors are aware of. Assuming the
condition is satisfied, the segmentations found byAlgorithms
1–3 in this subsection will be the same as the segmenta-
tions found by RFC, IRFC, and MOFS algorithms in the
literature; this will follow from the results of Sect. 3.3. (How-
ever, whereas the literature on RFC and IRFC segmentations
has almost always assumed that the affinity ψ is symmet-
ric, our discussion of these segmentations will not assume
this.) Regardless of whether or not the consistency condition
is satisfied, the objects O1, . . . , OM found by Algorithms
1–3 will have the property that Si ⊆ Oi ⊆ Si ∪ (V \ ⋃

j S j ),
for 1 ≤ i ≤ M . But the objects found by some FC seg-
mentation algorithms in the literature will not have this
basic property if the seed sets do not satisfy the consistency
condition.

The three algorithms can be formally stated as follows,
where |A| stands for the number of elements in the set A:

Algorithm 1: RFC Segmentation of a Nonempty Finite
Set V into M Objects
Data: M pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V ;

an affinity ψ on V
Result: The RFC segmentation 〈ORFC

1 , . . . , ORFC
M 〉 of V

1 for i ← 1 to M do Ti ← Si
2 sort A = ψ[V × V ]\{0} into 1 = α1 > . . . > α|A|
3 for n ← 1 to |A| do /* the main loop */
4 for i ← 1 to M do

newTi ← Ti ∪ {v ∈ V \⋃
j Tj | ψV (Ti , v) ≥ αn}

5 for i ← 1 to M do Ti ← newTi

6 for i ← 1 to M do ORFC
i ← Ti\ ⋃

j 
=i Tj

Algorithm 2: IRFC Segmentation of a Nonempty Finite
Set V into M Objects
Data: M pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V ;

an affinity ψ on V
Result: The IRFC segmentation 〈O IRFC

1 , . . . , O IRFC
M 〉 of V

1 for i ← 1 to M do Ti ← Si
2 sort A = ψ[V × V ]\{0} into 1 = α1 > . . . > α|A|
3 for n ← 1 to |A| do /* the main loop */
4 for i ← 1 to M do

newTi ← Ti ∪ {v ∈ V \⋃
j Tj | ψ

V \ ⋃
j T j (Ti , v) ≥ αn}

5 for i ← 1 to M do Ti ← newTi

6 for i ← 1 to M do O IRFC
i ← Ti\⋃

j 
=i Tj

Algorithm 3: MOFS Segmentation of a Nonempty
Finite Set V into M Objects
Data: M pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V ;

M affinities ψ1, . . . , ψM on V
Result: The MOFS segmentation 〈OMOFS

1 , . . . , OMOFS
M 〉 of V

1 for i ← 1 to M do Ti ← Si
2 sort A = ⋃

j ψ j [V × V ]\{0} into 1 = α1 > . . . > α|A|
3 for n ← 1 to |A| do /* the main loop */
4 for i ← 1 to M do

newTi ← Ti ∪ {v ∈ V \⋃
j Tj | ψ

V \ ⋃
j T j

i (Ti , v) ≥ αn}
5 for i ← 1 to M do Ti ← newTi

6 for i ← 1 to M do OMOFS
i ← Ti

It will be obvious from even a cursory inspection of the
three algorithms that they are extremely similar. For example,
the only difference between the RFC and IRFC algorithms
is on the fourth line, where ψV (Ti , v) in the RFC algorithm
is replaced by ψ

V \⋃
j Tj (Ti , v) in the IRFC algorithm. The

IRFC and MOFS algorithms are also very similar. In RFC
and IRFC segmentation we do not use different affinities for
different objects. But if we assume that each of the M affini-
ties ψ1, . . . , ψM in the MOFS algorithm (i.e., Algorithm
3) is equal to the single affinity ψ in the IRFC algorithm
(Algorithm 2), then the only difference between the IRFC
and MOFS algorithms is that O IRFC

i ← Ti\⋃
j 
=i Tj on the

last line of the IRFC algorithm is replaced by OMOFS
i ← Ti

in the MOFS algorithm: Each IRFC object consists of those
points of the corresponding MOFS object which do not lie
in any of the other M − 1 MOFS objects.

The underlying idea of Algorithms 1–3 is to have the M
objects compete with each other to occupy image points over
a series of iterations. At any given time, each image point will
either be unoccupied or be occupied by one or more objects.
The set of points that are occupied by the i th object at that
time will be referred to as the i th object’s territory and is
represented by the variable Ti . Thus a point is unoccupied if,
and only if, that point lies in V \ ⋃

j Tj .
A fundamental property of these algorithms is that, once

a point has been occupied by one or more objects at an itera-

123



310 J Math Imaging Vis (2016) 55:304–342

tion of the main loop, the point will be occupied by just those
objects during all subsequent iterations of that loop; it can
never be occupied by any other object. Equivalently, a point
that lies in Ti\Tj (for some i and j) at the end of one itera-
tion of the main loop will lie in Ti\Tj during all subsequent
iterations.

In each algorithm, the territory of each object is initialized
to consist just of that object’s seed points. Every iteration of
the main loop expands the i th object’s territory (for 1 ≤ i ≤
M) to also include all currently unoccupied points which can
be reached from the i th object’s current territory via a V -path
that has the following properties:

1. The ψ-strength (in the RFC and IRFC cases) or ψi -
strength (in the MOFS case) of the V -path is not less
than the affinity threshold used at that iteration.

2. In the IRFC and MOFS algorithms, the V -path is a
Ti ∪ (V \⋃

j Tj )-path—i.e., each of its points either was
already occupied by the i th object or was unoccupied at
the beginning of the current iteration.

The affinity threshold in property 1 decreases from one iter-
ation to the next: The affinity threshold at the nth iteration
is αn , which in the RFC and IRFC cases is the nth-largest
nonzero value in the range of our affinity ψ ; in the MOFS
case αn is the nth-largest nonzero value in the union of the
ranges of our M affinities ψ1, . . . , ψM .

We mention that “≥ αn” on line 4 of all three algorithms
really means “= αn ,” because no point v in V \⋃

j Tj can
satisfy the condition with “> αn” in place of “≥ αn .” (This
fact will be more formally stated in Sects. 6.1 as (6.2)–(6.3)
and (6.6)–(6.7).)

We have already mentioned that, for any given affinity ψ

and seed sets consistent with the affinity, ORFC
i ⊆ O IRFC

i ⊆
OMOFS
i for all i ∈ {1, . . . , M} (assuming the same affinity

ψ is used for all objects in the MOFS segmentation). In the
following simple example (for which the affinity is as shown
in Fig. 2) we have that ORFC

1 � O IRFC
1 � OMOFS

1 :

Example 2.3 Let M = 2, V = {d, s1, c, s2}, S1 = {s1}, and
S2 = {s2}. Let ψ be the symmetric affinity on V such that
ψ(d, s1) = ψ(s1, d) = ψ(c, s1) = ψ(s1, c) = ψ(c, s2) =
ψ(s2, c) = 0.5 and ψ(x, y) = 0 in all other cases where x
and y are distinct points of V . (See Fig. 2.) For Algorithm 3,
let ψ1 = ψ2 = ψ . Then, readily, ORFC

1 = {s1} � O IRFC
1 =

{s1, d} � OMOFS
1 = {s1, c, d} and ORFC

2 = O IRFC
2 = {s2} �

OMOFS
2 = {s2, c}.

d cs1.5 .5 s2.5

Fig. 2 Affinity values for Example 2.3

The tie-zone of an IRFC segmentation is the set of all
points of V that do not lie in any of the objects of the seg-
mentation. The tie-zone of an MOFS segmentation is the set
of all points of V that do not lie in just one object of the
segmentation. (We will not define the tie-zone of an RFC
segmentation.) Looking again at Algorithms 2 and 3, we
see that the tie-zone of the IRFC segmentation given by the
affinity ψ and seed sets S1, . . . , SM is the same as the tie-
zone of the corresponding MOFS segmentation (which is
given by executing Algorithm 3 with the same seed sets and
ψ1 = · · · = ψM = ψ) and consists of the points that lie in
two or more of the MOFS objects as well as the points that
lie in none of those MOFS objects. (It is fairly easy to see
from Algorithm 3 that a point v lies in none of those MOFS
objects if, and only if, there is no V -path from

⋃
j S j to v of

nonzero ψ-strength.6)

2.3 Simple Nonalgorithmic Characterizations and
Related Properties of RFC, IRFC, and MOFS
Segmentations

While the RFC, IRFC, and MOFS segmentations of V
have been defined as the segmentations created by Algo-
rithms 1, 2, and 3 above, it is not difficult to characterize these
segmentations nonalgorithmically. Statement 1 of each of
Theorems 2.4–2.6 below shows how this can be done in terms
of the values assumed by the variables T1, . . . , TM during
execution of Algorithms 1, 2, and 3: Statement 1(a) of each
theorem shows how the sequence T 0

i ⊆ T 1
i ⊆ · · · ⊆ T |A|

i of
values assumed by each variable Ti could be defined induc-
tively, without reference to Algorithms 1–3, while statement
1(b) of each theorem shows how the objects of the corre-
sponding segmentation are determined by the final values
T |A|
1 , . . . , T |A|

M of T1, . . . , TM . These characterizations of the
RFC, IRFC, andMOFS segmentationswill play an important
role in our derivations of the concise path-based characteri-
zations of the same segmentations that we present in Sect. 3.

The rest ofTheorems2.4–2.6 state related properties of the
segmentations. Statement 2 of each theorem implies that “=
αn” in the second part of statement 1(a) could be replaced by
“≥ αn .” In Theorems 2.5 and 2.6, statement 3 gives variants
of the second part of statement 1(a) that are more concise but
cannot be used to give an inductive definition of T n

i (as the
right sides of these variants involve T k

i for some k ≥ n).
Theorems 2.4–2.6 will be proved in Sect. 6.1.

Theorem 2.4 Let 〈ORFC
1 , . . . , ORFC

M 〉 be the segmentation
of V found by Algorithm 1 for an affinity ψ on V and pair-
wise disjoint nonempty seed sets S1, . . . , SM ⊂ V . Let

6 To see the “only if” part, consider the final iteration of Algorithm 3’s
main loop in the case ψ1 = · · · = ψM = ψ and then observe that
ψ(u, v) = 0 whenever u lies in an MOFS object but v lies in no MOFS
object.
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A = ψ[V × V ]\{0} and let 1 = α1 > . . . > α|A| be
the sequence obtained by sorting A into decreasing order.
For 1 ≤ i ≤ M and 0 ≤ n < |A|, let T n

i be the value of
the variable Ti at the beginning of the n + 1st iteration of
the main loop when Algorithm 1 is executed, and let T |A|

i be
the value of Ti at the end of the |A|th iteration of the main
loop (which is the value of Ti when Algorithm 1 terminates).
Then Si ⊆ ORFC

i ⊆ Si ∪ (V \ ⋃
j S j ) for 1 ≤ i ≤ M.

Moreover:

1. For 1 ≤ i ≤ M we have that

(a) T 0
i = Si , and, for every 1 ≤ n ≤ |A|, T n

i = T n−1
i ∪

{v ∈ V \⋃
j T

n−1
j | ψV (Si , v) = αn}.

(b) ORFC
i = T |A|

i \⋃
j 
=i T

|A|
j .

2. {v ∈ V \ ⋃
j T

n−1
j | ψV (Si , v) > αn} = ∅ for every

1 ≤ i ≤ M and 1 ≤ n ≤ |A|.

Theorem 2.5 Let 〈O IRFC
1 , . . . , O IRFC

M 〉 be the segmentation
of V found by Algorithm 2 for an affinity ψ on V and pair-
wise disjoint nonempty seed sets S1, . . . , SM ⊂ V . Let
A = ψ[V × V ]\{0} and let 1 = α1 > . . . > α|A| be
the sequence obtained by sorting A into decreasing order.
For 1 ≤ i ≤ M and 0 ≤ n < |A|, let T n

i be the value of the
variable Ti at the beginning of the n + 1st iteration of the
main loop when Algorithm 2 is executed, and let T |A|

i be the
value of Ti at the end of the |A|th iteration of the main loop
(which is the value of Ti when Algorithm 2 terminates). Then
Si ⊆ O IRFC

i ⊆ Si ∪ (V \ ⋃
j S j ) for 1 ≤ i ≤ M. Moreover:

1. For 1 ≤ i ≤ M we have that

(a) T 0
i = Si , and T n

i = T n−1
i ∪ {v ∈ V \⋃

j T
n−1
j |

ψ
T n−1
i ∪(V \⋃

j T
n−1
j )

(Si , v) = αn} for 1 ≤ n ≤ |A|.
(b) O IRFC

i = T |A|
i \⋃

j 
=i T
|A|
j .

2. {v ∈ V \ ⋃
j T

n−1
j | ψ

T n−1
i ∪(V \⋃

j T
n−1
j )

(Si , v) > αn} =
∅ for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|.

3. T n
i = T n−1

i ∪ {v ∈ V \ ⋃
j T

n−1
j | ψT k

i (Si , v) = αn} for
1 ≤ i ≤ M and 1 ≤ n ≤ k ≤ |A|.

Theorem 2.6 Let 〈OMOFS
1 , . . . , OMOFS

M 〉 be the segmenta-
tion of V found byAlgorithm3 for affinitiesψ1, . . . , ψM on V
and pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V .
Let A = ⋃

j ψ j [V × V ]\{0} and let 1 = α1 > . . . > α|A|
be the sequence obtained by sorting A into decreasing order.
For 1 ≤ i ≤ M and 0 ≤ n < |A|, let T n

i be the value of the
variable Ti at the beginning of the n + 1st iteration of the
main loop when Algorithm 3 is executed, and let T |A|

i be the
value of Ti at the end of the |A|th iteration of the main loop
(which is the value of Ti when Algorithm 3 terminates). Then
Si ⊆ OMOFS

i ⊆ Si ∪ (V \⋃
j S j ) for 1 ≤ i ≤ M. Moreover:

1. For 1 ≤ i ≤ M we have that

(a) T 0
i = Si , and T n

i = T n−1
i ∪ {v ∈ V \⋃

j T
n−1
j |

ψ
T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v) = αn} for 1 ≤ n ≤ |A|.
(b) OMOFS

i = T |A|
i .

2. {v ∈ V \⋃
j T

n−1
j | ψ

T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v) > αn} =
∅ for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|.

3. T n
i = T n−1

i ∪ {v ∈ V \⋃
j T

n−1
j | ψ

T k
i

i (Si , v) = αn} for
1 ≤ i ≤ M and 1 ≤ n ≤ k ≤ |A|.

2.4 An MOFS Algorithm Can be Used to Compute
IRFC Segmentations

IRFC segmentations can be easily found using any algorithm
that computes MOFS segmentations. This follows from the
following corollary, which is an immediate consequence of
statement 1 of Theorem 2.5 and statement 1 of Theorem
2.6 (and which is also evident from a quick inspection of
Algorithms 2 and 3):

Corollary 2.7 Let 〈O IRFC
1 , . . . , O IRFC

M 〉 be the segmenta-
tion of V found by Algorithm 2 for an affinity ψ on V and
pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V . Let
〈OMOFS

1 , . . . , OMOFS
M 〉 be the segmentation of V found by

Algorithm 3 for the same M seed sets S1, . . . , SM in the case
where each of the M affinities ψ1, . . . , ψM is the affinity ψ .
Then O IRFC

i = OMOFS
i \⋃

j 
=i O
MOFS
j for 1 ≤ i ≤ M.

IRFC segmentations have commonly been computed one
object at a time (e.g., by executing the GCmax or IRFC-IFT
algorithm of [20] a total of M times as explained in foot-
note 14 below), whereas MOFS segmentations have been
computedusingmethods akin toDijkstra’s shortest path algo-
rithm [24] to compute all of the M objects simultaneously.
Algorithm 5 below is an MOFS algorithm of this kind, and
whenM > 2 it is likely to bemore efficient to compute anM-
object IRFC segmentation using this MOFS algorithm than
using a one-object-at-a-time IRFCalgorithmM times, except
possiblywhen a large proportion (e.g.,more than 20%) of the
points of V lie in the IRFC segmentation’s tie-zone. More-
over, in cases where the tie-zone of an IRFC segmentation
does constitute such a large fraction of V , the segmentation
is unstable with respect to tiny changes in affinity values, as
we will see in Sect. 3.4.

Using an MOFS algorithm to compute the IRFC segmen-
tation provides additional information about the segmenta-
tion’s tie-zone, because it identifies the IRFC objects (if any)
that are “in contention for” each tie-zone point: Once the
MOFS segmentation has been computed, we may regard an
IRFC object as being in contention for a tie-zone point p just
if p belongs to the corresponding MOFS object.
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Asmentioned earlier, in the case where the affinity is sym-
metric the TZWS by union-findmethod of [2], which wewill
discuss further in Sect. 4.2, is another method of computing
all the objects of an IRFC segmentation simultaneously.

2.5 Perturbing MOFS Affinity Values to Eliminate
Small Overlaps Between Objects, and Instability of
MOFS Segmentations in Which Different Objects
Overlap Substantially

An advantage of MOFS segmentation over (I)RFC segmen-
tation is that the former allows different affinities to be used
for different objects. But distinct objects of an MOFS seg-
mentation may possibly intersect, whereas the objects of any
RFC or IRFC segmentation are pairwise disjoint.

In many applications of MOFS segmentation, any inter-
sections of distinct objects are so small as to be negligible.
However, complete disjointness of objects may be desirable
(e.g., because we wish to use software tools which assume
different objects never intersect). For this reason one might
consider “hybrid” segmentations that would be produced by
a modified version of Algorithm 3 in which the assignment
OMOFS
i ← Ti is replaced by Oi ← Ti\⋃

j 
=i Tj . While the
objects Oi of the resulting segmentations would of course
be pairwise disjoint, a drawback of this kind of segmenta-
tion would be that the objects might sometimes have parts
which are disconnected from their seeds: The i th object Oi

might contain points which cannot be reached from its seed
set Si via an Oi -path whose ψi -strength is nonzero. A sim-
ple example of this is shown in Fig. 3. As mentioned above,
the same thing cannot happen in RFC, IRFC, and MOFS
segmentations.

s1 s2c

d

.6 .6

.6.4

Fig. 3 Let V = {s1, s2, c, d}, M = 2, S1 = {s1}, and S2 = {s2}.
Let ψ1 and ψ2 be the symmetric affinities on V such that ψ1(c, d) =
ψ1(d, c) = 0.4, ψ1(s1, c) = ψ1(c, s1) = ψ2(s2, c) = ψ2(c, s2) =
ψ2(c, d) = ψ2(d, c) = 0.6, and ψi (x, y) = 0 in all other cases where
i ∈ {1, 2} and x and y are distinct points in V . Then execution of
Algorithm 3 terminates with T1 = {s1, c} and T2 = {s2, c, d}. So if in
Algorithm 3 we replace OMOFS

i ← Ti with Oi ← Ti\⋃
j 
=i Tj then

the resulting algorithm will produce an object O2 = T2\T1 = {s2, d}
that is “disconnected” (as c /∈ O2 and so there is no O2-path of nonzero
ψ2-strength from S2 to d ∈ O2)

Another way to eliminate small intersections of distinct
objects, which does not have the above-mentioned drawback,
is to perturb very slightly the MOFS affinity values ψi (u, v)

in such a way that the resulting perturbed values ψ ′
i (u, v)

satisfy the condition

{ψ ′
i1(u, v) | u, v ∈ V and u 
= v} ∩ {ψ ′

i2(u, v) | u, v ∈ V

and u 
= v}\{0} = ∅ if i1 
= i2. (2.1)

For example, if affinity values are represented as floating
point binary values and M = 4, and if ψi (u, v) < 1
(1 ≤ i ≤ 4) whenever u 
= v,7 then whenever u 
= v

and ψi (u, v) 
= 0 we can set the two least significant bits of
ψi (u, v) to 00, 01, 10, or 11 according to whether i = 1, 2,
3, or 4. The condition (2.1) ensures that the objects of the
MOFS segmentation computed from the perturbed affinity
values will be pairwise disjoint.8

This method is appropriate for any application in which
MOFS segmentations are stable with respect to tiny changes
in affinity values—i.e., any application in which tiny changes
in affinity values are very unlikely to appreciably affect the
segmentations that are produced.

We can also conclude from the same line of thought that
different objects of an MOFS segmentation cannot overlap
in any substantial way if the segmentation is stable in this
sense (because overlapping of objects can always be entirely
eliminated bymaking arbitrarily small changes in the affinity

7 The condition that ψi (u, v) < 1 (1 ≤ i ≤ M) whenever u 
= v

is needed only because we do not want any perturbed affinity value
to exceed 1. From a mathematical perspective there is no real loss of
generality when we assume this condition. Indeed, if the condition is
not satisfied we can define affinities ψ∗

i (u, v) such that ψ∗
i (u, v) =

ψi (u, v)/2 whenever u 
= v, and then use the ψ∗s in place of the ψs:
The ψ∗s evidently satisfy the condition, and it is not hard to see from
Algorithm 3 that using the ψ∗s in place of the ψs will not change the
segmentations that are produced, because for all V -paths p and q of
nonzero length and all i, j ∈ {1, . . . , M} we have that ψ∗

i (p) < ψ∗
j (q)

if and only if ψi (p) < ψ j (q). (See [17, Prop. 1] for more examples of
different affinities that are equivalent for FC segmentation purposes.)
From a computational perspective, we mention that many MOFS seg-
mentation algorithms, including our Algorithm 5 below, can be easily
modified to produce correct segmentations even if some affinity values
exceed 1. If we use a modified algorithm of this kind, then the perturba-
tion described here can be applied even if the condition is not satisfied.
8 Indeed, suppose not: Suppose v ∈ OMOFS

i ∩ OMOFS
j where

〈OMOFS
1 , . . . , OMOFS

M 〉 is the MOFS segmentation derived from
ψ ′
1, . . . , ψ

′
M and pairwise disjoint seed sets S1, . . . , SM , and i 
= j .

Then we see from the main loop of Algorithm 3 that v must be incor-
porated into Ti and Tj at the same iteration of that loop. Assuming
v is incorporated into Ti and Tj at the nth iteration of the loop,
and using the notation of Theorem 2.6, we have that v ∈ T n

i \T n−1
i

and v ∈ T n
j \T n−1

j , whence we see from Theorem 2.6 that there
is a V -path from Si to v of ψ ′

i -strength αn and there is also a V -
path from S j to v of ψ ′

j -strength αn . But this would imply αn ∈
{ψ ′

i (u, v) | u, v ∈ V and u 
= v} ∩ {ψ ′
j (u, v) | u, v ∈ V and u 
= v},

which contradicts (2.1).
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values). Equivalently, if different MOFS objects have sub-
stantial overlap, then the MOFS segmentation is unstable.

Affinity perturbation as described here is proposed as a
method of eliminating overlaps between objects only when
all such overlaps are small; it is not recommended when
different objects have substantial overlap.

An unexpected substantial overlap of MOFS objects may
indicate that an affinity or seed was poorly chosen. In any
applicationwhere differentMOFSobjectswould be expected
to overlap substantially, the instability of such MOFS seg-
mentations with respect to tiny changes in affinity values
should be borne in mind when considering whether MOFS
is a suitable method for that application.

InSect. 3.4wewill see that these remarks about substantial
overlaps of objects in MOFS segmentations apply as well to
large tie-zones in IRFC segmentations, because any IRFC
segmentation that has a large tie-zone is also unstable with
respect to tiny changes in affinity values.9

3 Concise Path-Based Characterizations of Fuzzy
Connectedness Segmentations

In Sect. 2 we defined RFC, IRFC, and MOFS segmentations
as the segmentations produced by Algorithms 1–3, and also
characterized each of the segmentations mathematically in
terms of inductively defined sets. In this section, we give
more concise path-based mathematical characterizations of
these segmentations, both for their independent interest and
because other properties of the segmentations can be conve-
niently deduced from these characterizations.

3.1 (ψ, S)-Optimal V -paths and Hereditarily
(ψ, S)-Optimal V -paths

As we shall see in Theorems 3.6 and 3.8 below, RFC and
IRFC segmentations can be characterized in terms of the
concepts of optimal and hereditarily optimal paths which
we now introduce.

Let ψ : V × V → [0, 1] be an affinity and let S ⊆
V . Then we say that a V -path p = 〈v0, . . . , vl〉 is (ψ, S)-
optimal if v0 ∈ S and ψ(p) = ψV (S, vl), and we say p
is hereditarily (ψ, S)-optimal if p and all nonempty proper
initial segments of p are (ψ, S)-optimal. Thus a V -path p =
〈v0, . . . , vl〉 is hereditarily (ψ, S)-optimal just if v0 ∈ S
and ψ(〈v0, . . . , vk〉) = ψV (S, vk) for 1 ≤ k ≤ l. When ψ

is symmetric, a V -path is hereditarily (ψ, S)-optimal just if
its reverse is what [21] calls a nice path in V to S.

9 Note that this cannot be shown by considering affinity perturbations
of the kind we have discussed in the above paragraphs, because IRFC
segmentation uses just a single affinity.

If S 
= ∅ then for any v in V it is evident that there is at
least one (ψ, S)-optimal V -path to v, and we will see from
the next proposition that there is at least one hereditarily
(ψ, S)-optimal V -path to v.

Proposition 3.1 Let ψ : V × V → [0, 1] be an affinity
and let ∅ 
= S ⊆ V . Then for each v ∈ V there exists a
hereditarily (ψ, S)-optimal V -path to v.

This follows easily from Lemma 3.3 in [21] (whose proof
is readily confirmed to be valid even if the affinity is not
symmetric). For the convenience of readers we will give a
self-contained proof of the proposition here.

Proof of Proposition. Suppose the proposition is false.
Among those points v ∈ V for which no V -path to v is hered-
itarily (ψ, S)-optimal pick a point v∗ for whichψV (S, v∗) is
maximal, and let 〈v0, . . . , vl〉 be a V -path from S to vl = v∗
such that ψ(〈v0, . . . , vl〉) = ψV (S, vl). Let k be the great-
est index for which ψ(〈v0, . . . , vk〉) 
= ψV (S, vk); k exists
since 〈v0, . . . , vl〉 cannot be hereditarily (ψ, S)-optimal.
Now ψV (S, vk) > ψ(〈v0, . . . , vk〉) ≥ ψ(〈v0, . . . , vl〉) =
ψV (S, vl), so it follows from our definition of vl = v∗ that
there exists a V -path p to vk such that p is a hereditarily
(ψ, S)-optimal V -path. For all k′ ∈ {k + 1, . . . , l} let pk′ be
the V -path p·〈vk, . . . , vk′ 〉 from S to vk′ . Then, sinceψ(p) =
ψV (S, vk) > ψ(〈v0, . . . , vk〉), for all k′ ∈ {k + 1, . . . , l} we
have that ψ(pk′) = ψ(p · 〈vk, . . . , vk′ 〉) ≥ ψ(〈v0, . . . , vk〉 ·
〈vk, . . . , vk′ 〉) = ψ(〈v0, . . . , vk′ 〉) = ψV (S, vk′) ≥ ψ(pk′)
(where the equality ψ(〈v0, . . . , vk′ 〉) = ψV (S, vk′) fol-
lows from the definition of k), which implies ψ(pk′) =
ψV (S, vk′). From this (and the fact that p is a hereditar-
ily (ψ, S)-optimal V -path) it follows that the V -path pl is a
hereditarily (ψ, S)-optimal V -path to vl = v∗, a contradic-
tion. ��

3.2 �S( p), Recursively (�,S)-Optimal V -paths, and
the Sets O�,S

m

As mentioned above (and as we will see in the next sub-
section) RFC and IRFC segmentations can be characterized
in terms of the concepts of optimal and hereditarily optimal
paths, which raises the question of whether MOFS segmen-
tations can be characterized in a similar way.

The answer is “yes,” but it is not immediately obvious
how this can be done because optimal and hereditarily opti-
mal paths are defined for a single affinity ψ , whereas MOFS
segmentation uses M affinities ψ1, . . . , ψM : In MOFS seg-
mentation each of the M objects has its own affinity, which
is used to define the strengths of paths from that object’s seed
set. The main purpose of this subsection is to introduce the
concept of a recursively optimal path, which generalizes the
concept of a hereditarily optimal path to this broader context.

Our definition below of recursive optimality may not
seem, at first sight, to be a very natural generalization of
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hereditary optimality. But the definition will be justified by
Theorem 3.10, whichwill characterizeMOFS segmentations
in terms of recursively optimal paths in a way that is clearly
similar to our characterizations of RFC and IRFC segmenta-
tions in terms of optimal and hereditarily optimal paths. Just
as importantly, we will find that it is a definition which is
convenient to use in inductive arguments.

Let � = 〈ψ1, . . . , ψM 〉 be a sequence of affinities on
V and S = 〈S1, . . . , SM 〉 a sequence of (pairwise disjoint
nonempty) seed sets. For any V -path p from

⋃
j S j wedefine

the (�,S)-strength of p to be ψm(p), wherem is the unique
element of {1, . . . , M} such that p is a V -path from Sm ;
this value will be denoted by �S(p). Note that �S(p) is
undefined if the V -path p is not a V -path from

⋃
j S j .

Now there is an easy but rather unsatisfactory way to gen-
eralize our concept of a hereditarily (ψ, S)-optimal V -path:
We first define �S(v) for each v ∈ V to be the maximum
value attained by �S(q) as q ranges over all V -paths from
⋃

j S j to v. Thenwe say that aV -path 〈v0, . . . , vl〉 is (�,S)-
optimal if v0 ∈ ⋃

j S j and �S(〈v0, . . . , vl〉) = �S(vl),
and say that a V -path p is hereditarily (�,S)-optimal if p
and all nonempty proper initial segments of p are (�,S)-
optimal. Unfortunately, this more general concept turns out
to be less useful than the single-affinity concept of hereditary
(ψ, S)-optimality, because Proposition 3.1 fails to generalize
to hereditarily (�,S)-optimal V -paths: It is not true that for
each v ∈ V there must exist a hereditarily (�,S)-optimal
V -path to v, as the following example illustrates:

Example 3.2 Let V = {s1, s2, c, d}, M = 2, and S =
〈S1, S2〉, where S1 = {s1} and S2 = {s2}. Let � = 〈ψ1, ψ2〉,
where ψ1 and ψ2 are the symmetric affinities on V defined
byψ1(s1, c) = ψ1(c, s1) = 0.7,ψ1(c, d) = ψ1(d, c) = 0.4,
ψ2(s2, c) = ψ2(c, s2) = ψ2(c, d) = ψ2(d, c) = 0.6, and
ψi (x, y) = 0 in all other cases where i ∈ {1, 2} and x and y
are distinct points in V . (See Fig. 4.) Then no V -path to d is
hereditarily (�,S)-optimal: Indeed, if p is a (�,S)-optimal
V -path to d then p is a V -path from s2, so p has an initial
segment that ends at c and is not (�,S)-optimal (because
�S(〈s2, c〉) = 0.6 < 0.7 = �S(〈s1, c〉)).

s1 s2c

d

.7 .6

.6.4

Fig. 4 Scene and affinity values for Example 3.2

It is readily confirmed (by inspection of Algorithm 3) that
in this example the objects of the MOFS segmentation are
O1 = {s1, c, d} and O2 = {s2}: Thus d ∈ O1, even though
there is no (�,S)-optimal V -path from S1 to d because
ψV
1 (S1, d) = 0.4 < �S(d) = ψV

2 (S2, d) = 0.6. Examples
such as this one strongly suggest that MOFS segmentations
do not have simple characterizations in terms of (�,S)-
optimal and hereditarily (�,S)-optimal V -paths.

We now define the class of recursively (�,S)-optimal
V -paths, which generalizes the class of hereditarily (ψ, S)-
optimal V -paths in a more useful way. Recursively (�,S)-
optimal V -paths will be defined by induction on their
(�,S)-strength, starting with the strongest such paths (those
of (�,S)-strength 1).

For this purpose, let 1 = α1 > · · · > α|A| be (as in
Algorithm 3) the sequence obtained by sorting the finite set
A = ⋃

j ψ j [V × V ]\{0} into decreasing order, and define
α|A|+1 = 0. (It follows that the (�,S)-strength of every V -
path is αn for some n ∈ {1, . . . , |A|, |A| + 1}.)

We define the recursively (�,S)-optimal V -paths of
(�,S)-strength α1 = 1 to be just the V -paths from
⋃

j S j whose (�,S)-strength is 1: Every V -path from
⋃

j S j whose (�,S)-strength is 1 is recursively (�,S)-
optimal. Once we have defined the recursively (�,S)-
optimal V -paths of (�,S)-strength > αn for some n ∈
{2, . . . , |A| + 1}, we define the recursively (�,S)-optimal
V -paths of (�,S)-strength αn to be the V -paths 〈v0, . . . , vl〉
from

⋃
j S j of (�,S)-strength αn that satisfy the following

condition:

• For 1 ≤ k ≤ l there is no recursively (�,S)-optimal
V -path to vk of (�,S)-strength > �S(〈v0, . . . , vk〉).

Note that in this condition “recursively (�,S)-optimal
V -path to vk of (�,S)-strength > �S(〈v0, . . . , vk〉)”
has already been defined because �S(〈v0, . . . , vk〉) ≥
�S(〈v0, . . . , vl〉) = αn andwe are assumingwehave already
defined the recursively (�,S)-optimal V -paths of (�,S)-
strength > αn .

More formally, a V -path 〈v0, . . . , vl〉 is recursively
(�,S)-optimal if (and only if) the following condition
ROS

�(〈v0, . . . , vl〉) holds:

ROS
�(〈v0, . . . , vl〉): v0 ∈ ⋃

j S j and, for 1 ≤ k ≤ l,

no V -path p to vk satisfies both ROS
�(p) and �S(p) >

�S(〈v0, . . . , vk〉).

It is evident that any two recursively (�,S)-optimal V -
paths to the same point must have the same (�,S)-strength.
It is also evident that any nonempty initial segment of a
recursively (�,S)-optimal V -path is itself a recursively
(�,S)-optimal V -path. We will see in Corollary 3.5 that
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this concept is indeed a generalization of the concept of a
hereditarily (ψ, S)-optimal V -path.

For V -paths p from
⋃

j S j of (�,S)-strength <1, the
property of being recursively (�,S)-optimal can be char-
acterized in terms of p’s longest initial segment of greater
strength: Let 〈v0, . . . , vl〉 be any V -path from

⋃
j S j such

that �S(〈v0, . . . , vl〉) = α < 1, and let 〈v0, . . . , vr 〉
be the longest initial segment of 〈v0, . . . , vl〉 such that
�S(〈v0, . . . , vr 〉) > α (so that �S(〈v0, . . . , vk〉) = α for
each k ∈ {r + 1, . . . , l}). Then, readily, 〈v0, . . . , vl〉 is a
recursively (�,S)-optimal V -path if and only if both of the
following are true:

1. 〈v0, . . . , vr 〉 is a recursively (�,S)-optimal V -path.
2. No vk with r < k ≤ l is the last point of a recursively

(�,S)-optimal V -path of (�,S)-strength > α.

As mentioned above, one weakness of the concept of a
hereditarily (�,S)-optimal V -path as a generalization of
the concept of a hereditarily (ψ, S)-optimal V -path is that
there may be points v ∈ V for which there is no hereditarily
(�,S)-optimal V -path to v, as we showed in Example 3.2.
But it is very easy to see that the concept of a recursively
(�,S)-optimal V -path does not have this drawback:

Proposition 3.3 Let � = 〈ψ1, . . . , ψM 〉 be any sequence
of affinities on V and S = 〈S1, . . . , SM 〉 any sequence of
pairwise disjoint nonempty subsets of V . Then for each v ∈ V
there exists a recursively (�,S)-optimal V -path to v.

Proof Let v0 be any point in
⋃

j S j . Then for each v ∈ V

either ROS
�(〈v0, v〉) holds or ROS

�(p) holds for some V -
path p to v such that �S(p) > �S(〈v0, v〉). ��

For any sequence of affinities � = 〈ψ1, . . . , ψM 〉 on V , any
sequence S = 〈S1, . . . , SM 〉 of pairwise disjoint nonempty
subsets of V , and every m ∈ {1, . . . , M} we define

O�,S
m = {v ∈ V | there exists a recursively

(�,S)-optimal V -path from Sm to v}.

Evidently, Sm ⊆ O�,S
m , and O�,S

m ⊆ V \⋃
i 
=m Si if

S1, . . . , SM are consistent with the affinities ψ1, . . . , ψM .
Moreover, Proposition 3.3 implies

⋃
j O

�,S
j = V . This is

an important concept, because we will see later (from Theo-
rem 3.10) that the mth object found by MOFS segmentation
with affinitiesψ1, . . . , ψM and seed sets S1, . . . , SM that are
consistent with the affinities is the set
{v ∈ O�,S

m | ψ
O�,S
m

m (Sm, v) > 0}.
Our next theorem tells us that if S is consistent with �,

then the recursively (�,S)-optimal V -paths from Sm are just
the hereditarily (ψm |O�,S

m ×O�,S
m

, Sm)-optimal O�,S
m -paths.

Here ψm |O�,S
m ×O�,S

m
denotes the affinity on O�,S

m that is

obtained by restricting the affinity ψm to O�,S
m × O�,S

m .10

Theorem 3.4 Let � = 〈ψ1, . . . , ψM 〉 be any sequence of
affinities on V and S = 〈S1, . . . , SM 〉 any sequence of pair-
wise disjoint nonempty subsets of V that are consistent with
the affinities. Then, for all m ∈ {1, . . . , M}:

1. A recursively (�,S)-optimal V -path is an O�,S
m -path

just if it is a V -path from Sm.
2. An O�,S

m -path is a recursively (�,S)-optimal V -path
just if it is a hereditarily (ψm |O�,S

m ×O�,S
m

, Sm)-optimal

O�,S
m -path.

3. For all v ∈ O�,S
m , the (�,S)-strength of every recur-

sively (�,S)-optimal V -path to v is ψ
O�,S
m

m (Sm, v).

A proof of this theorem will be given in Sect. 6.2. One
important implication of this result is that in the case where
ψ1 = · · · = ψM = ψ (i.e., the same affinity ψ is used for
each of the M objects, as in (I)RFC segmentation) recursive
(�,S)-optimality is equivalent to hereditary (ψ,

⋃
j S j )-

optimality:

Corollary 3.5 Let �ψ = 〈ψ, . . . , ψ〉 be a sequence of M
occurrences of the same affinityψ on V , and let 〈S1, . . . , SM 〉
be any sequence of pairwise disjoint nonempty subsets of V .
Then a V -path is recursively (�ψ, 〈S1, . . . , SM 〉)-optimal
just if it is hereditarily (ψ,

⋃
j S j )-optimal.

Proof Since �
ψ
〈S1,...,SM 〉(p) = ψ(p) for every V -path p

from
⋃

j S j , we see that a V -path is recursively

(�ψ, 〈S1, . . . , SM 〉)-optimal just if it is recursively
(〈ψ〉, 〈⋃ j S j 〉)-optimal. Putting � = 〈ψ〉, S = 〈⋃ j S j 〉,
and m = M = 1, we see from Proposition 3.3 that

O
〈ψ〉,〈⋃ j S j 〉
1 = V and then see from statement 2 of Theo-

rem 3.4 that a V -path is recursively (〈ψ〉, 〈⋃ j S j 〉)-optimal
just if it is hereditarily (ψ,

⋃
j S j )-optimal. ��

3.3 Path-Based Characterizations of RFC, IRFC, and
MOFS Segmentations

The following theorem gives two (extremely similar) char-
acterizations of RFC segmentations:

Theorem 3.6 Let M ≥ 2, and let 〈ORFC
1 , . . . , ORFC

M 〉 be the
segmentation of V foundbyAlgorithm1 for anaffinityψ on V
and pairwise disjoint nonempty seed sets S1, . . . , SM ⊂ V .
Suppose further that the seed sets S1, . . . , SM are consistent
with the affinity ψ . Then the following are true for 1 ≤ i ≤
M:

10 Note that an O�,S
m -path to v that is (ψm |O�,S

m ×O�,S
m

, Sm)-optimal
need not be a V -path to v that is (ψm , Sm)-optimal: It may have lower
ψm -strength than a V -path from Sm to v that is not an O�,S

m -path.
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1. v ∈ ORFC
i just if every (ψ,

⋃
j S j )-optimal V -path to v

is a V -path from Si .
2. ORFC

i = {v ∈ V | max j 
=i ψ
V (S j , v) < ψV (Si , v)}.

Theorem 3.6 will be proved in Sect. 6.3. Statement 2 of the
theorem has been used as a definition of RFC segmentations
in the (I)RFC-track literature—see, e.g., [21] or [33]. It fol-
lows that, under the hypotheses of the theorem, Algorithm 1
does indeed produce the same segmentations as are produced
by RFC segmentation algorithms in the literature.

FromTheorem3.6 it is easy to deduce two basic properties
of RFC objects:

Corollary 3.7 Under the hypotheses of Theorem 3.6, the fol-
lowing are true for 1 ≤ i ≤ M:

1. For all v in ORFC
i , every (ψ,

⋃
j S j )-optimal V -path to

v is an ORFC
i -path.

2. For all v in ORFC
i , we have that ψORFC

i (Si , v) =
ψV (Si , v) > max j 
=i ψ

V (S j , v).

Proof Statement 2 follows from statement 1, so we need
only prove statement 1. To do this, fix a v in ORFC

i and an i
in {1, . . . , M}, and let 〈v0, . . . , vk〉 be a (ψ,

⋃
j S j )-optimal

V -path to v.We claim that vn ∈ ORFC
i for 0 ≤ n ≤ k. Indeed,

suppose not. Then there is an n < k such that vn /∈ ORFC
i ,

so by statement 1 of Theorem 3.6 (applied to vn) there
exists a (ψ,

⋃
j S j )-optimal V -path p to vn from

⋃
j 
=i S j .

Thus p · 〈vn, . . . , vk〉 is a V -path from
⋃

j 
=i S j to v with
ψ(p·〈vn, . . . , vk〉) ≥ ψ(〈v0, . . . , vk〉) and so is a (ψ,

⋃
j S j )-

optimal V -path to v that is not from Si , which contradicts
statement 1 of Theorem 3.6. ��

Our next theorem gives three characterizations of IRFC seg-
mentations:

Theorem 3.8 Let M ≥ 2, and let 〈O IRFC
1 , . . . , O IRFC

M 〉
be the segmentation of V found by Algorithm 2 for an
affinity ψ on V and pairwise disjoint nonempty seed sets
S1, . . . , SM ⊂ V . Suppose further that the seed sets
S1, . . . , SM are consistent with the affinity ψ . Then the fol-
lowing are true for 1 ≤ i ≤ M:

1. v ∈ O IRFC
i just if every hereditarily (ψ,

⋃
j S j )-optimal

V -path to v is a V -path from Si .
2. O IRFC

i is the unique set O that satisfies
O = {v ∈ V | max j 
=i ψ

V \O(S j , v) < ψO(Si , v)}.
3. O IRFC

i is the unique set O that satisfies
O = {v ∈ V | max j 
=i ψ

V \O(S j , v) < ψV (Si , v)}.

Theorem 3.8 will be proved in Sect. 6.5. It follows from this
theorem that, under its hypotheses, Algorithm 2 produces the

same segmentations as IRFC algorithms from the (I)RFC-
track literature.11

Corollary 3.9 below is an IRFC analog ofCorollary 3.7. Its
statement 1 can be deduced from statement 1 of Theorem 3.8
in very much the same way as statement 1 of Corollary 3.7
was deduced fromstatement 1 ofTheorem3.6. Its statement 2
follows from its statement 1 and statement 3 of Theorem 3.8.

Corollary 3.9 Under the hypotheses of Theorem 3.8, the fol-
lowing are true for 1 ≤ i ≤ M:

1. For all v in O IRFC
i , every hereditarily (ψ,

⋃
j S j )-optimal

V -path to v is an O IRFC
i -path.

2. For all v in O IRFC
i , we have that ψOIRFC

i (Si , v) =
ψV (Si , v) > max j 
=i ψ

V \OIRFC
i (S j , v).

The following theorem gives characterizations of MOFS
segmentations that are similar in flavor to the first two char-
acterizations of IRFC objects in Theorem 3.8:

Theorem 3.10 Let 〈OMOFS
1 , . . . , OMOFS

M 〉 be the segmen-
tation of V found by Algorithm 3 for a sequence � =
〈ψ1, . . . , ψM 〉 of affinities on V and a sequence S =
〈S1, . . . , SM 〉 of pairwise disjoint nonempty seed sets. Sup-
pose further that the seed sets S1, . . . , SM are consistent
with the affinities ψ1, . . . , ψM. Then:

1. For 1 ≤ i ≤ M, v ∈ OMOFS
i just if there is a recursively

(�,S)-optimal V -path of nonzero (�,S)-strength from
Si to v.

2. OMOFS
i = {v ∈ O�,S

i | ψ
O�,S
i

i (Si , v) > 0} for every
1 ≤ i ≤ M.

11 It is enough to verify that O IRFC
i is the same set as the i th IRFC object

according to [20]. To see this, let Xi = ⋃
j 
=i S j (1 ≤ i ≤ M) and let

f : P(V \Xi ) → P(V \Xi ) be the set function defined by f (O) =
{v ∈ V | ψV \O (Xi , v) < ψV (Si , v)} for all O ⊆ V \Xi . Consider the
sequence O0

i , O1
i , O2

i , . . . where O0
i = ∅ and Ok+1

i = f (Ok
i ) for 0 ≤

k < ∞. Since f is monotonic (i.e., f (O) ⊆ f (O ′)whenever O ⊆ O ′)
and ∅ = O0

i ⊆ O1
i , we see that Ok

i = f (Ok−1
i ) ⊆ f (Ok

i ) = Ok+1
i

for k = 1, 2, 3, . . . . Writing O∞
i to denote the union (i.e., the largest

set) of the chain ∅ = O0
i ⊆ O1

i ⊆ O2
i ⊆ . . . of subsets of the finite

set V \Xi , we have that O∞
i = f (O∞

i ). Equivalently, O∞
i = {v ∈ V |

ψV \O∞
i (Xi , v) < ψV (Si , v)} = {v ∈ V | max j 
=i ψ

V \O∞
i (S j , v) <

ψV (Si , v)} and so by statement 3 of Theorem 3.8 we have that O IRFC
i =

O∞
i . But since the ascending chain ∅ = O0

i ⊆ O1
i ⊆ O2

i ⊆ . . .

satisfies Ok+1
i = Ok

i ∪ Ok+1
i = Ok

i ∪ f (Ok
i ) = Ok

i ∪ {v ∈ V \Ok
i |

ψV \Ok
i (Xi , v) < ψV (Si , v)} for 0 ≤ k < ∞, this chain satisfies the

inductive definition of the chain ∅ = P0
Si ,Ti

⊆ P1
Si ,Ti

⊆ P2
Si ,Ti

⊆ . . .

that is given by equation (12) of [20] in the case where the affinity is ψ

and C , m, and Ti are respectively equal to our V , M , and Xi . So in this
case the set Pk

Si ,Ti
of [20] is equal to Ok

i for 0 ≤ k < ∞, whence the

set
⋃

k P
k
Si ,Ti

, which is the i th IRFC object according to [20, Sect. 4.3],

is
⋃

k O
k
i = O∞

i = O IRFC
i .
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3. 〈OMOFS
1 , . . . , OMOFS

M 〉 is the unique sequence of sets
〈O1, . . . , OM 〉 such that

Oi = {v ∈ V | max j 
=i ψ
Oj
j (S j , v) ≤ ψ

Oi
i (Si , v) 
= 0}

for 1 ≤ i ≤ M. (3.1)

Theorem 3.10 will be proved in Sect. 6.4. We can deduce
from Theorem 3.10 and Theorem 1 of [10] that, under the
hypotheses of Theorem 3.10, Algorithm 3 produces the same
segmentations as are produced byMOFS algorithms from the
MOFS-track literature.12

Some easy consequences of Theorem 3.10 are stated in
the following two corollaries:

Corollary 3.11 Under the hypotheses of Theorem 3.10, the
following are true for 1 ≤ i ≤ M:

1. For all v ∈ OMOFS
i , every recursively (�,S)-optimal

V -path from Si to v is an OMOFS
i -path.

2. An OMOFS
i -path is a recursively (�,S)-optimal V -path

just if it is a hereditarily (ψi |OMOFS
i ×OMOFS

i
, Si )-optimal

OMOFS
i -path.

3. For all v ∈ OMOFS
i ,ψ

OMOFS
i

i (Si , v) is the (�,S)-strength
of any recursively (�,S)-optimal V -path to v.

Proof Statement 1 follows from statement 1 of Theo-
rem 3.10, as every nonempty initial segment of a recursively
(�,S)-optimal V -path from Si is itself a recursively (�,S)-
optimal V -path from Si .

From statement 2 of Theorem 3.10 we see that an OMOFS
i -

path is an O�,S
i -path, and also see that an OMOFS

i -path
is a (ψi |OMOFS

i ×OMOFS
i

, Si )-optimal OMOFS
i -path if and only

if it is a (ψi |O�,S
i ×O�,S

i
, Si )-optimal O�,S

i -path (whence

an OMOFS
i -path is a hereditarily (ψi |OMOFS

i ×OMOFS
i

, Si )-

optimal OMOFS
i -path if and only if it is a hereditarily

(ψi |O�,S
i ×O�,S

i
, Si )-optimal O�,S

i -path). These observa-

tions and statement 2 of Theorem 3.4 together imply state-

ment 2 of the corollary. As ψ
OMOFS
i

i (Si , v) is the (�,S)-
strength of a hereditarily (ψi |OMOFS

i ×OMOFS
i

, Si )-optimal

12 Indeed, let OBJi denote the i th object (in the sense of this paper)
of the segmentation produced by the MOFS algorithm of [10] for our
affinities ψ1, . . . , ψM and seed sets S1, . . . , SM . Then what we want
to verify is that OBJi = OMOFS

i for 1 ≤ i ≤ M . In the notation of
[10], OBJi = {c ∈ V | σ c

i 
= 0}. Theorem 1 of [10] uses the notation
Vi to denote the seed set we refer to as Si and uses sci to denote the

value ψ
OBJi
i (Si , c). For 1 ≤ i ≤ M and all c ∈ V , statement (i) of that

theorem implies that σ c
i 
= 0 just if max j 
=i scj ≤ sci 
= 0. Equivalently,

for 1 ≤ i ≤ M we have that c ∈ OBJi just if max j 
=i ψ
OBJ j
j (S j , c) ≤

ψ
OBJi
i (Si , c) 
= 0, whence we see from statement 3 of Theorem 3.10

that OBJi = OMOFS
i , as required.

OMOFS
i -path to any v ∈ OMOFS

i , and all recursively (�,S)-
optimal V -paths to a point v have the same (�,S)-strength,
statement 3 follows from statement 2. ��
Corollary 3.12 Under the hypotheses of Theorem3.10, if for
some i ∈ {1, . . . , M} and v,w ∈ V we have that v ∈ OMOFS

i
and ψi (v,w) > 0, then w ∈ ⋃

j O
MOFS
j . Equivalently, for

1 ≤ i ≤ M wehave thatψi (v,w) = 0whenever v ∈ OMOFS
i

and w ∈ V \⋃
j O

MOFS
j .

Proof It is quite easy to see that this corollary is true just by
considering the final iteration of Algorithm 3’s main loop.
However, we will deduce the corollary from Theorem 3.10.

Suppose v ∈ OMOFS
i and ψi (v,w) > 0. Then, by The-

orem 3.10, there is a recursively (�,S)-optimal V -path p
from Si to v such that ψi (p) > 0. Let p′ be the V -path from
Si to w obtained by appending w to p, so that ψi (p′) =
min(ψi (p), ψi (v,w)) > 0. As p is a recursively (�,S)-
optimal V -path, either p′ is a recursively (�,S)-optimal
V -path, or there is a recursively (�,S)-optimal V -path q
from

⋃
j S j to w such that �S(q) > �S(p′) = ψi (p′) > 0.

In both cases there is a recursively (�,S)-optimal V -path
of nonzero (�,S)-strength from

⋃
j S j to w, and so w ∈

⋃
j O

MOFS
j by statement 1 of Theorem 3.10. ��

3.4 Instability of IRFC Segmentations That Have Large
Tie-Zones

We now show that the tie-zone of any IRFC segmentation
can be completely eliminated by making arbitrarily small
changes in affinity values.

Let us write 〈O IRFC
1 (ψ,S), . . . , O IRFC

M (ψ,S)〉 to denote
the IRFC segmentation given by an affinity ψ on V and a
sequence S of M pairwise disjoint nonempty seed sets in
V , write T Z(ψ,S) to denote V \ ⋃

j O
IRFC
j (ψ,S) (which is

the segmentation’s tie-zone), and write ‖ψ − ψ ′‖ to denote
the value maxu,v∈V |ψ(u, v) − ψ ′(u, v)| (for any affinities
ψ and ψ ′ on V ). Then a precise statement of our result is as
follows:

(♣) For any affinity ψ on V , any sequence S of pairwise
disjoint nonempty seed sets in V , and any ε > 0, there
exists an affinity ψ ′ on V such that ‖ψ ′ − ψ‖ < ε,
T Z(ψ ′,S) = ∅, and ψ ′ is symmetric if ψ is.

It follows from this result that any IRFC segmentation whose
tie-zone is largemust be unstablewith respect to tiny changes
in the affinity values.

For any affinity ψ on V and any sequence S =
〈S1, . . . , SM 〉 of pairwise disjoint nonempty seed sets in
V , we define a (ψ,S)-bottleneck point to be a point b ∈
T Z(ψ,S) for which there exists a hereditarily (ψ,

⋃
j S j )-

optimal V -path to b such that no other point of the V -path
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lies in T Z(ψ,S). (Here we are thinking of T Z(ψ,S) as
a multiple-necked bottle whose necks are the places where
hereditarily (ψ,

⋃
j S j )-optimal V -paths enter the bottle.) If

T Z(ψ,S) 
= ∅ then there is at least one (ψ,S)-bottleneck
point, by Proposition 3.1 and the fact that every initial
segment of a hereditarily (ψ,

⋃
j S j )-optimal V -path is a

hereditarily (ψ,
⋃

j S j )-optimal V -path.
The fact (♣) is a straightforward consequence of the fol-

lowing theorem (which is a weaker version of (♣)). This
theorem will be proved in Sect. 6.6.

Theorem 3.13 Let ψ be an affinity on V and S =
〈S1, . . . , SM 〉 a sequence of pairwise disjoint nonempty
subsets of V such that T Z(ψ,S) 
= ∅. Let b be any (ψ,S)-
bottleneck point, and let δ be any positive constant. Then
there exists an affinity ψ ′ on V such that ‖ψ ′ − ψ‖ < δ,
T Z(ψ ′,S) ⊆ T Z(ψ,S)\{b}, and ψ ′ is symmetric if ψ is
symmetric.

To deduce (♣) from this theorem, letψ ,S, and ε be any affin-
ity on V , any sequence of pairwise disjoint nonempty subsets
of V , and any positive value. Let δ0, δ1, δ2, . . . be an infinite
sequence of positive values such that

∑∞
j=0 δ j < ε. Then

we see from the theorem that we can define a sequence of
affinities ψ0, ψ1, ψ2, . . . on V in the following way: Define
ψ0 = ψ , and define ψi for i = 1, 2, 3, . . . as follows: If
T Z(ψi ,S) 
= ∅ then let bi be any (ψi ,S)-bottleneck point
and letψi+1 be any affinity on V such that ‖ψi+1−ψi‖ < δi ,
T Z(ψi+1,S) ⊆ T Z(ψi ,S)\{bi }, and ψi+1 is symmetric if
ψi is; but if T Z(ψi ,S) = ∅ then letψi+1 = ψi . Now (♣) fol-
lows from the fact that ‖ψi −ψ‖ = ‖∑i−1

j=0(ψ j+1−ψ j )‖ ≤
∑i−1

j=0 ‖ψ j+1 − ψ j‖ <
∑i−1

j=0 δ j < ε for 1 ≤ i < ∞, and
the fact that there must be some i for which T Z(ψi ,S) = ∅.

4 Efficient Fuzzy Connectedness Segmentation
Algorithms

4.1 Efficient Computation of RFC Segmentations

The following variant of Dijkstra’s well known algorithm
[24] for finding shortest paths in a weighted digraph can be
used to compute RFC segmentations. A very similar algo-
rithm is described on p. 76 of [8], and the paper [25] discusses
algorithms of this general kind.

For any seed set S and affinity ψ on V , Algorithm 4 com-
putes theψ-strength of a (ψ, S)-optimal V -path to each point
v in V : It computes ψV (S, v) for every v in V . Given seed
sets 〈S1, . . . , SM 〉,we can apply this algorithmM times (once
with S = Si for each i ∈ {1, . . . , M}) to compute ψV (Si , v)

for 1 ≤ i ≤ M and all v in V . Then the RFC objects
〈ORFC

1 , . . . , ORFC
M 〉 for the seed sets S1, . . . , SM and affinity

ψ can all be found by applying statement 2 of Theorem 3.6,
assuming the seed sets are consistent with the affinity.

Line 6 of this algorithm assumes that we have identified a
set E ⊆ {(v, v′) ∈ V × V | v 
= v′} such that ψ(v, v′) = 0
whenever v 
= v′ and (v, v′) /∈ E . Each member of E is
called aψ-edge. We can always take this set E ofψ-edges to
be the whole of {(v, v′) ∈ V ×V | v 
= v′}, but the algorithm
will bemore efficient if for every u ∈ V the set of allψ-edges
(u, v) is small and the algorithm can quickly iterate over that
set.

Algorithm 4: Finds, for each v ∈ V , the ψ-strength of
a (ψ, S)-optimal V -path to v

Data: a finite set V , a nonempty subset S of V , and an affinity ψ

on V
Result: an array σ [ ] such that, for v ∈ V , σ [v] = ψV (S, v)

1 foreach v ∈ V do σ [v] ← 0 /* initialization loop 1 */
2 foreach s ∈ S do σ [s] ← 1 /* initialization loop 2 */
3 create a max-priority queue H that contains every v in V , with
key σ [v]

4 while H is not empty do /* the main loop */
5 remove an element w of arg maxu∈Hσ [u] from H
6 foreach x such that (w, x) is a ψ-edge and σ [w] > σ [x] do
7 σ ′ ← min(σ [w], ψ(w, x))
8 if σ ′ > σ [x] then σ [x] ← σ ′

/* σ [x] ← σ ′ involves update of H, because x ∈ H
*/

Let us assume that, for each v ∈ V , there are only O(1)
points x for which (v, x) is aψ-edge and those points can all
be found in O(1) time. Then, if H is represented as a binary
max-heap [22, Sect. 6.1] (so line 3 takes O(|V |) time and
each iteration of the main loop can be executed in O(log |V |)
time), the running time of Algorithm 4 is O(|V | log |V |).
But we can do better if all values of ψ are (or can safely be
rounded to) multiples of 1/N for an integer N that is O(|V |),
by using an array of doubly linked lists instead of a heap to
represent the priority queue H: For example, we can create
a doubly linked node Node[v] for each v ∈ V and maintain
an array Harr such that, for n ∈ {1, . . . , N }, Harr[n] is a
(possibly null) doubly linked list which contains Node[v]
for each v ∈ V that currently satisfies σ [v] = n/N . Priority
queues are frequently implemented in this kind ofway both in
MOFS-track and in (I)RFC-track FC segmentation [10,20].
Assuming this representation of H, each execution of line 8
requires only O(1) time, and the |V | executions of line 5
require a total of O(|V |)-time, so we see that the running
time of Algorithm 4 is O(|V |).

Standard justifications of Dijkstra’s algorithm can be
adapted to prove that Algorithm 4 achieves what its Result
line promises. But we will see that this also follows from the
correctness of Algorithm 5 below.

It would be easy to modify Algorithm 4 so it also creates
an array pred[ ] such that, for every point v /∈ S, when the
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Algorithm 5: Finds, for each v ∈ V , all those i ∈ {1, . . . , M} for which v ∈ OMOFS
i ; also finds the value ofψ

OMOFS
i

i (Si , v)

for each such i
Data: a finite set V and a sequence S = 〈S1, . . . , SM 〉 of pairwise disjoint nonempty subsets of V
Data: a sequence � = 〈ψ1, . . . , ψM 〉 of affinities on V
Result: an array σ [ ] and Boolean arrays χ1[ ], . . . , χM [ ] such that, for 1 ≤ i ≤ M and all v ∈ V ,

σ [v] = the (�,S)-strength of every recursively (�,S)-optimal V -path to v

χ i [v] = true if there is a recursively (�,S)-optimal V -path from Si to v and σ [v] 
= 0; χ i [v] = false otherwise
Comment: At termination, assuming S is consistent with �, Theorem 3.10 and Corollary 3.11 imply

{v ∈ V | χ i [v] = true} = OMOFS
i and σ [v] = ψ

OMOFS
i

i (Si , v) for 1 ≤ i ≤ M and all v ∈ OMOFS
i .

1 foreach v ∈ V do /* initialization loop 1 */
2 σ [v] ← 0
3 for i ← 1 to M do χ i[v] ← false

4 for i ← 1 to M do /* initialization loop 2 */
5 foreach s ∈ Si do
6 σ [s] ← 1
7 χ i[s] ← true

8 create a max-priority queue H that contains every v in V , with key σ [v]
9 while H is not empty do /* the main loop */

10 remove an element w of arg maxu∈Hσ [u] from H
11 foreach x such that (w, x) is a �-edge and σ [w] ≥ σ [x] do
12 foreach i ∈ {1, . . . , M} such that χ i[w] = true do
13 σ ′ ← min(σ [w], ψi(w, x))
14 if σ ′ > σ [x] then
15 σ [x] ← σ ′ /* involves update of H, because x ∈ H */

16 for j ← 1 to M do χ j[x] ← false
17 χ i[x] ← true

18 else if σ ′ = σ [x] and σ ′ > 0 and χ i[x] = false then
19 χ i[x] ← true
20 if x /∈ H then H ← H ∪ {x}

algorithm terminates pred[v] is the predecessor of v on a
(ψ, S)-optimal V -path to v.

While M-object RFC segmentations can be computed in
the manner described above using M separate applications
of Algorithm 4, they can often be computed more efficiently
(e.g., by using the idea presented by Badura and Pietka in
[5, Sect. 2.3]). However, we will leave this matter for future
exploration.

4.2 Efficient Computation of MOFS and IRFC
Segmentations

Algorithm 5 below, like Algorithm 4 above, can be regarded
as a variant of Dijkstra’s shortest path algorithm, but it is
necessarily less simple because it needs to allow the use of a
different affinity for each of the M objects. The algorithm
is similar to some other MOFS segmentation algorithms,
such as the algorithms in Sects. 3 and 5 of [10]. It will be
seen from the Result lines and Theorem 3.10 that, when
Algorithm 5 terminates, each object OMOFS

i of the MOFS
segmentation for seed sets S = 〈S1, . . . , SM 〉 and affinities
� = 〈ψ1, . . . , ψM 〉 is given by

OMOFS
i = {v ∈ V | χ i [v] = true}

assuming the seed sets are consistent with the affinities.
It follows from this (and Corollary 2.7) that the IRFC

segmentation for an affinityψ and seed sets S1, . . . , SM con-
sistent with ψ can be found by executing Algorithm 5 with
ψ1 = · · · = ψM = ψ : At termination, each object O IRFC

i of
the segmentation is given by

O IRFC
i = OMOFS

i \
⋃

j 
=i
OMOFS

j = {v ∈ V | χ i [v] = true

and χ j [v] = false for all j ∈ {1, . . . , M}\{i}}.

Line 11 of this algorithm assumes that we have identified a
set E ⊆ {(v, v′) ∈ V × V | v 
= v′} such that ψi (v, v′) = 0
for all i ∈ {1, . . . , M} whenever v 
= v′ and (v, v′) /∈ E .
Each member of E is called a �-edge. As with the ψ-edges
of Algorithm 4, if for every u ∈ V the set of all �-edges
(u, v) is small, and the algorithm can quickly iterate over
that set, then the algorithm will run more efficiently.

In this algorithm, as in Algorithm 4, H consists of points
whose labels carry potentially important new information,

123



320 J Math Imaging Vis (2016) 55:304–342

and when a point is removed fromH its relevant information
is passed on to other points (whose labels are updated accord-
ingly). An important difference between this algorithm and
Algorithm 4 is that in this algorithm labels of points that are
no longer in H may still be updated (by line 19); when that
happens the point in question is reinserted intoH (by line 20)
so that information carried by the updated label can be passed
on to other points at a later iteration of the main loop.

It would be quite easy tomodifyAlgorithm 5 so it also cre-
ates an array pred[ ][ ] such that, for each i ∈ {1, ..., M} and
each point v ∈ OMOFS

i \Si , when the algorithm terminates
pred[i][v] is the predecessor of v on a recursively (�,S)-
optimal V -path from Si to v.

Efficiency of Algorithm 5

We assume that, for each v ∈ V , there are only O(1) points
x for which (v, x) is a �-edge and those points can all be
found in O(1) time. We also assume the priority queue H
is implemented in such a way that it only takes O(1) time
to determine whether x /∈ H is true or false when line 20 is
executed.

As explained in Sect. 4.1, if all values of the ψi s are (or
can safely be rounded to) multiples of 1/N for an integer N
that is O(|V |), then we can use an array of doubly linked
lists to represent the priority queue H. This is how we would
represent H in most of the applications we have in mind.

However, let us first consider the case where the values of
the ψi s need not satisfy the above condition, and H is rep-
resented as a binary max-heap [22, Sect. 6.1]. Then line 8
can be executed in O(|V |) time. The main loop iterates at
most M |V | times; this follows from observation (viii) in
Sect. 6.8. Under the above assumptions, at each iteration of
the main loop it takes O(log |V |) time to execute line 10,
and then the inner loop on lines 11 – 20 iterates O(1) times
at a time cost of O(M(log |V | + M)). The latter bound fol-
lows from the fact that the “foreach i ∈ {1, . . . , M} such
that χ i[w] = true” loop iterates at most M times, and it
takes O(log |V |+M) time to execute its body (i.e., lines 13–
20) once: Indeed, the structure of the heap H can only
be modified by lines 15 and 20, execution of which takes
O(log |V |) time in each case, while the time cost of line 16
is O(M) and that of the rest of lines 13 – 20 is O(1). So
it takes a total of O(M |V |(log |V | + M(log |V | + M))) =
O(M2|V | log |V | + M3|V |)) time to execute all iterations
of the main loop. Since execution of lines 1–8 only takes
O(M |V |) time, the total running time of the algorithm is
also O(M2|V | log |V | + M3|V |), and so is O(|V | log |V |)
for any given value of M , assuming H is represented as a
binary max-heap.

In the more usual case where we use an array of doubly
linked lists instead of a heap to represent H, each execution
of line 10 takes O(1) amortized time, and each execution

of line 15 or line 20 takes O(1) time. So when we redo
the analysis in the previous paragraph we see that the total
running time is O(M3|V |). Thus the running time of the
algorithm is O(|V |) for any given value of M .

However,Algorithm5 is typically evenmore efficient than
may be suggested by a quick look at the algorithm and the
above analysis, because the factors of M which appear in
the analysis reflect the behavior of the algorithm in unusual
worst-case scenarios orwhenM is unusually large. For exam-
ple, even though execution of “for j ← 1 to M do χ j[x] ←
false” (line 16) takes 	(M) time, when M is small this loop
is responsible for only a small part of the algorithm’s running
time. Still more importantly, in most current applications of
MOFS segmentation the number of iterations of the main
loop will usually be close to |V | (whereas the upper bound
M |V | was used in the above analysis), and very few execu-
tions of the inner

foreach i ∈ {1, . . . , M} such thatχ i[w] = true

loop will consist of more than one iteration (as there will
rarely be more than one i for which χ i[w] = true).

In particular, this will be true for all MOFS and IRFC
applications in which segmentations are stable with respect
to tiny changes in affinity values. To see this, note that the
number of iterations of the main loop is μ|V | where μ is the
average, over all points v in V , of the number of times v is
removed from H. Assuming the seed sets are consistent with
the affinities and the MOFS or IRFC segmentation is stable
with respect to tiny changes in affinity values, the value of
μ will be close to 1 regardless of the value of M : Indeed,
a point v can be removed from H a total of k ≥ 2 times
only if that point lies in k different MOFS objects13 and,
as we saw in Sects. 2.5 and 3.4, this will be the case only
for a small proportion of the points in V if the segmentation
is stable. Similarly, if the seed sets are consistent with the
affinities and the segmentation is stable, then the “foreach i ∈
{1, . . . , M} such thatχ i[w] = true” inner loop will rarely
iterate more than once, because χ i[w] can be true for more
than one value of i only in rare cases where w lies in more
than one MOFS object.

Moreover, when M is large and the time needed to deter-
mine just which values of i satisfy χ i[w] = true and to
execute “for j ← 1 to M do χ j[x] ← false” are significant
issues, the information Algorithm 5 stores in the M Boolean
arraysχ1[v], . . . , χM [v] can be representedmore efficiently.
For example, wemight use an integer array χ [v] and an array
χ list[v] with the following properties: For each v ∈ V , χ [v]
is the value of i ∈ {1, . . . , M} for which the value of χ i[v]
would have been true, provided there is just one such value

13 This follows from observations (iv), (vi), and (vii) in Sect. 6.8, state-
ment 2 of Proposition 6.12, and Theorem 3.10.
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of i. When there is no such value of i or more than one such
value, χ [v] = 0 and χ list[v] is a (possibly null) list of all
such values of i. We may also choose to use such arrays χ [v]
and χ list[v] instead of the Boolean arrays χ1[v], . . . , χM [v]
if the latter would use too much memory.

Two Other Efficient Ways to Compute IRFC Objects

The GCmax algorithm of [20] will efficiently compute any
single object of an M-object IRFC segmentation. While
GCmax would need to be executedM times to compute all the
objects of an M-object IRFC segmentation, it may be faster
than Algorithm 5 when we need to compute just one of the
M objects.14

When the affinity is symmetric, the TZWS by union-find
method of [2], which was developed as a way to com-
pute tie-zone IFT watershed transforms—see footnote 2—is
another way to compute IRFC segmentations.15 Like Algo-
rithm5 and otherMOFSalgorithms, theTZWSbyunion-find
method computes all the objects of an IRFC segmentation
simultaneously. To briefly describe this method (which we
will do in terms of IRFC segmentation rather than tie-zone
IFTwatershed transform computation), letψ be a symmetric
affinity on V and let S1, . . . , SM ⊂ V be pairwise dis-
joint nonempty seed sets that are consistent with ψ . Let
∼ be the binary relation on V such that x ∼ y just if
ψV (

⋃
j S j , x) = ψV (

⋃
j S j , y) ≤ ψ(x, y). Since ψ is

symmetric, ∼ is symmetric and its transitive closure is an
equivalence relation, each of whose equivalence classes is
called a flat-zone.

It is not hard to show that each flat-zone either lies entirely
within a single object of the IRFC segmentation generated by
ψ and 〈S1, . . . , SM 〉or lies entirelywithin the segmentation’s
tie-zone. The TZWS by union-find method is somewhat sim-

14 Given an affinity on V and pairwise disjoint nonempty seed sets
S1, . . . , SM ⊂ V , we can compute the IRFC object O IRFC

i associated
with the seed set Si by executing the GCmax algorithm of [20, p. 386]
with W = ⋃

j S j and a priority map λ such that λ(c) = 0 if c ∈ Si and
λ(c) = 1 if c ∈ ⋃

j 
=i S j . This will compute a forest in which the nodes

of the trees rooted at points in Si are exactly the points of O IRFC
i . To

compute the entire IRFC segmentation 〈O IRFC
1 , . . . , O IRFC

M 〉we do this
M times, with i = 1, . . . , M . A modified version of GCmax, which uses
a priority map λ that satisfies λ(c) = j − 1 for all c ∈ S j (1 ≤ j ≤ M),
will compute a forest such that, for 1 ≤ j ≤ M , the nodes of the trees
rooted at points in S j include all points of O IRFC

j but possibly also some
points of the tie-zone if j 
= 1. When the tie-zone is very small, a good
approximation to the entire IRFC segmentation 〈O IRFC

1 , . . . , O IRFC
M 〉

can be obtained by executing such a modified version of GCmax just
once.
15 We are grateful to a referee for bringing this method to our attention.
We think the method is sound and quite clever, but it seems to us that the
corresponding pseudocode [2, Pseudocode 1] does not anticipate every
situation that might arise in an image and may in certain cases fail to
identify some tie-zone points, though we think it would not be difficult
to modify the pseudocode to correctly handle such cases.

ilar to Algorithm 5, but as it runs it takes full advantage of the
fact stated in the previous sentence by using a union-find data
structure to represent all the maximal ∼-connected sets (i.e.,
all “fragments of flat-zones”) that have so far been discov-
ered: For example, whenever a point v is found to lie in the
tie-zone, v’s representative in the union-find data structure
(which is the representative of all points that have so far been
discovered to be∼-connected to v) is labeled to indicate that
the entire flat-zone fragment it represents lies in the tie-zone.

Two important differences between the TZWS by union-
find method and our Algorithm 5 are that TZWS by
union-find’s main loop will never iterate more times than
there are points in the image, and that TZWS by union-find
does not have any analog of Algorithm 5’s “foreach i ∈
{1, . . . , M} such thatχ i[w] = true” inner loop. For these
reasons, it will outperform Algorithm 5 in some cases. But
in applications where the average number of MOFS objects
that contain a point is close to 1 (which includes most of the
applicationswe have inmind, inwhich tie-zones are typically
small) the time saved as a result of the above two differ-
ences may be outweighed by the time cost of maintaining
and accessing the union-find data structure. This is because
when Algorithm 5 is used in such applications the inner
loop “foreach i ∈ {1, . . . , M} such thatχ i[w] = true” will
rarely iterate more than once (i.e., when this loop is executed
there will rarely be more than one i for which χ i[w] = true),
few points will be placed into the priority queue more than
once, and the total number of iterations ofAlgorithm5’smain
loop will be close to |V |.

5 Robustness of MOFS Segmentation with Respect
to Small Changes in Seed Sets

RFC and IRFC segmentation are known to be robust with
respect to small changes in the seeds [21, Sect. 2.4]. In this
section we show that MOFS segmentations are also robust
in this sense.

Let � = 〈ψ1, . . . , ψM 〉 be any sequence of affinities
on V and let S = 〈S1, . . . , SM 〉 be any sequence of M
pairwise disjoint nonempty subsets of V . Then we write
〈OMOFS

1 (�,S), . . . , OMOFS
M (�,S)〉 to denote the MOFS

segmentation 〈OMOFS
1 , . . . , OMOFS

M 〉 that is produced when
either Algorithm 3 or Algorithm 5 is carried out with affini-
ties ψ1, . . . , ψM and seed sets S1, . . . , SM .

One might expect that, if S = 〈S1, . . . , SM 〉 and S∗ =
〈S∗

1 , . . . , S
∗
M 〉 are such that each seed set S∗

i is “suffi-
ciently close” to the seed set Si , then the segmentation
〈OMOFS

1 (�,S), . . . , OMOFS
M (�,S)〉will be exactly the same

as the segmentation 〈OMOFS
1 (�,S∗), . . . , OMOFS

M (�,S∗)〉.
We will see from Corollaries 5.5 and 5.6, and Remark 5.7,
thatMOFS segmentation is indeed robust in this sense. These
robustness properties of MOFSwill be shown to follow from
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Theorem 5.4, a special case of Corollary 5.5 that is the main
result of this section. Theorem 5.4 and Corollary 5.5 can be
viewed as MOFS analogs of known robustness results for
IRFC segmentation—specifically, as MOFS analogs of the
first assertions of [21, Thm. 2.5] and [21, Cor. 2.6].

Our results will be stated in terms of sets Core�,S
1 , . . . ,

Core�,S
M which we now define:

Definition 5.1 Let � = 〈ψ1, . . . , ψM 〉 be any sequence of
affinities on V and S = 〈S1, . . . , SM 〉 any sequence of M
pairwise disjoint nonempty subsets of V that are consistent
with the affinities. Then, for 1 ≤ i ≤ M , we definePi (�,S)

to be the collection of all subsets P of V that satisfy both of
the following conditions:

(a) P ⊆ OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S).

(b) ψ
OMOFS
i (�,S)

i (Si , v) ≥ ψ∅
i (v, V \P) for every v ∈ P .

The core of OMOFS
i (�,S), denoted by Core�,S

i , is defined
as the union of all the sets in Pi (�,S).

Since Si ⊆ OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S) (as Si ⊆

OMOFS
i (�,S) ⊆ Si ∪ (V \⋃

j S j ) for 1 ≤ i ≤ M , by
Theorem 2.6), we see that Si ∈ Pi (�,S) and therefore
Si ⊆ Core�,S

i for 1 ≤ i ≤ M .

It is also clear that Core�,S
i ⊆ OMOFS

i (�,S)\⋃
j 
=i O

MOFS
j (�,S) for 1 ≤ i ≤ M . This implies that

the cores of distinct MOFS objects are always disjoint:
Core�,S

i ∩ Core�,S
j = ∅ whenever i 
= j .

Moreover, the union of two sets in Pi (�,S) is a set in
Pi (�,S). (Indeed, if P1, P2 ∈ Pi (�,S) then P = P1 ∪ P2
clearly satisfies (a), and also satisfies (b) as ψ∅

i (v, V \Pj ) ≥
ψ∅
i (v, V \P) for j = 1, 2.) So Core�,S

i ∈ Pi (�,S):

Core�,S
i is the largest member of Pi (�,S) and contains

all other members of Pi (�,S).
Significantly, for typical affinities and seed sets we will

have that {v ∈ V | ψV
i (Si , v) ≥ α} ⊆ Core�,S

i for
any α that is large enough. We can express this more pre-
cisely. Given affinities � = 〈ψ1, . . . , ψM 〉 and seed sets
S = 〈S1, . . . , SM 〉, let us say (for any i ∈ {1, . . . , M}) that
a value α ∈ (0, 1] is (�,S, i)-large if

{v ∈ V | ψV
i (Si , v) ≥ α}

∩
⋃

j 
=i
{v ∈ V | ψV

j (S j , v) ≥ α} = ∅.

Then the following is true:

Proposition 5.2 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V andS = 〈S1, . . . , SM 〉 a sequence of pairwise
disjoint nonempty subsets of V that are consistent with �.
Let i ∈ {1, . . . , M} and let α ∈ (0, 1] be any (�,S, i)-large
value. Then {v ∈ V | ψV

i (Si , v) ≥ α} ⊆ Core�,S
i .

Proof We claim that, for each v in {v ∈ V | ψV
i (Si , v) ≥ α},

every hereditarily (ψi , Si )-optimal V -path to v is recur-
sively (�,S)-optimal. Indeed, suppose not. Then there exists
a hereditarily (ψi , Si )-optimal V -path p = 〈v0, . . . , vl〉
such that ψV

i (Si , vl) ≥ α and p is not recursively (�,S)-
optimal. As p is not recursively (�,S)-optimal, there is
some k ∈ {1, . . . , l} and some recursively (�,S)-optimal
V -path q to vk such that �S(q) > ψi (〈v0, . . . , vk〉).
Since 〈v0, . . . , vk〉 is hereditarily (ψi , Si )-optimal, q can-
not be a V -path from Si and so q is a V -path from⋃

j 
=i S j . Now ψi (〈v0, . . . , vk〉) ≥ ψi (p) ≥ α, so vk ∈
{v ∈ V | ψV

i (Si , v) ≥ α}. But q is a V -path from
⋃

j 
=i S j to vk such that �S(q) > ψi (〈v0, . . . , vk〉) ≥ α,

so vk ∈ ⋃
j 
=i {v ∈ V | ψV

j (S j , v) ≥ α}. This is a contra-
diction (as α is (�,S, i)-large), and so we have proved our
claim.

Now let P = {v ∈ V | ψV
i (Si , v) ≥ α}. Then

it follows from the claim that, for each v ∈ P , there
is a recursively (�,S)-optimal V -path of (�,S)-strength
≥ α from Si to v, whence there is no recursively (�,S)-
optimal V -path from

⋃
j 
=i S j to v (as any such V -path

from
⋃

j 
=i S j to v would also have (�,S)-strength ≥ α

and so could not exist, since α is (�,S, i)-large). From
this, Theorem 3.10, and Corollary 3.11 we see that P ⊆
OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S) andψ

OMOFS
i (�,S)

i (Si , v)

≥ α for all v ∈ P . We also see from the definition of P that
ψ∅
i (v, V \P) < α for all v ∈ P . So P ∈ Pi (�,S) and

therefore P ⊆ Core�,S
i . ��

The characterizations ofMOFS segmentations given by The-
orem 3.10 assume the seed sets are consistent with the
affinities. The next proposition tells us that consistency is pre-
served when seed sets are replaced with new sets contained
in the cores of the objects of the original segmentation:

Proposition 5.3 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V andS = 〈S1, . . . , SM 〉 a sequence of pairwise
disjoint nonempty seed sets consistent with the affinities. Let
S∗ = 〈S∗

1 , . . . , S
∗
M 〉 be any sequence of nonempty sets such

that S∗
i ⊆ Core�,S

i for 1 ≤ i ≤ M. Then S∗ is consistent
with the affinities.

Proof Suppose S∗ is not consistent with the affinities. Then
for some distinct i and j there is a V -path 〈v0,, . . . , vl〉 from
S∗
i ⊆ Core�,S

i to S∗
j ⊆ Core�,S

j ⊆ V \Core�,S
i such that

ψ(〈v0,, . . . , vl〉) = 1. Let k be an index such that vk ∈
Core�,S

i but vk+1 ∈ V \Core�,S
i . Then ψ

OMOFS
i (�,S)

i (Si , vk)

≥ ψ∅
i (vk, V \Core�,S

i ) ≥ ψ(vk, vk+1) ≥ ψ(〈v0,, . . . , vl〉)
= 1 (since Core�,S

i ∈ Pi (�,S)), whence there is a V -path
p from Si to vk such that ψi (p) = 1. Now p · 〈vk, . . . , vl〉
is a V -path from Si to vl , and since ψi (p · 〈vk, . . . , vl〉) =
min(ψi (p), ψi (〈vk, . . . , vl〉)) = 1 this V -path is recursively
(�,S)-optimal. So vl ∈ OMOFS

i (�,S), by Theorem 3.10.
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But this is impossible since vl ∈ S∗
j ⊆ Core�,S

j ⊆
OMOFS

j (�,S)\ ⋃
m 
= j O

MOFS
m (�,S). ��

We now state our main robustness theorem, which specifies
an extent to which the seed sets S1, . . . , SM can be enlarged
without changing the MOFS objects. Note that the theorem
assumes the affinities remain unchanged when we change
the seed sets 〈S1, . . . , SM 〉 to 〈R1, . . . , RM 〉, so it does not
apply to seed-set-dependent affinities (such as those used
in the experiments presented in [10]). Object-feature-based
affinities of the kind discussed in [18, Sect. 2.2] are examples
of affinities to which this theorem and Corollaries 5.5 and 5.6
would apply (even if different affinities are used for different
objects).

Theorem 5.4 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V and S = 〈S1, . . . , SM 〉 a sequence of pair-
wise disjoint nonempty seed sets consistent with the affinities.
Let R = 〈R1, . . . , RM 〉 be such that Si ⊆ Ri ⊆ Core�,S

i
for 1 ≤ i ≤ M. Then OMOFS

i (�,R) = OMOFS
i (�,S) for

1 ≤ i ≤ M.

This theoremwill be proved in Sect. 6.7. It implies a far more
general robustness result:

Corollary 5.5 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V , and let S = 〈S1, . . . , SM 〉 be a sequence
of pairwise disjoint nonempty subsets of V consistent with
the affinities. Let S∗ = 〈S∗

1 , . . . , S
∗
M 〉 be any sequence of

nonempty sets that satisfy the conditions S∗
i ⊆ Core�,S

i

and Si ⊆ Core�,S∗
i for 1 ≤ i ≤ M. Then we have that

OMOFS
i (�,S∗) = OMOFS

i (�,S) for 1 ≤ i ≤ M.

Proof Define Ri = Core�,S
i ∩ Core�,S∗

i for 1 ≤ i ≤ M ,

so Si ⊆ Ri ⊆ Core�,S
i and S∗

i ⊆ Ri ⊆ Core�,S∗
i .

Then, by Proposition 5.3 and Theorem 5.4, OMOFS
i (�,S) =

OMOFS
i (�,R) = OMOFS

i (�,S∗) for 1 ≤ i ≤ M . ��
The following is a notable special case of Corollary 5.5:

Corollary 5.6 Let � = 〈ψ1, . . . , ψM 〉 be a sequence of
affinities on V , let S = 〈S1, . . . , SM 〉 be a sequence of
pairwise disjoint nonempty subsets of V consistent with the
affinities, and for 1 ≤ i ≤ M let ai be a value in (0, 1] that
is (�,S, i)-large. Let S∗ = 〈S∗

1 , . . . , S
∗
M 〉 be any sequence

of nonempty sets such that

∀i ∈ {1, . . . , M} : S∗
i ⊆ {v ∈ V | ψV

i (Si , v) ≥ ai }
and Si ⊆ {v ∈ V | ψV

i (S∗
i , v) ≥ ai }. (5.1)

Then we have that OMOFS
i (�,S∗) = OMOFS

i (�,S) for 1 ≤
i ≤ M.

Proof We claim ai is (�,S∗, i)-large for 1 ≤ i ≤ M .
Indeed, let i, j ∈ {1, . . . , M} and let a = min(ai , a j ).

Then S∗
i ⊆ {v ∈ V | ψV

i (Si , v) ≥ a} and so {v ∈ V |
ψV
i (S∗

i , v) ≥ a} ⊆ {v ∈ V | ψV
i (Si , v) ≥ a}. Similarly,

{v ∈ V | ψV
j (S∗

j , v) ≥ a} ⊆ {v ∈ V | ψV
j (S j , v) ≥ a}.

Therefore

{v ∈ V | ψV
i (S∗

i , v) ≥ ai } ∩ {v ∈ V | ψV
j (S∗

j , v) ≥ ai }
⊆ {v ∈ V | ψV

i (Si , v) ≥ a} ∩ {v ∈ V | ψV
j (S j , v) ≥ a}.

As a = min(ai , a j ), the intersection on the right is {v ∈ V |
ψV
i (Si , v) ≥ ai } ∩ {v ∈ V | ψV

j (S j , v) ≥ ai } or is {v ∈ V |
ψV
i (Si , v) ≥ a j } ∩ {v ∈ V | ψV

j (S j , v) ≥ a j }, and these
intersections are empty if i 
= j sinceai is (�,S, i)-large and
a j is (�,S, j)-large. Thus {v ∈ V | ψV

i (S∗
i , v) ≥ ai }∩{v ∈

V | ψV
j (S∗

j , v) ≥ ai } = ∅ if i 
= j . This justifies our claim.
The corollary follows from this claim, Propositions 5.2 and
5.3, and Corollary 5.5. ��
Remark 5.7 If the affinities ψ1, . . . , ψM in Corollary 5.6
are symmetric, then the corollary can be understood as
saying that the segmentations 〈OMOFS

1 (�,S∗), . . . , OMOFS
M

(�,S∗)〉 and 〈OMOFS
1 (�,S), . . . , OMOFS

M (�,S)〉 are iden-
tical whenever the sets S∗

i satisfy

∀i ∈ {1, . . . , M} : S∗
i =

⋃

s∈Si
P(s) (5.2)

for some sets P(s) such that

∀i ∈ {1, . . . , M},∀s ∈ Si :
∅ 
= P(s) ⊆ {v ∈ V | ψV

i (s, v) ≥ ai }. (5.3)

(Indeed, assuming ψ1, . . . , ψM are symmetric, conditions
(5.2) and (5.3) imply (5.1), and conversely (5.1) implies that
(5.2) and (5.3) hold when P(s) = {v ∈ S∗

i | ψV
i (s, v) ≥

ai }.) Here the points in P(s) may be thought of as resulting
from “perturbations” of the point s of Si within the region
{v ∈ V | ψV

i (s, v) ≥ ai }.
The next proposition tells us that the cores of MOFS objects
are robust (with respect to small changes in seed sets) in the
same way that the MOFS objects themselves are robust:

Proposition 5.8 The hypotheses of Theorem 5.4 imply
Core�,R

i = Core�,S
i for 1 ≤ i ≤ M. Similarly, the

hypotheses of Corollary 5.5 imply Core�,S∗
i = Core�,S

i for
1 ≤ i ≤ M.

Proof Let � = 〈ψ1, . . . , ψM 〉 be any sequence of affini-
ties on V and S = 〈S1, . . . , SM 〉 any sequence of pairwise
disjoint nonempty subsets of V . We first establish that

ψ
OMOFS
i (�,S)

i (Si , w) = ψ
OMOFS
i (�,S)

i (Ri , w)

whenever Si ⊆ Ri ⊆ Core�,S
i andw ∈ V \Core�,S

i .

(5.4)
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Let Si ⊆ Ri ⊆ Core�,S
i and w ∈ V \Core�,S

i . As Si ⊆ Ri ,

ψ
OMOFS
i (�,S)

i (Si , w) ≤ ψ
OMOFS
i (�,S)

i (Ri , w). To show the
values are equal, let 〈x0, . . . , xl〉 be an (OMOFS

i (�,S)∪{w})-
path from x0 ∈ Ri to xl = w such that ψi (〈x0, . . . , xl〉) =
ψ

OMOFS
i (�,S)

i (Ri , w), let k be the least index forwhich xk+1 /∈
Core�,S

i (so that xk ∈ Core�,S
i ⊆ OMOFS

i (�,S)), and let p
be an OMOFS

i (�,S)-path from Si to xk such that ψi (p) =
ψ

OMOFS
i (�,S)

i (Si , xk). As xk ∈ Core�,S
i ∈ Pi (�,S)

and xk+1 ∈ V \Core�,S
i , condition (b) of Definition 5.1

implies ψi (p) = ψ
OMOFS
i (�,S)

i (Si , xk) ≥ ψi (xk, xk+1) ≥
ψi (〈xk, . . . , xl〉), and so (since p · 〈xk, . . . , xl〉 is an (OMOFS

i
(�,S) ∪ {w})-path from Si to w) we must have that

ψ
OMOFS
i (�,S)

i (Si , w)≥ψi (p·〈xk, . . . , xl〉)=ψi (〈xk, . . . , xl〉)
≥ ψi (〈x0, . . . , xl〉) = ψ

OMOFS
i (�,S)

i (Ri , w) ≥ ψ
OMOFS
i (�,S)

i
(Si , w). This establishes (5.4).

Next, we prove the first assertion of the proposition. Sup-
pose the hypotheses of Theorem 5.4 are satisfied and i ∈
{1, . . . , M}. We first show Core�,S

i is not a proper subset of

Core�,R
i . Indeed, suppose otherwise and let P = Core�,R

i ,

so thatCore�,S
i � P and henceV \Core�,S

i � V \P . As P ∈
Pi (�,R), we have that P ⊆ OMOFS

i (�,R)\ ⋃
j 
=i O

MOFS
j

(�,R) = OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S), where the

equality follows from Theorem 5.4. As Core�,S
i ∈ Pi (�,S)

and V \Core�,S
i � V \P , we have that ψ

OMOFS
i (�,S)

i (Si , v)

≥ ψ∅
i (v, V \Core�,S

i ) ≥ ψ∅
i (v, V \P) for all v ∈ Core�,S

i .

Similarly, ψ
OMOFS
i (�,S)

i (Si , v) = ψ
OMOFS
i (�,S)

i (Ri , v) ≥
ψ∅
i (v, V \P) for all v ∈ P\Core�,S

i because of (5.4), the
fact that OMOFS

i (�,R) = OMOFS
i (�,S), and the fact that

P ∈ Pi (�,R). Hence we have that ψ
OMOFS
i (�,S)

i (Si , v) ≥
ψ∅
i (v, V \P) for all v ∈ P . Therefore P ∈ Pi (�,S),

whence P ⊆ Core�,S
i . This contradiction establishes that

Core�,S
i is not a proper subset of Core�,R

i . On the other
hand, since Si ⊆ Ri and OMOFS

j (�,R) = OMOFS
j (�,S)

for 1 ≤ j ≤ M (which imply ψ
OMOFS
i (�,R)

i (Ri , v) ≥
ψ

OMOFS
i (�,S)

i (Si , v) for allv ∈ V ),we see fromDefinition5.1

that Pi (�,S) ⊆ Pi (�,R), whence Core�,S
i ⊆ Core�,R

i .

Thus Core�,S
i = Core�,R

i . This proves the first assertion.
To prove the second assertion, suppose the hypotheses of

Corollary 5.5 are satisfied. For 1 ≤ i ≤ M define Ri =
Core�,S

i ∩ Core�,S∗
i . Then �, S, and R = 〈R1, . . . , RM 〉

satisfy the hypotheses of Theorem 5.4. So we see from the
first assertion that Core�,S

i = Core�,R
i (1 ≤ i ≤ M). Sym-

metrically, Core�,S∗
i = Core�,R

i . ��

The following two propositions will give the reader a sense
of how big the sets Core�,S

i are. In particular, the next propo-

sition defines a set Q�,S
i that will typically be much larger

than Si , but which is still a member of Pi (�,S) and there-
fore a subset of Core�,S

i . When the affinity ψi is symmetric,

Core�,S
i is exactly Q�,S

i .

Proposition 5.9 Let � = 〈ψ1, . . . , ψM 〉 be a sequence
of affinities on V , and let S = 〈S1, . . . , SM 〉 be a
sequence of pairwise disjoint nonempty subsets of V that
are consistent with the affinities. For 1 ≤ i ≤ M
let Q�,S

i = {v ∈ OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S) |

ψ
OMOFS
i (�,S)

i (Si , v) ≥ ψV
i (v,

⋃
j 
=i O

MOFS
j (�,S))}. Then:

1. Q�,S
i ∈ Pi (�,S), and hence Core�,S

i ⊇ Q�,S
i , for

each i ∈ {1, . . . , M}.
2. Core�,S

i = Q�,S
i for each i ∈ {1, . . . , M} such that ψi

is symmetric.

Proof For brevity we will write OMOFS
j for OMOFS

j (�,S) in
this proof.

Let i ∈ {1, . . . , M}. First we will establish statement 1
by verifying that, when P = Q�,S

i , condition (b) of Defi-
nition 5.1 holds. (It is evident that (a) holds.) Let v ∈ P =
Q�,S

i and w ∈ V \P = V \ Q�,S
i . What we need to show is

that ψ
OMOFS
i

i (Si , v) ≥ ψi (v,w).
Now either w ∈ ⋃

j 
=i O
MOFS
j , or w ∈ V \ ⋃

j O
MOFS
j ,

or w ∈ OMOFS
i \⋃

j 
=i O
MOFS
j . If w ∈ ⋃

j 
=i O
MOFS
j , then

ψ
OMOFS
i

i (Si , v) ≥ ψi (v,w) holds because v ∈ Q�,S
i . If w ∈

V \ ⋃
j O

MOFS
j , thenψi (v,w) = 0 by Corollary 3.12 (as v ∈

Q�,S
i ⊆ OMOFS

i ) so we certainly have thatψ
OMOFS
i

i (Si , v) ≥
ψi (v,w). Suppose finally that w ∈ OMOFS

i \ ⋃
j 
=i O

MOFS
j .

Then ψ
OMOFS
i

i (Si , v) < ψi (v,w) is again impossible: It

would imply ψ
OMOFS
i

i (Si , w) ≥ ψ
OMOFS
i

i (Si , v) (because

ψ
OMOFS
i

i (Si , w) ≥ min(ψ
OMOFS
i

i (Si , v), ψi (v,w))), and since

ψV
i (w,

⋃
j 
=i O

MOFS
j ) > ψ

OMOFS
i

i (Si , w) (as w /∈ Q�,S
i ) we

would thenhave thatψV
i (w,

⋃
j 
=i O

MOFS
j )>ψ

OMOFS
i

i (Si , v),

whence ψV
i (v,

⋃
j 
=i O

MOFS
j ) ≥ min(ψi (v,w), ψV

i (w,

⋃
j 
=i O

MOFS
j )) > ψ

OMOFS
i

i (Si , v), which would contradict

v ∈ Q�,S
i . So statement 1 holds.

To establish statement 2, we assume ψi is symmetric. We
have shown that Core�,S

i ⊇ Q�,S
i , but must now prove that

Core�,S
i ⊆ Q�,S

i . For this, fix a v ∈ Core�,S
i . We need to

show that v ∈ Q�,S
i .

Suppose not. Thenψ
OMOFS
i

i (Si , v)<ψV
i (v,

⋃
j 
=i O

MOFS
j )

and so there exists a V -path 〈v0, . . . , vl〉 from v = v0 to
⋃

j 
=i O
MOFS
j with ψi (〈v0, . . . , vl〉) > ψ

OMOFS
i

i (Si , v). Let k

be the greatest index for which 〈v0, . . . , vk〉 is a Core�,S
i -
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path. Then k < l (since vl ∈ ⋃
j 
=i O

MOFS
j ⊆ V \Core�,S

i )

and 〈v0, . . . , vk〉 is an OMOFS
i -path.

As ψi (vk, vk+1) ≥ ψi (〈v0, . . . , vl〉) > ψ
OMOFS
i

i (Si , v), it

is impossible thatψ
OMOFS
i

i (Si , v) ≥ ψ
OMOFS
i

i (Si , vk), because

wewould then have thatψi (vk, vk+1) > ψ
OMOFS
i

i (Si , vk) and
so condition (b) of Definition 5.1 would be violated when
P = Core�,S

i (since vk ∈ Core�,S
i ∈ but vk+1 /∈ Core�,S

i ).

We therefore have that ψ
OMOFS
i

i (Si , vk) > ψ
OMOFS
i

i (Si , v),
whence there exists an OMOFS

i -path p from Si to vk for

which ψi (p) > ψ
OMOFS
i

i (Si , v). But now p · 〈vk, . . . , v0〉
is an OMOFS

i -path from Si to v, and (since ψi is symmetric)
we have that

ψi (p · 〈vk, . . . , v0〉) = min(ψi (p), ψi (〈vk, . . . , v0〉))
= min(ψi (p), ψi (〈v0, . . . , vk〉))
≥ min(ψi (p), ψi (〈v0, . . . , vl〉))
> ψ

OMOFS
i

i (Si , v),

a contradiction. ��
Regarding statement 2 of this proposition, we now give an

example which shows that Q�,S
i = Core�,S

i need not hold
even if all the affinities ψi are equal to the same affinity ψ ,
if the affinity ψ is not symmetric:

Example 5.10 Suppose V = {c, s1, s2}, S = 〈S1, S2〉, and
� = 〈ψ,ψ〉, where S1 = {s1}, S2 = {s2}, ψ(s1, c) = 0.5,
ψ(c, s1) = 1, ψ(s1, s2) = 0.7, and ψ(u, v) = 0 in all other
cases where u, v ∈ V are distinct (e.g., ψ(c, s2) = 0): See
Figure 5. Then Core�,S

1 = {s1, c}—i.e., Core�,S
1 = OMOFS

1 .

But c /∈ Q�,S
1 because the ψ-strength of a ψ-strongest V -

path from c to S2 is 0.7, which exceeds the ψ-strength of a
ψ-strongest V -path from S1 to c.

In the important case where the affinities ψ1, . . . , ψM are
all equal to the same affinity ψ and this affinity ψ is sym-
metric, the next proposition tells us that Core�,S

i = Q�,S
i

is exactly the i th object of the IRFC segmentation for affin-
ity ψ and seed sets S = 〈S1, . . . , SM 〉, which we denote by
O IRFC
i (ψ,S) as in Sect. 3.3.

Proposition 5.11 Let ψ be a symmetric affinity on V ,
let � be a sequence 〈ψ, . . . , ψ〉 of M occurrences of
ψ , let S = 〈S1, . . . , SM 〉 be any sequence of pairwise
disjoint nonempty subsets of V that are consistent with

ψ . Then for 1 ≤ i ≤M we have that Core�,S
i =

OMOFS
i (�,S)\ ⋃

j 
=i O
MOFS
j (�,S) = O IRFC

i (ψ,S).

Proof For brevity we will write OMOFS
j for OMOFS

j (�,S)

in this proof. For 1 ≤ k ≤ M , Corollary 3.5 and Theo-
rem 3.10 imply that x ∈ OMOFS

k just if there is a hereditarily
(ψ,

⋃
j S j )-optimal V -path of nonzero ψ-strength from Sk

to x , whence (by Corollaries 3.5 and 3.11) if p is any hered-
itarily (ψ,

⋃
j S j )-optimal V -path from Sk to x ∈ OMOFS

k

then 0 < ψ(p) = ψV (
⋃

j S j , x) = ψOMOFS
k (Sk, x).

Let i ∈ {1, . . . , M}. We see from Definition 5.1 that
Core�,S

i ⊆ OMOFS
i \⋃

j 
=i O
MOFS
j , and from Corollary 2.7

that O IRFC
i (ψ,S) = OMOFS

i \⋃
j 
=i O

MOFS
j . It remains only

to show OMOFS
i \⋃

j 
=i O
MOFS
j ⊆ Core�,S

i . For this purpose

it is enough to show OMOFS
i \⋃

j 
=i O
MOFS
j ∈ Pi (�,S).

So it is enough to verify that condition (b) of Defini-
tion 5.1 holds when P = OMOFS

i \⋃
j 
=i O

MOFS
j (since

condition (a) obviously holds). To do this, let v be any
point in OMOFS

i \ ⋃
j 
=i O

MOFS
j and let w be any point in

V \(OMOFS
i \⋃

j 
=i O
MOFS
j ). What we need to show is that

ψOMOFS
i (Si , v) ≥ ψ(v,w).
Suppose not. Then ψ(v,w) > ψOMOFS

i (Si , v). So w ∈⋃
j O

MOFS
j by Corollary 3.12, and therefore w ∈ ⋃

j 
=i

OMOFS
j (as w ∈ V \(OMOFS

i \ ⋃
j 
=i O

MOFS
j )). Since v ∈

OMOFS
i , we see from the remarks in the first paragraph

that there is a hereditarily (ψ,
⋃

j S j )-optimal V -path pv

from Si to v such that 0 < ψ(pv) = ψV (
⋃

j S j , v) =
ψOMOFS

i (Si , v) < ψ(v,w). Similarly, since w ∈ ⋃
j 
=i

OMOFS
j , there is a hereditarily (ψ,

⋃
j S j )-optimal V -path

pw from
⋃

j 
=i S j tow that satisfiesψ(pw) = ψV (
⋃

j S j , w)

≥ ψ(pv·〈v,w〉) = min(ψ(pv), ψ(v,w)) = ψ(pv) > 0 and
therefore satisfiesψ(pw·〈w, v〉) = min(ψ(pw), ψ(w, v)) =
min(ψ(pw), ψ(v,w)) ≥ min(ψ(pv), ψ(v,w)) = ψ(pv) =
ψV (

⋃
j S j , v). This and the hereditary (ψ,

⋃
j S j )-optima-

lity of pw imply that pw · 〈w, v〉 is hereditarily (ψ,
⋃

j S j )-

optimal. But, since v /∈ ⋃
j 
=i O

MOFS
j , the remarks in the

first paragraph imply there is no hereditarily (ψ,
⋃

j S j )-
optimal V -path of nonzero ψ-strength from

⋃
j 
=i S j to v, a

contradiction. ��
When the seeds sets are consistent with the affinity, the IRFC
robustness results mentioned earlier (i.e., the first assertions
of [21, Theorem 2.5] and [21, Corollary 2.6]) can be deduced
from this proposition, Theorem 5.4, and Corollary 5.5.

We end this section with an example which shows that
Proposition 5.11 is not true (i.e., Core�,S

i need not be the
whole of OMOFS

i (�,S)\ ⋃
j 
=i O

MOFS
j (�,S)) if we drop the

hypothesis that the affinities ψ1, . . . , ψM are all equal, even
if we assume every affinity ψ j is symmetric:

Example 5.12 Let V = {s1, s2, c, d, e}, M = 2, S =
〈S1, S2〉 = 〈{s1}, {s2}〉, and � = 〈ψ1, ψ2〉, where ψ1 and
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s1 s2c

d

.7 .6

.6.4

e

.6

.7

Fig. 6 Affinity values for Example 5.12

ψ2 are the symmetric affinities on V such that ψ1(s1, c) =
ψ1(c, s1) = ψ1(d, e) = ψ1(e, d) = 0.7, ψ1(c, d) =
ψ1(d, c) = 0.4, ψ2(s2, c) = ψ2(c, s2) = ψ2(s2, e) =
ψ2(e, s2) = ψ2(c, d) = ψ2(d, c) = 0.6, and ψi (u, v) = 0
in all other cases where u and v are distinct points in V
and i ∈ {1, 2}. (See Fig. 6.) Then it is readily confirmed
that OMOFS

1 (�,S) = {s1, c, d} and OMOFS
2 (�,S) = {s2, e},

and so we have that OMOFS
1 (�,S)\ ⋃

j 
=1 O
MOFS
j (�,S) =

OMOFS
1 (�,S) = {s1, c, d}. But the set Core�,S

1 = Q�,S
1 is

smaller: Core�,S
1 = Q�,S

1 = {s1, c}. Moreover, if we define

R1 = OMOFS
1 (�,S) 
⊂ Core�,S

1 and R2 = S2, then the

conclusion of Theorem 5.4 would not hold any more, since
OMOFS
1 (�, 〈R1, R2〉) = {s1, c, d, e} 
= OMOFS

1 (�,S).

6 Proofs of Theorems and Justification of
Algorithm 5

6.1 Proofs of Theorems 2.4, 2.5, and 2.6

We claim that, when Algorithm 1, 2, or 3 is executed, those
of the conditions (6.1)–(6.10) below which apply to that
algorithm will hold immediately before execution of line
5 at the nth iteration of the algorithm’s main loop (for all
n ∈ {1, . . . , |A|} and i ∈ {1, . . . , M}). The three theorems
will be deduced from this claim.

Although Algorithm 2 uses just a single affinity ψ ,
whereas Algorithm 3 uses M affinities ψ1, . . . , ψM , these
two algorithms share some important properties. To avoid
having to state these shared properties twice, we adopt the
following convention:Whenweare consideringAlgorithm2,
the notation ψi will mean the single affinity ψ of Algo-
rithm 2, regardless of the value of the subscript i (which
should be ignored). This convention is used, for example, in
(6.6)–(6.10) below and in the statements of Propositions 6.3
and 6.4.

for Algorithms 1, 2, and 3: Ti ⊆ newTi ⊆ Ti ∪ (V \⋃ j Tj ) (6.1)

for Algorithm 1: newTi = Ti ∪ {v ∈ V \⋃ j Tj | ψV (Ti , v) ≥ αn} (6.2)

= Ti ∪ {v ∈ V \⋃ j Tj | ψV (Ti , v) = αn} (6.3)

ψV (u, v) < αn if u ∈ newTi and v ∈ (V \ ⋃
j Tj )\newTi (6.4)

ψV (u, v) ≤ αn if u ∈ Ti and v ∈ V \⋃
j Tj (6.5)

for Algorithms 2 and 3: newTi = Ti ∪
{

v ∈ V \⋃ j Tj | ψ
V \⋃

j Tj

i (Ti , v) ≥ αn

}

(6.6)

= Ti ∪
{

v ∈ V \⋃ j Tj | ψ
V \⋃

j Tj

i (Ti , v) = αn

}

(6.7)

ψ
V \⋃

j Tj

i (u, v) < αn if u ∈ newTi and v ∈ (V \⋃
j Tj )\newTi (6.8)

ψ
V \⋃

j Tj

i (u, v) ≤ αn if u ∈ Ti and v ∈ V \ ⋃
j Tj (6.9)

ψ
newTi
i (Ti , v) = αn . whenever v ∈ newTi\Ti (6.10)
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Now we justify our claim. It is readily confirmed by
inspection of each algorithm that our claim is valid in the
cases of (6.1), (6.2), and (6.6). It is also easy to see that
(6.2) implies (6.4): Indeed, if we suppose (6.2) holds and
u ∈ newTi (so that ψV (Ti , u) ≥ αn), then if v ∈ V \⋃

j Tj

satisfiedψV (u, v) ≥ αn wewould have thatψV (Ti , v) ≥ αn

(by Proposition 2.2) and hence that v ∈ newTi . Similarly,
(6.6) implies (6.8).

Since α1 = 1, (6.5) and (6.9) cannot be false when n = 1.
Now suppose n > 1. Let us write T cur

j and newT cur
i for the

values of Tj and newTi immediately before execution of line
5 at the nth iteration of the main loop, and write T prev

j and

newT prev
i for the values of Tj and newTi at the same stage

of the n−1st iteration. Then we see from (6.4) and (6.8) that

ψV (u, v) < αn−1 if

u ∈ newT prev
i and v ∈ (V \

⋃

j
T prev
j )\newT prev

i

for Algorithm 1 (6.11)

ψ
V \⋃

j T
prev
j

i (u, v) < αn−1 if

u ∈ newT prev
i and v ∈ (V \

⋃

j
T prev
j )\newT prev

i

for Algorithms 2, 3 (6.12)

Since T cur
i = newT prev

i ⊇ T prev
i , we have that V \⋃

j T
prev
j

⊇ V \ ⋃
j T

cur
j and therefore also have that (V \⋃

j T
prev
j )\

newT prev
i ⊇ (V \ ⋃

j T
cur
j )\newT prev

i = (V \⋃
j T

cur
j )\

T cur
i = V \ ⋃

j T
cur
j . Moreover, an affinity value is < αn−1

just if it is ≤ αn . So we deduce from (6.11) and (6.12) that

ψV (u, v) ≤ αn if u ∈ T cur
i and v ∈ V \

⋃

j
T cur
j

for Algorithm 1

ψ
V \⋃

j T
cur
j

i (u, v) ≤ αn if u ∈ T cur
i and v ∈ V \

⋃

j
T cur
j

for Algorithms 2, 3

Thus we have shown that (6.5) and (6.9) are true immediately
before execution of line 5 at the nth iteration of themain loop.
Evidently, (6.3) and (6.7) follow from (6.2), (6.5), (6.6), and
(6.9).

To see that our claim is valid in the case of (6.10), let
i ∈ {1, . . . , M} and consider the values of Ti and newTi
immediately before execution of line 5 at the nth iteration
of the main loop of Algorithm 2 or 3. Let v be any point
in newTi\Ti . Then, by (6.7), we have that v ∈ V \⋃

j Tj

and that ψ
V \⋃

j Tj

i (Ti , v) = αn , whence there is a (Ti ∪
(V \⋃

j Tj ))-path 〈v0, . . . , vl〉 from Ti to vl = v such
that ψi (〈v0, . . . , vl〉) = αn . Now for each point vk of this
(Ti ∪ (V \⋃

j Tj ))-path we have that ψi (〈v0, . . . , vk〉) ≥
ψi (〈v0, . . . , vl〉) = αn , and so vk ∈ Ti ∪ {v ∈ V \ ⋃

j Tj |

ψ
V \⋃

j Tj

i (Ti , v) ≥ αn}, whence vk ∈ newTi by (6.6).
This shows that 〈v0, . . . , vl〉 is a newTi -path from Ti to
v, so that ψ

newTi
i (Ti , v) ≥ ψi (〈v0, . . . , vl〉) = αn . How-

ever, since (6.1) implies newTi ⊆ Ti ∪ (V \⋃
j Tj ) we

also have that ψ
newTi
i (Ti , v) ≤ ψ

V \⋃
j Tj

i (Ti , v) = αn (by
Proposition 2.1). This confirms that our claim is valid in
the case of (6.10) and completes the justification of our
claim.

Deduction of Theorems 2.4, 2.5, and 2.6 from (6.1)–(6.10)

As in Theorems 2.4 – 2.6, we will write T n
i (1 ≤ i ≤ M ,

0 ≤ n < |A|) to denote the value of the variable Ti at the
beginning of the n + 1st iteration of the main loop when
Algorithm 1, 2, or 3 is executed, and write T |A|

i to denote
the value of Ti at the end of the |A|th iteration (i.e., the final
value of Ti ).

In each of Theorems 2.4–2.6, inspection of Algorithm 1,
2, or 3 will convince the reader of the truth of statement 1(b),
the first part of statement 1(a), and the claim that the i th object
of the segmentation contains the seed set Si . The other parts
of these theorems will then follow from propositions that are
proved below: In all three theorems, the claim that the i th
object of the segmentation is contained in Si ∪ (V \⋃

j S j )

will follow from (the case n = 1 of statement 1 of) Propo-
sition 6.1. In the case of Theorem 2.4, statement 2 and
the second part of statement 1(a) will follow from Propo-
sition 6.2 and (statement 2 of) Proposition 6.1. In the cases
of Theorems 2.5 and 2.6, statement 2 and the second part
of statement 1(a) will follow from Propositions 6.1 and 6.4;
statement 3 of each of those theorems will follow from state-
ment 2 of Proposition 6.4 and Propositions 6.1 and 2.1 (since
Proposition 6.1 implies T n

i ⊆ T k
i ⊆ T n−1

i ∪ (V \⋃
j T

n−1
j )

for 1 ≤ n ≤ k ≤ |A|).

Proposition 6.1 When Algorithm 1, 2, or 3 is executed, the
following are true for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|:

1. T n−1
i ⊆ T n

i ⊆ T n−1
i ∪ (V \⋃

j T
n−1
j )

2. T n−1
i ∪ (V \⋃

j T
n−1
j ) ⊇ T n

i ∪ (V \⋃
j T

n
j )

⊇ T |A|
i ∪ (V \⋃

j T
|A|
j ) ⊇ T |A|

i

Proof Statement 1 holds since (6.1) holds immediately
before execution of line 5 of the nth iteration of themain loop
(and T n−1

i and T n
i are the values of Ti and newTi at that time).

Readily, statement 1 implies T n−1
i ∪ (V \⋃

j T
n−1
j ) ⊇ T n

i ∪
(V \ ⋃

j T
n
j ) for 1 ≤ n ≤ |A|, whence T n

i ∪ (V \ ⋃
j T

n
j ) ⊇

T |A|
i ∪ (V \ ⋃

j T
|A|
j ). ��

Proposition 6.2 When Algorithm 1 is executed, the follow-
ing hold for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|:
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1. {v ∈ V \⋃
j T

n−1
j | ψV (Si , v) > αn} = ∅

2. T n
i \T n−1

i = {v ∈ V \ ⋃
j T

n−1
j | ψV (Si , v) = αn}

Proof Let 1 ≤ i ≤ M and 1 ≤ n ≤ |A|. Then
{v ∈ V \ ⋃

j T
n−1
j | ψV

i (T n−1
i , v) > αn} = ∅, by (6.5).

Statement 1 follows from this, Proposition 6.1 (which implies
Si = T 0

i ⊆ T n−1
i ), and Proposition 2.1.

Moreover, it follows from (6.3) and (6.4) that

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : T n
i \T n−1

i

=
{
v ∈ V \

⋃

j
T n−1
j | ψV

(
T n−1
i , v

)
= αn

}
(6.13)

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : ψV (u, v) < αn

whenever u ∈ T n
i and v ∈

(
V \

⋃

j
T n−1
j

)
\T n

i (6.14)

We will deduce from (6.13) that

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : ψV (Si , v) ≥ αn

whenever v ∈ T n
i (6.15)

Let v ∈ T n
i . Then we can define points v0, . . . , vn such that

v0 = v and such that, for 1 ≤ k ≤ n, vk is a point in
T n−k
i that is defined in terms of vk−1 in the following way: If

vk−1 ∈ T n−k
i then we define vk = vk−1, and if vk−1 /∈ T n−k

i

then we define vk to be an arbitrary point in T n−k
i such

that ψV (vk, vk−1) = αn−(k−1). (Note that in the latter case

vk−1 ∈ T n−(k−1)
i \T n−k

i , and so (6.13) implies the existence
of a point vk in T n−k

i such that ψV (vk, vk−1) = αn−(k−1).)
Now 〈vn, . . . , v0〉 is a V -path from T 0

i = Si to v, and
ψ〈vn, . . . , v0〉 ≥ αn since ψ(vk, vk−1) ≥ αn for 1 ≤ k ≤ n.
Hence ψV (Si , v) ≥ αn . This establishes (6.15).

Now T n
i \T n−1

i ⊆ {v ∈ V \ ⋃
j T

n−1
j | ψV (Si , v) ≥ αn}

by (6.13) and (6.15). On the other hand, we must have that
{v ∈ V \⋃

j T
n−1
j | ψV (Si , v) ≥ αn} ⊆ T n

i \T n−1
i . Indeed,

since ψV (T n
i , v) ≥ ψV (Si , v) (as Si = T 0

i ⊆ T n
i ) we see

that {v ∈ V \⋃
j T

n−1
j | ψV (Si , v) ≥ αn}\(T n

i \ T n−1
i ) is

a subset of {v ∈ (V \⋃
j T

n−1
j )\T n

i | ψV (T n
i , v) ≥ αn},

but the latter set is empty because of (6.14). This shows that
T n
i \T n−1

i = {v ∈ V \⋃
j T

n−1
j | ψV (Si , v) ≥ αn}. State-

ment 2 follows from this and statement 1. ��
Proposition 6.3 When Algorithm 2 or 3 is executed, state-
ments 1 – 3 below are true for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|:

1. ψ
V \⋃

j T
n−1
j

i (u, v) < αn whenever u ∈ T n
i and v ∈

(V \ ⋃
j T

n−1
j )\T n

i .

2. ψ
T n
i

i (Si , v) = ψ
T |A|
i

i (Si , v) = ψ
T n−1
i ∪(V \⋃

j T
n−1
j )

i (Si , v)

= αn for all v ∈ T n
i \T n−1

i .

3. ψ
T n
i

i (Si , v) = ψ
T |A|
i

i (Si , v) = ψ
T n−1
i ∪(V \⋃

j T
n−1
j )

i (Si , v)

≥ αn for all v ∈ T n
i .

Proof Statement 1 follows from the fact that (6.8) holds
immediately before execution of line 5 of the nth iteration of
the main loop. Similarly, it follows from (6.7) that

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : T n
i \T n−1

i

= {v ∈ V \
⋃

j
T n−1
j | ψ

V \⋃
j T

n−1
j

i (T n−1
i , v) = αn}

(6.16)

We will use (6.10) and (6.16) to establish statement 2. The
first step is to observe that

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : ψ
T n
i

i (T n−1
i , v) = αn

whenever v ∈ T n
i \T n−1

i (6.17)

because (6.10) holds immediately before execution of line 5
of the nth iteration of the loop.

The next step will be to deduce from (6.17) that

for 1 ≤ i ≤ M, 1 ≤ n ≤ |A| : ψ
T n
i

i (Si , v) ≥ αn

whenever v ∈ T n
i (6.18)

Suppose as an induction hypothesis that (6.18) holds in
the case n = k − 1 for some k ∈ {1, . . . , |A|}, so that

ψ
T k
i

i (Si , x) ≥ ψ
T k−1
i

i (Si , x) ≥ αk−1 > αk whenever x ∈
T k−1
i . We will show this implies (6.18) also holds in the

case n = k. To do this, let v be any point in T k
i ; now what

we must verify is that ψ
T k
i

i (Si , v) ≥ αk . This is certainly
true if v ∈ T k−1

i (as we have just seen), so we may assume
v ∈ T k

i \T k−1
i . Then, on putting n = k in (6.17), we see

there is some x ∈ T k−1
i such that ψ

T k
i

i (x, v) = αk , and since

ψ
T k
i

i (Si , x) > αk whenever x ∈ T k−1
i (as we have seen) we

see from Proposition 2.2 that ψ
T k
i

i (Si , v) ≥ αk , as required.
Moreover, (6.18) holds when n = 1 because (6.17) holds. So
(6.18) holds in all cases.

For v ∈ T n
i \T n−1

i it follows from (6.18), Propositions 2.1
and 6.1, and (6.16) that

αn ≤ ψ
T n
i

i (Si , v) ≤ ψ
T |A|
i

i (Si , v)

≤ ψ
T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v)

≤ ψ
V \⋃

j T
n−1
j

i (T n−1
i , v) = αn

which implies statement 2.
Statement 3 is plainly valid if v ∈ T 0

i = Si . To
prove that statement 3 holds in all other cases, let v ∈
T n
i \T 0

i and let k be the least m such that v ∈ Tm
i ,

so that 1 ≤ k ≤ n and v ∈ T k
i \T k−1

i . It now fol-

lows from statement 2 that ψ
T k
i

i (Si , v), ψ
T |A|
i

i (Si , v), and

ψ
T k−1
i ∪(V \ ⋃

j T
k−1
j )

i (Si , v) are all equal to αk . We deduce
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from this thatψ
T n
i

i (Si , v) andψ
T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v)must

also be equal to αk , because we have that ψ
T k
i

i (Si , v) ≤
ψ

T n
i

i (Si , v) ≤ ψ
T n−1
i ∪(V \⋃

j T
n−1
j )

i (Si , v) ≤
ψ

T k−1
i ∪(V \ ⋃

j T
k−1
j )

i (Si , v) by Propositions 2.1 and 6.1. Thus

ψ
T n
i

i (Si , v) = ψ
T |A|
i

i (Si , v) = ψ
T n−1
i ∪(V \⋃

j T
n−1
j )

i (Si , v) =
αk ≥ αn and so statement 3 holds. ��
Proposition 6.4 When Algorithm 2 or 3 is executed, the fol-
lowing are true for 1 ≤ i ≤ M and 1 ≤ n ≤ |A|:

1. {v ∈ V \⋃
j T

n−1
j | ψ

T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v) > αn}
= ∅

2. T n
i \T n−1

i = {v ∈ V \⋃
j T

n−1
j | ψ

T n−1
i

i (Si , v) = αn}
= {v ∈ V \ ⋃

j T
n−1
j | ψ

T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v) = αn}

Proof Let 1 ≤ i ≤ M and 1 ≤ n ≤ |A|. Then (6.9) implies:

{v ∈ V \
⋃

j
T n−1
j | ψ

V \⋃
j T

n−1
j

i (T n−1
i , v) > αn} = ∅.

Statement 1 follows from this and Propositions 2.1 and 6.1.
To prove statement 2, it is now enough to verify:

T n
i \T n−1

i ⊇ {v ∈ V \
⋃

j
T n−1
j | ψ

T n−1
i ∪(V \⋃

j T
n−1
j )

i

(Si , v) ≥ αn} (6.19)

⊇ {v ∈ V \
⋃

j
T n−1
j | ψ

T n
i

i (Si , v) ≥ αn} (6.20)

⊇ T n
i \T n−1

i . (6.21)

Suppose (6.19) is false. Then ψ
T n−1
i ∪(V \ ⋃

j T
n−1
j )

i (Si , v0) ≥
αn for some v0 ∈ V \ ⋃

j T
n−1
j such that v0 /∈ T n

i , whence

ψ
V \⋃

j T
n−1
j

i (T n
i , v0) ≥ ψ

T n−1
i ∪(V \⋃

j T
n−1
j )

i (Si , v0) ≥ αn (as
Si = T 0

i ⊆ T n
i ). But statement 1 of Proposition 6.3 implies

ψ
V \⋃

j T
n−1
j

i (T n
i , v) < αn for all v ∈ (V \⋃

j T
n−1
j )\T n

i .
This contradiction establishes (6.19). The inclusion (6.20)
follows from Propositions 2.1 and 6.1. As T n

i \T n−1
i ⊆

V \⋃
j T

n−1
j (by statement 1 of Proposition 6.1) the inclu-

sion (6.21) follows from statement 3 of Proposition 6.3. ��

6.2 Proof of Theorem 3.4

Let m be any element of {1, . . . , M}. To see that statement 1
is true, we first recall that every nonempty initial segment of
a recursively (�,S)-optimal V -path is recursively (�,S)-
optimal. It follows from this and the definition of O�,S

m that
if a recursively (�,S)-optimal V -path p is a V -path from
Sm , then p is an O�,S

m -path. The converse is also true, as S is
consistent with � and so no point in

⋃
j 
=m Sj lies in O�,S

m .

For brevity in proving statement 2, let us write ψOm for
ψm |O�,S

m ×O�,S
m

. To show that every hereditarily (ψOm , Sm)-

optimal O�,S
m -path is a recursively (�,S)-optimal V -path,

suppose 〈v0, . . . , vl〉 is an O�,S
m -path that is hereditarily

(ψOm , Sm)-optimal but is not a recursively (�,S)-optimal
V -path. Then v0 ∈ Sm and there is some j ∈ {1, . . . , l} and
some V -path p to v j such that ROS

�(p) and

�S(p) > �S(〈v0, . . . , v j 〉) = ψOm (〈v0, . . . , v j 〉). (6.22)

As 〈v0, . . . , vl〉 is an O�,S
m -path, we have that v j ∈ O�,S

m

and so there also exists a V -path p′ from Sm to v j that satis-

fies ROS
�(p′); note that p′ is an O�,S

m -path, by statement 1.
Now ROS

�(p) and ROS
�(p′) imply �S(p′) = �S(p). This

and (6.22) imply ψOm (p′) = �S(p′) > ψOm (〈v0, . . . , v j 〉),
which contradicts the hereditary (ψOm , Sm)-optimality of

〈v0, . . . , vl〉 since p′ is an O�,S
m -path from Sm to v j .

This contradiction establishes that an O�,S
m -path is a recur-

sively (�,S)-optimal V -path if it is hereditarily (ψOm , Sm)-
optimal.

To establish the converse, suppose 〈v0, . . . , vl〉 is an
O�,S
m -path that is not hereditarily (ψOm , Sm)-optimal but

is a recursively (�,S)-optimal V -path. Then v0 ∈ Sm
(by statement 1) and, since 〈v0, . . . , vl〉 is an O�,S

m -path
from Sm that is not hereditarily (ψOm , Sm)-optimal, there
is some j ∈ {1, . . . , l} such that 〈v0, . . . , v j 〉 is not
(ψOm , Sm)-optimal. Let p be a hereditarily (ψOm , Sm)-

optimal O�,S
m -path to v j . (The existence of p follows

from Proposition 3.1, applied with O�,S
m in place of V ,

when we put (ψ, S) = (ψOm , Sm).) Then �S(p) =
ψOm (p) > ψOm (〈v0, . . . , v j 〉) = �S(〈v0, . . . , v j 〉), since
p is (ψOm , Sm)-optimal but 〈v0, . . . , v j 〉 is not. But p is a
recursively (�,S)-optimal V -path (as we showed above that
any hereditarily (ψOm , Sm)-optimal O�,S

m -path is a recur-
sively (�,S)-optimal V -path) and 〈v0, . . . , vl〉 is also a
recursively (�,S)-optimal V -path, so it is in fact impossible
that �S(p) > �S(〈v0, . . . , v j 〉). This contradiction estab-

lishes that an O�,S
m -path is hereditarily (ψOm , Sm)-optimal

if it is a recursively (�,S)-optimal V -path. So statement 2 is
proved.

To prove statement 3, let v ∈ O�,S
m , so that there is a recur-

sively (�,S)-optimal V -path from Sm to v. Any such V -path
p is a hereditarily (ψm |O�,S

m ×O�,S
m

, Sm)-optimal O�,S
m -path

from Sm to v (by statements 1 and 2) and so must satisfy

�S(p) = ψm(p) = ψ
O�,S
m

m (Sm, v). ��

6.3 Proof of Theorem 3.6

Wewill use the notation of Theorem 2.4. Recall that T 0
i = Si

for 1 ≤ i ≤ M and
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T n
i = T n−1

i ∪
{
v ∈ V \

⋃

j
T n−1
j | ψV (Si , v) = αn

}

for 1 ≤ i ≤ M and 1 ≤ n ≤ |A| (6.23)

by statement 1(a) ofTheorem2.4.Wenowprove by induction
that the following is true for n = 1, . . . , |A|:

• T n
i = Zn

i for 1 ≤ i ≤ M , where

Zn
i

def= {v ∈ V | ψV (Si , v) = ψV (
⋃

j S j , v) ≥ αn}.

The property • holds for n = 1: We see that T 1
i ⊆ Z1

i
because if v ∈ T 1

i then, by (6.23), 1 ≥ ψV (
⋃

j S j , v) ≥
ψV (Si , v) = α1 = 1 and so v ∈ Z1

i . To show that Z1
i ⊆ T 1

i ,
let v ∈ Z1

i . Then ψ(Si , v) = α1 = 1. Now if v ∈ V \⋃
j T

0
j

then v ∈ {v ∈ V \ ⋃
j T

0
j | ψV (Si , v) = α1} ⊆ T 1

i by

(6.23). If on the other hand v ∈ ⋃
j T

0
j = ⋃

j S j then, since
ψ(Si , v) = 1 and the seed sets are consistentwith the affinity,
v ∈ Si = T 0

i ⊆ T 1
i . So • holds for n = 1.

Next, assume as an induction hypothesis that, for some
n ∈ {2, . . . , |A|}, T n−1

i = Zn−1
i for 1 ≤ i ≤ M . To complete

the proof of •, we will deduce from the induction hypothesis
that T n

i = Zn
i for 1 ≤ i ≤ M . For this purpose, we now fix

an i in {1, . . . , M}, show that T n
i ⊆ Zn

i , and then show that
Zn
i ⊆ T n

i .
To see that T n

i ⊆ Zn
i , let v be an arbitrary point

in T n
i . We need to show that v ∈ Zn

i . If v ∈ T n−1
i

then, by the inductive assumption, v ∈ Zn−1
i ⊆ Zn

i as
required. Now suppose v /∈ T n−1

i , so that v ∈ T n
i \T n−1

i .
Then, by (6.23), ψV (

⋃
j S j , v) ≥ ψV (Si , v) = αn

and v ∈ V \⋃
j T

n−1
j . Moreover, it is not possible that

ψV (
⋃

j S j , v) > ψV (Si , v), since this would imply that,

if k is any index for whichψV (
⋃

j S j , v) = ψV (Sk, v), then

ψV (Sk, v) = ψV (
⋃

j S j , v) > ψV (Si , v) = αn , so that

ψV (Sk, v) = ψV (
⋃

j S j , v) ≥ αn−1 (i.e., v ∈ Zn−1
k ) which,

by the inductive assumption, would mean that v ∈ T n−1
k ,

contradicting v ∈ V \ ⋃
j T

n−1
j . Hence ψV (

⋃
j S j , v) =

ψV (Si , v) = αn and we again have that v ∈ Zn
i . So, indeed,

T n
i ⊆ Zn

i .
To see that Zn

i ⊆ T n
i , let v be an arbitrary point in Zn

i . We
need to show that v ∈ T n

i . As v ∈ Zn
i we either have that

ψV (Si , v) = ψV (
⋃

j S j , v) = αn or have that ψV (Si , v) =
ψV (

⋃
j S j , v) ≥ αn−1. In the former case v ∈ V \⋃

j Z
n−1
j

and so v ∈ V \⋃
j T

n−1
j by the induction hypothesis, whence

v ∈ T n
i by (6.23) since ψV (Si , v) = αn . In the latter case

v ∈ Zn−1
i = T n−1

i ⊆ T n
i by the induction hypothesis. This

completes the proof of •.
For 1 ≤ i ≤ M we have that ORFC

i = T |A|
i \ ⋃

j 
=i T
|A|
j =

Z |A|
i \⋃

j 
=i Z
|A|
j by statement 1(b) of Theorem 2.4 and

•, and we see from the definition of Zn
i that Z |A|

i =
{v ∈ V | ψV (Si , v) = max j ψ

V (S j , v) > 0} because

ψV (
⋃

j S j , v) = max j ψ
V (S j , v). Hence ORFC

i = Z |A|
i \

⋃
j 
=i Z

|A|
j = {v ∈ V | ψV (Si , v) > max j 
=i ψ

V (S j , v)} for
1 ≤ i ≤ M , which proves statement 2 of Theorem 3.6 and
readily implies statement 1 of the theorem.

6.4 Proof of Theorem 3.10

The equivalence of statements 1 and 2 of the theorem follows
from statement 3 of Theorem 3.4 and the definition of O�,S

i .
Lemmas 6.6 and 6.7 below will show the equivalence of
statements 1 and 2 to statement 3. The following result, which
may be of some independent interest, will be used in the proof
of Lemma 6.6:

Proposition 6.5 Let � = 〈ψ1, . . . , ψM 〉 be any sequence
of affinities on V , let S = 〈S1, . . . , SM 〉 be any sequence of
pairwise disjoint nonempty subsets of V , and let 〈v0, . . . , vk〉
and 〈w0, . . . , wk′ 〉 be any recursively (�,S)-optimal V -
paths. Then �S(〈v0, . . . , vk, wk′ 〉) ≤ �S(〈w0, . . . , wk′ 〉),
and these two values are equal if and only if 〈v0, . . . , vk, wk′ 〉
is also recursively (�,S)-optimal.

Proof We have that �S(〈v0, . . . , vk, wk′ 〉) = �S(〈w0, . . . ,

wk′ 〉) if 〈v0, . . . , vk, wk′ 〉 is recursively (�,S)-optimal be-
cause two recursively (�,S)-optimal V -paths to the same
point must have the same (�,S)-strength. There is nothing
else to prove unless

�S(〈v0, . . . , vk, wk′ 〉) ≥ �S(〈w0, . . . , wk′ 〉). (6.24)

We now assume (6.24) and complete the proof by deduc-
ing that 〈v0, . . . , vk, wk′ 〉 is recursively (�,S)-optimal
(whence we actually have that �S(〈v0, . . . , vk, wk′ 〉) =
�S(〈w0, . . . , wk′ 〉). As ROS

�(〈w0, . . . , wk′ 〉) holds, there
is no V -path p to wk′ such that ROS

�(p) and �S(p) >

�S(〈w0, . . . , wk′ 〉). This and (6.24) imply there is no V -path
p to wk′ such that ROS

�(p) and �S(p) >

�S(〈v0, . . . , vk, wk′ 〉). Moreover, since ROS
�(〈v0, . . . , vk〉)

holds, for 1 ≤ j ≤ k, there is no V -path p to v j

such that ROS
�(p) and �S(p) > �S(〈v0, . . . , v j 〉). Hence

ROS
�(〈v0, . . . , vk, wk′ 〉) holds. ��

In Lemmas 6.6 and 6.7, O∗
1 (�,S), . . . , O∗

M (�,S) will
denote the sets for which statements 1 and 2 of Theorem 3.10
would be true if we replaced OMOFS

i in each those statements
with O∗

i (�,S). In other words, O∗
1 (�,S), . . . , O∗

M (�,S)

are the sets that satisfy the following (equivalent) conditions:

(a) For 1 ≤ i ≤ M , v ∈ O∗
i (�,S) just if there is a recur-

sively (�,S)-optimal V -path of nonzero (�,S)-strength
from Si to v.

(b) O∗
i (�,S) = {v ∈ O�,S

i | ψ
O�,S
i

i (Si , v) > 0} for every
1 ≤ i ≤ M .
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Lemma 6.6 Let � = 〈ψ1, . . . , ψM 〉 be any sequence of
affinities on V and S = 〈S1, . . . , SM 〉 any sequence of
pairwise disjoint nonempty subsets of V that are consistent
with the affinities. Then (3.1) holds when 〈O1, . . . , OM 〉 =
〈O∗

1 (�,S), . . . , O∗
M (�,S)〉.

Proof Readily, (b) implies

ψ
O∗
i (�,S)

i (Si , v) = ψ
O�,S
i

i (Si , v) for all i ∈ {1, . . . , M}
and all v ∈ V . (6.25)

Let 〈O1, . . . , OM 〉 = 〈O∗
1 (�,S), . . . , O∗

M (�,S)〉, let v ∈
V , and let i ∈ {1, . . . , M}. To prove that (3.1) holds, it is
enough to show that

(i) If v ∈ Oi , then max j 
=i ψ
Oj
j (S j , v) ≤ ψ

Oi
i (Si , v) 
= 0.

(ii) If v /∈ Oi , then either max j 
=i ψ
Oj
j (S j , v) > ψ

Oi
i (Si , v)

or ψ
Oi
i (Si , v) = 0.

For 1 ≤ j ≤ M , let p j , p′
j , p

′′
j , and p′′′

j be (Oj∪{v})-paths
with the following properties:

• p j is a shortest (Oj ∪ {v})-path from S j to v such that

ψ j (p j ) = ψ
Oj
j (S j , v).

• p′
j is the Oj -path obtained from p j by omitting its last

point v.
• p′′

j is a recursively (�,S)-optimal Oj -path from S j to the
last point of p′

j . (Since Oj = O∗
j (�,S), the existence

of p′′
j is ensured by (a); moreover, ψ j (p′

j ) ≤ ψ j (p′′
j ), by

statement 2 of Theorem 3.4.)
• p′′′

j is the (Oj ∪ {v})-path from S j to v obtained by
appending v to p′′

j .

Then ψ j (p j ) = ψ
Oj
j (S j , v) ≥ ψ j (p′′′

j ). But since p′′′
j is

obtained by appending v to p′′
j , whereas p j can be obtained

by appending v to p′
j , and since ψ j (p′′

j ) ≥ ψ j (p′
j ), we also

have that ψ j (p′′′
j ) ≥ ψ j (p j ). Thus:

ψ
Oj
j (S j , v) = ψ j (p

′′′
j ) for 1 ≤ j ≤ M. (6.26)

Toestablish (i), supposev ∈ Oi = O∗
i (�,S), so that there

is a recursively (�,S)-optimal V -path p of nonzero (�,S)-

strength from Si to v (by (a)), and�S(p) = ψ
O�,S
i

i (Si , v) =
ψ

Oi
i (Si , v) 
= 0 (by Theorem 3.4 and (6.25)). Moreover,

for all j ∈ {1, . . . , M}\{i}, on applying Proposition 6.5 to
the recursively (�,S)-optimal V -paths p′′

j and p we deduce

that ψ j (p′′′
j ) = �S(p′′′

j ) ≤ �S(p) = ψ
Oi
i (Si , v) 
= 0.

This and (6.26) imply ψ
Oj
j (S j , v) ≤ ψ

Oi
i (Si , v) 
= 0

for all j ∈ {1, . . . , M}\{i}, whence max j 
=i ψ
Oj
j (S j , v) ≤

ψ
Oi
i (Si , v) 
= 0.

To establish (ii), suppose v /∈ Oi = O∗
i (�,S). By Propo-

sition 3.3, there is a recursively (�,S)-optimal V -path p
from Sk to v, for some k ∈ {1, . . . , M}. We know from

Theorem 3.4 and (6.25) that �S(p) = ψ
O�,S
k

k (Sk, v) =
ψ

Ok
k (Sk, v). So, on applying Proposition 6.5 to the recur-

sively (�,S)-optimal V -paths p′′
i and p, we deduce that

either ψi (p′′′
i ) = �S(p′′′

i ) < �S(p) = ψ
Ok
k (Sk, v) or p′′′

i is
recursively (�,S)-optimal. In the former case (6.26) implies

ψ
Oi
i (Si , v) < ψ

Ok
k (Sk, v), so that max j 
=i ψ

Oj
j (S j , v) >

ψ
Oi
i (Si , v). In the latter case p′′′

i is a recursively (�,S)-
optimal V -path from Si to v, and so (since v /∈ Oi =
O∗
i (�,S)) we see from (a) that �S(p′′′

i ) = 0; this and The-

orem 3.4 imply ψ
Oi
i (Si , v) = 0. ��

Lemma 6.7 Let � = 〈ψ1, . . . , ψM 〉 be any sequence of
affinities on V and S = 〈S1, . . . , SM 〉 any sequence of pair-
wise disjoint nonempty subsets of V that are consistent with
the affinities. Let O1, . . . , OM be subsets of V that satisfy
(3.1). Then 〈O1, . . . , OM 〉 = 〈O∗

1 (�,S), . . . , O∗
M (�,S)〉.

Proof We will deduce the lemma from the following claim:

Claim: For all m ∈ {1, . . . , M} and v ∈ V , a V -path
p from Sm to v such that ψm(p) 
= 0 is a recursively
(�,S)-optimal V -path if and only if p is a hereditarily
(ψm |Om×Om , Sm)-optimal Om-path.

As (3.1) implies Sm ⊆ Om , this claim is valid if the length
of p is 0: In that case p = 〈v〉, v ∈ Sm , �S(p) = 1, and
ψ

Om
m (Sm, v) = 1, so p is both a recursively (�,S)-optimal

V -path and a hereditarily (ψOm , Sm)-optimal Om-path. We
now assume as an induction hypothesis that, for some α ∈
(0, 1] and some integer l > 0:

• The claim is valid whenever �S(p) > α.
• The claim is valid whenever �S(p) = α and the length
of p is less than l.

We will deduce from this induction hypothesis that the claim
is valid whenever�S(p) = α and the length of p is l. This is
enough to prove the claim, since there are only finitely many
possible values of �S(p).

So let m ∈ {1, . . . , M} and v ∈ V . Let p be a V -path
from Sm to v such that �S(p) = α > 0 and the length of p
is l > 0. For 1 ≤ j ≤ M let us write ψOj for ψ j |Oj×Oj . The
cases we must rule out are as follows:

(i) p is a recursively (�,S)-optimal V -path but is not a
hereditarily (ψOm , Sm)-optimal Om-path.

(ii) p is not a recursively (�,S)-optimal V -path but is a
hereditarily (ψOm , Sm)-optimal Om-path.

To derive a contradiction in case (i), let p′ be the V -
path of length l − 1 obtained from p by omitting its last
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point, v. Since p is a recursively (�,S)-optimal V -path
from Sm , so is p′. Moreover, �S(p′) ≥ �S(p) = α. So
it follows from our induction hypothesis that p′ is a heredi-
tarily (ψOm , Sm)-optimal Om-path. Therefore, since p itself
is not a hereditarily (ψOm , Sm)-optimal Om-path, either (1)
v ∈ Om but ψ

Om
m (Sm, v) > ψm(p), or (2) v /∈ Om . If (2)

applies, then (since ψ
Om
m (Sm, v) ≥ ψm(p) > 0) we see

from (3.1) that there is some j ∈ {1, . . . , M}\{m} such

that ψ
Oj
j (S j , v) > ψ

Om
m (Sm, v) ≥ ψm(p). So, regard-

less of whether (1) or (2) applies, max j ψ
Oj
j (S j , v) >

ψm(p). Let k ∈ {1, . . . , M} be such that ψ
Ok
k (Sk, v) =

max j ψ
Oj
j (S j , v) > ψm(p). Then v ∈ Ok by (3.1), and

so (by Proposition 3.1) there exists a hereditarily (ψOk , Sk)-
optimal Ok-path p′′ to v. Now ψk(p′′) = ψ

Ok
k (Sk, v) >

ψm(p), so the induction hypothesis implies p′′ is a recur-
sively (�,S)-optimal V -path to v. But this is a contradiction,
since p is also a recursively (�,S)-optimal V -path to v and
ψk(p′′) > ψm(p).

To derive a contradiction in case (ii), let p = 〈v0, . . . , vl〉,
so that v0 ∈ Sm and vl = v. Since p is not a recursively
(�,S)-optimal V -path, there is some i ∈ {1, . . . , l} for
which there exists a recursively (�,S)-optimal V -path p′′′
to vi such that �S(p′′′) > �S(〈v0, . . . , vi 〉) ≥ �S(p) = α.
By the induction hypothesis, p′′′ is a hereditarily (ψOk , Sk)-
optimalOk-path for some k ∈ {1, . . . , M}. Soψ

Ok
k (Sk, vi ) =

�S(p′′′) > �S(〈v0, . . . , vi 〉) = ψm(〈v0, . . . , vi 〉) =
ψ

Om
m (Sm, vi ), where the last equality follows from the

hypothesis that p is a hereditarily (ψOm , Sm)-optimal Om-
path. Thus ψ

Ok
k (Sk, vi ) > ψ

Om
m (Sm, vi ), which contradicts

(3.1) because p is an Om-path and so vi ∈ Om .
We have now justified the claim. The lemma follows

from the claim and the following two facts. Firstly, for all
m ∈ {1, . . . , M} we see from (a) that v ∈ O∗

m(�,S) if
and only if there is a recursively (�,S)-optimal V -path
p from Sm to v such that ψm(p) 
= 0. Secondly, for all
m ∈ {1, . . . , M} we have that v ∈ Om if and only if there
is a hereditarily (ψm |Om×Om , Sm)-optimal Om-path p to v

such that ψm(p) 
= 0: The “if” part is trivial (as all points
of an Om-path lie in Om); the “only if” part follows from
Proposition 3.1, since (3.1) implies ψ

Om
m (Sm, v) 
= 0 for all

v ∈ Om . ��

Completion of the Proof of Theorem 3.10

Theorem 3.4 and Lemmas 6.6 and 6.7 imply the equivalence
of statements 1, 2, and 3, so it is now enough to prove state-
ment 1. In fact we will make a more general claim, which
uses the notation of Theorem 2.6:

Claim For 1 ≤ n ≤ |A|, 1 ≤ i ≤ M , and v ∈ V , we
have that v ∈ T n

i if and only if there is a recursively (�,S)-
optimal V -path of (�,S)-strength ≥ αn from Si to v.

As statement 1 is just the case n = |A| of this claim, Theo-
rem 3.10 will be proved if we can justify the claim.

We see from statement 1(a) of Theorem 2.6 that the claim
is valid when n = 1: The “only if” part is true because if
v ∈ T 1

i then there is a V -path of ψi -strength α1 = 1 from
T 0
i = Si to v, and any such V -path is recursively (�,S)-

optimal. The “if” part is true because the seed sets S1, . . . , SM
are consistent with the affinities ψ1, . . . , ψM , whence a V -
path from Si to v of (�,S)-strength α1 = 1 must be an
(Si ∪ (V \ ⋃

j S j ))-path (i.e., a (T 0
i ∪ (V \⋃

j T
0
j ))-path) and

so the existence of such a V -path would imply v ∈ T 1
i .

We now assume as an induction hypothesis that the claim
is valid for n = k−1 (where k is some integer in {2, . . . , |A|})
and complete the proof by deducing that the claim is also
valid when n = k.

To establish the “if” part of the claim in the case n = k,
let i ∈ {1, . . . , M} and v ∈ V , and suppose there is a recur-
sively (�,S)-optimal V -path 〈v0, . . . , vl〉 from v0 ∈ Si to
vl = v such that ψi (〈v0, . . . , vl〉) ≥ αk . What we need
to show is that v ∈ T k

i . If ψi (〈v0, . . . , vl〉) ≥ αk−1, then
v ∈ T k−1

i ⊆ T k
i by the inductionhypothesis. So let us assume

ψi (〈v0, . . . , vl〉) = αk . Let m be the least index in {1, . . . , l}
such thatψi (〈v0, . . . , vm〉) = αk , so thatψi (〈v0, . . . , vr 〉) =
αk for m ≤ r ≤ l. Then for m ≤ r ≤ l we must have
that vr ∈ V \⋃

j T
k−1
j , for if vr ∈ ⋃

j T
k−1
j the induction

hypothesis would imply there is a recursively (�,S)-optimal
V -path of (�,S)-strength ≥ αk−1 > �S(〈v0, . . . , vr 〉)
from

⋃
j S j to vr , which is impossible since 〈v0, . . . , vr 〉

is recursively (�,S)-optimal. Moreover, for 0 ≤ r < m,
〈v0, . . . , vr 〉 is a recursively (�,S)-optimal V -path from Si
to vr such thatψi (〈v0, . . . , vr 〉) ≥ αk−1, and so the induction
hypothesis implies vr ∈ T k−1

i . It follows that 〈v0, . . . , vl〉 is
a (T k−1

i ∪ (V \ ⋃
j T

k−1
j ))-path from v0 ∈ Si to v = vl , and

that v = vl ∈ V \⋃
j T

k−1
j . Since ψi (〈v0, . . . , vl〉) = αk ,

we see from statement 1(a) of Theorem 2.6 that v ∈ T k
i , as

required.
To establish the “only if” part of the claim in the case n =

k, let i ∈ {1, . . . , M} and v ∈ T k
i . If v ∈ T k−1

i then the claim
is valid (by the induction hypothesis) so let us assume v ∈
T k
i \T k−1

i . Now we see from statement 1(a) of Theorem 2.6

that v ∈ V \ ⋃
j T

k−1
j and ψ

T k−1
i ∪(V \⋃

j T
k−1
j )

i (Si , v) = αk .

Let 〈v0, . . . , vl〉 be a (T k−1
i ∪(V \⋃

j T
k−1
j ))-path from v0 ∈

Si to v = vl such that ψi (〈v0, . . . , vl〉) = αk , and let m
be the greatest index in {0, . . . , l} such that vm ∈ T k−1

i ,
so that vr ∈ V \ ⋃

j T
k−1
j for m + 1 ≤ r ≤ l. As vm ∈

T k−1
i , the induction hypothesis implies there is a recursively

(�,S)-optimal V -path 〈u0, . . . , us〉 from u0 ∈ Si to us =
vm such that ψi (〈u0, . . . , us〉) ≥ αk−1. Now consider the V -
path 〈u0, . . . , us = vm, vm+1, . . . , vl〉. For m + 1 ≤ r ≤ l
we have that
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ψi (〈u0, . . . , us = vm, vm+1, . . . , vr 〉)
= min(ψi (〈u0, . . . , us〉), ψi (〈vm, . . . , vr 〉))
≥ min(ψi (〈u0, . . . , us〉), ψi (〈v0, . . . , vl〉)) = αk

so it follows from the induction hypothesis (and the fact
that vr /∈ ⋃

j T
k−1
j ) that no recursively (�,S)-optimal

V -path q to vr satisfies �S(q) > �S(〈u0, . . . , us =
vm, vm+1, . . . , vr 〉). This and the recursive (�,S)-optimality
of 〈u0, . . . , us〉 imply that 〈u0, . . . , us = vm, vm+1, . . . , vl〉
is a recursively (�,S)-optimal V -path, and so we have
shown that there is a recursively (�,S)-optimal V -path of
(�,S)-strength ≥ αk from Si to vl = v, as required.

6.5 Proof of Theorem 3.8

In this proof we assume the hypotheses of Theorem 3.8 are
satisfied. In addition, we will use the notation

Xi
def=

⋃

j 
=i
S j

for 1 ≤ i ≤ M . For every Q ⊆ V we see from the defin-
ition of ψQ that max j 
=i ψ

Q(S j , v) = ψQ(Xi , v). So a set
O ⊆ V satisfies the condition of statement 2 of Theorem
3.8 just if O = {

v ∈ V | ψV \O(Xi , v) < ψO(Si , v)
}
, and

satisfies the condition of statement 3 of the theorem just if
O = {

v ∈ V | ψV \O(Xi , v) < ψV (Si , v)
}
. (Note that each

of these conditions implies Xi ⊆ V \O .) We will deduce
Theorem 3.8 from these simple observations and three lem-
mas.

Lemma 6.8 Let i ∈ {1, . . . , M} and let O ⊆ V be such
that O = {

v ∈ V | ψV \O(Xi , v) < ψV (Si , v)
}
. Then O ={

v ∈ V | ψV \O(Xi , v) < ψO(Si , v)
}
.

Proof We first claim that, for any v ∈ O , every hereditar-
ily (ψ, Si )-optimal V -path to v is an O-path. To justify this
claim, let p = 〈v0, . . . , vl〉 be a hereditarily (ψ, Si )-optimal
V -path to a point in O and, by way of contradiction, suppose
p is not an O-path. Let k ∈ {0, . . . , l − 1} be the largest
index such that vk /∈ O . As vk /∈ O , ψV \O(Xi , vk) ≮

ψV (Si , vk) = ψ(〈v0, . . . , vk〉) and so there is a (V \O)-
path q from Xi to vk such that ψ(q) = ψV \O(Xi , vk) ≮

ψ(〈v0, . . . , vk〉). But now vk+1 is the only point of q ·
〈vk, vk+1〉 that lies in O , and so ψV \O(Xi , vk+1) ≮

ψ(q · 〈vk, vk+1〉) ≮ ψ(〈v0, . . . , vk+1〉) = ψV (Si , vk+1) as
〈v0, . . . , vl〉 is hereditarily (ψ, Si )-optimal. As this contra-
dicts the fact that vk+1 ∈ O , the claim is established. The
claim implies that ψV (Si , v) = ψO(Si , v) for all v ∈ O . So
if v ∈ O then we have that ψV \O(Xi , v) < ψO(Si , v); the
converse is evidently true because ψO(Si , v) ≤ ψV (Si , v)

for all v ∈ V . ��

Lemma 6.9 Let i ∈ {1, . . . , M} and let O ⊆ V be such
that O = {

v ∈ V | ψV \O(Xi , v) < ψO(Si , v)
}
. Then O ={

v ∈ V | ψV \O(Xi , v) < ψV (Si , v)
}
.

Proof Let O ′ = {
v ∈ V | ψV \O(Xi , v) < ψV (Si , v)

}
.

Clearly O ⊆ O ′, as ψO(Si , v) ≤ ψV (Si , v). To see the
other inclusion, let v ∈ O ′ and, by way of contradiction,
suppose v /∈ O .

Let 〈v0, . . . , vl〉 be a hereditarily (ψ, Si )-optimal V -
path from v0 ∈ Si to vl = v ∈ O ′\O , and let
k be the least index such that vk /∈ O . Then, since
vk /∈ O , ψV \O(Xi , vk) ≥ ψO(Si , vk) and so there
exists a (V \O)-path q from Xi to vk such that ψ(q) ≥
ψO(Si , vk). Moreover, since v j ∈ O for 0 ≤ j < k, we
have that ψO(Si , vk) ≥ ψ(〈v0, . . . , vk〉). Hence ψ(q) ≥
ψ(〈v0, . . . , vk〉). Now let k + m be the least index greater
than or equal to k such that vk+m ∈ O ′. Then vk+m is
the only point of q · 〈vk, . . . , vk+m〉 that might lie in O ⊆
O ′, and so ψV \O(Xi , vk+m) ≥ ψ(q · 〈vk, . . . , vk+m〉) ≥
ψ(〈v0, . . . , vk+m〉) = ψV (Si , vk+m) as 〈v0, . . . , vl〉 is
hereditarily (ψ, Si )-optimal. But this contradicts the fact that
vk+m ∈ O ′. ��
Lemma 6.10 Let i ∈ {1, . . . , M}, and let O and O ′
be subsets of V that, respectively, satisfy the conditions
O = {v ∈ V | ψV \O(Xi , v) < ψV (Si , v)} and O ′ =
{v ∈ V | ψV \O ′

(Xi , v) < ψV (Si , v)}. Then O = O ′.

Proof As the statement of the lemma is symmetric with
respect to O and O ′, it is enough to show that O ′ ⊆ O .
To do this, let v be any point in V \O . Then what we need to
show is that v ∈ V \O ′.

Suppose not. Then v ∈ O ′. But, since v ∈ V \O and Xi ⊆
V \O , there must exist a hereditarily (ψ |(V \O)×(V \O), Xi )-
optimal (V \O)-path 〈v0, . . . , vl〉 from v0 ∈ Xi to vl = v ∈
O ′ (byProposition 3.1). Let k be the least index such that vk ∈
O ′. Then 〈v0, . . . , vk〉 is a ((V \O ′) ∪ {vk})-path from Xi to
vk , so ψ(〈v0, . . . , vk〉) ≤ ψV \O ′

(Xi , vk) < ψV (Si , vk); the
second inequality holds because vk ∈ O ′. But 〈v0, . . . , vl〉
is a hereditarily (ψ |(V \O)×(V \O), Xi )-optimal (V \O)-path,
so we have that ψ(〈v0, . . . , vk〉) = ψV \O(Xi , vk) ≥
ψV (Si , vk); the inequality holds since vk ∈ V \O . This con-
tradiction proves the lemma. ��

Completion of the Proof of Theorem 3.8

Let i ∈ {1, . . . , M}. Lemma 6.10 implies that if there is a set
O which satisfies the condition of statement 3 then it is the
unique set with that property. Lemmas 6.8 and 6.9 imply that
the condition on O in statement 2 is equivalent to the condi-
tion on O in statement 3. Thus the proof of Theorem 3.8 will
be complete if we can show that O IRFC

i satisfies statement 1
and also prove thatO IRFC

i is a setO that satisfies the condition
of statement 2. For this purpose, let 〈OMOFS

1 , . . . , OMOFS
M 〉
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be the MOFS segmentation of V found by Algorithm 3 for
seed sets 〈S1, . . . , SM 〉 and affinities 〈ψ, . . . , ψ〉.

To see that O IRFC
i satisfies statement 1, fix a v ∈ V . By

Corollary 2.7, O IRFC
i = OMOFS

i \ ⋃
j 
=i O

MOFS
j . Hence, by

statement 1 of Theorem 3.10 and Corollary 3.5, v ∈ O IRFC
i

if, and only if, i is the unique index k ∈ {1, . . . , M} for which
there exists a hereditarily (ψ,

⋃
j S j )-optimal V -path from

Sk to v. (Here we are also using the fact that if i is the unique
index k ∈ {1, . . . , M} for which there exists a hereditarily
(ψ,

⋃
j S j )-optimal V -path from Sk to v, then such a V -path

has nonzero ψ-strength: For if its ψ-strength were 0 then
ψV (

⋃
j S j , v) = 0 and so a V -path of length 1 from any Sk

to v would be hereditarily (ψ,
⋃

j S j )-optimal.) So we have

proved that O IRFC
i satisfies statement 1.

It remains to prove that O IRFC
i is a set O which satisfies

the condition of statement 2. To do this, fix an i ∈ {1, . . . , M}
and let O∗ = {v ∈ V | max j 
=i ψ

V \OIRFC
i (S j , v) < ψOIRFC

i

(Si , v)}. Then what we need to show is that O IRFC
i = O∗. To

show this, we first observe that statement 3 of Theorem 3.10
readily implies:

OIRFC
i = OMOFS

i \
⋃

j 
=i
OMOFS

j

=
{

v ∈ V | max j 
=i ψ
OMOFS

j (S j , v)<ψOMOFS
i (Si , v)

}

.

(6.27)

Since V \O IRFC
i ⊇ OMOFS

j whenever j 
= i , and since

O IRFC
i ⊆ OMOFS

i , for every v ∈ O∗ we have that

max j 
=i ψ
OMOFS

j (S j , v) ≤ max j 
=i ψ
V \OIRFC

i (S j , v)

< ψOIRFC
i (Si , v) ≤ ψOMOFS

i (Si , v), whence v ∈ O IRFC
i by

(6.27). Thus O∗ ⊆ O IRFC
i . The reverse inclusion O IRFC

i ⊆
O∗ is a consequence of (6.27) and the following two facts,
which we establish below:

If v ∈ O IRFC
i , then max j 
=i ψ

OMOFS
j (S j , v)

= max j 
=i ψ
V \OIRFC

i (S j , v). (6.28)

If v ∈ O IRFC
i , then ψOMOFS

i (Si , v)

= ψOIRFC
i (Si , v) = ψV (

⋃

j
S j , v). (6.29)

To establish (6.28) and (6.29), fix a v ∈ O IRFC
i . The first

step in justifying (6.28) is to observe that max j 
=i ψ
V \OIRFC

i

(S j , v) ≥ max j 
=i ψ
OMOFS

j (S j , v) because V \O IRFC
i ⊇

OMOFS
j for all j ∈ {1, . . . , M}\{i}. But we must show

max j 
=i ψ
OMOFS

j (S j , v) ≥ max j 
=i ψ
V \OIRFC

i (S j , v). This is

plainly true if v ∈ ⋃
j 
=i S j or max j 
=i ψ

V \OIRFC
i (S j , v) = 0,

so we assume v /∈ ⋃
j 
=i S j and max j 
=i ψ

V \OIRFC
i (S j , v) >

0. Let n be any element of {1, . . . , M}\{i} such that
ψV \OIRFC

i (Sn, v) = max j 
=i ψ
V \OIRFC

i (S j , v) > 0 and let
p = 〈v0, . . . , vl〉 be a shortest ((V \O IRFC

i )∪{v})-path from

Sn to v with ψ(p) = ψV \OIRFC
i (Sn, v) > 0. Then v0 ∈ Sn

and vl = v /∈ Sn , so l > 0. Also, v0, . . . , vl−1 ∈ V \O IRFC
i

and so v0, . . . , vl−1 ∈ ⋃
j O

MOFS
j \O IRFC

i = ⋃
j 
=i O

MOFS
j

by Corollary 3.12, since ψ(p) > 0. Hence vl−1 ∈ OMOFS
k

for some k 
= i . For this k it follows from Theorem 3.10
and Corollary 3.5 that there exists a hereditarily (ψ,

⋃
j S j )-

optimal V -path q from Sk to vl−1, and by Corollary 3.11
q is an OMOFS

k -path. Now ψ(q) ≥ ψ(〈v0, . . . , vl−1〉) as q
is (ψ,

⋃
j S j )-optimal. So q · 〈vl−1, vl〉 is a (OMOFS

k ∪ {v})-
path from Sk to v withψ(q · 〈vl−1, vl〉) ≥ ψ(〈v0, . . . , vl〉) =
ψ(p). We therefore have that

max
j 
=i

ψ
OMOFS

j (S j , v) ≥ ψOMOFS
k (Sk, v)

≥ ψ(q · 〈vl−1, vl〉) ≥ ψ(p)

= ψV \OIRFC
i (Sn, v)

= max
j 
=i

ψV \OIRFC
i (S j , v).

So max j 
=i ψ
OMOFS

j (S j , v) ≥ max j 
=i ψ
V \OIRFC

i (S j , v),
and (6.28) is proved.

To establish (6.29), let p = 〈v0, . . . , vl〉 be a hereditarily
(ψ,

⋃
j S j )-optimal V -path to v ∈ O IRFC

i . Then ψ(p) =
ψV (

⋃
j S j , v), and v0 ∈ Si by statement 1 (of this theorem).

We claim p is an O IRFC
i -path. To see this, fix a k ∈ {0, . . . , l}

and, by way of contradiction, assume vk /∈ O IRFC
i . Then, by

statement 1, there exists a hereditarily (ψ,
⋃

j S j )-optimal
V -path q from S j to vk for some j 
= i . This readily implies
q · 〈vk, . . . , vl〉 is a hereditarily (ψ,

⋃
j S j )-optimal V -path

from S j to v, which contradicts statement 1 as j 
= i and v ∈
O IRFC
i . Thus p is indeed an O IRFC

i -path (from v0 ∈ Si to v),

and so since OMOFS
i ⊇ O IRFC

i we have thatψOMOFS
i (Si , v) ≥

ψOIRFC
i (Si , v) ≥ ψ(p) = ψV (

⋃
j S j , v) ≥ ψOMOFS

i (Si , v),
which implies (6.29).

6.6 Proof of Theorem 3.13

Let us assume for the moment that ψ(u, v) < 1 for all dis-
tinct u and v in V . After we prove the theorem under this
hypothesis (which implies S is consistent with ψ), we will
deduce that the theorem is true even if this hypothesis is not
satisfied.

As b is a (ψ,S)-bottleneck point, there is a hereditarily
(ψ,

⋃
j S j )-optimal V -path 〈v0, . . . , vl〉 such that vl = b

and none of v0, . . . , vl−1 lies in T Z(ψ,S), so that vk ∈⋃
j O

IRFC
j (ψ,S) for 0 ≤ k ≤ l − 1. Let i be the ele-

ment of {1, . . . , M} such that v0 ∈ Si . Then for 0 ≤
k ≤ l − 1 we see from statement 1 of Theorem 3.8 that
vk /∈ ⋃

j 
=i O
IRFC
j (ψ,S), because the V -path 〈v0, . . . , vk〉 is

a hereditarily (ψ,
⋃

j S j )-optimal V -path from Si to vk . So,

since vk ∈ ⋃
j O

IRFC
j (ψ,S) for 0 ≤ k ≤ l − 1, we have that

vk ∈ O IRFC
i (ψ,S) for 0 ≤ k ≤ l − 1.
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Now let ε be a positive constant such that ε < δ and such
that

1. ψ(u, v) + ε < 1 for all distinct points u and v in V .
2. ε < |x − y| for every pair (x, y) of distinct values in the

range of ψ .

Let ψ ′ be the affinity on V such that ψ ′(vi , vi+1) =
ψ(vi , vi+1) + ε and ψ ′(vi+1, vi ) = ψ(vi+1, vi ) + ε for
0 ≤ i < l, and ψ ′(u, v) = ψ(u, v) for all other pairs (u, v)

in V × V , so that ‖ψ ′ − ψ‖ = ε < δ and ψ ′ is symmetric if
ψ is symmetric. Note that ψ ′(u, v) ≤ ψ(u, v) + ε < 1 for
all distinct u and v in V , by property 1. Hence S is consistent
with ψ ′.

For all V -paths p, it follows from property 2 that the
value of ψ ′(p) is either ψ(p) or ψ(p) + ε. From this and
property 2 we deduce that ψ ′(p) < ψ ′(q) for all V -paths
p and q such that ψ(p) < ψ(q), and hence that every
hereditarily (ψ ′,

⋃
j S j )-optimal V -path is also a heredi-

tarily (ψ,
⋃

j S j )-optimal V -path. This and statement 1 of

Theorem 3.8 imply that O IRFC
j (ψ,S) ⊆ O IRFC

j (ψ ′,S) for
1 ≤ j ≤ M , whence T Z(ψ ′,S) ⊆ T Z(ψ,S).

We claim there is no hereditarily (ψ ′,
⋃

j S j )-optimal V -
path from

⋃
j 
=i S j to b. Indeed, suppose p is such a V -path

(so that each initial segment of p is also such a V -path). Then
no point of O IRFC

i (ψ,S) is a point of p (by statement 1 of
Theorem 3.8), whence none of v0, . . . , vl−1 is a point of p
and so ψ ′(p) = ψ(p). Moreover, since p is a hereditarily
(ψ ′,

⋃
j S j )-optimal V -path to b, p is also a hereditarily

(ψ,
⋃

j S j )-optimal V -path to b (just as 〈v0, . . . , vl〉 is) and
therefore ψ(p) = ψ(〈v0, . . . , vl〉) = ψ ′(〈v0, . . . , vl〉) − ε.
Hence ψ ′(p) = ψ ′(〈v0, . . . , vl〉) − ε, which contradicts the
(ψ ′,

⋃
j S j )-optimality of p, as 〈v0, . . . , vl〉 and p are both

V -paths from
⋃

j S j to b. So our claim is valid.
It follows from the claim (and statement 1 of Theorem3.8)

that b ∈ O IRFC
i (ψ ′,S), whence b /∈ T Z(ψ ′,S) and so

(since T Z(ψ ′,S) ⊆ T Z(ψ,S)) we have that T Z(ψ ′,S) ⊆
T Z(ψ,S)\{b}. This completes the proof of the theorem
under the additional hypothesis that ψ(u, v) < 1 for all dis-
tinct u and v in V .

To prove that the theorem holds even without this extra
hypothesis, let ψ∗ be the affinity on V such that ψ∗(u, v) =
λψ(u, v) for all distinct u and v in V , where λ is a positive
constant in the open interval (1− δ/2, 1). Then ‖ψ∗ −ψ‖ ≤
1 − λ < δ/2 and ψ∗(u, v) < 1 for all distinct points u
and v in V . Readily, 〈O IRFC

1 (ψ∗,S), . . . , O IRFC
M (ψ∗,S)〉 =

〈O IRFC
1 (ψ,S), . . . , O IRFC

M (ψ,S)〉 and hence T Z(ψ∗,S) =
T Z(ψ,S) 
= ∅. Moreover, a V -path is hereditarily
(ψ∗,

⋃
j S j )-optimal just if it is hereditarily (ψ,

⋃
j S j )-

optimal, and so a point is a (ψ∗,S)-bottleneck point just
if it is a (ψ,S)-bottleneck point. As we have already shown
that the theorem is true if ψ(u, v) < 1 for all distinct u
and v in V , we know the theorem is true with ψ∗ and

δ/2 in place of ψ and δ. Moreover, ψ∗ is symmetric if
ψ is symmetric. Hence there is an affinity ψ ′ on V such
that ‖ψ ′ − ψ∗‖ < δ/2 (which implies ‖ψ ′ − ψ‖ < δ),
T Z(ψ ′,S) ⊆ T Z(ψ∗,S)\{b} = T Z(ψ,S)\{b}, and ψ ′ is
symmetric if ψ is symmetric. This proves the theorem.

6.7 Proof of Theorem 5.4

We will deduce the theorem from the following lemma:

Lemma 6.11 Let � = 〈ψ1, . . . , ψM 〉 be any sequence
of affinities on V , and let S = 〈S1, . . . , SM 〉, R =
〈R1, . . . , RM 〉, and P = 〈P1, . . . , PM 〉 be three sequences
of pairwise disjoint nonempty subsets of V that have the fol-
lowing properties for 1 ≤ i ≤ M:

(i) Si ⊆ Ri ⊆ Pi .
(ii) For each v ∈ Pi there is a recursively (�,S)-optimal V -

path pv from Si to v such that ψ∅
i (v, V \Pi ) ≤ ψi (pv).

(iii) There is no recursively (�,S)-optimal V -path from
⋃

j 
=i S j to Pi .

Then for 1 ≤ i ≤ M we have that

1. If 〈w0, . . . , wk〉 is any V -path in which w0 ∈ Pi and
w1 ∈ V \Pi , then:
ψi (pw0 · 〈w0, . . . , wk〉) = ψi (〈w0, . . . , wk〉).

2. For all v ∈ V \Pi and ξ ∈ [0, 1], there is a recursively
(�,S)-optimal V -path of (�,S)-strength ξ from Si to
v if and only if there is a recursively (�,R)-optimal V -
path of (�,R)-strength ξ from Ri to v.

3. For all v ∈ Pi and ξ ∈ [0, 1], if ψi (pv) = ξ then there is
a recursively (�,R)-optimal V -path from Ri to v whose
(�,R)-strength is ≥ ξ .

Proof Let i ∈ {1, . . . , M}. Then under the hypotheses of
statement 1 it follows from property (ii) that ψi (pw0) ≥
ψ∅
i (w0, V \Pi ) ≥ ψi (w0, w1). Hence,

ψi (pw0 · 〈w0, . . . , wk〉)
= min(ψi (pw0), ψi (w0, w1), ψi (〈w1, . . . , wk〉))
= min(ψi (w0, w1), ψi (〈w1, . . . , wk〉))
= ψi (〈w0, . . . , vk〉).

This proves statement 1.
Now we prove statements 2 and 3. As before, let i ∈

{1, . . . , M}. Bearing in mind that every V -path from Si is a
V -path from Ri (since Si ⊆ Ri ) and that every V -path from
Ri of ψi -strength 1 is recursively (�,R)-optimal, we see
that statement 3 and the “only if” part of statement 2 are true
when ξ = 1. To see that the “if” part of statement 2 is true
when ξ = 1, suppose there is a V -path p of (�,R)-strength
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1 from Ri to v ∈ V \Pi . Then there are two consecutive
points a and b of p such that a ∈ Pi and b ∈ V \Pi , and
it follows from property (ii) that ψi (pa) ≥ ψ∅

i (a, V \Pi ) ≥
ψi (a, b) ≥ ψi (p) = 1, whence ψi (pa) = 1. Concatenation
of pa with the part of p that consists of a and all subsequent
points produces a V -path from Si to v whose (�,S)-strength
is 1, and which is therefore recursively (�,S)-optimal.

Having verified that statements 2 and 3 hold when ξ = 1,
we now assume as an induction hypothesis that (for some
α ∈ [0, 1)) statements 2 and 3 hold whenever ξ > α. We
will complete the proofs of statements 2 and 3 by deducing
from this induction hypothesis that statements 2 and 3 hold
when ξ = α. (This proof method depends on the fact that
if statement 2 or 3 were false then there would have to be
a greatest value of ξ for which that statement is false, since
there are only finitely many values of ξ for which there exists
a V -path whose (�,S)- or (�,R)-strength is ξ .)

We first deduce from the induction hypothesis that state-
ment 3 and the “only if” part of statement 2 are true when
ξ = α. Suppose there is a recursively (�,S)-optimal V -
path p = 〈v0, . . . , vl〉 from Si to v = vl such that �S(p) =
ψi (p) = α. We will deduce from the existence of p that

(a) There exists a recursively (�,R)-optimalV -pathq from
Ri to vl = v such that �R(q) ≥ α.

(b) If vl = v ∈ V \Pi , then this recursively (�,R)-optimal
V -path q satisfies �R(q) = α.

Note that if we can establish (a) and (b), then we will have
deduced that both statement 3 and the “only if” part of state-
ment 2 are true when ξ = α.

Now (a) and (b) are certainly true if p itself is recur-
sively (�,R)-optimal, so let us assume p is not recursively
(�,R)-optimal. Then there is a greatest indexm in {1, . . . , l}
for which there exists a recursively (�,R)-optimal V -
path p′ to vm such that �R(p′) > �R(〈v0, . . . , vm〉) =
ψi (〈v0, . . . , vm〉) ≥ ψi (p) = α. Since 〈v0, . . . , vm〉 is a
recursively (�,S)-optimal V -path from Si to vm , it follows
from property (iii) that vm ∈ V \⋃

j 
=i Pj . If p′ were a V -
path from R j for some j 
= i , then (since vm ∈ V \Pj )

the induction hypothesis would imply there is a recur-
sively (�,S)-optimal V -path p′′ from S j to vm such that
�S(p′′) = �R(p′) > ψi (〈v0, . . . , vm〉), contrary to the
recursive (�,S)-optimality of p.

Hence p′ is a V -path from Ri , so thatψi (p′) = �R(p′) >

ψi (〈v0, . . . , vm〉). Let q = p′ · 〈vm, . . . , vl〉. Then q is
recursively (�,R)-optimal: Otherwise, since p′ is recur-
sively (�,R)-optimal but q = p′ · 〈vm, . . . , vl〉 is not,
there would be some k in {m + 1, . . . , l} for which there
exists a recursively (�,R)-optimal V -path q ′ to vk such that
�R(q ′) > �R(p′ · 〈vm, . . . , vk〉) = ψi (p′ · 〈vm, . . . , vk〉) ≥
ψi (〈v0, . . . , vk〉) (where the ≥ holds because ψi (p′) >

ψi (〈v0, . . . , vm〉)), contrary to our definition of m. More-

over, �R(q) = ψi (q) ≥ ψi (〈v0, . . . , vl〉) = ψi (p) = α

because ψi (p′) > ψi (〈v0, . . . , vm〉). This establishes (a).
If vl = v ∈ V \Pi , then we cannot have that �R(q) =

ψi (q) > α, for in that case it would follow from the induction
hypothesis that there is a recursively (�,S)-optimal V -path
q ′′ from Si to v such that �S(q ′′) = �R(q) > α = �S(p),
which would contradict the recursive (�,S)-optimality of p.
This establishes (b). Thus we have shown that if statements
2 and 3 hold when ξ > α, then statement 3 and the “only if”
part of statement 2 hold when ξ = α.

It remains to deduce from the induction hypothesis that
the “if” part of statement 2 is true when ξ = α. Suppose
p = 〈u0, . . . , ul〉 is a recursively (�,R)-optimal V -path
from Ri to v ∈ V \Pi such that �R(p) = α. (Thus u0 ∈ Ri

and ul = v.)We need to deduce that there is also a recursively
(�,S)-optimal V -path of (�,S)-strength α from Si to ul =
v.

Let t be the greatest index in {0, . . . , l} such that ut ∈
Pi , and let q be the V -path put · 〈ut , . . . , ul〉 from Si to
ul = v. By statement 1, ψi (q) = ψi (〈ut , . . . , ul〉) ≥
ψi (p). On the other hand, since 〈u0, . . . , ut 〉 is a recur-
sively (�,R)-optimal V -path from Ri to ut ∈ Pi such
that ψi (〈u0, . . . , ut 〉) ≥ ψi (p) = α, and statement 3 holds
when ξ > α (by the induction hypothesis), we cannot
have that ψi (put ) > ψi (〈u0, . . . , ut 〉). Hence ψi (put ) ≤
ψi (〈u0, . . . , ut 〉) and so ψi (q) = ψi (put · 〈ut , . . . , ul〉) ≤
ψi (〈u0, . . . , ul〉) = ψi (p) = α. Therefore ψi (q) =
ψi (p) = α.

We claim that q is recursively (�,S)-optimal. Suppose
not. Then, since put is recursively (�,S)-optimal but q =
put · 〈ut , . . . , ul〉 is not, there is some k ∈ {t + 1, . . . , l}
for which there exists a recursively (�,S)-optimal V -path
q ′ to uk such that �S(q ′) > �S(put · 〈ut , . . . , uk〉) =
ψi (〈ut , . . . , uk〉) ≥ �R(p) = α, where the first equal-
ity follows from statement 1. As �S(q ′) > α, it follows
from the induction hypothesis that there is a recursively
(�,R)-optimal V -path q ′′ to uk such that �R(q ′′) ≥
�S(q ′) > ψi (〈ut , . . . , uk〉) ≥ �R(〈u0, . . . , uk〉), contrary
to the recursive (�,R)-optimality of p = 〈u0, . . . , ul〉. This
contradiction justifies our claim. Thus we have shown that if
statements 2 and 3 hold when ξ > α, then the “if” part of
statement 2 holds whenever ξ = α. This completes the proof
of the lemma. ��

Deduction of Theorem 5.4 from Lemma 6.11

We claim that, for 1 ≤ i ≤ M and all points v ∈ V ,
there exists a recursively (�,R)-optimal V -path of nonzero
(�,R)-strength from Ri to v if and only if there exists
a recursively (�,S)-optimal V -path of nonzero (�,S)-
strength from Si to v. As this claim, Proposition 5.3, and
Theorem 3.10 imply OMOFS

i (�,S) = OMOFS
i (�,R) for

1 ≤ i ≤ M , it remains only to justify the claim.
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Define Pj = Core�,S
j for 1 ≤ j ≤ M . Then we see from

Definition 5.1, Theorem3.10, andCorollary 3.11 that the sets
P1, . . . , PM and R1, . . . , RM have the properties (i), (ii), and
(iii) of Lemma 6.11. Now let i ∈ {1, . . . , M}. Then it fol-
lows from statement 2 of the lemma that the claim is correct if
v ∈ V \Pi . Next, suppose v ∈ Pi , so that v ∈ OMOFS

i (�,S).
Then there exists a recursively (�,S)-optimal V -path of
nonzero (�,S)-strength from Si to v (by Theorem 3.10),
and so it follows from statement 3 of the lemma that there
also exists a recursively (�,R)-optimal V -path of nonzero
(�,R)-strength from Ri to v. Thus the claim is correct if
v ∈ Pi . We have now shown that the claim is correct for all
v ∈ V , and so the theorem is proved.

6.8 Justification of Algorithms 4 and 5

We now show that Algorithm 5 achieves what is promised
by its Result lines. This will be deduced from:

Proposition 6.12 The following statements are true for
every α ∈ (0, 1], v ∈ V , and i ∈ {1, . . . , M} at the end
of each iteration of the main loop of Algorithm 5:

1. If σ [v] = α, then there is a recursively (�,S)-optimal
V -path pv from

⋃
j S j to v satisfying �S(pv) ≥ α.

2. If σ [v] = α and χ i [v] = true, andH no longer contains
any point u such that σ [u] > α, then there is a recur-
sively (�,S)-optimal V -path piv from Si to v satisfying
�S(piv) = ψi (piv) = α.

3. If there is a recursively (�,S)-optimal V -path piv from Si
to v satisfying �S(piv) = ψi (piv) = α, and H no longer
contains any point u such that σ [u] ≥ α, then σ [v] = α

and χ i [v] = true.

As a first step in proving this proposition, we make some
simple observations regarding the algorithm:

(i) Immediately after execution of line 10, the value of
maxu∈H σ [u] is≤ the value of σ [w]. During execution
of lines 11 – 20, the value of maxu∈H σ [u] can change
only when line 15 or line 20 is executed, and when
maxu∈H σ [u] changes the new value of maxu∈H σ [u]
is also ≤ the value of σ [w].

(ii) It follows from (i) that the value ofmaxu∈H σ [u] imme-
diately after an iteration of the main loop is ≤ the
value of σ [w] at that iteration (which is just the value
of maxu∈H σ [u] immediately before the iteration in
question). Consequently, the value of σ [w] at the next
iteration (if H 
= ∅) is ≤ the value of σ [w] at this
iteration.

(iii) For each point v ∈ V , the value ofσ [v]never decreases
during execution of themain loop.Moreover, the value
of σ [v] cannot change at an iteration of the main loop

at which the point w that is removed from H satisfies
σ [w] ≤ σ [v].

(iv) For each point v ∈ V , once v has been removed
from H, the value of σ [v] will never change again and
σ [v] ≥ σ [w] ≥ maxu∈H σ [u] will always hold (even
if v is subsequently reinserted intoH by line 20 one or
more times). This follows from (i) and the second sen-
tences of (ii) and (iii), since σ [v] = σ [w] (as w = v)
when v is removed from H.

(v) For each point v ∈ V and i ∈ {1, . . . , M}, the value of
χ i [v] can change from true to false during execution
of the main loop only when line 16 is executed after
σ [v] has been increased by execution of line 15, and
we see from (iv) that this can never happen once v

has been removed from H, even if v is subsequently
reinserted into H.

(vi) At the end of each iteration of the main loop, for
each point v ∈ V such that σ [v] > 0 there is some
j ∈ {1, . . . , M} such that χ j [v] = true. (This follows
from (v), as one of the values χ1[v], . . . , χM [v] is set
to true by line 7 or line 17 whenever the value of σ [v]
changes.)

(vii) For each point v ∈ V , it follows from (v) that the
number of true values in the set {χ1[v], . . . , χM [v]}
will never decrease once v has been removed from H,
even if v is subsequently reinserted intoH. On the other
hand, each time v is reinserted into H the number of
true values in the set {χ1[v], . . . , χM [v]} must have
just been increased by 1 (by line 19).

(viii) It follows from (vi) and (vii) (and the fact that no point
x such that σ [x] = 0 is ever reinserted into H) that
each point v ∈ V can be removed and reinserted into
H at most M − 1 times, so that v can be removed at
most M times. Since just one of the |V | points of V is
removed fromH at each iteration of the main loop, the
loop iterates at most M |V | times before the algorithm
terminates.

We now establish two lemmas that will be used to prove
Proposition 6.12.

Lemma 6.13 Let α∗ be any element of
⋃

j ψ j [V × V ]\{0}.
Suppose further that whenever α > α∗ statement 3 of Propo-
sition 6.12 holds for every v ∈ V and i ∈ {1, . . . , M} at the
end of each iteration of the main loop (of Algorithm 5). Then,
for α = α∗, statements 1 and 2 of Proposition 6.12 hold for
every v ∈ V and i ∈ {1, . . . , M} at the end of each iteration
of the main loop.

Proof Let v ∈ V , and suppose we are at the end of an itera-
tion of the main loop. Suppose further that σ [v] = α∗ at this
time. By observation (vi) theremust be some j ∈ {1, . . . , M}
such that χ j [v] = true. Let χ i [v] = true. To prove the
lemma, what we need to show is that:
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A. There exists a recursively (�,S)-optimalV -path pv from⋃
j S j to v satisfying �S(pv) ≥ α∗.

B. If H no longer contains any point u such that σ [u] > α∗,
then there exists a recursively (�,S)-optimal V -path piv
from Si to v satisfying �S(piv) = ψi (piv) = α∗.

Let x ∈ V be any point such that σ [x] ≥ α∗ and χ i [x] =
true. We now define a V -path from Si to x that we will call
the χ i -chain for x . Roughly speaking, the χ i -chain for x is
the V -path from Si to x such that the χ i value of the k + 1st
point (for each k ≥ 0 which does not exceed the V -path’s
length) was last set to truewhenwwas equal to its kth point.
We will now give a more precise definition of this V -path.

If x ∈ Si , then we define the χ i -chain for x to be the
V -path 〈x〉. Now suppose x /∈ Si . Then either the current
iteration or some earlier iteration of the main loop must have
setχ i [x] to true by executing line 17 or line 19when the vari-
able x was equal to the point x and the variable iwas equal to
i .Wewriteω(x) to denote the pointw that was removed from
H by line 10 at the most recent iteration of the main loop that
setχ i [x] to true.Whenχ i [x]was set to true at that iteration,
χ i [ω(x)] = χ i [w] was true (since lines 13–20 execute only
when χ i [w] = true) and the value of σ [x] satisfied σ [x] =
σ ′ = min(σ [w], ψi (w, x)) = min(σ [ω(x)], ψi (ω(x), x))
(as we see by inspection of lines 13–19). Note that σ [x] can-
not have changed since that time—otherwise that iteration
would not be the most recent iteration that set χ i [x] to true,
since χ i [x] is set to false by line 16 each time the value of
σ [x] changes during execution of the main loop. By obser-
vations (iv) and (v), the values of σ [ω(x)] and χ i [ω(x)] also
cannot have changed since that time. Hence we still have that

χ i [ω(x)] = true and σ [x]
= min(σ [ω(x)], ψi (ω(x), x)) (6.30)

which implies σ [ω(x)] ≥ σ [x] ≥ α∗. Moreover, the
most recent iteration at which χ i [ω(x)] was set to true
must be an earlier iteration than the most recent iteration
at which χ i [x] was set to true. So, if ω(x) /∈ Si , then the
point ω(ω(x)) exists and is not equal to x or ω(x), and, if
ω(ω(x)) /∈ Si , then ω(ω(ω(x))) exists and is not equal to
x , ω(x), or ω(ω(x)), and so on. Thus, we can construct a
V -path 〈x, ω(x), ω(ω(x)), . . . 〉 from x to Si . We define the
χ i -chain for x to be the reverse of this V -path.

If the χ i -chain for x is 〈x0, . . . , xl〉, then xl = x , σ [x0] =
1 (because of initialization loop 2), and for 0 ≤ k ≤ l − 1
we have that σ [xk+1] = min(σ [xk], ψi (xk, xk+1)) by (6.30),
whence σ [xk] = ψi (〈x0, . . . , xk〉) for 0 ≤ k ≤ l. Hence, the
ψi -strength of the χ i -chain for x is σ [x], and if y is the last
point of a proper initial segment of the χ i -chain for x , then
the ψi -strength of that initial segment is σ [y] ≥ σ [x] ≥ α∗.

For any such y there is no recursively (�,S)-optimal V -
path py to y such that �S(py) > σ [y]: Indeed, if such a

recursively (�,S)-optimal V -path p j
y from S j to y exists and

a = �S(p j
y) > σ [y], then we see from observation (iv) that

H no longer contains any point u such that σ [u] ≥ a > σ [y]
(since y 
= x lies on the χ i -chain for x and must therefore
have already been removed from H at least once) and so
statement 3 does not hold when α = a > α∗, v = y, and
i = j (as σ [y] 
= a), a contradiction. Hence, every proper
initial segment of the χ i -chain for x is recursively (�,S)-
optimal, and so one of the following holds:

Case I: The χ i -chain for x (whose (�,S)-strength is σ [x])
is recursively (�,S)-optimal.

Case II: There is a recursively (�,S)-optimal V -path px to
x such that �S(px ) > σ [x].

We conclude from this that A holds, since σ [x] ≥ α∗ and we
can choose the point v of A as our point x .

Now suppose H no longer contains any point u such that
σ [u] > α∗. Then Case II is impossible: Indeed, if a > σ [x],
then a > α∗ and so H no longer contains any point u such
that σ [u] ≥ a, whence the existence of a recursively (�,S)-
optimal V -path p j

x from S j to x such that�S(p j
x ) = awould

imply that statement 3 does not hold when α = a, v = x ,
and i = j , a contradiction. So, Case I is the only possibility,
and we conclude that B holds (since we can choose the point
v of B as our point x , and the ψi -strength of the χ i -chain for
that point v is σ [v] = α∗). ��
Lemma 6.14 Let α∗ be any element of

⋃
j ψ j [V ×V ]\{0}.

Suppose further that whenever α > α∗ statement 1 of Propo-
sition 6.12 holds for every v ∈ V and i ∈ {1, . . . , M} at the
end of each iteration of the main loop (of Algorithm 5). Then,
whenα = α∗, statement 3 of Proposition 6.12 holds for every
v ∈ V and i ∈ {1, . . . , M} at the end of each iteration of the
main loop.

Proof Let v ∈ V and i ∈ {1, . . . , M}, and suppose there
exists a recursively (�,S)-optimal V -path piv from Si to v

satisfying �S(piv) = ψi (piv) = α∗. Suppose further that we
are at the end of an iteration of the main loop and that H no
longer contains any point u such that σ [u] ≥ α∗. To prove
the lemma, what we need to show is that the following is
currently true:

σ [v] = ψi (p
i
v) = α∗ and χ i [v] = true. (6.31)

Let piv = 〈v0, . . . , vl〉, where v0 ∈ Si and vl = v, and for
0 ≤ k ≤ l let pk denote the initial segment of piv that is of
length k (and ends at vk), so that pl = piv . Then we claim
that the following is currently true:

σ [vk] ≤ ψi (pk) for 0 ≤ k ≤ l. (6.32)

Indeed, if σ [vk] > ψi (pk), then (since statement 1 holds
when α = σ [vk] > ψi (pk) ≥ ψi (pl) = α∗) there
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would exist a recursively (�,S)-optimal V -path to vk whose
(�,S)-strength is at least σ [vk] > ψi (pk), and this would
contradict the recursive (�,S)-optimality of pl = piv . So,
our claim is correct. We will now use (6.32) to show, by
induction on k, that the following is currently true:

σ [vk] = ψi (pk) and χ i [vk] = true for 0 ≤ k ≤ l. (6.33)

This will prove the lemma, since (6.31) is just the case k = l
of (6.33).

Readily, (6.33) is currently true for k = 0, since v0 ∈ Si
and so σ [v0] = 1 = ψi (p0) and χ i [v0] = true (because
of initialization loop 2). Now we suppose as our induction
hypothesis that (6.33) is currently true for k = κ − 1 (where
κ ∈ {1, . . . , l}) and deduce that (6.33) is currently true for
k = κ .

The induction hypothesis is that currently

σ [vκ−1] = ψi (pκ−1) and χ i [vκ−1] = true (6.34)

which implies σ [vκ−1] ≥ ψi (piv) = α∗. So, since H no
longer contains any point u such that σ [u] ≥ α∗, we must
have that vκ−1 /∈ H. Let iteration I be the most recent iter-
ation of the main loop at which vκ−1 was the point w that
was removed from H, so that vκ−1 has never been in H since
its removal from H at iteration I . (Iteration I might be the
iteration we are currently at the end of.)

By observation (iv), σ [vκ−1] = ψi (pκ−1) was already
true at iteration I ; and (6.32) was also true at iteration I , by
observation (iii).

We claim that χ i [vκ−1] = true must have been true at
iteration I as well: Otherwise, since χ i [w] does not change
at the iteration that removes w from H, there would have to
have been a more recent iteration than I at which χ i [vκ−1]
was set to true; but this is impossible as it could not have
been done by line 17 (because, in that case, line 15 would
have changed σ [vκ−1], contrary to observation (iv)) and it
also could not have been done by line 19 (because, in that
case, vκ−1 would have been reinserted into H by line 20,
contrary to the definition of iteration I ). Thus, our claim is
valid.

During iteration I we had that w = vκ−1, and so, our
claim impliesχ i [w]was truewhen the inner foreach loop on
lines 12 – 20was executed at iteration I . So, at iteration I , the
body of that inner loop was executed once with x = vκ and
i = i . (This follows from the fact that (vκ−1, vκ) is a �-edge
because ψi (vκ−1, vκ) ≥ ψi (pκ) ≥ ψi (pl) = α∗ > 0.) At
that iteration of the inner foreach loop, line 13would have set
σ ′ to min(σ [w], ψi(w, x)) = min(σ [vκ−1], ψi (vκ−1, vκ)),
whence we see from the induction hypothesis (6.34) that the
following would have been true immediately afterwards (as
both σ [vκ−1] = ψi (pκ−1) and (6.32) were true at iteration
I ):

σ ′ = min(ψi (pκ−1), ψi (vκ−1, vκ))

= ψi (pκ) ≥ σ [vκ ] = σ [x].

Thus, σ ′ ≥ σ [x] and σ ′ = ψi (pk) ≥ α∗ > 0 at that time,
and so, one of the following must have been true too: Either
σ ′ > σ [x] = σ [vκ ], or σ ′ = σ [x] = σ [vκ ] and χ i [vκ ] =
χ i[x] = false, or σ ′ = σ [x] = σ [vκ ] and χ i [vκ ] = χ i[x] =
true. After executing line 13, the same iteration of the inner
foreach loop would have executed lines 15–17 in the first
case, lines 19–20 in the second case, and none of those lines
in the third case. So, it is readily confirmed that, in all three
cases, immediately after that iteration of the inner foreach
loop it must have been true that σ [vκ ] = σ [x] = σ ′ =
ψi (pκ) and χ i [vκ ] = χ i[x] = true.

Moreover, σ [vκ ] = ψi (pκ) and χ i [vκ ] = true would
have remained true thereafter, since σ [vκ ] cannot have
increased further (otherwise we would have that σ [vk] >

ψi (pk) now, a contradiction of (6.32)) and so χ i [vκ ] cannot
have changed to false (by observation (v)). Thus, we have
deduced that (6.33) is currently true for k = κ , and so our
inductive proof is complete. ��

Completion of the Proof of Proposition 6.12

For any V -path p from
⋃

j S j we have that �S(p) ∈⋃
j ψ j [V ×V ]. Moreover, it is readily confirmed that, every

time an element of the array σ [ ] is given a new value during
execution of Algorithm 5, that value lies in

⋃
j ψ j [V ×V ]∪

{0}. Thus, if α ∈ (0, 1] but α /∈ ⋃
j ψ j [V × V ], then each of

the statements 1, 2, and 3 is vacuously true. So, since the set
⋃

j ψ j [V × V ] is finite, if one or more of these statements
were false for some α ∈ (0, 1], v ∈ V , and i ∈ {1, . . . , M} at
the end of some iteration of the main loop, then there would
have to be a greatest value of α for which this happens. But
Lemmas 6.13 and 6.14 imply that such a value of α cannot
exist.

Completion of the Proof of Correctness of Algorithm 5

We first verify that the algorithm achieves what is promised
by its Result lines for every v ∈ V such that σ [v] = 0
when the algorithm terminates. For any such v, since H = ∅
when the algorithm terminates, we see from statement 3 of
Proposition 6.12 that there is no recursively (�,S)-optimal
V -path of nonzero (�,S)-strength to v, and so the (�,S)-
strength of every recursively (�,S)-optimal V -path to v is
σ [v] = 0, which is in accordance with the Result lines.
Moreover, if σ [v] = 0 when the algorithm terminates, then
it follows from observation (iii) that σ [v] = 0 has been true
at all times during execution of the algorithm. This in turn
implies that lines 6–7 have not been executed with s = v,
and that neither lines 15–17 nor line 19 have been executed at
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a time when x = v, so that no statement which assigns true
to one of the array elements {χ1[v], . . . , χM [v]} can ever
have been executed and therefore χ i [v] must still be false
for every i ∈ {1, . . . , M} when the algorithm terminates, as
promised by the Result lines.

For all other v in V we have that σ [v] ∈ (0, 1] when
the algorithm terminates. For all such v, since H = ∅ when
the algorithm terminates, we see from observation (vi) and
statements 2 and 3 of Proposition 6.12 that the values σ [v]
and χ1[v], . . . , χM [v]will then have the properties stated by
the Result lines.

Correctness of Algorithm 4

It is readily confirmed that the array σ [ ] which results from
executing Algorithm 4 is the same as the array σ [ ] which
results from executing Algorithm 5 in the case M = 1,
ψ1 = ψ , and S1 = S.16 Thus, the correctness of Algorithm 4
follows from the correctness of Algorithm 5.

7 Concluding Remarks

Fuzzy connectedness (FC) image segmentation, which finds
objects based on user-specified seed sets and fuzzy affin-
ity functions, is a computationally efficient segmentation
methodology that is commonly used in practical image
segmentation tasks (especially in biomedical imaging). An
example of a fast FC segmentation algorithm is our Algo-
rithm 5, which is reminiscent of Dijkstra’s shortest path
algorithm for weighted digraphs [24] but is necessarily less
simple because it allows the use of a different fuzzy affin-
ity function for each of the objects to be delineated. For any
fixed positive integer M , under mild assumptions (that are
usually satisfied in practical applications) which allow its
priority queue to be efficiently implemented as an array of
doubly linked lists, the algorithm will segment an image into
M objects in linear time with respect to the number of points
in the image.

16 Indeed, suppose M = 1, ψ1 = ψ , and S1 = S in Algorithm 5. As
M = 1, the effect of line 16 of Algorithm 5 is undone by line 17, so
we can omit line 16. Also, each i on lines 13–19 can be replaced by 1.
Moreover, for each point v ∈ V the value of σ [v] can become nonzero
only if line 6 or line 15 is executed when s or x is the point v, and
when that happens χ1[v] will be set to true by line 7 or line 17. So
line 12 can be omitted; this allows execution of lines 13 – 20 even if
χ1[w] = false, but in that case execution of those lines would have
no significant effect—for if χ1[w] = false we see from the previous
sentence that σ [w] is zero, so execution of line 13 would set σ ′ to zero
and then the conditions on lines 14 and 18 would not be satisfied. In
fact the condition on line 18 is never satisfied since χ1[x] = true if
σ [x] is nonzero, and so lines 18 – 20 can be omitted too. After these
simplifications there are no statements whose execution is conditional
on the contents of the array χ1[ ], and if we ignore the lines that only
involve χ1[ ] then the algorithm is equivalent to Algorithm 4.

Previous work on FC segmentation has developed along
two tracks: theMOFS and (I)RFC tracks. This paper presents
a unified mathematical theory of FC segmentations which
shows how MOFS and (I)RFC-track segmentations relate to
each other. We generalize (I)RFC segmentations to allow the
use of affinity functions that are not necessarily symmetric,
and provide new path-based mathematical characterizations
of IRFC and MOFS segmentations. One fact which emerges
quickly from our theory is that, when the same single affinity
function is used for MOFS as well as IRFC segmentation,
each IRFC object consists of those points of the correspond-
ing MOFS object which do not lie in any of the other MOFS
objects. It follows from this fact that anyMOFS segmentation
algorithm can also be used to compute IRFC segmentations.
When M > 2, a fast MOFS algorithm such as Algorithm 5
is likely to compute an M-object IRFC segmentation more
quickly than commonly used IRFC segmentation algorithms
that compute IRFC objects one at a time (except possibly
when the tie-zone of the segmentation is very large, in which
case we show that the IRFC segmentation must be unstable
with respect to tiny changes in affinity values).

Our analysis of MOFS segmentation (which, unlike
(I)RFC segmentation, allows each object to have its own
affinity function) is based on two new theoretical con-
cepts: recursively optimal paths and the core of an MOFS
object. Using these new concepts, we prove results that show
how MOFS segmentations are robust with respect to small
changes in seed sets (in the sense that the objects of these
segmentations usually stay the same when the seed sets are
slightly changed) even when different affinities are used for
different objects and the affinities are not necessarily sym-
metric. Our results include MOFS analogs of (I)RFC-track
robustness results that previously had no counterpart in the
MOFS-track literature.
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