How Good Is Lebesgue Measure?

The problem of determining the distance between two
points, the area of a region, and the volume of a solid
are some of the oldest and most important problems in
mathematics. Their roots are in the ancient world. For
example, the formula for the area of a circle was al-
ready known to the Babylonians of 2000 to 1600 B.C.,
although they used as 7 either 3 or 3%. The Egyptians
of 1650 B.C. used w = (43)* = 3.1604... . The first
crisis in mathematics arose from a measurement
problem. The discovery of incommensurable magni-
tudes by the Pythagoreans (before 340 B.C.) created
such a great “logical scandal” that efforts were made
for a while to keep the matter secret (see [Ev], pages
25, 31, 85, 56).
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Krzysztof Ciesielski*

For a given subset of R"”, what do we mean by the
statement that some number is its area (for n = 2),
volume (for n = 3) or, more generally, its n-dimen-
sional measure? Such a number must describe the size
of the set. So the function that associates with some
subsets of R” their measure must have some “good”
properties. How can we construct such a function and
what reasonable properties should it have?

This question, in connection with the theory of inte-
gration, has been considered since the beginning of
the nineteenth century. It was examined by such well-
known mathematicians as Augustin Cauchy, Lejeune
Dirichlet, Bernhard Riemann, Camille Jordan, Emile
Borel, Henri Lebesgue, and Giuseppe Vitali (see
[Haw]). Lebesgue’s solution of this problem, dating
from the turn of the century, is now considered to be
the best answer to the question, which is not com-
pletely settled even today.

Lebesgue Measure

In his solution Lebesgue constructed a family ¥ of
subsets of Euclidean space R" (where n = 1, 2,...)
and a function m: ¥ — [0,] that satisfies the following
properties:

(a) ¥ is a o-algebra, i.e., ¥ is closed under countable
unions (if A, € & for every natural number k then
U {Ax: k € N} € ¥) and under complementation
(A € ¥ implies R"™\A € ¥);

(b) [0,1]" € & and m([0,1]") = 1;
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(c) m is countably additive, i.e., for every family
{Ax: k € N} of pairwise disjoint sets from &,

(d) m is isometrically invariant, i.e., for every iso-
metry i of R*

(1) A € Y if and only if i(A) € &;
(2) m(A) = m(i(A)) for every Ain &.

Recall that a function i: R” —> R" is an isometry pro-
vided it preserves distance, in other words, i is com-
posed of translations and rotations.

The properties (a)—(d) seem to capture perfectly our
intuitive notion of area and volume. Lebesgue mea-
sure is not sensitive to moving sets around without
distorting them. To find the measure of a set it suffices
to split it up into a finite or countable family of disjoint
sets and then to add up their measures (provided, of
course, that each piece is measurable). However, we
should ask at least one more question: “With how
many sets does Lebesgue measure deal?” or ““How big
is the family ¥?” In particular, we should decide
whether m is universal, i.e., whether ¥ is equal to the
family P(R") of all subsets of R”".

Unfortunately the answer to this question is nega-
tive. In 1905 Vitali constructed a subset V of R” such
that V is not in & (see [Vi], [Haw], p. 123, or [Ru],
Thm. 2.22, p. 53). His proof is easy, so we shall repeat
it here forn = 1.

Forxin [0,1]letE, = {y € [0,1]: y — x € Q} and put
% = {E,: x € [0,1]}. Clearly € is a nonempty family of
non-empty pairwise disjoint sets. Therefore, by the
Axiom of Choice there exists a set V C [0,1] such that
V N E has exactly one element for every E € €. We
prove that V is not in &.

First notice thatif V + g = {x + g:x € V}forg € Q,
then V + gand V + p are disjoint for distinct p, g €
Q. Otherwise x + g = y + p for some x, y € Vso x
and y both belong to the same E € €. Then VN E
contains more than one element, contradicting the
definition of V.

Now if Visin &, then sois V + g for every g € Q,
and m(V) = m(V + g). But J {V + :4€ QN [0,1]}
C [0,2] and so

> mV+g) =m|J{V+4qeQnoil
4€QN[0,1]
| = m([0,2])) = 2.
This implies m(V) = m(V + q) = 0 for every g € Q.

On the other hand, [0,1] CR = U {V + gq: 9 € Q}
which implies

m((01) < m(_JV + g:9 €Q = m(V + 9) =0,

9€Q

which contradicts property (b) of Lebesgue measure.
Thus V is not in &. (For the general case, modify the
above proof using V x [0,1]*~1.)

Notice that if w: I — [0,] satisfies conditions
(a)—(d) (we will call such a function an invariant mea-
sure) then the above proof shows that V ¢ Ii. Thus,
V is not measureable for any invariant measure. In
particular, there is no invariant measure p: it — [0,]
which is universal, i.e., for which I equals P(R").

Another remark we wish to make is that in Vitali’'s
proof we used the Axiom of Choice (hereafter abbre-
viated AC). At the beginning of the twentieth century
the Axiom of Choice was not commonly accepted (see
[Mo]) and Lebesgue had his reservations about Vitali’'s
construction (see [Le] or [Haw], p. 123). Today we ac-
cept the Axiom of Choice, so we cannot support
Lebesgue’s complaints. But was Lebesgue completely
wrong?

If we do not accept the Axiom of Choice then Vitali’'s
proof will not work. In 1964 Robert Solovay (see [So]
or [Wa], Ch. 13) showed something much stronger:
we cannot prove that ¥ # P(R") without AC. More
precisely, he proved that there exists a model (“‘a
mathematical world”’) in which the usual Zermelo-
Frankel set theory (ZF) is true and where all subsets of
R" are Lebesgue measurable, i.e., ¥ = P(R"). More-
over, although the full power of the Axiom of Choice
must fail in this “world,” the so-called Axiom of De-
pendent Choice (DC) is true in the model. In fact, DC
tells that we can use inductive definitions and there-
fore all classical theorems of analysis remain true in
this “world.”

Solovay’s theorem has only one disadvantage. Be-
sides the usual axioms of set theory (ZF), Solovay’s
proof uses an additional axiom: there exists a weakly
inaccessible cardinal (in abbreviation WIC, see [Je], p.
28). The theory ZF + WIC is essentially stronger than
ZF. For over 20 years mathematicians wondered
whether it is possible to eliminate the hypothesis re-
garding WIC from Solovay’s theorem, but in 1980
Saharon Shelah showed that it cannot be done,
proving that the consistency of the theory ZF + DC +
“¥ = PR")” implies the consistency of the theory ZF
+ WIC (see [Ra] or [Wa], p. 209).

Extensions of Lebesgue Measure

Let us go back to doing mathematics with the Axiom
of Choice. We know that Lebesgue measure is not uni-
versal, i.e., ¥ # P(R"). So let us examine the problem
of how we can improve Lebesgue measure. The prop-
erties (a)-(d) of Lebesgue measure seem to be
most desirable. Therefore, we will try to improve
m: ¥ — [0,©] by examining its extensions, the func-
tions p: M — [0,%] such that ¥ C M C P(R") and
Xy = m(X) forall X € &.
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By Vitali’s theorem, if w is an invariant measure
then I # P(R"). In this context the following question
naturally appears: “How far can we extend Lebesgue
measure and what properties can such an extension
preserve?” This question has been investigated care-
fully by members of the Polish Mathematical School
and all but one of the results presented here were
proved by this group.

Let us first concentrate on the extensions that are
invariant measures. The first result in this direction is
due to Edward Szpilrajn (who later changed his name
to Edward Marczewski). In 1936 he proved that Le-
besgue measure is not a maximal invariant measure,
i.e., that there exists an invariant measure that is a
proper extension of Lebesgue measure. In connection
with this result, Waclaw Sierpiniski (in 1936) posed the
following question “Does there exist any maximal in-
variant measure?”’ (see [Sz]). Let us notice that by
property (b) any such measure should extend Le-
besgue measure.

How far can we extend Lebesgue measure and
what properties can such an extension pre-
serve?

This question was examined by several mathemati-
cians under different assumptions. The answer was
always the same: there is no maximal invariant mea-
sure. The first result was noticed by Andrzej Hulanicki
in 1962 (see [Hu]) under the additional set-theoretical
assumption that the continuum 2 is not RVM (this
assumption will be discussed later in this article). This
result was also obtain by S. S. Pkhakadze (see [Pk])
using similar methods. In 1977 A. B. Harazigvili (from
Georgia, USSR) got the same answer in the one-di-
mensional case without any set-theoretical assump-
tion (see [Har]). Finally, in 1982 Krzysztof Ciesielski
and Andrzej Pelc generalized Harazi3vili's result to all
n-dimensional Euclidean spaces (see [CP] or [Ci]).

The idea of Ciesielski and Pelc’s proof is due to Ha-
razi$vili. Using the algebraic properties of the group of
isometries of R” they constructed a family {N;: j =
0,1,2,3,...} of subsets of R* with following proper-
ties:

R = U {N:j=012..}

(ii) if p: M — [0,] is an invariant measure then
N; € M implies p(N)) = 0;

(ili) for every invariant measure p: I8 — [0,%0] and
for every natural number j there exists an invariant
measure v: # — [0,] extending p. such that N; € 3.

This result easily implies the nonexistence of a max-
imal invariant measure. If p: I8 — [0,] is an invariant
measure then, by (ii), there exists a natural number j
such that N; ¢ I, because otherwise we would have
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w([0,1]") < w(R") = M(U Nj) <> wN) =0
j=0 j=1

Therefore the invariant measure v as in (ii) is a proper
extension of p and so . is not maximal.

At this stage of our discussion we are able to give a
partial answer to the question of our title. If we restrict
our search to invariant measures, then Lebesgue mea-
sure is not the richest. However, any other invariant
measure has the same defect. This means that if we
would like to compare invariant measures only by the
size of their domain then the best solution to the mea-
sure problem simply does not exist. On the other
hand, if we deal only with the subsets of R” con-
structed without the Axiom of Choice but using the
induction allowed by DC (this is the case in all con-
structions in classical analysis) then all sets we are in-
terested in are Lebesgue measurable. Thus, in view of
the above arguments and the naturalness of Le-
besgue’s construction, the Lebesgue measure is the
unique reasonable candidate to be a canonical in-
variant measure.

Another idea to improve Lebesgue measure was to
extend it to a universal measure p: ?(R"”) — [0,%] by
weakening some part of properties (a)-(d), thus
avoiding Vitali’s argument. The most popular ap-
proach is to drop isometric invariantness and to con-
sider as measures the functions p: I8 — [0,%] that sat-
isfy conditions (a), (b), and (c). This definition of mea-
sure is common today mostly because we can easily
generalize it from R” to an arbitrary set. To answer the
question of when there exists a universal measure ex-
tending Lebesgue measure, let us consider the fol-
lowing sentence: “There exists a measure p: P(R) —
[0,] satisfying (a)—(c) such that m({x}) = 0 for all
x € R.” If this sentence holds, we say that 2* is RVM,
i.e., on the continuum there is a real-valued measure.

It is well known that if 2* is RVM, then there exists a
universal extension of Lebesgue measure (the con-
verse implication is obvious). We shall sketch the
proof of this theorem for the one-dimensional case by
finding the measure p: $([0,1]) — [0,] extending Le-
besgue measure. So let v: #(R) — [0,] be a measure
such that v({x}) = 0 for x € R. For every X C R there
exists Xy C X such that v(Xy) = %2 v(X) (for the proof
see [Je], Ex. 27.3 and Thm. 66, p. 297). So by an easy
induction we can define the family of sets {X,: s is a
finite sequence of 0s and 1s} such that: v(Xg) = 1
(9D is considered to be a sequence of length 0), X,q,
Xa1 C X, and v(X,5;) = Y2 (X)) where sni means an
extension of sequence s by digit i. For A C [0,1] we
defined p(A) by

W(A) = v(U N xa(,.)),

a€EA n=1

where a(n) is the sequence of the first n digits of the



binary representation of a. It is not difficult to see that
this u really extends Lebesgue measure on [0,1].

The systematic investigation of the statement "2 is
RVM"” was started in 1930 by Stanislaw Ulam, when
he proved that it implies the existence of a weakly in-
accessible cardinal (i.e., axiom WIC), so it cannot be
proved under the usual axioms of set theory (see [Ul]
or [Je], Thm. 66, p. 297). Although this result was fun-
damental for one of the most interesting parts of
modern set theory, namely the theory of large car-
dinals, for our discussion it is only a disadvantage. It
means that in order to have a universal countably ad-
ditive measure extending Lebesgue measure we not
only lose isometric invariantness, we must also as-
sume a very strong additional axiom that is usually not
accepted by mathematicians.

Finitely Additive Extensions of
Lebesgue Measure

Let us consider another approach to the universal ex-
tension of Lebesgue measure by asking: “Is it really
necessary to assume that measure is countably addi-
tive? Isn’t it enough to deal with finitely additive mea-
sures?”’ More precisely, let us consider the properties:

(@') ¥ is an algebra, i.e., ¥ is closed under unions (if
A,B € ¥ then A U B € ¥) and under complementation
(A € ¥ implies R"™\ A € ¥);

(c') m is finitely additive, i.e., for every disjoint pair
A and B from ¥,

m(A U B) = m(A) + m(B).

A function m: IR — [0,] satisfying the properties
@'), (b"), (c') and (d) will be called a finitely additive
isometrically invariant measure. Does there exist a
universal finitely additive isometrically invariant mea-
sure extending Lebesgue measure?

Stefan Banach (see [Ba] or [Wa]) proved in 1923 that
such a measure exists on the plane and on the line
(i.e., forn = 2 and n = 1). This beautiful result seems
to be the only reasonable improvement of Lebesgue
measure. But what is going on with n-dimensional Eu-
clidean spaces for n = 3? The answer, due to Stefan
Banach and Alfred Tarski (1924; see [BT] or [Wa)), is
surprising: there is no universal finitely additive iso-
metrically invariant extension of Lebesgue measure for
n = 3. But undoubtedly more surprising is the result
that leads to this conclusion: the Banach-Tarski Par-
adox. :

To state this paradox let us introduce the following
terminology. We say that a set A C R is congruent to
B C R"if we can cut A into finitely many pieces and
rearrange them (i.e., transform each of these pieces
using some isometry of R") to form the set B. The
Banach-Tarski Paradox is the theorem that a ball B
with volume 1 is congruent to the union of two similar

disjoint balls B, and B, each having the same volume
1! There is even more: we can do this by cutting the
ball B into only five pieces. This result is so paradox-
ical that our discomfort with it can probably be com-
pared only with the Pythagorean “logical scandal”
connected with the discovery of incommensurable line
segments. This is also one of the strongest arguments
against the use of the Axiom of Choice (see [Mo], p.
188).

But what about our measures on R*? It is easy to see
for every universal finitely additive isometrically in-
variant measure p that if X C R" is congruent to Y C
R?, then pw(X) = p(Y). In particular w(B) = w(B, U By).
But for 3-dimensional Lebesgue measure m(B) = 1 # 2
= m(B; U B,), so p doesn’t extend Lebesgue mea-
sure m.

Connected with this paradox is a nice open
problem, the Tarski Circle-Squaring Problem from
1925, about which Paul Erdos wrote (see [Ma], p. 39):

It is a very beautiful problem and rather well known. If it

were my problem I would offer $1000 for it—a very, very
nice question, possibly very difficult.

Tarski noticed that although in 3-dimensional Eu-
clidean space all bounded sets with nonempty interior
are congruent, this is not the case on the plane where
sets with different Lebesgue measure are not con-
gruent. But what about subsets of the plane with the
same measure? In particular he formulated his Circle-
Squaring Problem: “Is a square with unit measure
congruent to a circle with the same measure?” This
problem seems to be so difficult that Stan Wagon
wrote about it (see [Wa], p. 101): “The situation seems
not so different from that of the Greek geometers who
considered the classical straight-edge-and-compass
form of the circle-squaring problem.”

Conclusion

So, what is the answer to the question “How good is
Lebesgue measure?”’ In the class of invariant mea-
sures, Lebesgue measure seems to be the best candi-
date to be a canonical measure. In the class of count-
ably additive not necessarily invariant measures, to
find a universal measure we have to use a strong addi-
tional set-theoretical assumption and this seems to be
too high a price. Thus the best improvement of Le-
besgue measure seems to be the Banach construction
of a finitely additive isometrically invariant extension
of Lebesgue measure on the plane and line. However,
such a measure does not exist on R” for n = 3, and to
keep the theory of measures uniform for all dimen-
sions we cannot accept the Banach measure on the
plane as the best solution to the measure problem.
From this discussion it seems clear that there is no
reason to depose Lebesgue measure from the place it
has in modern mathematics. Lebesgue measure also
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has a nice topological property called regularity: for
every E € ¥ and every € > 0, there exists an open set
V D E and closed set F C E such that m(V'\F) <e. Itis
not difficult to prove that Lebesgue measure is the
richest countably additive measure having this prop-
erty (see [Ru], Thm. 2.20, p. 50).
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B kpyry npy3ei 3a mpa3sgHUYHBIM CTOJIOM
MEI BBIXOJ KHHUTH Hallleii 3aMeuaiy.
Jlepxka B pyKax XpyCTSILH#A HOBbII TOM,
Bce ot gymm Hac ¢ M3el no3apaBisiim.
Ha, sacTynui Hall AOJITOXKAAHHBIR Yac,
W naxe ckenTHK MpayHbIA YIBIGHYICS.
OH nogoweén, 4To6bl NO3IPaBUThH HAC,

A {1 OT palOCTH . . . IPOCHYJICA.

W3 cua M. I'. Kpeiina B HoBoroasiorw Hous 1963 r.
ITo ceuperenscrBy M. C. MoxBunosa.

Around the festive table all our friends

Have come to mark our new book’s publication.
The new and shiny volume in their hands,
They offer Is and me congratulation.

Our long-awaited hour has come at last.

The sourest skeptic sees he was mistaken

And smiling comes to cheer us like the rest;
And I am so delighted . . . I awaken.

From M. G. Krein’'s dream, New Year’s 1963, as
reported by I. S. Iokhvidov.

English version by Chandler Davis. (The book
dreamt of, Introduction to the theory of linear non-
selfadjoint operators by 1. C. Gohberg and M. G.
Krein, was published only in 1965.)

. . . Einstein was always rather hostile to
quantum mechanics. How can one understand
this? I think it is very easy to understand, be-
cause Einstein had been proceeding on different
lines, lines of pure geometry. He had been devel-
oping geometrical theories and had achieved
enormous success. It is only natural that he
should think that further problems of physics
should be solved by further development of geo-
metrical ideas. Now, to have a X b not equal to b
X a is something that does not fit in very well
with geometrical ideas; hence his hostility to it.

P. A. M. Dirac




