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We construct a closed bounded subset X of R with no isolated points which admits 
a differentiable bijection f: X → X such that f′(x) = 0 for all x ∈ X. We also 
show that any such function admits a restriction f � P to an uncountable closed 
P ⊆ X forming a minimal dynamical system. The existence of such a map f seems
to contradict several well know results. The map f marks a limit beyond which 
Banach Fixed-Point Theorem cannot be generalized.
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1. Introduction

Recall, that a subset X ⊆ R is perfect, if it is closed and has no isolated points. A map f : X → X (or, 
more formally, a pair 〈X, f〉) is a minimal dynamical system, provided X is non-empty, f is surjective, and 
f [P ] �= P for any non-empty closed proper subset P � X.

The main contribution of this article is the construction and discussion of a perfect set X and a seemingly 
paradoxical (see Fact 2) map f: X → X, a bijection with f′ ≡ 0. More importantly, f satisfies certain local 
contraction properties but does not have a fixed point. Hence it indicates the boundaries beyond which local 
versions of Banach Fixed-Point Theorem cannot be generalized.

Theorem 1. There exists a non-empty compact perfect set X ⊂ R and a differentiable bijection f: X → X

such that f′(x) = 0 for every x ∈ X. Moreover,

(i) f is a minimal dynamical system;
(ii) f can be extended to a differentiable function F : R → R.

* Corresponding author.
E-mail address: jakub.jasinski@scranton.edu (J. Jasinski).
http://dx.doi.org/10.1016/j.jmaa.2015.09.076
0022-247X/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.jmaa.2015.09.076
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
mailto:jakub.jasinski@scranton.edu
http://dx.doi.org/10.1016/j.jmaa.2015.09.076
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2015.09.076&domain=pdf


1268 K.C. Ciesielski, J. Jasinski / J. Math. Anal. Appl. 434 (2016) 1267–1280
The identity f′ ≡ 0 readily implies that f is locally radially shrinking in a sense that

(LRS) for every x ∈ X there exists an εx > 0 such that |f(x) − f(y)| < |x − y| for any y ∈ X with 
0 < |x − y| < εx

and it seems impossible for a function with such property to map an infinite compact set X onto itself.
The (incorrect) intuition against the existence of the function f from Theorem 1 is also supported by the 

following three facts.

Fact 2. Assume that X ⊆ R and f : X → R.

(i) X � f [X] when X is a bounded closed interval and |f ′| ≤ λ < 1 on X since then, by the Mean Value 
Theorem, |f(y) − f(z)| ≤ λ|y − z| for every y, z ∈ X, so that the diameter of f [X] is strictly smaller 
than the diameter of X. If f′ ≡ 0, then f is constant.

(ii) X � f [X] when X has a positive finite Lebesgue measure m(X) and |f ′| ≤ λ < 1 on X, since then 
m(f [X]) ≤ λm(X), see e.g. [9].

(iii) X � f [X] when |f ′| < 1 on a non-empty perfect compact X and f can be extended to a continuously
differentiable function F : R → R. This has been proved by the authors in [5, lemma 3.3].

The nonexistence of an example such as one from Theorem 1 must have been suspected by Edrei, when 
in his 1952 paper [8] he made the following conjecture.

If 〈X, d〉 is a compact metric space and f : X → X is surjection such that for every x ∈ X there exists 
an εx > 0 such that d(f(x), f(y)) ≤ d(x, y) for every y ∈ X with d(x, y) < εx, then every point of X is a 
point of isometry of f (i.e., for every x ∈ X there exists an δx > 0 such that d(f(x), f(y)) = d(x, y) for 
every y ∈ X with d(x, y) < δx).

Clearly, Theorem 1 contradicts this conjecture.
In Section 2 we discuss the relation of the dynamical system 〈X, f〉 from Theorem 1 to the fixed-point 

theory of locally contractive functions. Section 3 contains the details of a rather delicate construction of 
〈X, f〉. In Section 4 we prove that any infinite dynamical system 〈X, f〉 on a compact space X and with 
surjective (LRS) map f must contain an uncountable minimal dynamical system. This illuminates the role 
of property (i) in Theorem 1.

2. The example, minimal dynamics, and Banach Fixed-Point Theorem

Let 〈X, d〉 be a metric space. A map f : X → X is contractive with a contraction constant λ ∈ [0, 1) if 
d(f(y), f(z)) ≤ λd(y, z) for every y, z ∈ X. An x ∈ X is a fixed point of f whenever f(x) = x.

A famous 1922 theorem of Banach [1], known as Banach Fixed-Point Theorem or the Contractive Mapping 
Principle, states that

Theorem 3. If X is a complete metric space and f : X → X is contractive, then f has a fixed point.

Let us recall some notation we need to discuss the dynamics of a continuous function f : X → X. For 
a number n ∈ ω = {0, 1, 2, . . .}, the n-th iteration f (n) of f is defined as f ◦ · · · ◦ f , the composition of n
instances of f . In particular, f (1) = f and f (0) is the identity function. The orbit of x ∈ X with respect 
to f is the set O(x) = {f (n)(x): n ∈ ω}. It is easy to see that f is a minimal dynamical system if, and 
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only if, the orbit O(x) of every x ∈ X is dense in X (i.e., for every c ∈ X and ε > 0, the open ball 
B(c, ε) = {y ∈ X: d(c, y) < ε} intersects O(x)).

Recall, that a simple application of Zorn’s Lemma1 gives the following 1912 theorem of Birkhoff [2].

Theorem 4. For every compact X and continuous f : X → X there exists a non-empty compact Z ⊆ X such 
that f � Z is a minimal dynamical system.

Of course, the set Z from Birkhoff’s Theorem 4 can be a singleton. Actually, it must be a singleton 
whenever f is a contraction, since otherwise, the diameter of f [Z] would be smaller than the diameter of Z.

Does it mean, that the only compact minimal dynamical systems to which Banach Fixed-Point Theorem 
is applicable are the systems with singleton spaces?

For the original Banach Fixed-Point Theorem, the answer is affirmative. However, in this note, we discuss 
its generalizations in which the assumption that f is contractive is relaxed to a “local contracting” con-
dition, see Theorems 6 and 7 below. In particular, under such relaxed assumptions, the interplay between 
the generalized Banach Fixed-Point Theorems and the minimal dynamical systems is considerably more 
intricate.

In the rest of this section, we will discuss two notions of locally contractive maps: one defined via standard 
topological localization technique, the other motivated by a calculus interpretation of contractive maps.

Locally contractive maps via standard localization technique We say that a map f : X → X is locally 
contractive, (LC), provided for every x ∈ X there exists an εx > 0 such that f � B(x, εx) is contractive 
with some constant λx ∈ [0, 1). For a compact space X, (LC) is equivalent to the following uniform local 
contraction property2

Fact 5. If X is compact, then f : X → X is locally contractive if, and only if,

(ULC) there exist a λ ∈ [0, 1) and an ε > 0 such that d(f(y), f(z)) ≤ λd(y, z) for every x ∈ X and 
y, z ∈ B(x, ε).

Recall that an x ∈ X is a periodic point of a function f : X → X provided f (n)(x) = x for some n > 0. 
In particular, x ∈ X is a fixed point of f if, and only if, it is a periodic point of f with period 1, that is, 
f (1)(x) = x. For (LC) functions, using Fact 5, Edelstein’s generalizations of Banach Fixed-Point Theorem 
[7, Remark 5.1], and [6, Theorem 5.2], we obtain the following:

Theorem 6. Assume that f : X → X is locally contractive and that X is compact. Then

(i) f has a periodic point;
(ii) f has a fixed point provided X is connected.

Notice, that the assumption of connectedness in (ii) is essential, as justified by the function f : X → X, 
with X = [−2, −1] ∪ [1, 2], defined as f(x) = −sgn(x) = − x

|x| for all x ∈ X. Clearly, it satisfies (LC) with 
λ = 0 and it has no fixed point, though points 1 and −1 are periodic.

1 Applied to the family Z of all closed non-empty Z ⊆ X such that f [Z] ⊆ Z.
2 Let {B(x, εx): x ∈ X0} ⊆ {B(x, εx): x ∈ X} be a finite subcover of X. Then the number λ = maxx∈X0 λx ∈ [0, 1) satisfies 

(LC), though with possibly smaller numbers εx.
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Fig. 1. f(0) = 0 and f(x) = (an)2 for any x ∈ [an, bn] and n = 1, 2, 3, . . . .

Locally contractive maps via calculus interpretation Differentiable contractive maps on R have a very nice 
characterization. Namely, if X ⊆ R is a closed interval and f : X → X is differentiable, then, by the Mean 
Value Theorem, f is contractive if, and only if,

(D) there exists a λ ∈ [0, 1) such that |f ′(x)| ≤ λ for every x ∈ X.

More generally, notice that if X ⊆ R has no isolated points, then the standard definition of the derivative 
makes sense for f : X → X and, if f is differentiable, then (D) is equivalent to the following property, which 
uses no notion of the derivative

(LRC) there is a λ ∈ [0, 1) such that for every x ∈ X there exists an εx > 0 with a property that 
d(f(x), f(z)) ≤ λd(x, z) for every z ∈ B(x, εx).

(LRC) was studied, for arbitrary metric spaces X, by several authors [11,12,14] and was referred to as the 
local radial contraction property of f .

Clearly (ULC) ⇒ (LRC). The fact that this implication cannot be reversed is justified by a function 
f : X → X depicted in Fig. 1, where X = {0} ∪

⋃∞
n=1[an, bn], 1 = b1 > a1 > b2 > a2 > · · · > limn an = 0, 

and f(an) − f(bn+1) = an− bn+1 for all n = 1, 2, 3, . . . . This f is (LRC) since f ′(x) = 0 for every x ∈ X. At 
the same time (LC) fails for f at x = 0, since any open U � 0 contains distinct a and b with f(a) −f(b) = a −b.

Now, returning to Banach Fixed-Point Theorem, the following generalization to (LRC) functions first 
appeared in a 1978 paper [12] of Hu and Kirk. However, its proof contained a gap, as it relied on a false 
proposition from [11]. The first complete proof of this theorem appeared in the 1982 paper [14] of Jungck.

Theorem 7. Assume that X is a complete metric space and that every two points of X can be connected by 
a path in X of finite length.3 If f : X → X satisfies (LRC), then f has a fixed point.

But what happens if, in Theorem 7, we replace all the assumptions on the space X with a simple 
requirement that X is compact? In other words,

is Theorem 6(i) true for (LRC) maps?

The negative answer is provided by the function f from Theorem 1; it shows the limits to the localized 
generalizations of Banach Fixed-Point Theorem. As f forms a minimal dynamical system, it is fair to say 

3 A length of a path p: [0, 1] → X is defined as a supremum over all numbers ∑n
i=1 d(p(ti), p(ti−1)), where 0 = t0 < t1 < · · · <

tn = 1. In particular, every convex subset X of a Banach space is path connected in the sense of Theorem 7.
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Table 1
Fixed/periodic point properties implied by various contractive properties of the function f : X → X, where X is compact and either 
arbitrary, or a convex subspace of a Banach space.

Convexity of X assumed? f :X → X has periodic/fixed point when f is
contractive locally contractive (LC) locally radially contractive (LRC)

Yes fixed point fixed point fixed point
Banach, Theorem 3 Edelstein, Theorem 6(ii) Hu & Kirk, Theorem 7

No fixed point periodic point neither
Banach, Theorem 3 Edelstein, Theorem 6(i) Ciesielski & Jasinski, Theorem 1

that f marks the spot where the minimal dynamical systems “meet” Banach Fixed-Point Theorem. See also 
Theorem 9.

The results discussed in this section are summarized in Table 1.

Remark 8. It is interesting to notice that, according to the property (6) proven below, function f from 
Theorem 1 is (LC) at all points but one. Of course, this single exception is of paramount importance, since, 
by Theorem 6(i), any everywhere (LC) function has periodic points.

3. Construction of the example from Theorem 1

The adding machine On the set 2ω of infinite 0 −1 sequences define the following “add one and carry” 
operation σ: 2ω → 2ω, often referred to as adding machine (see e.g. [17] or [4]) and representing odometer-like 
action: for s = 〈s0, s1, s2, . . .〉 ∈ 2ω, σ(s) = s + 〈1, 0, 0, . . .〉 or, more precisely,

σ(s) =
{
〈0, 0, 0, . . .〉 if si = 1 for all i < ω,

〈0, 0, . . . , 0, 1, sk+1, sk+2, . . .〉 if sk = 0 and si = 1 for all i < k.

In other words, if for k < ω we let wk ∈ 2k+1 to be wk = 〈1, . . . , 1, 0〉 (a sequence of k-many 1s followed by 
a single 0) and zk ∈ 2k+1 to be zk = 〈0, . . . , 0, 1〉 (a sequence of k-many 0s followed by a single 1), then

σ(1, 1, 1, . . .) = 〈0, 0, 0, . . .〉
σ(wk, sk+1, sk+2, . . .) = 〈zk, sk+1, sk+2, . . .〉.

It is well known and easy to see that σ is a continuous bijection and that

the orbit of every s ∈ 2ω is dense in 2ω.4 (1)

In particular, σ is a minimal dynamical system, see e.g. [16].
For s ∈ 2ω and ν < ω let Nν(s) =

∑
i<ν si2i, with N0(s) understood as 0. An important property of σ

is that for every s ∈ 2ω and k < ω

if s � (k + 1) = wk, then Nν(σ(s)) = Nν(s) + 1 for every ν > k. (2)

Let 1̄ = 〈1, 1, 1, . . .〉. Then, in particular,

Nν(s) < Nν(σ(s)) for every s ∈ 2ω with s �= 1̄ and any large enough ν < ω.

However, the inequality Nν(s) < Nν(σ(s)) is false for any ν < ω, when s = 1̄.

4 For τ ∈ 2n let [τ ] = {t ∈ 2ω: t � n = τ}. By induction on n < ω, we can easily see that O(s) ∩ [τ ] �= ∅ for any s ∈ 2ω.
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Fig. 2. f = h ◦ σ ◦ h−1.

Format of the example We will find a continuous injection h: 2ω → R such that X = h[2ω] and f = h ◦σ◦h−1

forms the example from Theorem 1, see Fig. 2. (Note that h−1 is a homeomorphism between 2ω and X.) 
Since f(n) = h ◦ σ(n) ◦ h−1 whenever n < ω, (1) implies that for any x ∈ X the orbit O(x) of f is dense in X.

Note that f = h ◦σ◦h−1 is, what is usually called, a topological conjugate of (or isomorphic to) the adding 
machine σ. In particular, the mapping h can be considered as a generator of a metric ρ on 2ω defined as 
ρ(s, t) = |h(s) − h(t)|.

Format of the function h The map h: 2ω → R will be defined via formula

h(s) =
∑
n<ω

sncs�n for every s ∈ 2ω (3)

for appropriately chosen numbers cτ ∈ R for τ ∈ 2<ω. To ensure that f′(x) = 0 for x = h(s) with s ∈ 2ω, it 
needs to be shown that for every y = h(t) with t ∈ 2ω and t �= s, the numbers

Δst = |f(x) − f(y)|
|x− y| = |h(σ(s)) − h(σ(t))|

|h(s) − h(t)|

converge to 0 when 
 = min{i < ω: si �= ti} diverges to infinity.
For s �= 1̄, that is, of the form 〈wk, sk+1, sk+2, . . .〉, the choice of cτ ’s will guarantee this convergence by 

ensuring, for large enough 
, and the u ∈ {s, t} with u� = 1,

|h(σ(s)) − h(σ(t))| ≤ 3
2
∑
n≥�

un|cσ(u)�n|

|h(s) − h(t)| ≥ 1
2
∑
n≥�

un|cu�n| > 0 (4)

as well as the existence of a constant Ek > 0 depending only on k, and a sequence 〈βn : n < ω〉 with 
β−1
n ↘ 0 for which

|cσ(u)�n|
|cu�n|

= Ekβ
−1
n ≤ Ekβ

−1
� for every n ≥ 
. (5)

This guarantees the desired convergence, as then

Δst = |h(σ(s)) − h(σ(t))|
|h(s) − h(t)| ≤

3
2
∑

n≥� un|cσ(u)�n|
1 ∑ u |c |

≤ 3Ekβ
−1
� →�→∞ 0. (6)
2 n≥� n u�n
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The case s = 1̄ requires essentially different argument, based on the following two properties, satisfied 
for 
 > 0:

|h(σ(s)) − h(σ(t))| ≤ 1

 + 1

1



(7)

and

|h(s) − h(t)| ≥
∑
n≥�

|cs�n| ≥
∑
n≥�

1
(n + 2)1/2

1
n + 2

1
n + 1 . (8)

Since 
∑

n≥�
1

(n+2)1/2
1

n+2
1

n+1 ≥
∑

n≥�
1

(n+2)2.5 ≥
∫∞
�+2 x

−2.5 dx = 1
1.5

1
(�+2)1.5 , (7) and (8) imply the required 

convergence:

Δst = |h(σ(s)) − h(σ(t))|
|h(s) − h(t)| ≤

1
�(�+1)

1
1.5

1
(�+2)1.5

= 1.5(
 + 2)1.5


(
 + 1) →�→∞ 0.

Definition of the coefficients cs�n from (3) We can see by now that a lot is expected of the coefficients cτ . 
So, their definition is quite delicate and it will not be fully completed until we reach equation (14).

To ensure satisfaction of the properties (4)–(8), for every s ∈ 2ω and n < ω we let βn = ln(n + 3) > 1, 
and define

cs�n = as�nβ−bs�n
n ds�n, (9)

where ds�n > 0 is defined below in (14), as�0 = −1, bs�0 = 0, and, for n > 0,

as�n =
{
−1 when s � n = 〈1, 1, . . . , 1〉,
1 otherwise

and bs�n = Nνn
(s) =

∑
i<νn

si2i,

where νn = max
{
m < ω: (βn)2m−1 <

√
n + 2

}
. Notice that the definition of νn gives (βn)bs�n ≤ (βn)2νn−1 <√

n + 2, that is, that

β−bs�n
n >

1
(n + 2)1/2

for every s ∈ 2ω and n < ω. (10)

Reduction of property (8) The sole purpose of the coefficients as�n is to facilitate the following argument 
for the first inequality from (8), in case s = 1̄, where the equations hold since s � n = t � n for all n < 
, 
while as�n = −1 and at�n = 1 for all n ≥ 


|h(s) − h(t)| =

∣∣∣∣∣∣
∑
n≥�

sncs�n −
∑
n≥�

tnct�n

∣∣∣∣∣∣ =

∣∣∣∣∣∣−
∑
n≥�

|cs�n| −
∑
n≥�

tn|ct�n|

∣∣∣∣∣∣ ≥
∑
n≥�

|cs�n|.

Also, by (10), for every n > 0 we have |cs�n| = β
−bs�n
n ds�n ≥ 1

(n+2)1/2 ds�n. Thus, the second inequality from 
(8) is ensured by the following requirement:

ds�n = 1
n + 2

1
n + 1 for every n < ω and s = 1̄. (11)
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Fig. 3. Iτ , Iτˆ0, and Iτˆ1 for τ ∈ 2n.

Reduction of property (5) For s = 〈wk, sk+1, sk+2, . . .〉 and large enough 
, the property (5) holds, as long 
as we ensure that

dσ(s)�n = Ekds�n for every s = 〈wk, sk+1, sk+2, . . .〉 and n > k. (12)

Indeed, since (βn)2
k+1−1

√
n+2 = (ln(n+3))2

k+1−1
√
n+2 →n→∞ 0, there exists an 
 > k such that (βn)2k+1−1 ≤

√
n + 2

for any n ≥ 
. This choice of 
 ensures (5) as then, by the definition of numbers νn, for every n ≥ 
 we have 
k + 1 ≤ νn. So, by (2), Nνn

(σ(u)) = Nνn
(u) + 1 and

|cσ(u)�n|
|cu�n|

=
β
−Nνn (σ(u))
n dσ(u)�n

β
−Nνn (u)
n du�n

= β−1
n

dσ(u)�n
du�n

= Ekβ
−1
n .

To finish the construction, it is enough to define the coefficients dt�n that ensure: the properties (11) and 
(12), the fact that h is a continuous injection, and the estimates (4) and (7).

Definition of the coefficients ds�n For every n < ω let

ξn = 1
2

1
(n + 4)1/2

.

Then, by (10), for every s ∈ 2ω, 
 < ω, and 0 < m < ω,

ξ� <
1
2β

−bs��
� and ξm < β

−bs�(m−1)
m−1 . (13)

Mimicking the classical construction of Cantor’s ternary set, we define, for τ ∈ 2<ω, the intervals Iτ =
[pτ , qτ ] in the following way, see Fig. 3. For τ of length 0 (i.e., τ = 〈〉), we put Iτ = [pτ , qτ ] = [0, 1]. If, for some 
τ ∈ 2n, the interval Iτ is already defined and τ î ∈ 2n+1 is an extension of τ by a term i ∈ {0, 1}, then Iτˆ1 is 
the terminal n+1

n+2 -th part of Iτ , while Iτˆ0 the initial ξn
n+2 -th part of Iτ . More specifically, if Lτ = qτ−pτ is the 

length of Iτ , then Iτˆ0 = [pτˆ0, qτˆ0] = [pτ , pτ + ξn
n+2Lτ ], Iτˆ1 = [pτˆ1, qτˆ1] = [pτ + 1

n+2Lτ , qτ ], Lτˆ0 = ξn
n+2Lτ , 

and Lτˆ1 = n+1
n+2Lτ . We define

ds�n = 1
n + 2Ls�n. (14)

Observe that, for any τ ∈ 2n and i ∈ {0, 1}, we have Lτˆ0 = ξn
n+2Lτ < n+1

n+2Lτ = Lτˆ1. So, Lτˆi ≤ Lτˆ1 =
n+1
n+2Lτ and, by induction on n < ω,

Ls�n ≤ L1̄�n = 1 for every s ∈ 2ω and n < ω. (15)

n + 1
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Also, an easy inductive argument shows that

∑
n<�

snds�n = ps�� ∈ Is�� for every s ∈ 2ω and 
 < ω.

In particular, 
⋂

n<ω Is�n =
{∑

n<ω snds�n
}

for every s ∈ 2ω. Moreover

∑
n≥�

snds�n ≤ Ls�� for every s ∈ 2ω and 
 < ω (16)

as ps�� +
∑

n≥� snds�n =
∑

n<ω snds�n ∈ Is�� = [ps��, ps�� + Ls��]. This will be of special importance in the 
case when s� = 0, since then we have 

∑
n≥� snds�n =

∑
n≥�+1 snds�n ≤ Ls�(�+1) = L(s��)ˆ0 = ξ�ds��, that 

is,

∑
n>�

snds�n =
∑
n≥�

snds�n ≤ ξ�ds�� for every s ∈ 2ω and 
 < ω with s� = 0. (17)

Proof of (11) and (12). The property (11) follows immediately from (14) and (15).
To see (12) notice that for every τ, η ∈ 2m and i ∈ {0, 1} we have Lτˆi

Lηˆi
= Lτ

Lη
. So, an easy induction shows 

that for every k < n < ω and τ, η ∈ 2n we have

Lτ�(k+1)

Lη�(k+1)
= Lτ

Lη
provided τi = ηi for all i with k < i < n.

Since, in (12), si = σ(s)i for all i with k < i < n, by (14) and the above equation we have dσ(s)�n
ds�n

= Lσ(s)�n
Ls�n

=
Lσ(s)�(k+1)
Ls�(k+1)

= Lzk

Lwk
. Thus, (12) holds with Ek = Lzk

Lwk
.

Proof of the estimate (7). Here s = 1̄. Then, the use of (17), with 
 − 1 in place of 
 and σ(t) in place of s, 
and (15) gives us the required estimate:

|h(σ(s)) − h(σ(t))| =
∑
n≥�

σ(t)ncσ(t)�n =
∑

n≥�−1

σ(t)nβ
−bσ(t)�n
n dσ(t)�n

≤
∑

n≥�−1

σ(t)ndσ(t)�n ≤ dσ(t)�(�−1)ξ�−1

≤ dσ(t)�(�−1) = 1

 + 1Lσ(t)�(�−1) ≤

1

 + 1

1


.

Proof of the estimates (4). Here s = 〈wk, sk+1, sk+2, . . .〉 and σ(s) = 〈zk, sk+1, sk+2, . . .〉 for some k < ω. 
Also t ∈ 2ω does not equal s and 
 = min{i < ω: si �= ti} > 0. By symmetry of expressions |h(s) − h(t)| and 
|h(σ(s)) − h(σ(t))| we can assume, without loss of generality, that s� = 1 and t� = 0. So, the estimates will 
be proved for u = s.

Now, as t� = 0, by (17) and (13), we obtain

∑
n>�

tnβ
−bt�n
n dt�n ≤

∑
n>�

tndt�n ≤ ξ�dt�� = ξ�ds�� ≤
1
2β

−bs��
� ds��. (18)

Hence, we get the second estimate of (4):



1276 K.C. Ciesielski, J. Jasinski / J. Math. Anal. Appl. 434 (2016) 1267–1280
h(s) − h(t) =
∑
n≥�

snβ
−bs�n
n ds�n −

∑
n>�

tnβ
−bt�n
n dt�n

≥
∑
n≥�

snβ
−bs�n
n ds�n − 1

2β
−bs��
� ds��

≥
∑
n≥�

snβ
−bs�n
n ds�n − 1

2
∑
n≥�

snβ
−bs�n
n ds�n

= 1
2
∑
n≥�

snβ
−bs�n
n ds�n = 1

2
∑
n≥�

sn|cs�n| > 0.

The first estimate of (4) is obtained as follows:

|h(σ(s)) − h(σ(t))| =

∣∣∣∣∣∣
∑
n≥�

sncσ(s)�n −
∑
n>�

tncσ(t)�n

∣∣∣∣∣∣ (19)

≤
∑
n≥�

sn|cσ(s)�n| +
∑
n>�

tn|cσ(t)�n|

=
∑
n≥�

snβ
−bσ(s)�n
n dσ(s)�n +

∑
n>�

tnβ
−bσ(t)�n
n dσ(t)�n

≤
∑
n≥�

snβ
−bσ(s)�n
n dσ(s)�n + 1

2β
−bσ(s)��
� dσ(s)�� (20)

≤
∑
n≥�

snβ
−bσ(s)�n
n dσ(s)�n + 1

2
∑
n≥�

snβ
−bσ(s)�n
n dσ(s)�n

= 3
2
∑
n≥�

sn|cσ(s)�n|,

where (19) is ensured by the fact that σ(s)n = sn and σ(t)n = tn for every n ≥ 
 and by the equation 
σ(s) � 
 = σ(t) � 
, while (20) follows from (18) applied to the pair σ(s)� and σ(t)�.

Proof of continuity of h. By (9), (16), and (15), for any s ∈ 2ω and 
 < ω we have 
∣∣∣∑n≥� sncs�n

∣∣∣ ≤∑
n≥� sn|cs�n| ≤

∑
n≥� snds�n ≤ Ls�� ≤ 1

�+1 . Therefore, for distinct s, t ∈ 2ω and 
 = min{i < ω: si �= ti}, 
|h(s) −h(t)| =

∣∣∣∑n≥� sncs�n −
∑

n≥� tnct�n
∣∣∣ ≤

∣∣∣∑n≥� sncs�n
∣∣∣+

∣∣∣∑n≥� tnct�n
∣∣∣ ≤ 2

�+1 , that is, h is continuous.

Proof of injectivity of h. To see that the function h is one-to-one, fix distinct s, t ∈ 2ω and let 
 = min{i <
ω: si �= ti}. By symmetry, we can assume that s� = 1 and t� = 0. Then, we have

h(s) − h(t) =
∑
n≥�

sncs�n −
∑
n≥�

tnct�n =
∑
n≥�

sncs�n −
∑
n>�

tnct�n.

We need to show that h(s) − h(t) �= 0. For this we will consider the following cases.

Case 1: s equals 1̄ = 〈1, 1, 1, . . .〉. Then as�n = −1 for all n < ω and at�n = 1 for all n > 
. Hence

h(s) − h(t) = −
∑

snβ
−bs�n
n ds�n −

∑
tnβ

−bt�n
n dt�n < 0.
n≥� n>�
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Case 2: there exists an i < 
 such that ti = si = 0. Then, as�n = at�n = 1 for all n ≥ 
. So, using the fact 
that β−bt�n

n ≤ 1 for all n < ω and the equations s� = 1 and s � 
 = t � 
, and, afterwards, applying (17) to t, 
followed by (13), we get

h(s) − h(t) =
∑
n≥�

snβ
−bs�n
n ds�n −

∑
n>�

tnβ
−bt�n
n dt�n

≥ s�β
−bs��
� ds�� −

∑
n>�

tndt�n

≥ β−bt��dt�� − ξ�dt�� = dt��(β
−bt��
� − ξ�) > 0.

Case 3: neither Case 1 nor Case 2 hold. Let m = min{i < ω: si = 0}. Then m > 
, sm−1 = 1, and sm = 0. 
Hence, as as�n = −1 for n ≤ m and as�n = 1 for n > m, using (17) we get

−
∑
n≥�

sncs�n =
∑

�≤n≤ m

snβ
−bs�n
n ds�n −

∑
n>m

snβ
−bs�n
n ds�n

≥ sm−1β
−bs�(m−1)
m−1 ds�(m−1) −

∑
n>m

snds�n

= β
−bs�(m−1)
m−1 ds�(m−1) −

∑
n≥m

snds�n

≥ β
−bs�(m−1)
m−1 ds�(m−1) − ξmds�m.

Now, ds�m = 1
m+2Ls�m = 1

m+2L(s�(m−1))ˆ1 = 1
m+2

m
m+1Ls�(m−1) = m

m+2 ds�(m−1) so that ds�(m−1) =
m+2
m ds�m ≥ ds�m. Thus, by (13),

−
∑
n≥�

sncs�n ≥ β
−bs�(m−1)
m−1 ds�(m−1) − ξmds�m

≥ β
−bs�(m−1)
m−1 ds�m − ξmds�m = ds�m

(
β
−bs�(m−1)
m−1 − ξm

)
> 0.

So, h(t) − h(s) =
∑

n>� tnct�n −
∑

n≥� sncs�n ≥ − 
∑

n≥� sncs�n > 0.

Proof of (i) and (ii) of Theorem 1. Item (i) was addressed earlier, see (1) and the discussion in Section 4
below.

Item (ii) follows from a theorem of Jarník [13] that every differentiable function f from a compact perfect 
subset of R into R can be extended to a differentiable function F : R → R. (More on Jarník’s theorem can 
be found in [15]. The theorem has also been independently proved in [18, theorem 4.5].)

This concludes the proof of Theorem 1.

4. Must the example be based on a minimal dynamics?

Recall that for a metric space X, a function f : X → X is locally radially shrinking if

(LRS) for every x ∈ X there exists an εx > 0 such that d(f(x), f(y)) < d(x, y) for any y ∈ B(x, εx), y �= x.

The function f from Theorem 1(i), constructed in Section 3, is (LRS) and forms a minimal dynamical system. 
Our goal here is to prove, that this is not a coincidence, since any surjective (LRS) self map of an infinite 
compact space X contains a minimal dynamics of an uncountable Y ⊂ X:
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Theorem 9. Let X be an infinite compact metric space and assume that a map f : X → X is an (LRS) 
surjection. Then there exists a perfect subset Y ⊆ X such that f � Y is a minimal dynamical system.

The proof of this theorem is based on several lemmas. We will also use the following standard notation: 
for δ > 0 and non-empty A ⊆ X we define B(A, δ) =

⋃
a∈A B(a, δ).

Lemma 10. If X0 ⊆ X, f : X0 → X satisfies (LRS), and finite A ⊆ X0 is such that f [A] ⊆ A, then exists a 
δ > 0 such that f [X0 ∩B(A, ε)] ⊆ B(A, ε) for every ε ∈ (0, δ].

Proof. For every a ∈ A let δa > 0 be such that d(f(x), f(a)) ≤ d(x, a) whenever x ∈ X0 ∩ B(a, δa). Then 
δ = mina∈A δa > 0 is as needed.

Indeed, fix an ε ∈ (0, δ] and choose an x ∈ X0 ∩B(A, ε). To see that f(x) ∈ B(A, ε) pick an a ∈ A with 
x ∈ B(a, ε). Then, since f(a) ∈ A, we have d(f(x), A) ≤ d(f(x), f(a)) ≤ d(x, a) < ε so that f(x) ∈ B(A, ε), 
as needed. �

Our next lemma states that the existence of a surjection with (LRS) property implies that the space X
must be uncountable. In the proof, we use the notion of Cantor–Bendixon rank, defined as follows. For a 
metric space X we let (X)′ to be the set of all accumulation points of X. For the ordinal numbers α, λ < ω1, 
where λ is a limit ordinal, we define

X(0) = X, X(α+1) = (X(α))′, and X(λ) =
⋂

α<λ X(α).

An easy inductive argument shows that for every α < ω1, if A ⊆ B ⊆ X, then A(α) ⊆ B(α).
We define the Cantor–Bendixon rank of X, denoted |X|CB, to be the least ordinal number α < ω1 such 

that X(α+1) = X(α). Recall, that if X is compact, then α = |X|CB is either zero or a successor ordinal, that 
is, of the form α = β + 1. Moreover, if X is also countable, then α > 0 and X(α) = ∅.

Lemma 11. If X0 ⊆ X is infinite compact and f : X0 → X is a surjection with (LRS) property, then X0 is 
uncountable.

Proof. Assume, towards a contradiction, that there exists a function f as in the lemma with a countable 
infinite X0. Let X0 be such an example with the smallest possible Cantor–Bendixon rank α = |X0|CB. 
Then, since X0 is compact and infinite, α = β + 1 for some ordinal β ≥ 1. Clearly X ⊆ f [X0] implies 
that X(β) ⊆ f [X0](β). Also, an easy inductive argument shows that f [X0](β) ⊆ f [(X0)(β)]. (See e.g. (Iβ) 
in [5, lemma 4.3].) It follows that X(β) ⊆ f [(X0)(β)]. Since, (X0)(β) ⊆ X(β) and, by compactness of X0, 
(X0)(β) is finite, the inclusions (X0)(β) ⊆ X(β) ⊆ f [(X0)(β)] imply the equality (X0)(β) = f [(X0)(β)]. The 
set A = (X0)(β) satisfies the assumptions of Lemma 10. So, let δ > 0 be as in this lemma.

If β = 1, put B = B(A, δ). Then f [X0 ∩ B] ⊆ B. We need to show that the inclusion is proper. 
Indeed, X0 ∩ B is closed, since it contains A = (B)′. So, there exists an x ∈ X0 ∩ B of maximal distance 
η = d(x, A) to A. Notice, that η > 0, as X0 ∩ B � A. We claim that x �= f(z) for every z ∈ B. Indeed, 
it is obvious when z ∈ A, since then d(f(z), A) = 0 < η = d(x, A); otherwise, there is an a ∈ A with 
0 < d(z, a) = d(z, A) ≤ η < δ and so, by (LRS), d(f(z), A) ≤ d(f(z), f(a)) < d(z, a) ≤ η = d(x, A), once 
again giving x �= f(z). So, we proved that f [B] � B.

The contradiction is obtained by noticing that, f being surjective, f [X0 \B] must contain X \ f [X0 ∩B], 
which is impossible, since finite a set X0 \B cannot be mapped onto its proper superset X \ f [X0 ∩B].

If β > 1, then, for some ε ∈ (0, δ], the set X1 = X0 \ B(A, ε) is infinite and contains a limit point. 
Moreover, X1 ⊆ f [X1] and X1 has the Cantor–Bendixon rank less than α, contradicting the choice of α. �
Lemma 12. If X is compact and f : X → X satisfies (LRS), then, for every positive m < ω, the set 
Fm = {x ∈ P : f (m)(x) = x} is finite.
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Proof. An easy induction shows that f (m) also satisfies (LRS). If Fm was infinite, then, being compact, 
it would contain an accumulation point, say x ∈ Fm. But then, f (m) would not be shrinking in any 
neighborhood of x, a contradiction. �

In what follows, we will use notation Fm to the sets from Lemma 12.

Lemma 13. If X is compact uncountable and f : X → X is a surjective map satisfying (LRS), then there 
exists an open U ⊆ X containing 

⋃∞
m=1 Fm such that X \ U is uncountable and X \ U ⊆ f [X \ U ].

Proof. Let μ be a Borel probability measure on X vanishing on points (e.g., defined as an appropriate 
product measure on a copy of a Cantor set in X). Clearly the orbit O(x) of each x ∈ Fm is finite. So, by 
Lemma 12, the set Am =

⋃
x∈Fm

O(x) is finite and, clearly, f [Am] ⊆ Am.
By Lemma 10 applied to A = Am, for every positive m < ω there is a δm > 0 such that f [B(Am, ε)] ⊆

B(Am, ε) for every ε ∈ (0, δm]. Choose εm ∈ (0, δm] small enough so that μ(B(Am, εm)) ≤ 2−(m+2). Then 
U =

⋃∞
m=1 B(Am, εm) is as desired, since μ(U) ≤ 1/2 < μ(X) and f [U ] ⊆ U . �

Proof of Theorem 9. Let f and X be as in Theorem 9. Then, by Lemma 11, X is uncountable. Hence, we 
can use Lemma 13. Let U be as in Lemma 13 and put T = X \ U . Then,

(∗) T ⊆ f [T ].

A simple application of Zorn’s Lemma, following an idea from Birkhoff [2], implies that there exists a 
minimal non-empty compact Y ⊆ T satisfying (∗). Notice, that this minimality of Y implies Y = f [Y ], as 
otherwise Y ∩ f−1(Y ) would be a proper closed subset of Y satisfying (∗).

To finish the argument, notice that Y is infinite, since otherwise it would be contained in 
⋃∞

m=1 Fm ⊆ U , 
which is disjoint with Y . Thus, by Lemma 11, Y is uncountable and, being minimal, it must be perfect. (It 
cannot have isolated points, since the orbit of any point of Y must be dense in Y .) �

Finally, notice that the careful choice of a metric on a copy X of the Cantor set 2ω is essential to the 
example from Theorem 1.

Remark 14. If d is the standard metric on 2ω defined, for distinct s, t ∈ 2ω as d(s, t) = 2− min{n<ω:sn �=tn}, 
then 2ω � f [2ω] for every (LRS) map f on 〈2ω, d〉. Indeed, 〈2ω, d〉 is ultrametric (i.e., satisfies d(s, u) ≤
max{d(s, t), d(t, u)} for every s, t, u ∈ 2ω) while F. George has recently proved [10] that X � f [X] for any 
(LC) map f on a compact ultrametric space 〈X, d〉. However, George’s proof works for the (LRS) functions 
as well, because for any Y ⊆ X, and a ∈ Y the diameter of Y equals sup{d(a, y): y ∈ Y }, see [19, p. 49].

Notice that the perfect subsets X of R that admit a function f as in Theorem 1 are rare, in a sense that 
they are of first category in the space K of non-empty compact subsets of R furnished with the Hausdorff 
metric. This has been proved by Bruckner and Steele in [3].

The fact that the set X is compact is crucial. The examples of this kind for non-compact complete 
metric spaces are considerably easier to come by. In particular, Hu and Kirk [12] give an example of a 
complete metric ρ on R, inducing the standard topology, such that the map f(x) = x + 1 has derivative 
zero everywhere in a sense that limy→x

ρ(f(y),f(x))
ρ(y,x) = 0 for all x ∈ R.
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