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ON CLOSED SUBSETS OF R AND OF R2

ADMITTING PEANO FUNCTIONS

Abstract

In this note we describe closed subsets of the real line P ⊂ R for
which there exists a continuous function from P onto P 2, called a Peano
function. Our characterization of those sets is based on the number of
connected components of P . We also include a few remarks on com-
pact subsets of R2 admitting Peano functions, expressed in terms of
connectedness and local connectedness.

1 Introduction

For a topological space X, we say that X admits a Peano function provided
there exists a continuous map f from X onto X2, which we will refer to as a
Peano function (for X). The classic result of G. Peano [5] states that there
exists a Peano function for the interval [0, 1] ⊂ R.

Throughout this note κ(X) denotes the number (cardinality) of connected
components of X. Recently K. Ciesielski and J. Jasinski [1] gave the following
characterization of compact sets of reals that admit Peano functions.

Theorem 1.1. If P ⊂ R is compact, then P admits a Peano function if and
only if either κ(P ) = 1 or κ(P ) = c.
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In the next theorem, generalizing Theorem 1.1, we give a complete charac-
terization of non-empty closed subsets of R that admit Peano functions. Note
that if X admits a continuous map f = 〈f1, f2〉 from X onto X2, then for ev-
ery n < ω there exists a continuous map gn from X onto Xn. For n = 2k this

can be done by induction: g2k+1 : X → X2k+1

= X2k ×X2k can be defined as
〈g2k ◦f1, g2k ◦f2〉. Then, for any n ≤ 2k, gn can be defined as a composition of

g2k with the projection π : X2k → Xn onto the first n coordinates. Compare
also [6].

2 Closed subsets of the real line

Theorem 2.1. A closed non-empty subset P of R admits a Peano function if
and only if one of the following conditions holds:

(1) κ(P ) = 1

(2.1) κ(P ) = ω and P is countable, unbounded

(2.2) for every n < ω, κ(P \ (−n, n)) = ω and P \ (−n, n) is uncountable

(3.1) κ(P ) = c and P is bounded

(3.2) κ(P \ (−n, n)) = c for every n < ω.

Proof. We first show the sufficiency of each of the conditions (1)–(3.2).

(1) κ(P ) = 1: If P is bounded, then P admits a Peano function by the
classical Peano result, [5]. So, assume that P is unbounded. Then there
exists a sequence [b0, c0] ⊂ [b1, c1] ⊂ [b2, c2] ⊂ · · · of closed intervals such that
P =

⋃
n<ω[bn, cn]. We also have P 2 =

⋃
n<ω[bn, cn]2. Moreover, for some

a ∈ R, P contains either [a,∞) or (−∞, a]. Assume the former case and, for
simplicity, that a = 0. By the classic Peano result, for each n < ω there exists
a continuous surjection fn : [2n, 2n+ 1]→ [bn, cn]2. Then, the union

⋃
n<ω fn

is a continuous surjection from
⋃

n<ω[2n, 2n+1] ⊂ P onto
⋃

n<ω[bn, cn]2 = P 2.
Since P 2 is convex, by the version of Tietze’s theorem from [2], we can extend⋃

n<ω fn to the desired continuous surjection f : P → P 2.

(2.1) κ(P ) = ω and P is countable: If P is countable, unbounded, then
either P ∩ [n,∞) 6= ∅ for all n < ω or P ∩ (−∞, n] 6= ∅ for all n < ω. Assume
the former case. Then, there exists an increasing sequence 〈dn ∈ R\P : n < ω〉
divergent to ∞ such that Pn = P ∩ (dn, dn+1) is non-empty for every n < ω.
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Then, the sets Pn, for every n < ω, and
⋃

k<ω Pk = P ∩ [d0,∞) are clopen in
P . Let P 2 = {cn : n < ω} and notice that f : P → P 2 defined by

f(x) =

{
cn for x ∈ Pn,

c0 for x ∈ P \
⋃

k<ω Pk

is continuous and onto P 2.

(2.2) For every n < ω, κ(P \(−n, n)) = ω and P \(−n, n) is uncountable:
The assumptions imply that for every real s < t the set P \ (s, t) contains a
component [a, b] with a < b. Thus, by an easy induction, we can choose disjoint
components {[an, bn] : n < ω} of P such that an < bn and [an, bn] ⊂ P \(−n, n)
for every n < ω. Clearly,

⋃
n<ω[an, bn] is unbounded.

We make the argument more transparent by assuming that
⋃

n<ω[an, bn]
is unbounded towards positive infinity and (by selecting a subsequence, if
necessary) that a0 < b0 < a1 < b1 < · · · . It is now easy to see that there
exists a sequence of intervals 〈(cn, dn) : n < ω〉 with cn, dn /∈ P , dn = cn+1

such that each set Pn = P ∩ (cn, dn) contains [an, bn] for n < ω. Then, as
before, the sets Pn, for all n < ω, and

⋃
k<ω Pk = P ∩ [c0,∞) are clopen in P .

Notice also that P 2 =
⋃

n<ω Rn, where each Rn is a bounded closed rect-
angle In×Jn; that is, both In and Jn are bounded closed (possibly singleton)
intervals. Indeed, each component of P 2 is of the form C = I ×J , where both
I and J are closed (possibly singleton or unbounded) intervals, while any such
set is a countable union of bounded closed rectangles.

For every n < ω, choose a continuous function fn from Pn onto Rn. It
exists, since Pn can be continuously mapped onto [an, bn] and, with the help
of the classic Peano result, [an, bn] can always be mapped continuously onto
Rn. Let c ∈ P 2 and define

f(x) =

{
fn(x) for x ∈ Pn,

c for x ∈ P \
⋃

k<ω Pk.
(1)

Clearly f : P → P 2 is a Peano function for P .

(3.1) κ(P ) = c and P is bounded: Such sets P admit Peano functions by
Theorem 1.1.

(3.2) κ(P \ (−n, n)) = c for every n < ω: We either have κ(P ∩ [n,∞)) = c
for all n < ω or κ(P ∩ (−∞,−n]) = c for all n < ω. Assume the former case.
Then, there exists an increasing sequence 〈dn ∈ R \P : n < ω〉 diverging to ∞



312 K. C. Ciesielski and J. Jasinski

such that for every Pn = P ∩ (dn, dn+1) we have κ(Pn) = c. Then
⋃

k<ω Pk is
closed and each Pn is compact and open in P .

Since every closed subset of R2 is sigma compact, P 2 =
⋃

n<ωKn, where
each Kn ⊆ R2 is compact. Recall (e.g. [1, p. 70]) that any compact set Q ⊆ R
with κ(Q) = c can be mapped continuously onto any compact K ⊆ R2. For
every n < ω, choose a continuous function fn from Pn onto Kn and fix a
c ∈ P 2. Notice that the function f : P → P 2 defined by the formula (1) above
is a Peano function for P .

We now prove the necessity of the conditions of Theorem 2.1. For the rest
of this section let P ⊆ R be a non-empty closed set, and let f : P → P 2 be
a Peano function for P . It is easy to verify that κ(P ) ∈ {1, ω, c}. Indeed,
κ(P ) cannot be finite greater than 1 because it admits a Peano function so
κ(f [P ]) ≤ κ(P ) while κ(P 2) = κ(P )2. Now if κ(P ) is infinite, then κ(P ) =
|P r Int(P)|. So, below we discuss the three possible values of κ(P ).

κ(P ) = 1: The condition (1) from Theorem 2.1 is satisfied.

κ(P ) = ω: Notice that in this case, by Theorem 1.1, P must be unbounded.
If P is countable, then the condition (2.1) is met. So, let us assume that
|P | = c. Let 〈Kn : n < ω〉 be a sequence of all components of P . Clearly at
least one of the Kn’s, say K0, must be uncountable.

Claim 1: Infinitely many of the Kn’s are uncountable.
Suppose otherwise, that is, that P has a finite number of uncountable com-

ponents. At the same time, P 2 has infinitely many uncountable components,
K0 × Kn, n < ω. Since a continuous image of a single component must be
connected, only finitely many of the uncountable components of P 2 can be
covered by a continuous image of P . Thus, P does not admit Peano functions,
which proves Claim 1.

It follows that P has infinitely many non-degenerate interval components.
At most two of them can be unbounded. Let 〈In〉n<ω be a sequence of all
non-degenerate bounded interval components of P and set F =

⋃
n<ω In.

Claim 2: F is unbounded.
By way of contradiction assume that F is bounded. Then, there exists

an n < ω such that F ⊆ [−n, n]. Observe that P cannot have unbounded
components. Indeed, if P did have an unbounded component, then P 2 would
have infinitely many unbounded components. However, since F ⊆ [−n, n], a
continuous image of P can have at most two unbounded components, since
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Figure 1: Illustration why the set F in Claim 2 must be unbounded.

the image of P ∩ [−n, n] is compact. So, such P would not admit a Peano
function. Thus, our P does not have any unbounded components so Pr[−n, n]
is countable. Therefore, once again, no continuous function f from P can be
onto P 2, since f [P ∩ [−n, n]], being compact, is contained in [−m,m]2 for
some m < ω, and for any x ∈ P r [−m,m] the uncountable set {x}× I0 ⊂ P 2

cannot be covered by the countable set f [P r [−n, n]], see Figure 1. So, F
must be unbounded, which proves Claim 2.

Clearly, the two claims imply (2.2).

κ(P ) = c: If P is bounded, then we have condition (3.1). So assume that the
set P is unbounded. We must show that for all n < ω, κ(P r (−n, n)) = c.
Suppose otherwise, that there is an n0 < ω with κ(P r (−n0, n0)) ≤ ω. Since
f [P ∩ [−n0, n0]] is compact, it is contained in [−m,m]2 for some m < ω. For
any x ∈ P r [−m,m], the set {x} × P ⊂ P 2 r f [P ∩ [−n0, n0]] intersects
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uncountably many components of P 2, so it cannot be covered by a continuous
image of P r (−n0, n0) since it has only countably many components.

3 Compact subsets of the plane

The case of connected and locally connected sets is made clear by the following
theorem.

Theorem 3.1. If P is a compact, connected and locally connected metric
space, then P admits a Peano function.

Proof. We may assume that P has two different points, a, b ∈ P . Let d be
the metric on P and define a function g : P → [0,∞), g(x) = d(x, b). The
space P is compact and connected so, by the intermediate value theorem (see
e.g. [4, Theorem 24.3]), g[P ] = [0, α] for some α ∈ (0,∞). Also, since P 2

is still a compact, connected and locally connected metric space [4, Theorem
23.6], by Hahn-Mazurkiewicz Theorem [3, p. 129], there exists a continuous
function h from [0, α] onto P 2. Then, f = h ◦ g is a Peano function for P .

For compact connected subsets P of R2 that are not locally connected, the
situation is not that simple, since such a space need not be path connected.

Example 3.2. If P = {〈x, sin(1/x)〉 : x ∈ (0, 1]}∪ ({0}× [−1, 1]) is the topol-
ogist’s sine curve [4, p.157], then there is no continuous function from P onto
P 2.

Proof. Since a continuous image of a path connected set is path connected,
the two path components of P cannot be mapped onto four path components
of P 2.

What about compact path connected subsets P of R2 that are not locally
connected? Here is another counterexample. In its statement, for every r ∈ R,
the set Ir represents the closed line segment in R2 connecting 〈0, 1〉 with 〈r, 0〉.
Moreover, S = {0} ∪ {1/n : n = 1, 2, 3, . . .}.
Example 3.3. Let P =

⋃
r∈S Ir be the closed infinite broom, see Figure 2.

(Compare [4, p. 162].) Then, there is no continuous function from P onto P 2.

Proof. An argument bares some similarity to the fact that S cannot be
continuously mapped onto S2, a special case of [1, lemma 4.3]. Recall that
P is not locally connected at the point 〈0, 0〉. Actually, for every open V
containing 〈0, 0〉 and of diameter less than 1, the sets V ∩ I1/n are pairwise
disjoint, closed in V , and non-empty for all but finitely many n.

By way of contradiction, assume that P admits a Peano function f . We
will show that this assumption implies that
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• {〈0, 0〉} × P ⊂ f [I0].

However, • is impossible, since a continuous image of an interval must be
locally connected [3, p. 129]. At the same time, no locally connected subspace
T of P 2 can contain {〈0, 0〉} ×P , since for such T every connected C ⊂ P 2 of
diameter less than 1 and with 〈〈0, 0〉, 〈0, 0〉〉 ∈ C must be contained in I20 , so
it has empty interior in T .

To see •, fix a p ∈ P and let t = 〈〈0, 0〉, p〉. We need to show that t ∈ f [I0].
For this, consider the sequence 〈tn〉n = 〈〈〈1/n, 0〉, p〉〉n, in P ×{p}, converging
to t and notice, that

(∗) for every s ∈ S, the set f [Is] can contain only finitely many tn’s.

Indeed, otherwise, we would have t ∈ f [Is], and every open U in f [Is] contain-
ing t would intersect infinitely many sets Kn = I1/n × P , see Figure 2. Since,
for every U of diameter less than 1, the sets U ∩Kn are pairwise disjoint and
clopen in U , this would mean that f [Is] is not locally connected at t.

Using (∗) and the assumption that f is onto P 2, we can choose a subse-
quence 〈tni〉i and distinct points si ∈ S such that tni ∈ f [Isi ] for every i. Let

Figure 2: There is no Peano function for the infinite broom P . The outlined
parallelogram represents the set K3 = I1/3 × P .
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xi ∈ Isi be such that f(xi) = tni . Since P is compact, choosing a subsequence
if necessary, we can assume that 〈xi〉i converges to an x ∈ P . Since the points
si are distinct, x ∈ I0. Thus, t = limi tni

= limi f(xi) = f(limi xi) = f(x) ∈
f [I0], as we were to prove.

Can the argument from the above example be generalized to any compact
path connected subset P of R2 that is not locally connected? A negative
answer is given by the following example. In its statement, C ⊂ [0, 1] stands
for the Cantor ternary set.

Example 3.4. Let P =
⋃

r∈C Ir be the closure of Knaster-Kuratowski ex-
ploding set. Then P is compact, path connected and not locally connected.
Moreover, there exists a continuous function from P onto P 2.

Proof. Suppose p = 〈p1, p2〉 : C × [0, 1] → [0, 1]2 is defined as p(x, y) =
〈x(1 − y), y〉 and notice that P = p[C × [0, 1]], since p[{r} × [0, 1]] = Ir.
Clearly p is a continuous closed map. As such, it is a quotient map, see for
example [4, p. 137].

Let k = 〈k1, k2〉 and h = 〈h1, h2〉 be the Peano functions for C and [0, 1],
respectively. Moreover, assume that h(1) = 〈1, 1〉, which is satisfied for the
standard Peano curve. Let g = 〈p ◦ 〈k1, h1〉, p ◦ 〈k2, h2〉〉 : C × [0, 1] → P 2.
Clearly, g is continuous and onto P 2. Moreover, g is constant on any set
p−1({z}) with z ∈ P . (Indeed, if p(c0, y0) = p(c1, y1) for distinct 〈c0, y0〉 and
〈c1, y1〉 from C × [0, 1], then y0 = y1 = 1. So, by h(1) = 〈1, 1〉, g(ci, yi) =
p(ki(ci), 1) = 〈0, 1〉 for i < 2.) Therefore, by [4, Theorem 22.2], there exists a
continuous function f from P onto P 2, the desired Peano map.

Problem 1. Characterize the compact connected (or just path connected)
subsets of the plane that admit a Peano function.

References

[1] K. C. Ciesielski and J. Jasinski, Smooth Peano functions for perfect sub-
sets of the real line, Real Anal. Exchange, 39(1) (2014), 57–72.

[2] J. Dugunji, An extension of Tietze’s theorem, Pacific J. Math., 1(3)
(1951), 353–366.

[3] J. G. Hocking and G. S. Young, Topology, Addison-Wesley, 1961.

[4] J. R. Munkres, Topology, Prentice Hall, 2nd ed., 2000.

[5] G. Peano, Sur une courbe, qui remplit toute une aire plane, Math. Ann.,
36 (1890), 157–160.



Sets Admitting Peano Functions 317

[6] H. Sagan, Space-Filling Curves, Springer-Verlag, 1994.



318 K. C. Ciesielski and J. Jasinski


