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The problem of determining the distance between two 
points, the area of a region, and the volume of a solid 
are some of the oldest and most important problems in 
mathematics. Their roots are in the ancient world. For 
example, the formula for the area of a circle was al- 
ready known to the Babylonians of 2000 to 1600 B.C., 
although they used as "rr either 3 or 31/K The Egyptians 
of 1650 B.C. used "rr = (4/3)4 = 3.1604 . . . .  The first 
crisis in mathemat ics  arose from a measu remen t  
problem. The discovery of incommensurable magni- 
tudes by the Pythagoreans (before 340 B.C.) created 
such a great "logical scandal" that efforts were made 
for a while to keep the matter secret (see [Ev], pages 
25, 31, 85, 56). 

For a given subset of R", what do we mean by the 
statement that some number is its area (for n = 2), 
volume (for n = 3) or, more generally, its n-dimen- 
sional measure? Such a number must describe the size 
of the set. So the function that associates with some 
subsets of R" their measure must have some "good" 
properties. How can we construct such a function and 
what reasonable properties should it have? 

This question, in connection with the theory of inte- 
gration, has been considered since the beginning of 
the nineteenth century. It was examined by such well- 
known mathematicians as Augustin Cauchy, Lejeune 
Dirichlet, Bernhard Riemann, Camille Jordan, Emile 
Borel, Henr i  Lebesgue,  and Giuseppe Vitali (see 
[Haw]). Lebesgue's solution of this problem, dating 
from the turn of the century, is now considered to be 
the best answer to the question, which is not com- 
pletely settled even today. 

Lebesgue Measure 

In his solution Lebesgue constructed a family Y of 
subsets of Euclidean space R" (where n = 1, 2 .... ) 
and a function m: ~ --* [0,oo] that satisfies the following 
properties: 

(a) ~ is a (r-algebra, i.e., ~ is closed under countable 
unions (if A k E ~ for every natural number k then 
U {Ak: k E N} E ~) and under  complementat ion 
(A E ~ implies R " \ A  E ~e); 

(b) [0,1]" ~ 5 ~ and m([0,1]") = 1; 
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(c) m is countably additive, i.e., for every family 
{Ak: k E IV} of pairwise disjoint sets from S ~, 

m A k = m(Ak); 

(d) m is isometrically invariant, i.e., for every iso- 
metry i of R" 

(1) A E ~f if and only if i(A) E ~; 
(2) re(A) = m(i(A)) for every A in 5 ~. 

Recall that a function i: R" --~ R" is an isometry pro- 
vided it preserves distance, in other words, i is com- 
posed of translations and rotations. 

The properties (a)-(d) seem to capture perfectly our 
intuitive notion of area and volume. Lebesgue mea- 
sure is not sensitive to moving sets around without 
distorting them. To find the measure of a set it suffices 
to split it up into a finite or countable family of disjoint 
sets and then to add up their measures (provided, of 
course, that each piece is measurable). However,  we 
should ask at least one more question: "With how 
many sets does Lebesgue measure deal?" or "'How big 
is the family ~?"  In particular, we should decide 
whether m is universal, i.e., whether ~ is equal to the 
family ~(R") of all subsets of R". 

Unfortunately the answer to this question is nega- 
tive. In 1905 Vitali constructed a subset V of R" such 
that V is not in S ~ (see [Vi], [Haw], p. 123, or [Ru], 
Thm. 2.22, p. 53). His proof is easy, so we shall repeat 
it here for n = 1. 

For x in [0,1] let E x = {y E [0,1]: y - x E Q} and put 
% = {E=: x E [0,1]}. Clearly % is a nonempty family of 
non-empty pairwise disjoint sets. Therefore, by the 
Axiom of Choice there exists a set V C [0,1] such that 
V n E has exactly one element for every E E %. We 
prove that V is not in ~e. 

First notice that if V + q = {x + q: x E V} for q E Q, 
then V + q and V + p are disjoint for distinct p, q E 
Q. Otherwisex + q = y + p f o r s o m e x ,  y E V s o x  
and y both belong to the same E E %. Then V n E 
contains more than one element, contradicting the 
definition of V. 

Now if V is in ~, then so is V + q for every q E Q, 
and re(V) = m(V + q). But U {v + q: q E Q N [0,1]} 
C [0,2] and so 

X 
q ~Qn[0,1] 

m(V + q) = m ( U { v  + q: q E Q  n [0,1]}) 

m([0,2]) = 2. 

This implies re(V) = m(V + q) = 0 for every q E Q. 
On the other hand, [0;1] C R = U {V + q : q  E Q} 
which implies 

m([0,1]) ~ m ( U { v  + q: q EQ}) =~P m(V + q) = 0, 
q ~ Q  

which contradicts property (b) of Lebesgue measure. 
Thus V is not in ~. (For the general case, modify the 
above proof using V x [0,1]"-1.) 

Notice that if ~: ~ --~ [0,~] satisfies conditions 
(a)-(d) (we will call such a function an invariant mea- 
sure) then the above proof shows that V ~ ~ .  Thus, 
V is not measureable for any invariant measure. In 
particular, there is no invariant measure ~: ~ --* [0,oo] 
which is universal, i.e., for which ~ equals ~(R"). 

Another remark we wish to make is that in Vitali's 
proof we used the Axiom of Choice (hereafter abbre- 
viated AC). At the beginning of the twentieth century 
the Axiom of Choice was not commonly accepted (see 
[Mo]) and Lebesgue had his reservations about Vitali's 
construction (see [Le] or [Haw], p. 123). Today we ac- 
cept the Axiom of Choice, so we cannot suppor t  
Lebesgue's complaints. But was Lebesgue completely 
wrong? 

If we do not accept the Axiom of Choice then Vitali's 
proof will not work. In 1964 Robert Solovay (see [So] 
or [Wa], Ch. 13) showed something much stronger: 
we cannot prove that 5 ~ # ~(R") without AC. More 
precisely, he proved that there exists a model  ("a 
mathematical world") in which the usual Zermelo- 
Frankel set theory (ZF) is true and where all subsets of 
R" are Lebesgue measurable, i.e., ~f = ~(R"). More- 
over, although the full power of the Axiom of Choice 
must fail in this "world," the so-called Axiom of De- 
pendent  Choice (DC) is true in the model. In fact, DC 
tells that we can use inductive definitions and there- 
fore all classical theorems of analysis remain true in 
this "world."  

Solovay's theorem has only one disadvantage. Be- 
sides the usual axioms of set theory (ZF), Solovay's 
proof uses an additional axiom: there exists a weakly 
inaccessible cardinal (in abbreviation WIC, see Lie], p. 
28). The theory ZF + WIC is essentially stronger than 
ZF. For over  20 years  mathemat ic ians  w o n d e r e d  
whether it is possible to eliminate the hypothesis re- 
garding WIC from Solovay's  theorem, but  in 1980 
Saharon Shelah s h o w e d  that it cannot  be done,  
proving that the consistency of the theory ZF + DC + 
"~e = ~(R") '" implies the consistency of the theory ZF 
+ WIC (see IRa] or [Wa], p. 209). 

Extensions of Lebesgue Measure 

Let us go back to doing mathematics with the Axiom 
of Choice. We know that Lebesgue measure is not uni- 
versal, i.e., Y # ~(R"). So let us examine the problem 
of how we can improve Lebesgue measure. The prop- 
ert ies  ( a ) - (d )  of Lebesgue  me a su r e  seem to be 
most  desirable. Therefore, we  will try to improve 
m: ~ ---* [0,~] by examining its extensions, the func- 
tions p,: ~ ~ [0,oo] such that ~ C ~J~ C ~(R n) and 
~(X) = m(X) for all X E ~. 
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By Vitali's theorem, if it is an invariant measure 
then 2J~ # ~(R'). In this context the following question 
naturally appears: "How far can we extend Lebesgue 
measure and what  properties can such an extension 
preserve?" This question has been investigated care- 
fully by members of the Polish Mathematical School 
and all but one of the results presented here were 
proved by this group. 

Let us first concentrate on the extensions that are 
invariant measures. The first result in this direction is 
due to Edward Szpilrajn (who later changed his name 
to Edward Marczewski). In 1936 he proved that Le- 
besgue measure is not a maximal invariant measure, 
i.e., that there exists an invariant measure that is a 
proper extension of Lebesgue measure. In connection 
with this result, Waclaw Sierpifiski (in 1936) posed the 
following question "'Does there exist any maximal in- 
variant measure?" (see [Sz]). Let us notice that by 
property  (b) any  such measure should extend Le- 
besgue measure. 

H o w  f a r  can w e  e x t e n d  Lebesgue  mea su re  and  
w h a t  p roper t i e s  can such  an e x t e n s i o n  pre-  
serve? 

This question was examined by several mathemati- 
cians under different assumptions. The answer was 
always the same: there is no maximal invariant mea- 
sure. The first result was noticed by Andrzej Hulanicki 
in 1962 (see [Hu]) under the additional set-theoretical 
assumption that the continuum 2 ~ is not RVM (this 
assumption will be discussed later in this article). This 
result was also obtain by S. S. Pkhakadze (see [Pk]) 
using similar methods. In 1977 A. B. Harazi~vili (from 
Georgia, USSR) got the same answer in the one-di- 
mensional case without any set-theoretical assump- 
tion (see [HarD. Finally, in 1982 Krzysztof Ciesielski 
and Andrzej Pelc generalized Harazi~vili's result to all 
n-dimensional Euclidean spaces (see [CP] or [Ci]). 

The idea of Ciesielski and Pelc's proof is due to Ha- 
razi~vili. Using the algebraic properties of the group of 
isometries of R n they constructed a family {Nj: j = 
0,1,2,3 .... } of subsets of R ~ with following proper- 
ties: 

(i) R" = (.J {Nj:j = 0,1,2 .... }; 
(ii) if it: ~ ---> [0,oo] is an invariant measure then 

Nj ~ ~ implies it(Ni) = O; 
(iii) for every invariant measure it: ~ --> [0,oo1 and 

for every natural number j there exists an invariant 
measure v: ~ ~ [0,oo] extending it such that Nj E ~. 

This result easily implies the nonexistence of a max- 
imal invariant measure. If it: ~ --) [0,oo] is an invariant 
measure then, by (ii), there exists a natural number j 
such that Nj e ~ff~, because otherwise we would have 

it([O,1] n) ~ it(R n) = it ~ it(Nj) = O. 
j=l  

Therefore the invariant measure v as in (ii) is a proper 
extension of it and so W is not maximal. 

At this stage of our discussion we are able to give a 
partial answer to the question of our title. If we restrict 
our search to invariant measures, then Lebesgue mea- 
sure is not the richest. However, any other invariant 
measure has the same defect. This means that if we 
would like to compare invariant measures only by the 
size of their domain then the best solution to the mea- 
sure problem simply does not exist. On the other 
hand,  if we deal only with the subsets of R" con- 
structed without the Axiom of Choice but using the 
induction allowed by DC (this is the case in all con- 
structions in classical analysis) then all sets we are in- 
terested in are Lebesgue measurable. Thus, in view of 
the above a rguments  and  the natura lness  of Le- 
besgue's construction, the Lebesgue measure is the 
unique reasonable candidate to be a canonical in- 
variant measure. 

Another idea to improve Lebesgue measure was to 
extend it to a universal measure it: !~(R n) ~ [0,oo] by 
weaken ing  some part  of propert ies  (a)-(d) ,  thus  
avoiding Vitali's argument .  The most popular ap- 
proach is to drop isometric invariantness and to con- 
sider as measures the functions it: ~ff~ ~ [0,oo] that sat- 
isfy conditions (a), (b), and (c). This definition, of mea- 
sure is common today mostly because we can easily 
generalize it from R" to an arbitrary set. To answer the 
question of when there exists a universal measure ex- 
tending Lebesgue measure, let us consider the fol- 
lowing sentence: "There exists a measure it: !~(R) 
[0,oo] satisfying (a)-(c) such that m({x}) = 0 for all 
x E R ."  If this sentence holds, we say that 2'* is RVM, 
i.e., on the continuum there is a real-valued measure. 

It is well known that if 2 ̀0 is RVM, then there exists a 
universal extension of Lebesgue measure (the con- 
verse implication is obvious). We shall s[<etch the 
proof of this theorem for the one-dimensional case by 
finding the measure it: ~([0,1]) --~ [0,oo] extending Le- 
besgue measure. So let v: @(R) --* [0,oo] be a measure 
such that v({x}) = 0 for x E R. For every X C R there 
exists X 0 C X such that v(X0) = 1/2 v(X) (for the proof 
see [Je], Ex. 27.3 and Thm. 66, p. 297). So by an easy 
induction we can define the family of sets {Xs: 's is a 
finite sequence of 0s and ls} such that: v(Xo) = 1 
(f~ is considered to be a sequence of length 0), XsA0, 
X~I C X v and v(X~/u) = 1/2 v(X~) where s^i means an 
extension of sequence s by digit i. For A C [0,1] we 
defined it(A) by 

X, 4 
where a(n) is the sequence of the first n digits of the 
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binary representation of a. It is not difficult to see that 
this )~ really extends Lebesgue measure on [0,1]. 

The systematic investigation of the statement "20) is 
RVM'" was started in 1930 by Stanislaw Ulam, when 
he proved that it implies the existence of a weakly in- 
accessible cardinal (i.e., axiom WIC), so it cannot be 
proved under the usual axioms of set theory (see [U1] 
or Ue], Thin. 66, p. 297). Although this result was fun- 
damental  for one of the most  interesting parts of 
modern set theory, namely the theory of large car- 
dinals, for our discussion it is only a disadvantage. It 
means that in order to have a universal countably ad- 
ditive measure extending Lebesgue measure we not 
only lose isometric invariantness, we must  also as- 
sume a very strong additional axiom that is usually not 
accepted by mathematicians. 

Finitely Additive Extensions of 
Lebesgue Measure 

Let us consider another approach to the universal ex- 
tension of Lebesgue measure by asking: "Is it really 
necessary to assume that measure is countably addi- 
tive? Isn't it enough to deal with finitely additive mea- 
sures?" More precisely, let us consider the properties: 

(a') S p is an algebra, i.e., S ~ is dosed under unions (if 
A,B  E ~ then A U B E S ~) and under complementation 
(A E S ~ implies R " \ A  E S~); 

(c') m is finitely additive, i.e., for every disjoint pair 
A and B from S ~, 

m(A  U B) = m(A)  + m(B). 

A function m: ~/~ --) [0,o0] satisfying the properties 
(a'), (b'), (c') and (d) will be called a finitely additive 
isometrically invariant measure. Does there exist a 
universal finitely additive isometrically invariant mea- 
sure extending Lebesgue measure? 

Stefan Banach (see [Ba] or [Wa]) proved in 1923 that 
such a measure exists on the plane and on the line 
(i.e., for n = 2 and n = 1). This beautiful result seems 
to be the only reasonable improvement of Lebesgue 
measure. But what is going on with n-dimensional Eu- 
clidean spaces for n _-__ 3? The answer, due to Stefan 
Banach and Alfred Tarski (1924; see [BT] or [Wa]), is 
surprising: there is no universal finitely additive iso- 
metrically invariant extension of Lebesgue measure for 
n I 3. But undoubtedly more surprising is the result 
that leads to this conclusion: the Banach-Tarski Par- 
adox. 

To state this paradox let us introduce the following 
terminology. We say that a set A c Rn is congruent to 
B C R" if we can cut A into finitely many pieces and 
rearrange them (i.e., transform each of these pieces 
using some isometry of R n) to form the set B. The 
Banach-Tarski Paradox is the theorem that a ball B 
with volume I is congruent to the union of two similar 

disjoint balls B1 and B 2 each having the same volume 
1I There is even more: we can do this by cutting the 
ball B into only five pieces. This result is so paradox- 
ical that our discomfort with it can probably be com- 
pared only with the Pythagorean "logical scandal" 
connected with the discovery of incommensurable line 
segments. This is also one of the strongest arguments 
against the use of the Axiom of Choice (see [Mo], p. 
188). 

But what  about our measures on R3? It is easy to see 
for every universal finitely additive isometrically in- 
variant measure ~ that if X C R" is congruent to Y C 
R", then ~(X) = )L(Y). In particular ~(B) = la(B t U B2). 
But for 3-dimensional Lebesgue measure m(B) = 1 # 2 
= re(B1 U B2), so  ~ doesn ' t  extend Lebesgue mea- 
sure m .  

C o n n e c t e d  w i th  this  p a r a d o x  is a nice o p e n  
problem, the Tarski Circle-Squaring Problem from 
1925, about which Paul ErdOs wrote (see [Ma], p. 39): 

It is a very beautiful problem and rather well known. If it 
were my problem I would offer $1000 for it--a very, very 
nice question, possibly very difficult. 

Tarski noticed that a l though in 3-dimensional Eu- 
clidean space all bounded sets with nonempty interior 
are congruent, this is not the case on the plane where 
sets with different Lebesgue measure are not con- 
gruent. But what about subsets of the plane with the 
same measure? In particular he formulated his Circle- 
Squaring Problem: "Is a square with unit measure 
congruent to a circle with the same measure?" This 
problem seems to be so difficult that Stan Wagon 
wrote about it (see [Wa], p. 101): "The situation seems 
not so different from that of the Greek geometers who 
considered the classical straight-edge-and-compass 
form of the circle-squaring problem." 

Conclusion 

So, what  is the answer to the question "How good is 
Lebesgue measure?" In the class of invariant mea- 
sures, Lebesgue measure seems to be the best candi- 
date to be a canonical measure. In the class of count- 
ably additive not necessarily invariant measures, to 
find a universal measure we have to use a strong addi- 
tional set-theoretical assumption and this seems to be 
too high a price. Thus the best improvement of Le- 
besgue measure seems to be the Banach construction 
of a finitely additive isometrically invariant extension 
of Lebesgue measure on the plane and line. However, 
such a measure does not exist on R" for n 1 3, and to 
keep the theory of measures uniform for all dimen- 
sions we cannot accept the Banach measure on the 
plane as the best solution to the measure problem. 

From this discussion it seems clear that there is no 
reason to depose Lebesgue measure from the place it 
has in modern mathematics. Lebesgue measure also 
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has a nice topological p roper ty  called regularity: for 
every  E ~ ~e and  every  e > 0, there exists an open  set 
V D E and closed set F C E such that m ( V \ F )  < ~. It is 
no t  difficult  to p rove  that  Lebesgue  measu re  is the 
richest countably  addit ive measure  having this prop- 
er ty  (see [Ru], Thm.  2.20, p. 50). 

References 

[Ba] S. Banach, Sur le probl6me de la mesure, Fund. 
Math. 4 (1923), 7-33. 

[BT] S. Banach and A. Tarski, Sur la d6composition des 
ensembles de points en parties respectivement con- 
gruents, Fund. Math. 6 (1924), 244-277. 

[Ci] K. Ciesielski, Algebraically invariant extensions of 
tr-finite measures on Euclidean spaces, to appear. 

[CP] K. Ciesielski and A. Pelc, Extensions of invariant 
measures on Euclidean spaces, Fund. Math. 125 
(1985), 1-10. 

[Ev] H. Eves, An Introduction to the History of Mathematics, 
Saunders College Publishing, 1983. 

[Har] A.B.  Harazi~vili, On Sierpifiski's problem con- 
cerning strict extendability of an invariant measure, 
Soviet. Math. Dokl. 18 no. 1 (1977), 71-74. 

[Haw] T. Hawkins, Lebesgue Theory of Integration, The Univ. 
of Wisconsin Press, 1970. 

[Hu] A. Hulanicki, Invariant extensions of the Lebesgue 
measure, Fund. Math. 51 (1962), 111-115. 

Ue] T. Jech, Set Theory, Academic Press, 1978. 
[Le] H. Lebesgue, Contribution a l'6tude des correspon- 

dances de M. Zermelo, Bull. Soc. Math. de France 35 
(1907), 202-221. 

[Ma] R .D.  Mauldin, The Scottish Book, Birkh/iuser, 
Boston, 1981. 

[Mo] G. Moore, Zermelo's Axiom of Choice, Springer- 
Veflag, New York, 1982. 

[Pk] S.S. Pkhakadze, K teorii lebegovskoi mery, Trudy 
Tbilisskogo Matematiceskogo Instituta 25, Tbilisi 
1958 (in Russian). 

[Ra] J. Raisonnier, A mathematical proof of S. Shelah's 
theorem on the measure problem and related re- 
sults, Isr. J. Math. 48 (1984), 48-56. 

[Ru] W. Rudin, Real and Complex Analysis, McGraw-Hill 
Book Company, 1987. 

[So] R. Solovay, A model of set theory in which every 
set of reals is Lebesgue measurable, Ann. of Math. 92 
(1970), 1-56. 

[Sz] E. Szpilrajn (alias E. Marczewski), Sur l'extension 
de la mesure lebesguienne, Fund. Math. 25 (1935), 
551-558. 

[Ul] S. Ulam, Zur Mass-theorie in der allgemeinen Men- 
genlehre, Fund. Math 16 (1930), 140-150. 

[Vi] G. Vitali, Sul problema della mesure dei gruppi di punti 
di una retta, Bologna, 1905. 

[Wa] S. Wagon, The Banach-Tarski Paradox, Cambridge 
Univ. Press, 1985. 

Dept. of Mathematics, Mechanics and Computer Science 
Warsaw University 
Warsaw, Poland 

B Kpyry ~Ipysefi 3a npaaJInnqnbIM CTOJIOM 
MbI BbIXOJI KHHr~I namefi aaMeqadivi. 
Jlepxca B pyKax xpycT~mnfi SOBbtfi TOM, 
Bce OT ;IytuH Hac C H3efi no3JIpaBa~an. 
~a ,  nacTynna Ham JIoaroxoannbIfi ,~ac, 
H nax:e CKeIITHK MpaqHbIfi ynbt6nyac~. 
O H  noJIoI I IeJ I ,  qTOSbI  no3JIpaBnTb Mac, 
A s OT pa~OCTH.., npocuyaca.  

Ha cna M. F. Kpefina B HoaoroamoIo  HOqb 1963 r. 
Ho CBItJIeTeJIbCTBy I/I. C. HOXBIa~oaa. 

A r o u n d  the festive table all our  friends 
Have  come to mark our  new  book 's  publication. 
The n e w  and shiny volume in their hands,  
They  offer Is and me congratulation. 
Our  long-awaited hour  has come at last. 
The soures t  skeptic sees he  was mistaken 
And  smiling comes to cheer  us like the rest; 
And  I am so d e l i g h t e d . . .  I awaken. 

From M. G. Krein's dream, N e w  Year's 1963, as 
repor ted  by  I. S. Iokhvidov.  

English vers ion  by  Chand le r  Davis. (The book 
dreamt  of, Introduction to the theory of linear non- 
selfadjoint operators by I. C. Gohberg  and M. G. 
Krein, was publ ished only in 1965.) 

and 

Dept. of Mathematics 
The University of Louisville 
Louisville, KY 40292 USA 

58 THE MATHEMATICAL INTELLIGENCER VOL. 11, NO. 2, 1989 


