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Abstract

Assume that you have developed a good set of tools allowing you to
decide which real functions of one real variable, f : R → R, are continu-
ous. (Q): How can such a toolbox be utilized to decide on the continuity
of the functions g : Rn → R of n real variables? This is one of the ques-
tions which must be faced by any student taking multivariable calculus.
Of course, such a student is following the footsteps of many generations
of mathematicians, which were, and still are, struggling with the same
general question. The aim of this article is to present the history and
the current research related to this subject in a real analysis perspective,
rather than in a more general, topological perspective.

In addition to surveying the results published so far, this exposition
includes several original results (Theorems 1, 12 and 13), as well as some
new simplified versions of the (sketches of the) proofs of older results.
We also recall several intriguing open problems.
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Figure 1: Theorem X in Cours d’analyse

1 Prehistory: Separate vs Joint Continuity

1.1 A Tale of Cauchy: Was his theorem false?

A function f of n > 1 variables x1, . . . , xn is said to be separately continuous
provided f is continuous with respect to each variable separately. That is,
for every fixed n-tuple 〈x1, . . . , xn〉 from the domain of f and for every i ∈
{1, . . . , n}, the mapping t 7→ f(x1, . . . , xi−1, t, xi+1, . . . , xn) is continuous. In
addition, we say that f (of more than one variable) is jointly continuous if it
is continuous in the usual (topological) sense.

Augustin-Louis Cauchy (1789–1857)1 in his 1821 mathematical analysis
textbook Cours d’analyse included the following result [9, pp. 38–39], see
Figure 1. (Compare also [6, p. 29].)

Theorem X: A separately continuous function of real variables is continuous.

This is a very appealing result. It has, however, one major flaw: the following
simple function

g(x, y) =

{
xy

x2+y2 for 〈x, y〉 6= 〈0, 0〉
0 for 〈x, y〉 = 〈0, 0〉

(1)

1We include the pictures and birth-to-death years of the main contributors to this story
who are already deceased.
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included in most modern texts of multivariable calculus, constitutes a coun-
terexample for Theorem X! Thus, the conclusion seems inevitable:

Theorem X is false! Cauchy made a mistake!

Indeed, the claims of the falsehood of Theorem X can be found in [29, p. 952],
[42, p. 115], and in the commented translation [6, pp. 29] of Cours d’analyse,
while the papers [27] and [11, 12] talk openly on Cauchy’s mistake/error.
(Yes, the first author of this article is the same as for [11, 12].) However, as
unbelievable as it may sound,

both Theorem X and its “counterexample” (1) are correct!

This discrepancy is caused by the fact that Cauchy’s text is written for the no-
tion of (the ordered field of) real numbers different from the one we commonly
use today:

Cauchy’s set of real numbers, denoted here by R, is non-Archimedean.

That is, it contains the infinitesimal numbers (i.e., positive but less than 1/n
for all n ∈ N = {1, 2, 3, . . .}), while we take for granted that the (standard) set
R of real numbers is Archimedean, or, in other words, contains no infinites-
imals. (See, e.g., [5] and [19] for more on the subject.) The early calculus,
including the work of Newton and Leibnitz, was all done with the infinitesi-
mal real numbers (i.e., some version on R). In particular, Cauchy defines a
function f(x) to be continuous at x provided

(C) an infinitely small increment in the variable always produces an infinitely
small increment in the function itself (i.e., f(x+ dx)− f(x) is infinites-
imal, provided so is dx).

Then, his proof of Theorem X (for n = 2) is by noticing that, if dx and dy are
infinitesimal, then so is the quantity

|f(x+ dx, y + dy)− f(x, y)| ≤ |f(x+ dx, y + dy)− f(x+ dx, y)|
+ |f(x+ dx, y)− f(x, y)|,

as a sum of two infinitesimals is infinitesimal—a perfectly legitimate argument.

How does this argument relate to the example (1)? Basically, g given by (1),
when considered on R, is well defined but not separately continuous. The easi-
est way to see this, is to take as both infinitesimals dx and dy a number [1/i]i∈N
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A. Cauchy A. Robinson

given by a sequence 〈1/i〉i∈N, in the sense of the nonstandard analysis [43] of
Abraham Robinson (1918–1974), who incorporated infinitesimal and infinite
numbers in a rigorous way into the mathematics based on R.2 The number
[1/i]i∈N ∈ R is infinitesimal, since any standard number r ∈ R is, in Robinson’s
nonstandard analysis, identified with a constant sequence r̄ = [r]i∈N and, for
every r > 0, 0̄ < [1/i]i∈N < r̄ since 0 < 1/i < r for all but finitely many i. Now,
for dx = [1/i]i∈N, the mapping t 7→ g(dx, t) is not continuous (in Cauchy’s

sense (C)) at t = 0̄, since g(dx, dy) − g(dx, 0̄) =
[

(1/i)(1/i)
(1/i)2+(1/i)2

]
i∈N

= [1/2]i∈N

is not infinitesimal.
Cleave [16, p. 276], when discussing the discrepancy between Theorem X

and example (1), writes that “Cauchy assumed that the neighborhood of a
point contained all points infinitesimally close to it” and so, there is nothing
wrong with Theorem X (in Cauchy’s formalism). However, Cleave does not
address an issue of whether Theorem X can be interpreted in our standard
analysis of the Archimedean set R of real numbers.

Felscher [21, p. 857], after Robinson [43], writes that Cauchy’s develop-
ments can be translated to today’s analysis formalism by reading it with today’s
standard knowledge of distinctions such as continuity versus uniform continu-
ity, etc. It is easy to see that the notion of uniform continuity itself does
not help here, since the restriction of g from (1) to the square [−1, 1]2 is still
discontinuous, but it is separately uniformly continuous. However, the notion
of equicontinuous functions does the job, as we have the following theorem.
Recall that a family F of functions from R to R is equicontinuous provided
for every ε > 0 and x0 ∈ R there is a δ > 0 such that |f(x) − f(x0)| < ε for

2This means, for R = RN/U , where U is an ultrafilter (i.e., a maximal family of subsets
of N, having finite intersection property) containing all co-finite sets and the sequences
[xi]i∈N, [yi]i∈N ∈ RN are identified, when {i ∈ N : xi = yi} ∈ U . Similarly, for any relation
� among ≤, <, ≥, and >, we have [xi]i∈N � [yi]i∈N if, and only if, {i ∈ N : xi � yi} ∈ U .



24 A Continuous Tale

every f ∈ F and x ∈ (x0 − δ, x0 + δ). To our best knowledge, the following
theorem appears in print for the first time.

Theorem 1. If ḡ(x, y) is a separately continuous function in the sense of
Theorem X (i.e, from R2 into R), then its restriction g to R2 has the property

(EC) the families {g(x, ·) : x ∈ [−M,M ]} and {g(·, y) : y ∈ [−M,M ]} are equi-
continuous for every M > 0.3

Moreover, if g : R2 → R satisfies (EC), then it is continuous.

Proof. To see the first part assume, by way of contradiction, that (EC)
is false for some M > 0. So, either {g(x, ·) : x ∈ [−M,M ]} or {g(·, y) : y ∈
[−M,M ]} is not equicontinuous. By symmetry, we can assume that this is the
case for {g(·, y) : y ∈ [−M,M ]}. Therefore, there exist ε > 0 and x ∈ R such
that for every δ = 1/n there exist yn ∈ [−M,M ] and xn ∈ (x− 1/n, x+ 1/n)
with |g(xn, yn) − g(x, yn)| ≥ ε. Choosing a subsequence, if necessary, we can
assume that [yn]n converges to a y ∈ [−M,M ]. Then dx = [xn − x]n∈N ∈ R
and dy = [yn − y]n∈N ∈ R are infinitesimals and ḡ(·, y + dy) is discontinuous
at x̄, as |g(x̄ + dx, ȳ + dy) − g(x̄, ȳ + dy)| = [|g(xn, yn)− g(x, yn)|]n∈N ≥ ε̄ is
not infinitesimal. This contradicts the assumption that ḡ(x, y) is separately
continuous.

The additional part follows from the first part and Theorem X. The proof,
without using infinitesimals, is as follows. Fix 〈x0, y0〉 ∈ R2 and ε > 0. Choose
an M > 0 such that |x0| < M − 1 and δ ∈ (0, 1) for which:

• |g(x, y0)− g(x0, y0)| < ε/2 whenever |x− x0| < δ (ensured by the conti-
nuity of g(·, y0) at x0),

• |g(x, y)−g(x, y0)| < ε/2 whenever x ∈ [−M,M ] and |y−y0| < δ (ensured
by the equicontinuity of {g(x, ·) : x ∈ [−M,M ]} at y0).

Then, |g(x, y) − g(x0, y0)| ≤ |g(x, y) − g(x, y0)| + |g(x, y0) − g(x0, y0)| < ε
whenever |x−x0| < δ and |y−y0| < δ, ensuring continuity of g at 〈x0, y0〉.

The equicontinuity condition (EC) is also related to the notion of separate
continuity in the strong sense introduced in 1998–1999 by Omar P. Dzag-
nidze [18]: a function f : Rn → R has this property provided

lim
x→x0

[f(x1, . . . , xi−1, xi, xi+1, . . . , xn)− f(x1, . . . , xi−1, x
0
i , xi+1, . . . , xn)] = 0

3Actually, the intervals [−M,M ] in (EC) could be replaced with R. But then, the number
y + dy in the proof would need to be replaced with [yn]n∈N ∈ R, which could be infinitely
large (i.e., > n for all n ∈ N).
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for every x0 = 〈x01, . . . , x0n〉 and i ∈ {1, . . . , n}. It is easy to see that sepa-
rate continuity of f in the strong sense follows from the fact that the fam-
ily {f(x1, . . . , xi−1, ·, xi+1, . . . , xn)} : x1, . . . , xi−1, xi+1, . . . , xn ∈ [−M.M ]} is
equicontinuous for every i ∈ {1, . . . , n} and M > 0. In particular, the second
part of Theorem 1 follows also from

Theorem 2. (Dzagnidze 1998) If f : Rn → R is separately continuous
function in the strong sense, then it is continuous.

Figure 2: Examples (1) and (2) in the Genocchi-Peano text

1.2 A Tale of Heine and Peano: Counterexamples

In the mid-19th century mathematicians began abandoning the use of infinites-
imals in analysis. This eventually led to the realization of the existence of the
discrepancies described above. In particular, the first counterexample to The-
orem X for the functions of standard real variables R appeared in the 1870
calculus text of J. Thomae [49, pp. 13–16]. It was due to E. Heine (see [42])
and was defined as f(y, z) = sin

(
4 arctan y

z

)
for z 6= 0 and f(y, 0) = 0.
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The example (1) as well as the following,

f(x, y) =

{
xy2

x2+y4 for 〈x, y〉 6= 〈0, 0〉
0 for 〈x, y〉 = 〈0, 0〉,

(2)

came from the 1884 treatise on calculus by Genocchi and Peano [23] (see
Figure 2) and were given by Peano (see [42]). Function f from (2), while
discontinuous, is not only separately continuous, but its restriction to any
straight line is continuous. Functions with such property are often referred
to as linearly continuous. Thus, example (2) shows that a linearly continuous
function need not be jointly continuous.

E. Heine J. Thomae A. Genocchi G. Peano

1.3 A Tale of Baire and Lebesgue: Structure of Separately Con-
tinuous Functions

As we pointed out above, the class SC(Rn) of separate continuous functions
on Rn does not coincide with the class C(Rn) of functions on Rn continuous
in the usual sense. Although, the class SC(Rn) certainly is not as important
as C(Rn), two great French analysts from the turn of 19th century, René-
Louis Baire (1874–1932) and Henri Lebesgue (1875–1941), decided that the
structure of separate continuous functions was worth studying.

Thus, independently Lebesgue, in his very first paper [33] of 1898, and
Baire, in his Ph.D. thesis [1, Chapter 2] defended in 1899, proved that every
separately continuous function f : R2 → R is a pointwise limit of a sequence
of continuous functions, or, in the contemporary terminology, it is of Baire
class 1.
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R. Baire H. Lebesgue

Theorem 3. (Lebesgue 1898, Baire 1899) A separately continuous func-
tion f : R2 → R is a pointwise limit of a sequence fk : R2 → R of continuous
functions.

To appreciate this result, we must have some knowledge on what kind of
functions are of Baire class 1. Recall that a function f : Rn → R is of Baire
class 1 if, and only if, f−1(U) is a Gδ-set (i.e., a countable intersection of open
sets) for every open U ⊂ R. It is also known (see Baire’s thesis [1, pp. 66–67]),
that every Baire class 1 function is continuous on a large set, a dense Gδ-set.
However, a Baire class 1 can have a dense set of points of discontinuity, as
shown by the function

f(x) =

{
1
q for x = ±pq , where p, q ∈ N are relatively prime,

0 otherwise.

Figure 3: Graph of function h given by (3) and its derivative h′

A derivative of a differentiable function h : R → R is of Baire class 1, as

h′ is a pointwise limit of the continuous functions hn(x) = h(x+2−n)−h(x)
2−n .

However, a derivative of a differentiable function need not be continuous. For
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example, the function

h(x) =

{
x2 sin

(
x−1

)
for x 6= 0

0 for x = 0
(3)

(see Figure 3) has a discontinuous derivative

h′(x) =

{
2x sin

(
x−1

)
− cos

(
x−1

)
for x 6= 0

0 for x = 0.

It is perhaps worth mentioning here the following old but still open problem:

Problem 1. Find a non-trivial characterization of the derivatives, that is, the
functions h : R→ R such that h = f ′ for some f : R→ R.

For more of this problem, see the 1947 paper [54] of Zygmunt Zahorski
(1914–1998) or the monograph [7] of Andrew M. Bruckner (1932–). Note that
(see,, e.g., [7]) the class of the derivatives contains all bounded approximately
continuous functions h : R → R; that is, bounded functions such that for
every open U ⊂ R, every point x ∈ h−1(U) is a Lebesgue density point of

h−1(U) (i.e., limh→0+
λ(h−1(U)∩[x−h,x+h])

2h = 1, where λ is the Lebesgue mea-
sure). However, bounded derivatives need not be approximatively continuous,
as shown by the derivative of the function given by (3), see Figure 3. More-
over, there exist unbounded approximately continuous functions h : R → R
that are not derivatives. (See [7].) We should also point out that, according
to the 1998 paper [22] of C. Freiling there is no “satisfactory” characterization
of the derivatives, since

the only way to characterize derivatives is by using some object or
procedure which is at least as complicated as an integral.

Theorem 3 was generalized to functions of n variables, for any n ≥ 2,
in 1905 by Lebesgue [34, pp. 201–205]. To state it, we need to recall the
definition of functions of Baire class α, for α < ω1. The definition is recursive.
Functions of Baire class 0 are simply the continuous functions. Functions of
Baire class α+1 are the pointwise limits of functions of Baire class α. Finally,
if λ < ω1 is a limit ordinal (i.e., not of a successor form α+ 1), then functions
of Baire class λ consists of all functions of Baire class α for α < λ. It is a
standard fact that for every α < ω1 there exists a function f : R→ R of Baire
class α+1 that is not of Baire class α. For example, the characteristic function
χQ of the set Q of rational numbers is Baire class 2 but not Baire class 1. (It
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is of Baire class 2, since χQ = limn→∞ χ{qi : i≤n}, where {qi : i ∈ N} = Q. It is
not of Baire class 1 since it is everywhere discontinuous.)

The following theorem fully established the structure, in terms of Baire
classes, of separately continuous functions f : Rn → R.

Theorem 4. (Lebesgue 1905) For every n ≥ 2 the following holds.

(i) A separately continuous function f : Rn → R is of Baire class n− 1.

(ii) For every function g : R→ R of Baire class n−1 there exists a separately
continuous function f : Rn → R such that f(t, . . . , t) = g(t) for every
t ∈ R. In particular, a separately continuous function f : Rn → R need
not be of the Baire class n− 2.

For example, by part (ii), there exists a separately continuous f : R3 → R
such that f(t, t, t) = χQ(t). By part (i), it is of Baire class 2; however, it is not
of Baire class 1, since then so would be its restriction to ∆3 = {〈t, t, t〉 : t ∈ R},
which is not the case (as mentioned above).

On a proof of Theorem 4. A proof of (i) is relatively simple. It goes by
noticing that a separately continuous f : Rn+1 → R is a pointwise limit of
maps fk : Rn+1 → R, where each fk is a linear interpolation of f restricted to
Gk = Rn × (2−k · Z) (i.e., fk � Gk = f � Gk and fk is linear on each segment
between any points 〈x,m2−k〉 and 〈x, (m+ 1)2−k〉, with x ∈ Rn and m ∈ Z).
Since, by inductive argument, f � Gk is of Baire class n − 1, and the linear
interpolation preserves this property, the result follows.

To see an idea behind the proof of (ii), let gk : R → R be a sequence of
Baire class n−2 functions converging pointwise to g. The proof is by induction
on n = 2, 3, . . ., with the case of n = 2 being quite different from the case of
n > 2. Let ∆n = {〈t, . . . , t〉 ∈ Rn : t ∈ R}.

For n = 2 the functions gk are continuous. In this case, we define f as

f(x, y) =

{
g(x) for 〈x, y〉 ∈ ∆2∑∞
k=1 gk(x)ϕk(x, y) for 〈x, y〉 /∈ ∆2,

where the functions ϕk : R2 \∆2 → [0, 1] form a particular partition of unity
of R2 \ ∆2. That is, for every 〈x, y〉 ∈ R2 \ ∆2 we have

∑∞
k=1 ϕk(x, y) = 1,

and there exists an open set U containing 〈x, y〉 such that ϕk[U ] = {0} for
all but finitely many k. Notice that this form ensures the continuity of f on
R2 \ ∆2, as well as the continuity of f(x, ·) at x for every x ∈ R. To ensure
the continuity of f(·, y) at y, the functions ϕk must be carefully chosen, using
the fact that each gk is uniformly continuous on [−k, k].
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Of course, for n > 2 a special choice of the partition of unity cannot rely
on the continuity of functions gk, since they need not be continuous. Thus, for
n > 2 the above argument is modified as follows. Let functions ϕk : Rn\∆n →
[0, 1] form an arbitrary partition of unity Rn \∆n. By inductive assumption
for every k ∈ N choose a separately continuous function Gk : Rn−1 → R with
Gk(t, . . . , t) = gk(t) for every t ∈ R. Define

fn(x1, . . . , xn) =

{
g(x1) for 〈x1, . . . , xn〉 ∈ ∆n∑∞
k=1Gk(x1, . . . , xn−1)ϕk(x1, . . . , xn) for 〈x1, . . . , xn〉 /∈ ∆n

and notice that fn is continuous with any line parallel to the nth coordinate.
It is also jointly continuous on Rn \ ∆n, and we have fn(t, . . . , t) = g(t) for
every t ∈ R. Repeating the construction, for every i = 1, . . . , n − 1, we can
find a similar function fi, which is continuous on any line parallel to the ith
coordinate.

For every i = 1, . . . , n, let Di be the union of all lines in Rn parallel to
the ith coordinate and intersect ∆n. Then the sets Di \ ∆n are pairwise
disjoint (since n > 2) and closed in Rn \ ∆n. Since Rn \ ∆n is completely
regular, for every i there exists a continuous ψi : Rn \ ∆n → [0, 1] such that
ψi[Di \∆n] = {1} and ψi[Dj \∆n] = {0} for any j 6= i. Then, the function

f(x1, . . . , xn) =

{
g(x1) for 〈x1, . . . , xn〉 ∈ ∆n∑n
i=1 ψi(x1, . . . , xn)fi(x1, . . . , xn) for 〈x1, . . . , xn〉 /∈ ∆n

is as required.

Problem 2. Let n > 2. What is the smallest number mn such that every
linearly continuous function f : Rn → R is of Baire class mn?

Notice, that mn ≥ 1, since (as we will discuss below) there exist discontin-
uous linearly continuous functions f : Rn → R. Also, by part (i) of Theorem 4,
mn ≤ n − 1. This ensures that m2 = 1. So, the problem is for n ≥ 3. It is
worth noting that no easy modification of the proof of Theorem 4(ii) can show
that m3 > 1, since for linearly continuous functions f : R3 → R there is no
analogue of disjoint sets D1, D2, and D3.

1.4 Other related results

Functions on RN. It is worth mentioning that no analog of Lebesgue’s re-
sult, Theorem 4, holds for separately continuous f : RN → R, as such function
does not need to be of any Baire class α, for α < ω1 (i.e., it does not need
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to be Borel-measurable). Indeed, this can be easily deduced from the follow-
ing result of Edward Marczewski (1907–1976) and Czes law Ryll-Nardzewski
(1926–). (See [36].)

Theorem 5. (Marczewski & Ryll-Nardzewski 1952) Given an arbitrary
function g : R → R, there exists a separately continuous function f : RN → R
such that f(x, x, . . .) = g(x).

The function f from Theorem 5 can be defined simply as

f(x1, x2, . . .) =

{
g(a) if xn = a for all but finitely many n ∈ N
0 otherwise.

It is separately continuous, since f is constant on any line parallel to one of
the axes.

The situation does not improve much, if one replaces RN with the space `2:
a function f : `2 → R can be everywhere discontinuous, even if it is separately
continuous in the strong sense (compareTheorem 2), as shown in 2004 by
J. Činčura, T. Šalát, and T. Visnyai [15]. (See also [51].)

More on Baire class for functions on R2. A proof of the part (i) of
Theorem 4 actually gives a stronger result for every Polish space X (e.g., for
X = Rk):

For every 0 < α < ω1, a function f : X × R → R is of Baire class
α + 1, provided every map f(·, y) is continuous and every map
f(x, ·) is of Baire class α.

For 0 < α < ω1, consider the following generalization of this statement (for
X = R):

Φα: If f : R2 → R is such that f(·, y) is approximately continuous for every y
and f(x, ·) is of Baire class α for every x, then f is of Baire class α+ 1.

In 1995, M. Laczkovich and A. Miller [31] showed that Φ1 is true. They also
proved that, under the strong set theoretical assumption that there exists a
real-valued measurable cardinal (which is a large cardinal), Φα is also true
for any 2 ≤ α < ω1. However, there is no chance to prove Φ2 in the standard
set theory ZFC since under the Continuum Hypothesis, CH, there are counter
examples for Φ2. This is noticed in [31], where the authors point out that the
examples given independently in two different papers—a 1973 paper [17] by
R. Davies and J. Dravecký and a 1974 paper [25] by Z. Grande—are in fact
the counter examples for Φ2.
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Problem 3. Can consistency of Φ2 be proved without the large cardinal
assumption?

It should be mentioned that Φα+1 is a consequence of the statement:

Ψα: If f : R× [0, 1]→ R is bounded, f(x, ·) is Lebesgue measurable for every
x ∈ R, and f(·, y) is of Baire class α for every y ∈ [0, 1], then the function

x 7→
∫ 1

0
f(x, y) dy is of Baire class α.

The statement Ψ1 is true, as proved in 1978 by J. Bourgain, D.H. Fremlin,
and M. Talagrand [8]. Also, existence of a real-valued measurable cardinal
implies that Ψα is true for any α < ω1 (see [31]). Now, a positive answer for
Problem 3 would follow if the consistency of Ψ2 could be proved without the
large cardinal assumption.

2 Joint Continuity of f(x, y) in Terms of Single Variable

In this section we discuss the question (Q), stated in the abstract, for the
functions of two variables. More specifically, let H be a class of functions
h : R → R, where each h is identified with its graph: h = {〈x, h(x)〉 : x ∈
R}. We say that a function f : R2 → R is H-continuous provided f � h is
continuous for every h ∈ H. It is H∗-continuous provided for every h ∈ H
both f � h and f � h−1 are continuous, where h−1 = {〈h(x), x〉 : x ∈ R}.
In other words, in H∗-continuity, we examine the restrictions of f to the
functions h ∈ H treated as functions from x to y and as functions from y to
x. We examine for what classes H

either H∗-continuity or H-continuity of f(x, y) implies its joint continuity.

This is a version of a problem considered in 1905 by Henri Lebesgue [34, pp.
199–200].

Of course, the notion of separate continuity coincides with that of H∗-
continuity for H being the class CONST of constant functions, while linearly
continuity is the L∗-continuity, where L denotes the class of linear functions
h(x) = ax + b. In particular, equation (2) shows that L∗-continuity does not
imply continuity and equation (1) shows that CONST∗-continuity does not
imply continuity.
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W. Sierpiński N. Luzin A. Rosenthal E. Marczewski

2.1 H∗-continuity: A Tale of Scheeffer, Lebesgue, Luzin, and A.
Rosenthal

Scheeffer, Lebesgue, and Luzin: Let A be the class of real analytic func-
tions, that is, representable by a Taylor series. The fact that A∗-continuity at
a point does not imply continuity at this point was noted in 1890 by Ludwig
Scheeffer (1859–1885) (see [45] or [44]) and in 1905 by Henri Lebesgue [34,
pp. 199–200]. Lebesgue constructs such an example by induction. An easier
example, due to Rosenthal, is given below by (4). Moreover, such an exam-
ple can be also found in the 2005 paper [38] of Ollie Nanyes. Also, in the
1948 text [35, pp. 173–176] of Nikolai Luzin (1883–1950) proves that (C0)∗-
continuity implies continuity, where C0 = C(R).

A. Rosenthal: In 1955 paper [44], Arthur Rosenthal (1887–1959) gave the
ultimate solution of the H∗ version of the problem in terms of the classes
Cn of functions h : R → R having continuous n-th derivatives. Recall, that
if Dn stands for the class of n-times differentiable functions, then we have
Cn ( Dn ( Cn−1 for every n ∈ N.4

Theorem 6. (A. Rosenthal 1955) If f : R2 → R is (C1)∗-continuous, then it
is continuous. However, there exist discontinuous (D2)∗-continuous5 functions
g : R2 → R.

The first part of the theorem follows easily from a fact [44] that:

4The fact that the inclusions D1 ⊂ C0 and C1 ⊂ D1 are strict is justified, respectively,
by h(x) = |x| and h given by (3). (See Figure 3.) The examples for n > 1 are found by
taking antiderivative of these examples (n− 1)-times.

5Actually, Rosenthal notices only that (C2)∗-continuity does not imply continuity. But
his example shows, in fact, the stronger statement.
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Figure 4: The graph of the function given by (5). The dashed curve is given
by {〈x, x3/2, 0〉 : x > 0}. The cones, each with base centered at cn, are of
height 1.

(S) For every convergent sequence in R2 there exists a C1 function h such
that either h or h−1 contains infinitely many terms of that sequence.
Moreover, h can be chosen to be either constant or both strictly mono-
tone and having derivative equal 0 at most in one point.6

For more details, see also an argument for Theorem 12.
The counterexample part is based on the function

g0(x, y) =

{
1 when x 6= 0 and y = x3/2,

0 otherwise
(4)

6Actually, the non-constant function h constructed in [44] is either strictly convex or
strictly concave. It must be modified on one side of a limit of the sequence to actually
ensure the property we claim here, as noted in [14].
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which shows that (D2)∗-continuity at a point, the origin 〈0, 0〉, does not imply
continuity at this point. This can be transformed to the function g from The-
orem 6 as follows. Choose a sequence 〈cn〉∞n=1 in {〈x, x3/2〉 : x > 0} converging
to 〈0, 0〉, the numbers rn > 0, and let gn : R2 → [0, 1] be a continuous “cone,”
with gn(cn) = 1 and g(x) = 0 whenever ‖x− cn‖ ≥ rn. Then, for numbers rn
small enough the function (see Figure 4)

g =

∞∑
n=1

gn (5)

is as desired.
Another proof of Theorem 6 can be found in the 2014 paper [39] of Ollie

Nanyes.

Theorem 6 in terms of smooth curves. By a curve in the plane we
understand any continuous map h = 〈h1, h2〉 from an interval J into R2.
A curve h = 〈h1, h2〉 is smooth, if the coordinate functions h1 and h2 are
continuously differentiable (i.e., are C1) and 〈h′1(t), h′2(t)〉 6= 〈0, 0〉 for every
t ∈ J . It is twice differentiable (C∞, respectively) provided it is smooth and
h1, h2 ∈ D2 (h1, h2 ∈ C∞, respectively).

Since any C1 curve is locally equal to a C1 function either from x to y or
from y to x, Theorem 6 can be expressed as follows.

(∗) For any function f : R2 → R, if f ◦ h is continuous for every smooth
curve h, then f is continuous. However, there exists a discontinuous
function g : R2 → R with g ◦ h being continuous for every smooth twice
differentiable curve h.

In fact, it can easily be arranged that a function g from (∗), given by (5), has
a stronger property that g◦h is C∞ for every smooth twice differentiable curve
h—simply by taking functions gn to be C∞. In particular, at a first glance,
such a g seems to contradict (for n = 2 and k = 1) the following 1967 theorem
of Jan Boman [4] (see also [27]):

Theorem 7. (Boman 1967) For every n ≥ 2, k ≥ 1, and f : Rn → R, if
f ◦ h is Ck for every C∞ curve h, then f ∈ Ck−1.

However, there is no contradiction here, since in Theorem 7 the testing
functions h include also non-smooth curves.

The proof of Theorem 6 as well as a weaker version of Theorem 7 can be
also found in the 2011 paper [37] of Michael McAsey and Libin Mou.
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Figure 5: Theorem 8 in Luzin’s 1948 text

2.2 H-continuity: From N. N. Luzin’s to contemporary results

N. N. Luzin: The first contribution to the H version of the problem ap-
peared in Luzin’s 1948 text [35, p. 176] as a footnote to his proof that (C0)∗-
continuity implies continuity (see Figure 5). It can be stated as follows.

Theorem 8. For every function f : R2 → R, if f(x, h(x)) is continuous for ev-
ery continuous h : R→ R, then f is continuous. In other words, C0-continuity
of f implies its continuity.

The two statements in the theorem are equivalent, since (1) the continuity
of fh(x) = f(x, h(x)) implies the continuity of f � h (as f � h = fh ◦ π, where
π(x, y) = x) and (2) the continuity of h and f � h implies the continuity of fh
(as fh = (f � h) ◦ 〈id, h〉, where id(x) = x).

The theorem follows easily from (S) and the fact that if there exists a
sequence 〈xn, yn〉∞n=1 contradicting continuity of f : R2 → R, then there exists
such a sequence with 〈yn〉∞n=1 being strictly monotone. See also the proof of
Theorem 12.

K. C. Ciesielski & J. Rosenblatt: Let “C1” be the family of all functions
in C0 having continuous derivatives, allowing infinite values. (For example,
function h(x) = 3

√
x is “C1” but not D1.) Then, the property (S) and Theo-

rem 6 imply immediately the first part of the following result, proved by the
first author and J. Rosenblatt [14], which generalizes Theorem 8.

Theorem 9. (Ciesielski & Rosenblatt 2014) If a function f : R2 → R is
“C1”-continuous, then it is continuous. However, there exists a discontinuous
D1-continuous function g : R2 → R.

A function g from Theorem 9 can be defined via (5), where disc centers cn
belong to a fixed vertical line.
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Figure 6: Graph of the function h given by (6)

Theorem 9 shows that there exists a reasonably small familyH of test func-
tions, namely H =“C1” or H = C0, for which H-continuity implies continuity.
How far can the family H be decreased while still preserving this implication?
Can H consist of just a single test function?

Certainly a family H consisting of a single function h : R→ R cannot have
such property, since the testing functions must cover R2 for the implication to
have a chance to hold true. Nevertheless, it seems that the H-continuity may
imply continuity if H is built just from a single template function h. That is,
when H equals to the family T (h) of all translates of h.

To convince the reader that such a thing might indeed be possible, notice
that T (|x|)-continuity is, essentially, the separate continuity. More precisely,
if r is a 45◦ rotation of R2 (e.g., with respect to the origin), then, as can be
easily seen,

f : R2 → R is T (|x|)-continuous if, and only if, f ◦ r is separately
continuous.

Unfortunately, the next theorem, proved by the first author and J. Rosenblatt
[14], shows that a single continuous template function cannot ensure continuity
of a functions of two variables. However, there exists a template function h
that does the job, which is a pointwise limit of continuous functions.

Theorem 10. (Ciesielski & Rosenblatt 2014) There exists a Baire class
1 function h : R→ R such that T (h)-continuity of f : R2 → R implies its con-
tinuity. However, for every continuous h : R→ R there exists a discontinuous
T (h)-continuous function g : R2 → R.



38 A Continuous Tale

The idea of constructing discontinuous T (h)-continuous function g : R2 →
R for a continuous h is relatively simple: g is of the form of a function given by
(5), where disc centers cn are chosen so that any h0 ∈ C0 containing infinitely
many of them has worst uniform continuity parameter δ than h � [−n, n] for
ε = 4−n. Nevertheless, the detailed definition of cn from h is a bit technical.

By the second part of the theorem, the function h from the first part cannot
be continuous. However, it can still be of relative simple form, a variation of a
sin(1/x) function, and can have a small set of points of discontinuity: nowhere
dense and of measure 0. More specifically it can be defined via the formula

h(x) =


0 when x ∈ P ,
sin
(

1
dist(x,P )

)
when x ∈ [a, b] \ P ,

dist(x, P ) when x ∈ R \ [a, b],

(6)

where P ⊂ [a, b] is a “fat” closed nowhere dense subset of R with a, b ∈ P . (See
Figure 6.) Here, “fat” means that for every converging sequence in R, some
translation of P contains infinitely many terms of the sequence. In particular,
any set P of positive measure is “fat,” as is the following measure zero set (see
[14]):

P =

{ ∞∑
k=2

ak
k!

: ak ∈ {0, . . . , k − 1} for every k

}
.

Notice, that the function h from the first part of Theorem 10 (e.g., given by
(6)) nicely relates to both parts of Theorem 8, since the property “f(x, h0(x))
is continuous for every h0 ∈ T (h)” implies “f � h0 is continuous for every
h0 ∈ T (h),” which, in turn, implies the continuity of f .

Other related results. Another result, on ensuring the continuity of f(x, y)
in terms of f(x, ·) and f(·, y), is the following 1910 theorem of W. H. Young [52].
(See also [40].)

Theorem 11. (W. H. Young 1910) Let f : R2 → R be separately contin-
uous. If f(·, y) is also monotone for every y, then f is continuous.

This theorem was generalized to functions of n variables in the 1969 ar-
ticle [30] by R. L. Kruse and J. J. Deely, who apparently were not aware of
W. H. Young’s earlier result from [52].

3 Continuity of f(x1, x2, x3, . . . , xn) in Terms of Single Vari-
able

The results presented in this section have not been previously published.
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For n > 2 let Hn stand for the class of functions from R to Rn−1, iden-
tified with their graphs, where the variable goes to the first coordinate of
Rn and the values to the remaining coordinates. Also, let H∗n stand for the
graphs of all functions in Hn, where the coordinates’ order is randomly per-
muted. In particular, C1

n is the family of all maps from R to Rn−1 (i.e., sets
{〈x, g1(x), . . . , gn−1(x)〉 : x ∈ R}) for which each of the (n − 1)-coordinate
functions (i.e., gis for i = 1, . . . , n− 1) is C1.

Theorem 12. (Generalization of Theorems 6 and 9) For every n ≥ 2 a
function f : Rn → R is continuous, provided it is either (C1

n)∗-continuous or
“C1

n”-continuous.

Proof. To see this, let f be discontinuous. It must be shown that f is neither
(C1

n)∗-continuous nor “C1
n”-continuous. Clearly, there exists a sequence s̄ =

〈sk〉∞k=1 in Rn convergent to an s0 ∈ Rn for which the limit limk f(sk) (finite
or infinite) exists but is not equal f(s0). Let sk = 〈sk1 , . . . , skn〉, and notice that
we can assume that

(•) the sequence 〈ski 〉k is strictly monotone for every 1 ≤ i ≤ n.

Indeed, if f � ` is discontinuous on some line ` parallel to the diagonal ∆ =
{〈x, . . . , x〉 : x ∈ R}, then we can choose s̄ on such a line. So, assume that f � `
is continuous for every such line `. Choosing a subsequence, if necessary, we can
ensure that for every 1 ≤ i ≤ n the sequence 〈ski 〉k is either strictly monotone
or constant. (This can be done either by induction on i = 1, . . . , n, or by
using Ramsey’s partition theorem.) For every k let `k be the line parallel to ∆
containing sk. Then, by induction on k and using continuity of f � `k, we can
replace each sk with an ŝk ∈ ` so that |f(ŝk)− f(sk)| ≤ 2−k, ‖ŝk− sk‖ ≤ 2−k,
and each sequence 〈ŝki 〉k is strictly monotone, ensuring (•).

Next, by induction and choosing a subsequence of s̄, if necessary, we can
ensure that for every 1 ≤ i < j ≤ n, there is a “C1” function hi,j as in (S)
containing all points 〈ski , skj 〉. Then h1 = {〈x1, h1,2(x1), . . . , h1,n(x1) : x1 ∈ R〉}
is “C1

n” and contains s̄, so f is not “C1
n”-continuous.

To see that f is not (C1
n)∗-continuous, for every 1 ≤ i < j ≤ n put

hj,i = h−1i,j ∈ “C1
n”. Also, for every i, let hi,i be the identity function and

define hi = {〈hi,1(xi), . . . , hi,n(xi)〉 : xi ∈ R}. Then every hi is (“C1
n”)∗ and

it contains all terms of the sequence 〈sk〉k. Thus, it is enough to show that
hi ∈ (C1

n)∗ for some i. To see this, choose an i for which the set Si =
{j : hi,j(s

0
i ) /∈ R} has the smallest size. The result follows, if we show that Si

is empty.
So, by way of contradiction, assume that there is a j with hi,j(s

0
i ) /∈ R.

Then, Sj has the smaller size than Si, since hj,i(s
0
j ) = 0 ∈ R, while for every
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l with h′i,l(s
0
i ) ∈ R,

h′j,l(s
0
j ) = lim

k→∞

hj,l(s
k
j )− hj,l(s0j )
skj − s0j

= lim
k→∞

hi,l(hj,i(s
k
j ))− hi,l(hj,i(s0j ))

hj,i(skj )− hj,l(s0j )
lim
k→∞

hj,i(s
k
j )− hj,l(s0j )
skj − s0j

= lim
k→∞

hi,l(s
k
i )− hi,l(s0i )
ski − s0i

lim
k→∞

hj,i(s
k
j )− hj,l(s0j )
skj − s0j

= h′i,l(s
0
i ) h

′
j,i(s

0
j ) = h′i,l(s

0
i ) 0 ∈ R.

In other words, Sj ⊂ Si \ {j} ( Si, contradicting the minimality if Si.

Notice that the negative parts of Theorems 6 and 9 give us also the bounds
for Theorem 12.

Theorem 13. (Generalization of Theorem 10) For every n ≥ 2 there
exists a Baire class 1 function h : R → Rn−1 such that T (h)-continuity of
f : Rn → R implies its continuity.

Proof. Let h0 be given by (6) and p be a continuous (Peano-like space fill-
ing) function from [−1, 1] onto [−1, 1]n−1 such that p(0) = 〈0, . . . , 0〉. Define
function h on [a, b] as p ◦ h0 � [a, b] and extend it to R in such a way that
h � R \ (a, b) is continuous and its graph contains n mutually perpendicular
line segments. Then such an h is as required. The argument is a variation of
that for [14, corollary 14] and it goes as follows:

Clearly, h is of Baire class 1. To see the main implication, choose a T (h)-
continuous f : Rn → R. We need to show that f is continuous.

The perpendicular segments in h ensure that f ◦ r is separately continuous
for some isometry r of Rn. In particular, the set D of points of continuity of
f is dense in Rn. (See, e.g., [12]. Actually, this is closely related to a 1932
result of Wac law Sierpiński (1882–1969) from [47]: A separately continuous
function f : R2 → R is uniquely determined by its values on the dense subset
of its domain. See also [41].) It is enough to show (see, e.g., [14, fact 3])
that f(s0) = limk f(sk) for every sequence s̄ = 〈sk〉∞k=1 in D convergent to an
s0 ∈ Rn for which the limit limk f(sk) (finite or infinite) exists. We can also
assume that s̄ has diameter less than 1. Let sk = 〈sk1 , . . . , skn〉 for k = 0, 1, 2, . . ..

Since P is “fat,” there exists a subsequence 〈ski〉∞i=1 such that 〈ski1 〉∞i=1 is
contained in a translate t1 +P of P . So, s01 ∈ t1 +P and for t = 〈t1, s02, . . . , s0n〉
we have s0 ∈ t+h � P , since s0− t = 〈s01− t1, 0, . . . , 0〉 ∈ P ×{0}n−1 ⊂ h � P .
Notice that, for every i, ski ∈ (t1 + P ) × [−1, 1]n−1, as ski1 ∈ t1 + P and s̄
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has the diameter less than 1. Since each ski is a point of continuity of f and
(t1+P )×[−1, 1]n−1 is contained in the closure of t+h, we can choose ŝki ∈ t+h
such that |f(ŝki) − f(ski)| ≤ 2−i and ‖ŝki − ski‖ ≤ 2−i. Hence, as f � t + h
is continuous, limk f(sk) = limi f(ski) = limi f(ŝki) = f(limi ŝ

ki) = f(s0), as
required.

4 Genocci-Peano type of examples for n > 2

When generalizing function g(x, y) from (2) to higher dimensions, we need to
decide whether to treat lines in R2 as the objects of dimension 1 or rather
as hyperplanes, that is, objects of co-dimension 1. The first of these options
leads the notion of linearly continuous functions; that is, functions f : Rn → R
with continuous restrictions to any straight line. The second leads to the
notion of hyperplane continuous functions; that is, functions f : Rn → R with
continuous restrictions to any (co-dimension 1) hyperplane in Rn. The class
of linearly continuous functions on Rn has been studied for several decades, as
we shall discuss in the next section. On the other hand, the class of hyperplane
continuous functions on Rn, for n > 2, seem to first appear in the literature
only in 2014, in the paper [12].

A simple example of discontinuous linearly continuous function f : Rn → R
for any n ≥ 2 is given by the following modification of (2):

h(x, y, z, . . .) = g(x, y) =

{
xy2

x2+y4 for 〈x, y〉 6= 〈0, 0〉
0 for 〈x, y〉 = 〈0, 0〉.

(7)

Indeed, clearly h = g ◦πxy is discontinuous, where πxy is a projection onto xy-
plane. Also, for any straight line ` in Rn, the map h � ` = (g � πxy[`])◦(πxy � `)
is continuous, as is g � πxy[`], πxy[`] being either a line or a point. However,
for n > 2, the map h is discontinuous on the hyperplane {〈x, y, z, . . .〉 ∈
Rn : y = z}, leading to a question: Do there exist simple, Genocci-Peano like,
examples of discontinuous, hyperplane continuous functions on Rn for any
n > 2? The answer to this question, which comes from the paper [13] by the
current authors, is given in terms of the rational functions g : Rn → R of the
form

g(x1, x2, . . . , xn)=


x
α1
1 x

α2
2 ···x

αn
n

x
β1
1 +x

β2
2 +···+xβnn

when 〈x1, x2, . . . , xn〉 6= 〈0, 0, . . . , 0〉,

0 otherwise,

(8)
where αi, βi ∈ N for all i ∈ {1, 2, . . . , n}.
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Theorem 14. (Ciesielski & Miller 2014) Let g be given by a formula (8)
and let β1 ≤ β2 ≤ · · · ≤ βn be even. Then

(i) g is discontinuous if, and only if,
∑n
i=1

αi
βi
≤ 1.

(ii) g has a continuous restriction to every hyperplane in Rn if, and only if,∑n
i=1

αi
βi
− αk

βk
+ αk

βk−1
> 1 for every k ∈ {2, 3, . . . , n}.

For example, the following function

g(x1, x2, x3, x4) =

{
x1x2x

2
3x

3
4

x4
1+x

6
2+x

8
3+x

10
4

when 〈x1, x2, x3, x4〉 6= 〈0, 0, 0, 0〉,
0 otherwise

(9)

is discontinuous and hyperplane continuous, as it satisfies Theorem 14. Indeed,
condition (i) holds, since 1

4 + 1
6 + 2

8 + 3
10 = 29

30 < 1, while (ii) is justified by
1
4 + 1

6 + 2
8 + 3

10 −
1
6 + 1

4 = 21
20 > 1, 1

4 + 1
6 + 2

8 + 3
10 −

2
8 + 2

6 = 21
20 > 1, and

1
4 + 1

6 + 2
8 + 3

10 −
3
10 + 3

8 = 25
24 > 1.

Also, Theorem 14 immediately implies the following corollary, which pro-
vides a “canonical” example for discontinuous and hyperplane continuous func-
tions for any n ≥ 2.

Corollary 15. (Ciesielski & Miller 2014) For every n > 1, if gn : Rn → R
is defined as

gn(x1, x2, . . . , xn)=


x1x2···xn−1x

2
n

x2
1+x

4
2+···+x2n−1

n−1 +x2n
n

for 〈x1, x2, . . . , xn〉 6= 〈0, 0, . . . , 0〉,

0 otherwise,

then gn is discontinuous but hyperplane continuous.

In particular, g2(x, y) = xy2

x2+y4 is the original Genocci-Peano example

from (2), g3(x, y, z) = xyz2

x2+y4+z8 , and g4(x, y, z, t) = xyzt2

x2+y4+z8+t16 .
The direct proof that g3 is discontinuous and hyperplane continuous, con-

stituting a typical case of the general proof of Theorem 14 presented in [13],
goes as follows. Function g3 is discontinuous along the path x = t4, y = t2,
and z = t, where t ∈ R, since g3(t4, t2, t) = 1

3 for any t 6= 0. To see that g3 is

hyperplane continuous, we first note that |g3(x, y, z)| = |x|
d

1
2

|y|
d

1
4

(
|z|
d

1
8

)2
, where

d = x2 + y4 + z8. Notice that each of the three quotients is bounded above by

1. Moreover, for z = ax+ by we have |z|
d

1
8
≤ |a| |x|

d
1
8

+ |b| |y|
d

1
8
→ 0 as d → 0. So,

g3 is continuous at 〈0, 0, 0〉 on this hyperplane. Similarly, for y = ax we have
|y|
d

1
4
→ 0 as d→ 0.
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H. Hahn R. B. Kershner W.H. Young G.C. Young

5 Sets of discontinuity points of separately, linearly, and
hyperplane continuous functions

For a function f : X → R, let D(f) ⊂ X be the set of points of discontinuity
of f . Recall, that D(f) is always an Fσ-set. That is, a countable union of sets
closed in X. More specifically, D(f) =

⋃
k∈N Fk, where Fk is a the set of all

x ∈ X with oscillation greater than 1/k. That is, such that for every open set
U containing x there exist y, z ∈ U with |f(y)− f(z)| > 1/k. It is easy to see
that each set Fk is closed.

The goal of this section is to describe the study of the size and, more
generally, the structure of the sets D(f), where f : Rn → R varies either over
the entire class SC(Rn) of separate continuous functions, or over some of its
subclass, like the class of linearly or hyperplane continuous functions. Of
course, by the remark above, any D(f) must be an Fσ-set.

5.1 Separate continuity

It appears that the first step toward understanding these sets came from Baire,
who showed, in his 1899 thesis [1] that for any separately continuous function
f : R2 → R, there exist the sets A,B ⊂ R of first Baire category (i.e., count-
able unions of nowhere dense sets) such that D(f) ⊂ A×B and that there is
a separately continuous function f : R3 → R such that D(f) contains a line
segment. This last result was expanded in 1919 [26] by Hans Hahn (1879–
1934), who observed that the function h(x, y, z, . . .) = xy

x2+y2 is discontinuous

on the hyperplane {〈x, y, z, . . .〉 ∈ Rn : y = z}. The problem of characteriz-
ing the sets D(f), for f ∈ SC(Rn), was settled in 1943 [28] by Richard B.
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Kershner7 (1913–1982), by proving the following theorem. (Also, in 1949 G.
Tolstoff [50] constructed a separately continuous function f : R2 → R with
D(f) of positive Lebesgue measure. However, the existence of such example
follows immediately from Theorem 16.)

Theorem 16. (Kershner 1943) For any set D ⊂ Rn, D = D(f) for some
separately continuous function f : Rn → R if, and only if, D is an Fσ-set
and every orthogonal projection of D onto a coordinate hyperplane is of first
category.

The proof of a necessity of the condition from Theorem 16 is based on one
of the early results on separately continuous functions, which, according to
Baire [1], was first noticed by Vito Volterra (1860-1940). It said that every
separately continuous function f : Rn → R is quasi-continuous. That is, has
the property that for every x ∈ Rn and every pair of open sets U ⊂ Rn and
W ⊂ R, with x ∈ U and f(x) ∈ W , there is a nonempty open subset V ⊂ U
such that f [V ] ⊂ W . Note that this definition differs from the standard
definition of continuity only in the fact that the point x need not be in V .

The other tool needed for the proof is the following version of a 1976
result [2, corollary 3.8] of J.C. Breckenridge and Togo Nishiura. (Compare
also [12, lemma 4.1].)

Lemma 17. If Z = Rk and f : Z × Rm → R is such that f(·, y) is quasi-
continuous for every y ∈ Rm and the map Rk 3 x 7→ f(z, x) ∈ R is separately
continuous for every z ∈ Z, then the projection of πRm [D(f)] of D(f) along
Z is of first category in Rm.

Then, a necessity of the condition from Theorem 16 is obtained by applying
the lemma to f treated as a function from Z ×R1, where Z is a fixed coordi-
nate hyperplane in Rn. (The map f(·, y) is quasi-continuous by the result of
Volterra.)

To see that the condition from Theorem 16 is sufficient, notice that D =⋃∞
k=1Dk, where each Dk is compact. Fix a k ∈ N and notice that the or-

thogonal projection of Dk onto each coordinate hyperplane is nowhere dense,
as it is compact and of first category. By easy induction, construct a family
{Bi : i ∈ N} of open balls, each Bi centered at ci, such that:

• for every distinct i, j ∈ N, the projections, onto each coordinate hyper-
plane, of the sets Bi, Bj , and Dk are pairwise disjoint;

7Incidentally, Kershner seems to be better known for his contribution to the satellite
navigation system than for his mathematical contributions.
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Vito Volterra

• Dk is the set of accumulation points of {ci : i ∈ N}.

For each i, let gi : Rn → [0, 4−i] be continuous such that gi(ci) = 1 and
gi(x) = 0 for every x ∈ Rn \ Bi. Define, similarly as in (5), the function
fk =

∑∞
i=1 gi. Notice that fk : Rn → [0, 4−i] is separately continuous and

D(fk) = Dk. Then, the function f =
∑∞
k=1 fk is separately continuous (as

uniform limit of such functions) and D(f) = D.

More on D(f) for separately continuous f Recall also the following
theorem of Karl Bögel [3]. (See also [27].)

Theorem 18. (Bögel 1926) Let f : R2 → R be separately continuous. If
f(x, ·) is differentiable for every y ∈ R, then D(f) is nowhere dense.

Note that a set of the first category, that is guaranteed without the as-
sumption that functions f(x, ·) are differentiable, may be strictly larger than
a nowhere dense set.

5.2 Higher-dimensional versions of separate continuity

Let 0 < k < n. Recall that a k-flat is a subset of Rn isometric to Rk. We use a
term right k-flat for any k-flat parallel to a vector subspace of Rn spanned by
k-many coordinate vectors. The family of all k-flats is denoted as Fk, while
F+
k will stand for the family of all right k-flats. In this notation, the class

of F+
1 -continuous (F1-continuous) f : Rn → R is identical with the class of

separately (linearly, respectively) continuous functions from Rn to R. Also,
the class of Fn−1-continuous functions coincides with the class of hyperplane
continuous functions f discussed in Section 4.

The natural higher-dimensional generalizations of separate continuity are
the classes of F+

k -continuous functions f : Rn → R. It is perhaps instructive
to think of F+

k -continuous functions as those that are continuous when looked
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at in any k variables separately. The F+
k -continuous functions on Rn are fairly

well documented in the literature. They have been studied in connection with
the theory of Sobolev spaces (see, e.g., [2]).

Clearly, Theorem 16 gives a full characterization of the sets D(f) for F+
1 -

continuous functions f : Rn → R. The case of D+
n−1,n-continuous functions

was settled in [2] by the result:

D = D(f) for some D+
n−1,n-continuous function f : Rn → R if, and

only if, D is an Fσ-set and D ⊂ D1 ×D2 × . . . ×Dn, where each
Di is a first category subset of R.

These results were generalized to the general case of D+
k,n-continuous functions

by the first author and T. Glatzer [12, theorem 2.1] as follows.

Theorem 19. (Ciesielski & Glatzer 2014) For every 0 < k < n, D = D(f)
for some D+

k,n-continuous function f : Rn → R if, and only if, D is an Fσ-set
whose orthogonal projection on any right (n− k)-flat is of first category.

5.3 Linear continuity

Studies on the structure of D(f) for linearly continuous functions f : Rn →
R exist, but they are not as penetrating as those for separately continuous
functions. One of the earliest such results can be found in a 1910 paper [53]
of the husband and wife team William Henry Young (1863–1942) and Grace
Chisholm Young (1868–1944)—the first woman that received a doctorate in
any field in Germany (degree granted in 1895)—who gave an example of a
linearly continuous function f : [0, 1]×[0, 1]→ R for which D(f) is uncountable
in every non-empty open subset of its domain.

Linearly continuous functions were studied little after Young and Young’s
paper, until 1944, when Alexander S. Kronrod (1921–1986) took a course on
the theory of real functions from N. N. Luzin (by then a rare opportunity).
The course influenced him to begin a research program toward the develop-
ment of a geometric theory of real functions (see [32]). This research program
led to Kronrod asking for a description of the set of discontinuities of linearly
continuous functions defined on the plane. The first partial answer to Kro-
nrod’s challenge came in 1976 from Semen G. Slobodnik [48], who gave the
following necessary condition for a set D to be a discontinuity set of some
linearly continuous function.
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Theorem 20. (Slobodnik 1976) If D ⊂ Rn is the set of discontinuity
points of some linearly continuous function f : Rn → R, then D admits a
representation D =

⋃∞
i=1Di, where each Di is isometric to the graph of a

Lipschitz function φi : Ki → R with Ki being a compact nowhere dense subset
of Rn−1.

Recall that the graph of a Lipschitz function defined on an (n− 1)-dimen-
sional space has the n-dimensional Lebesgue measure 0. (See, e.g., [20].) In
particular, the set D(f) has Lebesgue measure 0 for every linearly continuous
function f : Rn → R. This stands in contrast with the case of separately
continuous functions. Indeed, by Theorem 19, there exists not only separately
continuous but even D+

n−1,n-continuous function f : Rn → R with D(f) = Pn,
where P ⊂ R is a nowhere dense set of positive Lebesgue measure.

Slobodnik’s response to Kronrod’s challenge would be the only voice in
this direction for twenty years. However, in 1997, E.E. Shnol’ [46], recalling
some conversations with Kronrod and evidently unaware of Slobodnik’s results
(or, for that matter, Kershner’s), proved a necessary condition very much
like Slobodnik’s theorem (incorrectly listed as necessary and sufficient in the
English translation) for functions on R2. (See also [24].)

The above theorem describes a necessary structure of sets D(f) for linearly
continuous function f : Rn → R. Some sufficient conditions for these sets,
published in 2013 by the first author and T. Glatzer [11, theorem 2.3], are
given below.

Theorem 21. (Ciesielski & Glatzer 2013) If D ⊂ Rn can be written as
D =

⋃∞
i=1Di, where each Di is isometric to the graph of a function fi � Hi,

with function fi : Rn−1 → R being convex and Hi being a closed nowhere dense
subset of Rn−1, then there exists a linearly continuous function f : Rn → R,
such that D(f) = D.

For n = 2 the results remains true when the functions fi are required to
be continuously twice differentiable, instead of being convex.

Although Theorems 20 and 21 describe quite well the structures of the
sets D(f) for linearly continuous function f : Rn → R, they do not provide a
characterization for such sets. Actually, as it was pointed out in [11, corollary
2.4 and proposition 2.5], neither the necessary condition from Theorem 20 nor
the sufficient condition from Theorem 21 characterize the sets D(f) for linearly
continuous function f : Rn → R. Therefore, Kronrod’s challenge discussed
above is not fully solved, leading to the following problem:

Problem 4. (Kronrod) Find a non-trivial nice characterization of the sets
D(f) for linearly continuous function f : Rn → R.
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Note that in [12, theorem 2.3] the first author and T. Glatzer provide
an answer for this problem for n = 2. However, this characterization is in
terms of the topology of lines in R2 and is quite complicated. Finding a nicer
characterization would be useful.

5.4 Higher-dimensional versions of linear continuity

Of course, we have in mind here the Fk-continuity for the family Fk of all
k-flats in Rn. The following theorem of the first author and T. Glatzer, [12,
theorem 2.2], is a generalization of Theorem 20. It provides an upper bound
on the size of sets D(f).

Theorem 22. (Ciesielski & Glatzer 2014) Let 0 < k < n and f : Rn → R
be Fk-continuous. Then, there exists a sequence 〈fi〉i<ω of Lipschitz functions
from Rn−k to Rk such that D(f) is covered by a union of isometric copies of
the graphs of functions fi.

Notice, that this result immediately implies that the considered sets D(f)
must have Hausdorff dimension at most n − k. A lower bound for the sets
D(f) is given the next theorem, [12, proposition 2.4], which can be viewed as
a higher-dimensional counterpart of Theorem 21.

Theorem 23. (Ciesielski & Glatzer 2014) For every 0 < k < n and com-
pact nowhere dense K ⊂ R, there exists an Fk-continuous function f : Rn → R
with D(f) = {0}k × K × Rn−k−1. In particular, D(f) may have positive
(n− k)-Hausdorff measure.

Moreover, if D is a countable union of arbitrary isometric copies of the
sets of the form {0}k × K × Rn−k−1 as above, then D = D(f) for some
Fk-continuous function f : Rn → R.

For 0 < k < n, let D+
k,n (respectively Dk,n) be the family of all sets D(f)

for F+
k -continuous (Fk-continuous, respectively) functions f : Rn → R. Then,

we obviously have the inclusions indicated in the following chart

Dn−1,n ⊂ · · · ⊂ D1,n

∩ ∩
D+
n−1,n ⊂ · · · ⊂ D+

1,n.

Moreover, the measure theoretical consideration mentioned above shows that
all indicated inclusions are proper. (For more details, see [12].) In particular,
all classes of F+

k -continuous and Fk-continuous functions are distinct.
It would be good to have an answer for a higher-dimensional analogue of

Kronrod problem.
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Problem 5. For 0 < k < n, find a non-trivial nice characterization of the
families Dk,n.

There is also a higher-dimensional analogue of Problem 2.

Problem 6. For every 0 < k < n, find the smallest number mk
n such that

every Fk-continuous function f : Rn → R is of Baire class mk
n.

Notice, that

1 ≤ mk
n < dn/ke for every 0 < k < n, (10)

where dn/ke is the smallest integer greater than or equal to n/k.
Indeed, the inequality mn ≥ 1 is justified by the existence of discontinuous

hyperplane continuous functions. The other inequality holds, as for m = dn/ke
we have Rn = X1×· · ·×Xm, where each Xi = Rki for some ki ≤ k. Since every
Fk-continuous function f : Rn → R can be treated as a map f : X1×· · ·×Xm →
R, which is separately continuous, f is in the Baire class m − 1 by a version
of Theorem 4(i) for the functions defined on the product of metric spaces.

Clearly (10) implies that mk
n = 2 for dn/ke = 2, that is, for k ≥ n/2. So,

Problem 6 is of interest only for 0 < k < n/2.

5.5 (D2)∗-continuity

Theorem 22 implies that even a function satisfying the strongest among the
Fk-continuity conditions—the hyperplane (i.e., Fn−1-) continuity—can have
an uncountable set of points of discontinuity. Is this a general rule that for any
family H of subsets of Rn, the following dichotomy holds: either H-continuity
implies continuity, or there exists an H-continuous function f : Rn → R with
an uncountable D(f)?

As it might be expected, this is not the case. For example, if H consists
of all graphs of continuous functions g : R → R with g(0) 6= 0, then any H-
continuous function f : R2 → R is continuous at every 〈x, y〉 6= 〈0, 0〉. However,
the characteristic function χ{〈0,0〉} of the singleton {〈0, 0〉} is H-continuous

with D
(
χ{〈0,0〉}

)
= {〈0, 0〉}.

Nevertheless, the dichotomy is true for generalized continuities considered
in the other parts of this paper. Indeed, the strongest among all such con-
tinuities that still does not imply continuity is that of (D2)∗-continuity. At
the same time, the first author and T. Glatzer [10] constructed the following
example.

Theorem 24. (Ciesielski & Glatzer 2012) There exists a (D2)∗-continuous
function f : R2 → R for which D(f) is a perfect set of arbitrarily large 1-
Hausdorff measure.
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Problem 7. Is there an analogue of an example from Theorem 24 for functions
of more than two variables?

6 Concluding remarks

In this paper we described a long history and the current research concern-
ing the continuity of real valued functions on several variables, emphasizing an
interplay between the functions of one variable and those of more than one vari-
able. Many of the discussed topics are so fundamental that they first appeared
in calculus textbooks, rather than in research papers. This includes Theorem

X of Cauchy from [9], the examples xy
x2+y2 and xy2

x2+y4 from the Genocchi-Peano

text [23], and the earlier version of these examples included in the Thomae’s
book [49]. Some other results, like Theorem 8 of Luzin or examples of discon-

tinuous hyperplane continuous functions xyz2

x2+y4+z8 or
x1x2x

2
3x

3
4

x4
1+x

6
2+x

8
3+x

10
4

, perhaps

should be included in a standard calculus curriculum. One might be even
tempted to include in a multivariable calculus text a version of Theorem 6 of
A. Rosenthal 1955, or at least some version of the example (4).

Perhaps going beyond the mathematics textbooks, some elements of the
presented discussion of Theorem X of Cauchy can bring us back to a funda-
mental question:

Why should the Archimedean set of real numbers be considered
more suitable for doing analysis, than a non-Archimedean one?

Taking under consideration the implications of Theorem X—the easiness of
representing the continuity of functions of many real variables in terms of func-
tions of one variable—maybe a non-standard analysis deserves a more central
place in analysis than it currently holds? Perhaps, a position more similar to
one that complex analysis enjoys would be appropriate? But, certainly, such
a shift of paradigm would require considerably more study of non-standard
analysis that currently exists. After all, complex analysis is one of the most
applicable parts of mathematics, while, so far, there seem to be relatively few
similar results for the analysis on the non-Archimedean set(s) of reals.
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