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Abstract. Let P (X,F) denote the property: For every function f : X × R → R, if
f(x, h(x)) is continuous for every h : X → R from F , then f is continuous. We investigate
the assumptions of a theorem of Luzin, which states that P (R,F) holds for X = R
and F being the class C(X) of all continuous functions from X to R. The question for
which topological spaces P (X,C(X)) holds was investigated by Dalbec. Here, we examine
P (Rn,F) for different families F . In particular, we notice that P (Rn, “C1”) holds, where
“C1” is the family of all functions in C(Rn) having continuous directional derivatives
allowing infinite values; and this result is the best possible, since P (Rn, D1) is false, where
D1 is the family of all differentiable functions (no infinite derivatives allowed).

We notice that if D is the family of the graphs of functions from F ⊆ C(X), then
P (X,F) is equivalent to the property P ∗(X,D): For every f : X × R → R, if f�D is
continuous for every D ∈ D, then f is continuous. Note that if D is the family of all
lines in Rn, then, for n ≥ 2, P ∗(Rn,D) is false, since there are discontinuous linearly
continuous functions on Rn. In this direction, we prove that there exists a Baire class 1
function h : Rn → R such that P ∗(Rn, T (h)) holds, where T (H) stands for all possible
translations of H ⊂ Rn×R; and this result is the best possible, since P ∗(Rn, T (h)) is false
for any h ∈ C(Rn). We also notice that P ∗(Rn, T (Z)) holds for any Borel Z ⊆ Rn × R
either of positive measure or of second category. Finally, we give an example of a perfect
nowhere dense Z ⊆ Rn × R of measure zero for which P ∗(Rn, T (Z)) holds.

1. Background. The standard way we teach calculus follows, in its out-
line, the path of the historical development of real analysis: we start with
the theory of functions of one variable, f : R → R; only after this theory is
mastered do we turn to the theory of multivariable functions g : Rn → Rm,
generalizing the one-variable results. But how easily can this generalization
be made? Even if we restrict our attention just to continuity, the transition
is not that simple. True, the dimension of the range of a function is not a
problem, as f = 〈f1, . . . , fm〉 : Rn → Rm is continuous if, and only if, every
coordinate function fi : Rn → R is continuous. However, we do not know
any analogous simple-minded reduction of the dimension of the domain of
a function, when studying the continuity of f : Rn → R. The prehistory of
this problem can be traced to the 1821 mathematical analysis textbook of
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Cauchy [2], where the author, working with the set R of reals with infinites-
imals, proves that f : R2 → R is continuous if, and only if,

(SC) f is continuous with respect to each variable separately, that is,
the mappings

R 3 t 7→ f(x, t) ∈ R and R 3 t 7→ f(t, y) ∈ R

are continuous for every x, y ∈ R.

The fact that this result is false when R is replaced with the standard
set R of real numbers (with no infinitesimals) was not observed for several
decades. A first counterexample to Cauchy’s claim, due to E. Heine (see
[14]), appeared in the 1870 calculus text of J. Thomae [17]. The following
well-known counterexample, included in many calculus books,

(1) f(x, y) =
xy2

x2 + y4
for 〈x, y〉 6= 〈0, 0〉 and f(0, 0) = 0,

comes from the 1884 treatise on calculus by Genocchi and Peano [9]. The
class of functions satisfying (SC), called separately continuous, was studied
by many prominent mathematicians: Volterra (see Baire [1, p. 95]), Baire
(1899, see [1]), Lebesgue (1905, see [12, pp. 201–202]), and Hahn (1919, see
[10]). In particular, these studies led to the introduction of Baire’s classifi-
cation of functions.

Of course, the function (1), though discontinuous, is continuous when
restricted to any straight line. Lebesgue [12] gave an example showing that
the continuity of f : R2 → R at a point is not ensured by the continuity
at this point along the graphs of all analytic functions. These results show
that, to ensure the continuity of f : R2 → R, it is not enough to test the
continuity of the restriction of f to all straight lines or to all graphs of
analytic functions. Along these lines, the major breakthrough is the 1955
result of Rosenthal [16]:

(∗) For any function f : R2 → R, if it is continuous when restricted to
every graph of a continuously differentiable function, from x to y
or from y to x, then f is continuous. However, the implication is
false when considering only the restrictions to the graphs of twice
continuously differentiable functions.

In particular, to verify the continuity of f : R2 → R, it is enough to test
it along (one-dimensional) graphs of C1 (i.e., continuously differentiable)
functions from x to y or from y to x; however, testing for continuity along
graphs of twice continuously differentiable functions is not enough.

In the above characterization, in terms of graphs of C1 functions, is it
necessary to include also graphs of functions from y to x? The answer is neg-
ative if we restrict our attention to graphs of continuous functions, as shown
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by the following theorem of Luzin [13]: For every function f : R2→R, if
f(x, h(x)) is continuous for every continuous h :X→R, then f is continuous.

The goal of this paper is a further study of how small F can be, where F
is a family of functions of one variable, so that the continuity of f : R2 → R
can be ensured by testing only the restrictions of f to graphs of functions
from F . In particular, we show that such a characterization holds for the
class of “C1” functions but is false for the class D1 of differentiable functions.

We also investigate the problem of whether there exists a single continu-
ity testing function g : R → R, for all functions of two variables, where we
take the graph of g together with all its translations. We show that indeed,
such a function g exists in the class of Baire class one functions (i.e., g is a
limit of continuous functions). However, the graph of no continuous function
can be enough for such testing.

2. Preliminaries and notation. For topological spacesW and Z and a
family D of subsets of W , we say that a function f : W → Z is D-continuous
provided the restriction f�D of f to D is continuous for every D ∈ D. We
investigate this question:

(Q) For which families D, does D-continuity imply continuity?

ForW being a productX×Y andD={X × {y} : y∈Y }∪{{x} × Y : x∈X},
D-continuity is known as separate continuity and has been intensively stud-
ied (see e.g. [14, 15, 3, 4] and the literature cited therein). Of course, for
most spaces, separate continuity of f : X × Y → Z does not imply its con-
tinuity. For W = Rn and D being the family of all straight lines in Rn,
D-continuity is known as linear continuity (see e.g. [15, 3, 4]). Once again,
linear continuity of f : Rn → R does not imply its continuity for n > 1.

In this paper we investigate the question (Q) for W = X × Y and D
consisting of functions h : X → Y identified with their graphs. We will
concentrate on the case when X = Rn and Y = Z = R, but state the
results in a more general setting, wherever possible. Notice the following
straightforward relation between the continuity of f�h and of the function
fh : X → Z given as fh(x) = f(x, h(x)).

Fact 1. Let f : X × Y → Z and h : X → Y .

(a) If fh(x) = f(x, h(x)) is continuous, then so is f�h.
(b) If h and f�h are continuous, then so is fh.
(c) fh need not be continuous if h is discontinuous, even when f is

continuous.

Proof. (a) f�h is a composition of two continuous functions, since

(f�h)(x, y) = (fh ◦ π)(x, y),

where π : X × Y → X is the projection onto the first coordinate.
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(b) fh = (f�h) ◦ 〈id, h〉 is a composition of two continuous functions,
where id(x) = x.

(c) Let f(x, y) = y. Then f is continuous and fh = h.

Fact 1 shows that the assumption “f�h is continuous” is weaker than
“fh is continuous”; however, they are equivalent when h is continuous. In
Sections 3 and 4 we will consider only families consisting of continuous
functions h, making the distinction irrelevant. In Section 5, we consider
discontinuous functions h in which case only a weaker assumptions “fh is
continuous” makes sense.

In what follows, we use a convention that if a sequence w̄ = 〈wk ∈
W : k < ω〉 is convergent in W , then its limit is the first element, w0, of
the sequence. The same will be true for the subsequences 〈wki : i < ω〉 of w̄,
that is, we always impose that wk0 = w0 is its limit. In addition, a one-to-
one sequence w̄ will be identified with the set {wk : k < ω} of its values. Let
S(W ) be the family of all one-to-one sequences {wk ∈W : k < ω} converging
in W . (So, limk→∞wk = w0.) The following two simple facts will be used.
We include their proofs to keep the paper self-contained.

Fact 2. Let W be a Hausdorff space and S ⊂ S(W ). If D is a family
of subsets of W such that

(A) for every subsequence S ∈ S(W ) of an S0 ∈ S there exists a D ∈ D
such that D ∩ S ∈ S(W ),

then every D-continuous function f : W → Z is S-continuous.

Proof. Assume that f is D-continuous and fix an S0 = {sk : k < ω} ∈ S.
We need to show that f�S0 is continuous. As W is Hausdorff, every sk ∈ S
with k > 0 is an isolated point in S0. So, it is enough to show that f�S0 is
continuous at s0, that is, limk→∞ f(sk) = f(s0). By way of contradiction,
assume that this is not the case. Then there exist an open neighborhood U of
f(s0) and a subsequence S = {s′k : k < ω} ∈ S(W ) of S0 such that f(sk) /∈ U
for all k > 0. Take a D ∈ D such that D ∩ S ∈ S(W ). Then f�(D ∩ S) is
discontinuous, as f−1(U) contains only the limit point s0 of D∩S. But this
contradicts the continuity of f�D, guaranteed by D-continuity of f .

Obviously, if W is metric (or, more generally, sequential), then S(W )-
continuity of f : W → Z implies its continuity. In the case when W = X×Y ,
we will rely on the same implication for the subfamily Sf (C) of S(X × Y )
when C ⊂ X × Y is dense in X × Y . Here Sf (C) is the family of all se-
quences

S = {〈xk, yk〉 : k < ω} ∈ S(X × Y )

such that 〈xk, yk〉 ∈ C for all 0 < k < ω and S is a partial function from
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X to Y , that is, xi 6= xj for all i < j < ω. We will write Sf for Sf (X × Y )
when X and Y are clear from the context.

Fact 3. Let X, Y , and Z be metric spaces such that X has no isolated
points. Let C be a dense subset of X × Y . If a function f : X × Y → Z is
Sf (C)-continuous, then it is continuous.

Proof. Suppose that f : X × Y → Z is Sf (C)-continuous and let S =
S(X × Y ). It is enough to show that f is S-continuous. To see this, fix an
S = {sk : k < ω} ∈ S(X×Y ). We need to show that f�S is continuous, that
is, limk→∞ f(sk) = f(s0).

Indeed, since C is dense in X×Y and X has no isolated points, for every
k < ω there exists a sequence {〈xki , yki 〉 : i < ω} ∈ Sf (C) with 〈xk0, yk0 〉 = sk.
So, limi→∞ f(xki , y

k
i ) = f(sk). Let ρ and d be the metrics on X × Y and Z,

respectively. For every k > 0 we can choose an ik < ω such that

ρ(〈xkik , y
k
ik
〉, sk) < 2−k and d(f(xkik , y

k
ik

), f(sk)) < 2−k.

Moreover, we can choose the ik’s so that the sequence 〈xkik〉k<0 is one-to-one,

where we put 〈x0i0 , y
0
i0
〉 = s0. Since the inequalities ρ(〈xkik , y

k
ik
〉, sk) < 2−k

ensure that

lim
k→∞
〈xkik , y

k
ik
〉 = lim

k→∞
sk = s0 = 〈x0i0 , y

0
i0〉,

we have {〈(xkik , y
k
ik
〉 : k < ω} ∈ Sf (C), so

lim
k→∞

f((xkik , y
k
ik

) = f(x0i0 , y
0
i0) = f(s0).

But the inequalities d(f(xkik , y
k
ik

), f(sk)) < 2−k yield

lim
k→∞

f(sk) = lim
k→∞

f(xkik , y
k
ik

) = f(s0),

completing the proof.

3. D-continuity for D ⊂ C(X). First notice that the above three facts
immediately imply the following result, which for X = Z = R is due to
Luzin [13] and is a special case of a theorem of Dalbec [5].

Proposition 4. Let X and Z be metric spaces such that X has no iso-
lated points. If f : X ×R→ Z is such that fh(x) = f(x, h(x)) is continuous
for every continuous function h : X → R, then f is continuous.

Proof. By Fact 3 it is enough to show that f is Sf -continuous. So, take an
S ∈ Sf . Then S is a partial function which, by the Tietze extension theorem,
can be extended to a continuous function h : X → R. Since f(x, h(x)) is
continuous, by Fact 1, so is f�h. As S ⊂ h, f�S is continuous.

The main goal of this section is to prove that, in the case when X = Rn

and Z = R, the above result holds even if we additionally require the test
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functions h to be smooth. We say that a function h ∈ C(Rn) is “C1” provided
h has all continuous directional derivatives, where the derivatives are allowed
to have infinite values.

Theorem 5. Let f : Rn × R → R be such that f(x, h(x)) is continuous
for every “C1” function h : Rn → R. Then f is continuous. In other words,
“C1”-continuity implies continuity.

Proof. Let D be the family of all “C1” functions and put S = Sf . By
Facts 2 and 3, it is enough to show that these families have the property (A).
So, let S ∈ S(Rn × R) be a subsequence of an S0 ∈ S = Sf . Then there
exists a subsequence S1 = {sk : k < ω} ∈ Sf of S and an i < n such that
T = {πi(sk) : k < ω} ∈ Sf (R), where πi(x) = x(i) is the projection onto
the ith coordinate. Rosenthal [16] proved that T contains a subsequence
T1 = {πi(skj ) : j < ω} ∈ Sf (R) which can be extended to a monotone con-

tinuous function g : R→ R such that either g is C1, or it has a continuously
differentiable inverse g−1 with (g−1)′(x) 6= 0 for all x ∈ R. In both cases,
g is “C1”. Let h : Rn → R be defined via h(x) = g(πi(x)). Then h is “C1”
and it contains a subsequence S1 = {skj : j < ω} ∈ Sf of S. In particular,
h ∩ S ∈ S(Rn × R), so (A) holds.

Next, note that in the statement of Theorem 5, the class “C1” cannot
be replaced with D1.

Example 6. There exists a D1-continuous function f : R2 → R which
is discontinuous on a perfect subset of R2 of arbitrarily large 1-Hausdorff
measure.

Proof. An example of a D1-continuous function f : R2 → R discontin-
uous at a single point is constructed below: see Corollary 8. A function f
with all stated properties can be defined via f(x, y) = F (y, x), where F is a
function constructed by Ciesielski and Glatzer in [3, Theorem 4].

4. T (h)-continuity for continuous h : Rn → R. Recall that T (h)
consists of all translations of h.

Theorem 7. If h : Rn → R is continuous, then T (h)-continuity of
f : Rn × R→ R does not imply its continuity.

Proof. Fix a continuous function h : Rn → R. Then we will find a T (h)-
continuous function f : Rn × R → R which is not continuous. Let u be an
arbitrary unit vector in Rn. For any x̄ ∈ Rn and δ > 0 let B(x̄, δ) be the
open ball in Rn centered at x̄ of radius δ, and let B̄(x̄, δ) be its closure. Note
that B̄(x̄, δ) is compact.
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Put yk =
∑

i≤k 4−i for k < ω and let ŷ =
∑

i<ω 4−i be the limit of the
yk’s. Let δ−1 = 1 and, by induction on m < ω, choose a positive δm <
1
4δm−1(ŷ − ym)2 such that

(•) for any x̄′, x̄′′ ∈ B̄(0u,m+1), if ‖x̄′−x̄′′‖ ≤ δm, then |h(x̄′)−h(x̄′′)| <
4−(m+2).

Put xk =
∑

i≤k δi for k < ω and let x̂ =
∑

i<ω δi be the limit of the xk’s.
Notice that |x̄− xk| =

∑
j>k δj ≤ δk for every k < ω.

For every k < ω let fk : Rn × R → [0, 1] be a continuous function such
that fk(xku, yk) = 1 and fk(x̄, y) = 0 for all points 〈x̄, y〉 outside of the set

Rk = B(xku, δk)× (yk − 4−(k+2), yk + 4−(k+2)).

Notice that the sets Rk are pairwise disjoint, since

yk+1 − yk = 4−(k+1) > 4−(k+3) + 4−(k+2).

Therefore, f =
∑

k<ω fk is a well defined function from Rn × R to [0, 1].
Clearly, f is discontinuous at 〈x̂u, ŷ〉 and continuous at all other points. To
finish the proof, it is enough to show that f is T (h)-continuous at 〈x̂u, ŷ〉.

So, let h̄ = 〈ā, b〉+ h be a translation of (the graph of) h. Then h̄(x̄) =
b+h(x̄− ā) for every x̄ ∈ Rn. It is enough to show that h̄ intersects at most
finitely many sets Rk. Indeed, this is clearly true if 〈x̂u, ŷ〉 /∈ h̄. So, assume
that 〈x̂u, ŷ〉 ∈ h̄. Then ŷ = h̄(x̂u) = b+ h(x̂u− ā). Let m < ω be such that
x̂u− ā ∈ B̄(0u,m). We will show that h̄ ∩Rk = ∅ for all k > m+ 1.

So, fix such a k and take an x̄ ∈ B(xku, δk). Since ‖x̄ − xku‖ < δk, we
have

‖x̄− x̂u‖ < 2δk ≤ δk−1 ≤ 1.

Therefore, we have x̂u− ā, x̄− ā ∈ B̄(0u,m+ 1) ⊂ B̄(0u, k) and, using (•)
for m = k − 1, we get

|ŷ − h̄(x̄)| = |h̄(x̂u)− h̄(x̄)| = |h(x̂u− ā)− h(x̄− ā)| < 4−(k+1).

At the same time, ŷ − yk =
∑

j>k 4−j > 4−(k+1) + 4−(k+2). Therefore,

|h̄(x̄)− yk| > 4−(k+2) and so h̄(x̄) /∈ (yk − 4−(k+2), yk + 4−(k+2)).

In summary, we have shown that 〈x̄, h̄(x̄)〉 /∈ Rk for any x̄ ∈ B(xku, δk),
that is, h̄ ∩Rk = ∅, as desired.

Notice that if f is as in Theorem 7, h1 : Rn → R is a “D1” function, and
h̄1 = 〈ā, b〉 + h1 is a translation of h1 intersecting infinitely many sets Rk,
then Duh1(x̂u− ā) = ∞, where Du is the directional derivative. In partic-
ular, no D1 function h1 : Rn → R intersects more than finitely many Rk’s,
that is, f is D1-continuous. This leads to the following corollary.

Corollary 8. There exists a discontinuous D1-continuous function
f : Rn × R→ R.
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Finally notice that if X is a normed vector space over R and h : X → R,
then the family T (h) is well defined and we may ask the following question.

Problem 1. For which normed vector spaces X over R does there exist
a continuous function h : X → R such that T (h)-continuity of any function
f : X × R→ R implies its continuity?

By Theorem 7, such an h cannot exist if X is of finite dimension. But
the proof of Theorem 7 cannot help us for X infinite-dimensional, since it
utilizes the compactness of closed balls.

5. T (h)-continuity for Baire 1 functions h : Rn → R. We show
here that there exists a Baire class 1 function h : Rn → R such that T (h)-
continuity of any f : Rn×R→ R implies its continuity. Although, by Theo-
rem 7, such an h cannot be continuous, we will show that its sets of points of
discontinuity can be of the form Pn, where P ⊂ R is compact of Lebesgue
measure 0. The construction of such an h will be based on the following
lemmas. In what follows Cf will denote the set of points of continuity of a
function f .

By Fact 3 to ensure that T (h)-continuity implies continuity it is enough
to make sure that every T (h)-continuous function f : Rn×R→ R is Sf (Cf )-
continuous and that the set Cf is dense. The density of Cf will be ensured
by utilizing the following lemma.

Lemma 9. Let h : Rn → R be such that its graph contains mutually
perpendicular line segments Sj, j = 0, 1, . . . , n. If f : Rn × R → R is T (h)-
continuous, then Cf is dense.

Proof. Let I be an isometry of Rn × R such that each segment I[Sj ] is
parallel to one of the axes of Rn×R. Let D = {I[E] : E ∈ T (h)} and notice
that D = T (I[h]). Clearly, (f ◦ I−1)�I[E] is continuous for every E ∈ T (h).
Thus, f ◦ I−1 is D-continuous. Since for every axis the set I[h] contains
a segment parallel to it, f ◦ I−1 is separately continuous. So, the set G of
points of continuity of f ◦ I−1 is dense (see e.g. [11]). In particular, f is
continuous on a dense set I−1[G].

The Sf (Cf )-continuity of a T (h)-continuous function will be ensured by
the following result.

Lemma 10. Assume that a set X ⊂ Rn has the following property:

(B) Every sequence S ∈ S(Rn) contains a subsequence S1 ∈ S(Rn) such
that

⋂
s∈S1

(X − s) 6= ∅.
Let h : Rn → R be such that h(x) = 0 for all x ∈ X and that the closure
cl(h) of (the graph of ) h contains X × [−1, 1]. If f : Rn × R → R is T (h)-
continuous, then it is Sf (Cf )-continuous.
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Proof. Let S0 ∈ Sf (Cf ) and choose an arbitrary subsequence

S = {〈xk, yk〉 : k < ω} ∈ S(Rn × R)

of S0. It is enough to find a subsequence {〈xki , yki〉 : i < ω} ∈ S(Rn) of S
such that

lim
i→∞

f(xki , yki) = f(x0, y0).

To do this, let Ŝ = {xk : k < ω} and notice that Ŝ ∈ S(Rn). There-
fore, by (B), Ŝ contains a subsequence {xki : i < ω} ∈ S(Rn) such that⋂

i<ω(X − xki) 6= ∅. Let u ∈
⋂

i<ω(X − xki). Then {xki : i < ω} ⊂ X − u.
Moreover, yki ∈ [−1, 1] + y0 for all but finitely many i’s, so we can assume
that {yki : i < ω} ⊂ [−1, 1] + y0. Then

{〈xki , yki〉 : i < ω} ⊂ 〈−u, y0〉+X × [−1, 1] ⊂ 〈−u, y0〉+ cl(h).

Notice that s0 = 〈xk0 , yk0〉∈〈−u, y0〉+h, since h(xk0 +u) = 0, as xk0 +u∈X.
For every i > 0 choose a sequence 〈sij∈〈−u, y0〉+h : j < ω〉 converging to

〈xki , yki〉 ∈ 〈−u, y0〉+ cl(h).

Since 〈xki , yki〉 ∈ Cf , we can choose an si ∈ {sij : j < ω} with

‖si − 〈xki , yki〉‖ ≤ 2−i and ‖f(si)− f(xki , yki)‖ ≤ 2−i.

In particular,

lim
i→∞

si = lim
i→∞
〈xki , yki〉 = 〈xk0 , yk0〉 = s0.

Since {si : i < ω} ⊂ 〈−u, y0〉+h and f is T (h)-continuous, this implies that

lim
i→∞

f(si) = f(s0) = f(x0, y0).

Now ‖f(si)− f(xki , yki)‖ ≤ 2−i ensures that

lim
i→∞

f(xki , yki) = lim
i→∞

f(si) = f(s0) = f(x0, y0),

completing the proof.

The above considerations can be summarized as follows:

Lemma 11. Let h : Rn → R be such that for some bounded open set
U ⊂ Rn, we have

(i) h�(Rn \U) is continuous and contains n+ 1 mutually perpendicular
line segments, and

(ii) U contains a set X with the property (B), and h satisfies the as-
sumptions of Lemma 10.

Then any T (h)-continuous function f : Rn × R→ R is continuous.

Proof. Let f : Rn × R→ R be T (h)-continuous. Then, by (ii) and Lem-
ma 10, it is Sf (Cf )-continuous and, by (i) and Lemma 10, Cf is dense. So,
by Fact 3, f is indeed continuous.
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The last fact needed for the construction of h is the following result.

Theorem 12. There exists a compact perfect set P ⊂ R of measure zero
such that X = Pn satisfies (B). Moreover, (B) is satisfied by any Borel set
X ⊂ Rn which is either of positive measure or of the second category.

Before we prove the theorem, we show, in the next two corollaries, how to
use it to construct the desired function h. The first corollary gives a weaker
result, but its proof relies on the simplest part of Theorem 12.

Corollary 13. There exists a Baire class 2 function h : Rn → R such
that the T (h)-continuity of an f : Rn × R→ R implies its continuity.

Proof. Let U be an open ball in Rn and choose a countable dense sub-
set D of U . By Theorem 12, the set X = U \D has the property (B). Put
h(x) = 0 for all x ∈ X and define h�D such that cl(h�D) = cl(U)× [−1, 1].
This ensures (ii) of Lemma 11. Extend h to Rn so that (i) of Lemma 11 is
satisfied and h is continuous on the complement of U × (−1, 1). Then h is
of Baire class 2 and T (h)-continuity implies continuity.

Corollary 14. There exists a Baire class 1 function h : Rn → R such
that the T (h)-continuity of an f : Rn ×R→ R implies its continuity. More-
over, Ch = Pn, where P ⊂ R is compact nowhere dense. In addition, we
can assume that P is of Lebesgue measure 0.

Proof. By Theorem 12, there exists a compact nowhere dense P ⊂ R for
which X = Pn satisfies (B). Actually, any P of positive measure has this
property, but we can choose P also to be of Lebesgue measure 0.

Let U be an open ball containing Pn. Define h(x) = 0 for x ∈ Pn and

h(x) = sin

(
1

dist(x, Pn)

)
for x ∈ cl(U) \ Pn,

where dist(x, Pn) is the distance of x from Pn.
Extend h to Rn so that (i) of Lemma 11 is satisfied and h is continuous

on the complement of U × (−1, 1). Clearly h is of Baire class 1. Also, the
definition of h on U ensures that (ii) of Lemma 11 is satisfied. So, h is as
desired.

Proof of Theorem 12. If X is Borel of the second category, then there
exists an open ball U = B(x, ε) and a first category set M such that
B \M ⊂ X. Choose an S ∈ S(Rn) and let

S1 = {xk : k < ω} ∈ S(Rn)

be its subsequence such that ‖xk − x0‖ < ε/2 for all k < ω. Notice that⋂
k<ω

(X − xk) ⊃ B(x− x0, ε/2) \
⋃
k<ω

(M − xk) 6= ∅.

So, X satisfies (B).
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Next, assume that X has a positive measure. Let F ⊂ E be of finite pos-
itive measure and choose an S = {vk : k < ω} ∈ S(Rn). Then 〈χF+vk〉k
converges in L1-norm to χF+v0 as k → ∞. So, there is a subsequence
{vki : i < ω} ∈ S(Rn) such that 〈χF+vki

〉i converges a.e. to χF+vk0
. Hence,

for a.e. x ∈ F , we must have χF+vki
(x + vk0) = 1 for sufficiently large i.

That is, (F + vk0)∩
⋃

K≥1
⋂

i≥K(F + vki) is a set of full measure in F + vk0 .

In particular, there exists a K such that

(F + vk0) ∩
⋂
i≥K

(F + vki) 6= ∅.

Then S1 = {vk0} ∪ {vki : i ≥ K} ∈ S(Rn) proves (B).

Finally, we construct a perfect set P ⊂ R of measure 0 that satisfies (B)
for n = 1. Then an easy induction shows that Pn satisfies (B). Actually,
the set P we use is a known example of a compact set of measure zero of
Hausdorff dimension 1 and was studied, e.g., in [7] and [6].

Let K = {2, 3, 4, . . .}. For every number k ∈ K consider the group
Gk = {0, 1, . . . , k−1} with addition modulo k. Moreover, for every sequence
A = 〈Ak ⊂ Gk : k ∈ K〉 of non-empty sets define

P (A) =

{∑
k∈K

ak
k!

: 〈ak〉k ∈
∏
k∈K

Ak

}
.

In what follows, we will consider sets P (A) only for families A = 〈Ak〉k∈K
for which: k − 1 6∈ Ak for all k ∈ K, and Ak has at least two elements for
all but finitely many k ∈ K. Each such P (A) is a nowhere dense, compact,
perfect subset of [0, 1] of measure zero.

Let A0 = 〈A0
k〉k∈K , where A0

k = {0, 1, . . . , k − 2}. We show that P =
P (A0) has the property (B). For this, it is enough to prove that

• every sequence 〈sm ∈ [0, 1]〉m<ω tending to 0 contains a subsequence
〈smi〉i<ω with P (A0) ∩

⋂
i<ω(−smi + P (A0)) 6= ∅.

To see this, we construct, by induction on n < ω, a subsequence 〈smn〉n<ω

and families An = 〈An
k〉k∈K such that the following inductive conditions

hold:

(an) Aj
k ⊂ A

i
k for every i < j ≤ n and k ∈ K.

(bn) For every k ∈ K, k > 3, the set An
k has at least max{2, k− 2− 3n}

elements and k − 2 6∈ An
k provided n > 0.

(cn) P (An) ⊂ P (A0) ∩
⋂

i<n(−smi + P (A0)).

Now for n = 0 the conditions are satisfied. So, assume that they hold
for some n < ω. We need to find an mn (greater than mn−1 for n > 0) and
P (An+1) satisfying the inductive conditions.
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For this, find a k̂ ∈ K such that k̂−2−3n > 4. Choose mn large enough
so that smn <

∑
k>k̂ (k − 1)/k!. We also assume that smn + maxP (A0) < 1.

Find 〈tk〉k ∈
∏

k∈K Gk such that smn =
∑

k∈K tk/k!. Notice that tk = 0 for

k ≤ k̂. So, smn =
∑

k>k̂ tk/k!. We need to find an appropriate An+1.

Notice that, by (cn),

P (A0) ∩
⋂
i<n

(−smi + P (A0)) ⊃ P (An) ∩ (−smn + P (A0)).

Thus, to ensure (cn+1), it is enough to make sure that

P (An+1) ⊂ P (An) ∩ (−smn + P (A0)).

Now, take an x ∈ P (An), that is, x =
∑

k∈K xk/k! for some 〈xk〉k ∈∏
k∈K An

k . The question is how to restrict the choices of x so that they
are also in −smn + P (A0). Of course, this is the case exactly when x +
smn ∈ P (A0). Since x + smn ∈ [0, 1), there exists a 〈ak〉k ∈

∏
k∈K Gk with

x+ smn =
∑

k∈K ak/k!. Thus, we need to examine for which x’s,

(2)
∑
k∈K

xk
k!

+
∑
k∈K

tk
k!

=
∑
k∈K

ak
k!

belongs to P (A0), that is, when ak 6= k − 1. For this, notice that

(†) either ak = xk + tk modulo k, or ak = xk + tk + 1 modulo k.

For k ≥ k̂, let Xk consist of the possible values xk ∈ Ak such that ak = k−1
in (†), and in addition also the value k − 2. Then Xk has at most three

elements. For k ≥ k̂, let An+1
k = An

k \Xk, and for k < k̂, let An+1
k = An

k .

This choice clearly ensures (an+1) and (bn+1). Now, to see (cn+1) we
need to show that if we choose x from P (An+1), then ak 6= k − 1 for every

k ∈ K. For k > k̂, we have definitely arranged that ak 6= k − 1 by using (†)
and by arranging that An+1

k ∩Xk = ∅. For k ≤ k̂, we have tk = 0. If k = k̂,

then ak = xk or ak = xk + 1. Since we have arranged that k− 2 /∈ An+1
k , we

have xk < k − 2 and so ak 6= k − 1. If k < k̂, then ak = xk is the part of (†)
that holds, and so ak = xk < k − 1 by the inductive hypotheses.

Although the set P = P (A0) ⊂ [0, 1] constructed above has Lebesgue
measure zero, it is big in the sense that it has Hausdorff dimension 1 (see
below). On the other hand, the following example shows that there exist
perfect sets P ⊂ [0, 1] of arbitrary large Hausdorff dimension s < 1 which
fail to have the property (B).

Example 15. For every n ≥ 2 the set

Pn =

{ ∞∑
k=1

ak
nk

: ak ∈ {0, 1, . . . , n− 2} for all k

}
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does not have the property (B). In particular, the Cantor ternary set C =
2P3 does not satisfy (B).

Proof. Choose the numbers {rmk ∈ {0, 1, . . . , n−1} : k,m < ω} randomly,
independently, with each value of rij having the same probability. For m > 0

let sm =
∑∞

k=m am,k/n
k, where am,k = n− 1 when k is even and am,k = rmk

when k is odd. Then limm→∞ sm = 0, so, for s0 = 0, we have

S = {−sm : m < ω} ∈ S(R).

But (B) fails for X = Pn and S, since

• Pn ∩
⋂

m∈M (Pn − sm) = ∅ for every M ⊂ {1, 2, . . .} of size n.

Indeed, for contradiction assume that there exists an x =
∑∞

k=1 ak/n
k in

Pn ∩
⋂

m∈M (Pn − sm). This means that

x+ sm =
∞∑
k=1

ak
nk

+
∞∑

k=m

am,k

nk
∈ Pm for every m ∈M .

In particular, if m0 = maxM , then for every m ∈M and k > m0 either

ak +m am,k 6= n− 1 or 1 +m ak +m am,k 6= n− 1,

where +m is addition modulo m. For k even this translates to: either

ak +m n− 1 6= n− 1 or 1 +m ak +m n− 1 6= n− 1.

This can happen only when either

ak + n− 1 > n− 1 or 1 + ak + n− 1 > n− 1,

meaning that for k − 1 we need to consider only the restriction

1 +m ak−1 +m am,k−1 6= n− 1 for all m ∈M .

Now, the randomness of the choice of the numbers rmk ensures that there
exists an even k>m0 such that{am,k−1 : m∈M} equalsGn={0, 1, . . . , n−1}.
So, the restriction above leads to

1 +m ak−1 +m j 6= n− 1 for all j ∈ Gn,

which is clearly impossible.

A calculation similar to that from [8, Theorem 1.14] shows that Pm has
Hausdorff dimension ln(m− 1)/ln(m). Also, there is an interval J such that
J ∩ Pm still has the same Hausdorff dimension and J ∩ Pm ⊂ P (A0). So,
indeed P (A0) has Hausdorff dimension 1.

The examples above concerning the property (B) raise the following ques-
tion.

Question. What condition on a compact perfect set K ⊂ Rn character-
izes the property (B)?
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We finish this discussion with the following observation on sets without
the property (B).

Remark 16. If X ⊂ R is such that 0 is not in the interior of X−X, then
(B) fails for X. Indeed, in that case, there exists a sequence 〈sk〉k converging
to 0 such that (sk +X)∩X = ∅ for all k. In particular, if X ⊂ R is compact
and linearly independent over the set of rational numbers, then X − X is
nowhere dense, so (B) fails for X.

6. I(h)-continuity and some open questions. For a subset X of Rn,
let I(X) consist of all isometric copies (rotations, translations, reflections)
of X. The following example shows that, in general, I(h)-continuity is a
stronger property than T (h)-continuity.

Example 17. Let h : R → Q be such that h(x) = 0 for all x /∈ Q ∩
[0, 1] and that h�Q ∩ [0, 1] has a dense graph in [0, 1] × R. Then any I(h)-
continuous function f : Rn × R → R is separately continuous, so the set
Cf of points of continuity of f is dense. In particular, by Lemma 10 and
Fact 3, f is continuous. Thus, I(h)-continuity implies continuity. However,
T (h)-continuity does not imply continuity, since the characteristic function
of R × Q is discontinuous and T (h)-continuous. (Any translation of h is
either contained in or disjoint from R×Q.)

Problem 2. Does there exist a continuous function h : R→ R for which
I(h)-continuity of any function f : R× R→ R implies its continuity?

Problem 3. What can be said about sets X for which I(X)-continuity
implies continuity?

Acknowledgments. The authors thank Dr. Benjamin Weiss for some
useful remarks.

REFERENCES

[1] R. Baire, Sur les fonctions des variables réelles, Ann. Mat. Pura Appl. 3 (1899),
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