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The minimum barrier distance, MBD, introduced recently in [1], is a pseudo-metric defined on a compact
subset D of the Euclidean space Rn and whose values depend on a fixed map (an image) f from D into R.
The MBD is defined as the minimal value of the barrier strength of a path between the points, which con-
stitutes the length of the smallest interval containing all values of f along the path.

In this paper we present a polynomial time algorithm, that provably calculates the exact values of MBD
for the digital images. We compare this new algorithm, theoretically and experimentally, with the algo-
rithm presented in [1], which computes the approximate values of the MBD. Moreover, we notice that
every generalized distance function can be naturally translated to an image segmentation algorithm.
The algorithms that fall under such category include: Relative Fuzzy Connectedness, and those associated
with the minimum barrier, fuzzy distance, and geodesic distance functions. In particular, we compare
experimentally these four algorithms on the 2D and 3D natural and medical images with known ground
truth and at varying level of noise, blur, and inhomogeneity.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

The distance transform, DT, mappings [1–8] have been widely
used as the effective tools for analyzing object morphology and
geometry [9–11]. The value DTðxÞ of a distance transform map at
a point x from the domain C of DT is usually defined as a (possibly
signed) distance of x from a fixed target set B � C, the distance
measured with respect to some fixed (possibly generalized) metric
on C. Most commonly, C is a bounded subset of the Euclidean space
Rn and DT is defined in terms of the Euclidean distance. For the
rectangular shape digital domains C, a fast algorithm for finding
the approximate values of the Euclidean distance transform was
introduced by Rosenfeld and Pfaltz [12]. An algorithm for comput-
ing the exact values of such transform in linear time for the
n-dimensional images was described in [13,14] and elaborated
on in [15]. Such algorithms for the 2-dimensional images were also
presented in [16,17].
The distance transforms used in the image processing com-
monly take into account the image data [6,18–20]. Most of the dis-
tance notions used in such setting define the distance between two
points in the image’s scene as the minimum cost of a path connect-
ing such points, where the path cost functions depend on the
image intensity and differ for different methods. Such defined dis-
tance measures include the connection value (a variant of Rosen-
feld’s degree of connectivity [21–23]), which allows for an
equivalent characterization of topological watersheds, leading to
an efficient Watershed (WS) segmentation algorithm [24,25], as
well as the geodesic distance (see e.g. [26]). Moreover, the degree
of connectivity, on the basis of which the Fuzzy Connectedness
(FC) algorithms are defined, can be also treated as the distance
measure defined in the same form. (See e.g. [27,28,20].) Falcão
et al. [20] proved that for a general class of the path cost functions,
called smooth, including the three examples mentioned above, the
related distance transform can be found via Dijkstra’s algorithm.
For the case of FC, this was further elaborated in [29], including
the discussion of the related results from the papers [30,31].

The subject of this paper is the study of the distance transform
for the minimum barrier distance, MBD, and of the segmentation
algorithms associated with it. The MBD for an image f is defined
from the path cost function, called barrier strength, in a manner de-
scribed above, where the barrier strength of a path constitutes the
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length of the smallest interval containing all values of f along the
path. However, the barrier strength path cost function is not
smooth in the sense defined in [20]. In fact, the naturally defined
Dijkstra’s algorithms for barrier strength path cost function do
not need to return the exact values for MBD. Nevertheless, the out-
put of such algorithms approximate MBD, as proved in [1] and
shortly described in what follows.

Section 2 introduces a general framework for constructing the
generalized distance mappings. We represent within this frame-
work: the Minimum Barrier Distance, geodesic distance, fuzzy
distance, as well as the distance notions that stand behind two
popular segmentation algorithms, Fuzzy Connectedness (FC) and
Watershed (WS). We also discuss, how the generalized distance
mappings can be used to naturally define an image segmentation
via seeds competition. In the case of FC theory, this gives the Rel-
ative Fuzzy Connectedness (RFC) objects. In Section 3 we introduce
the new algorithm, that calculates the MBD in polynomial time.
We also discuss, how this new algorithm relates to the standard
Dijkstra’s algorithm, which can be used to calculate the other dis-
tance notions mentioned above.

In Section 4 we present our experimental results. In particular,
in Section 4.1 we compare different versions of the algorithms that
compute MBD (approximately and exactly) with respect to the
execution time and accuracy. In Sections 4.2 and 4.3 we compare
the segmentation algorithms corresponding to MBD with the seg-
mentation algorithms corresponding to other distance transforms,
that is, with Fuzzy Connectedness, and these corresponding to the
geodesic and fuzzy distances. The comparison is quantitative (sta-
bility to noise, blur, and the choice of seed points) and qualitative.
2. Generalized distance mappings and related segmentations

In this section we review the constructions of the generalized
distance mappings (or generalized metrics) on a set C, which we de-
fine as symmetric functions d : C2 ! ½0;1� that satisfy the triangle
inequality. (We allow possibility that dðc; cÞ > 0 for some c 2 C.)
The construction encompasses the Minimum Barrier Distance as
well as several other popular distance mappings used in imaging.
We notice that any generalized distance can be used to naturally
define an image segmentation via seeds competition for c 2 C. In
particular, two popular segmentation algorithms, Relative Fuzzy
Connectedness (RFC) and Watershed (WS), fall into this category.

Most of the theoretical results that follow are independent of
image processing interpretation and are presented in a general
graph-theoretical setting. Nevertheless, we point out to the image
processing applications at each step of our exposition.

In this paper a digital image is identified with its intensity (or
attribute) function f : C ! R‘, where C is its domain (whose ele-
ments will be referred to as spels, short for space elements) and
the value f ðcÞ of f at c 2 C represents image intensity (an ‘-dimen-
sional vector, each component of which indicates a measure of
some aspect of the signal, like tissue property or color) at the spel
c. It is assumed that image domain comes with an adjacency
relation, that decides which pairs of spels are adjacent. An image
domain C together with its adjacency structure is referred to as a
scene. In the experimental sections we will concentrate on the
images on the rectangular scenes C ¼

Qk
i¼1f1; . . . ; nig; k ¼ 2;3,

with either 4-adjacency, in 2D, or 6-adjacency, in 3D.
2.1. Path-induced distance mappings

By a graph we understand a pair G ¼ hC; Eiwith C representing a
finite set of its vertices and E the set of its edges G, where an edge
connecting c and d from C is identified with an unordered pair
fc; dg. In the image processing applications, we concentrate on
the graphs associated with the images f : C ! R‘ in which the ver-
tices are the spels (the elements of C) and the set E of edges coin-
cides with the adjacency relation of the image’s scene.

A path in a graph G ¼ hC; Ei is any sequence
p ¼ hpð0Þ;pð1Þ; . . . ;pðkÞi of vertices such that fpðiÞ;pði� 1Þg 2 E
for every i 2 f1;2; . . . ; kg. A path p ¼ hpð0Þ;pð1Þ; . . . ;pðkÞi is from
s to c when pð0Þ ¼ s and pðkÞ ¼ c. A family of all paths in G from
an s 2 S to c is denoted by PS;c. We will also write Ps;c for Pfsg;c.

Now, assume that with any path p in G we have associated its
cost: a number kðpÞP 0 treated as the ‘‘length’’ of p. (The exam-
ples of such functions k are given below.) With any such k we asso-
ciate a mapping dk : C2 ! ½0;1� (which need not be a generalized
distance) defined as

dkðc;dÞ ¼minfkðpÞ : p is a path in G from c to dg:

In what follows we work mostly with the connected graphs, that is,
such that for any vertices c and d there is a path in G from c to d. In
such case, all values of dk are finite.

In general, dk need not be a generalized distance. However, it
must be under the assumptions of the following easy fact.

Proposition 1. Assume that for every path p ¼ hpð0Þ;pð1Þ; . . . ;pðkÞi
(i) kðpÞ ¼ kðhpðkÞ;pðk� 1Þ; . . . ;pð0ÞiÞ, and
(ii) kðpÞ 6 kðhpð0Þ; . . . ;pðiÞiÞ þ kðhpðiÞ; . . . ;pðkÞiÞ for every

0 6 i 6 k.

Then dk is symmetric and it satisfies the triangle inequality.

Since all path length functions we consider here (except for the
auxiliary map b�w) satisfy the assumptions of Proposition 1, all
considered functions dk are the generalized metrics.

In the standard examples, the mappings k are defined in terms
of graph’s G ¼ hC; Ei weight functions: either vertex weight
w : C ! ½0;1Þ or edge weight w : E! ½0;1Þ. In image processing,
such weight functions are defined in terms of the intensity func-
tion f : C ! R‘. (See Section 4 for more on the weight mappings.)

2.1.1. Geodesic distance
For an edge weight map w : E! ð0;1Þ, where the value

wðfc; dgÞ is a (geodesic) distance from c to d, and the path length
function Rðhpð0Þ;pð1Þ; . . . ;pðkÞiÞ ¼

Pk
i¼1wðfpði� 1Þ;pðiÞgÞ, the

resulted function dR is the geodesic metric. (For the length one path
p ¼ hpð0Þi, the formula is interpreted as RðpÞ ¼ 0.)

2.1.2. Fuzzy distance
For a vertex weight map w : C ! ½0;1Þ, associated edge weight

map ŵ : E! ½0;1Þ defined as ŵðc; dÞ ¼ wðcÞþwðdÞ
2 , and the path

length function bRðhpð0Þ;pð1Þ; . . . ;pðkÞiÞ ¼
Pk

i¼1ŵðfpði� 1Þ;pðiÞgÞ,
the resulted function dbR is the fuzzy distance. (For the length one

path p ¼ hpð0Þi, the formula is interpreted as bRðpÞ ¼ 0.) Clearly
the fuzzy distance is a pseudo-metric, that is, it is symmetric and
satisfies the triangle inequality (as the assumptions of Proposition

1 hold for k ¼ bR); moreover, dbRðc; cÞ ¼ 0 for every c 2 C. (However,

dbRðc; dÞ can be equal 0 for c – d.) See [6,19] for more on the fuzzy

distance.

2.1.3. Fuzzy Connectedness strength mapping
This is defined for an affinity weight mapping j : E! ½0;M�

(usually with M ¼ 1) interpreted: the closer the value of jðfc; dgÞ
is to M, the stronger the vertices c and d are connected. The
standard Fuzzy Connectedness strength of a path p ¼ hpð0Þ;
pð1Þ; . . . ;pðkÞi is defined as lðpÞ ¼mini¼1;...;kj ðfpði� 1Þ;pðiÞgÞ,
that is, the weakest link of p; the value of lðhpð0ÞiÞ is interpreted
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as M. The Fuzzy Connectedness path length is defined as
kðpÞ ¼ M � lðpÞ ¼maxi¼1;...;kwðfpði� 1Þ;pðiÞgÞ, where wðfc; dgÞ ¼
M � jðfc; dgÞ; that is, kðpÞ is the biggest w-length of a link in p.
Then the Fuzzy Connectedness distance map dk becomes
dkðc; dÞ ¼ M � lðc; dÞ, where lðc; dÞ ¼ maxflðpÞ : p 2 Pc;dg is the
standard FC connectivity strength. Note, that this distance dk is also
a pseudo-metric. For more on this subject see [27,28]. Compare
also [24,25,30].

2.1.4. Watershed and the connection value mapping
This is defined for the vertex weight mapping w : C ! ½0;1Þ,

where the value wðcÞ is interpreted as an elevation at c. Then, for
the path length function k ¼ bþw defined as

bþwðhpð0Þ;pð1Þ; . . . ;pðkÞiÞ ¼ max
i¼0;...;k

wðpðiÞÞ;

the related distance function dk ¼ dbþw
is usually referred to as the

connection value and it leads to the Watershed (WS) segmentation
algorithm [24,25]. The connection value related map dk is a general-
ized metric; however, it is not pseudo-metric, since dkðc; cÞ can be
greater than 0. In what follows we will use also the dual path length
function k ¼ b�w defined as

b�wðhpð0Þ;pð1Þ; . . . ;pðkÞiÞ ¼ min
i¼0;...;k

wðpðiÞÞ:

Notice that if M ¼maxc2CwðcÞ and the weight function v is defined
as vðcÞ ¼ M �wðcÞ, then the mapping d�b�w ¼ M � dbþv

satisfies

d�b�w ¼maxfb�wðpÞ : is a path in G from c to dg:

In particular, an algorithm that calculates dbþv
can be also used to

find d�b�w .

2.1.5. Barrier distance transform
This is defined for the vertex weight mapping w : C ! ½0;1Þ.

The path length function k ¼ bw, referred to as the barrier strength,
is defined for a path p ¼ hpð0Þ;pð1Þ; . . . ;pðkÞi as

bwðpÞ ¼ bþwðpÞ � b�wðpÞ ¼ max
i¼0;...;k

wðpðiÞÞ � min
i¼0;...;k

wðpðiÞÞ:

The related Barrier Distance map dk ¼ dbw
is a pseudo-metric [1].

2.2. The segmentations associated with the generalized metrics

Let d be a generalized distance on C. For a c 2 C and a non-
empty W � C define dðc;WÞ ¼minfdðc;wÞ : w 2Wg. For any two
non-empty sets S � C and T � C of seeds, S indicating the object
and T indicating the background, we associate the object

PdðS; TÞ ¼ fc 2 C : dðc; SÞ < dðc; TÞg:

Of course, we would expect that

(ST) PdðS; TÞ contains S and is disjoint with T.

This is guaranteed only for a proper choice of the seed sets S and
T. In particular, if d is a metric (e.g., geodesic), then (ST) holds pre-
cisely when S and T are disjoint. For the pseudo metric d (like the
case of FC and MBD), (ST) holds precisely when the number
dðS; TÞ ¼minfdðs; TÞ : s 2 Sg is greater than 0.

For the Fuzzy Connectedness pseudo metric dk, as defined
above, the object PdðS; TÞ is precisely the Relative Fuzzy Connected-
ness, RFC, object. The Watershed object is also often defined as
PdðS; TÞ (with respect to the distance dbþw

). Similarly, the delineated
objects for the geodesic, fuzzy, and MB distances we define as
PdðS; TÞ for their respective distance functions. In either case, the
segmentation into k-objects, indicated by the seed sets S1; . . . ; Sk

can be defined as fPdðSi; TiÞ : i ¼ 1; . . . ; kg, where the set Ti is equal
to ðS1 [ � � � [ SkÞ n Si.
3. The algorithms for DTs and related segmentations

Let k be an arbitrary path cost function on a graph G ¼ hC; Ei. We
assume that the cost of an empty path is infinite: kð;Þ ¼ 1. Also,
for any path p ¼ hpð0Þ;pð1Þ; . . . ;pðkÞi and c connected by an edge
with pðkÞ, p ^ c is a concatenation path hpð0Þ;pð1Þ; . . . ;pðkÞ; ci.

Notice, that for the path cost functions we consider, the value of
kðp ^ cÞ can be calculated from the value of kðpÞ in Oð1Þ time.
(More precisely, in the case of the barrier distance, we need to
use the values of b�ðpÞ and bþðpÞ to find b�ðp ^ cÞ and
bþðp ^ cÞ in Oð1Þ time.) Therefore, for the complexity consider-
ations, we will assume that the values of kðhriÞ, as well as that of
kðp ^ cÞ using kðpÞ, can be found in Oð1Þ time.

Algorithm 1. Dijkstra’s algorithm DAðk;RÞ

Input: Path cost function k on a graph G ¼ hC; Ei, non-empty
R � C.

Output: For every c 2 C, a path pc from an r 2 R to c and
LðcÞ ¼ kðpcÞ.

Auxiliary: Ordered queue Q: if c precedes d in Q, then
LðcÞ 6 LðdÞ.

begin
1: For all c 2 C n R initialize pc ¼ ; and LðcÞ ¼ 1;
2: For all r 2 R initialize pr ¼ hri and LðrÞ ¼ kðprÞ, push all

r 2 R to Q;
3: while Q is not empty do
4: Pop d from Q;
5: for every c 2 C connected by an edge to d do
6: Calculate ‘ ¼ kðpd ^ cÞ using LðdÞ;
7: if ‘ < LðcÞ then
8: Put pc ¼ pd ^ c; LðcÞ ¼ ‘, place c to an appropriate

place in Q;
9: end if

10: end for
11: end while
12: Return paths pc and numbers LðcÞ ¼ kðpcÞ;
end
3.1. Dijkstra’s algorithm

Consider the version of the Dijkstra’s algorithm presented as
Algorithm 1. The algorithm always stops and, for the connected
graphs, the returned paths F ¼ fpc : c 2 Cg form a forest rooted at
R (i.e., any path in F starts at an r 2 R and F contains any initial seg-
ment of a path in F). It is easy to see that if k is the path cost func-
tion for geodesic, Fuzzy Connectedness, or watershed distance,
then the algorithm DAðk;RÞ returns k-minimal paths, that is, having
the property that dkðc;RÞ ¼ kðpcÞ for every c 2 C. (All these path
cost functions are smooth, in the sense of [20].) On the other hand,
for the barrier strength cost function k ¼ bw, this is not the case, as
could be seen on the graph from Fig. 1. Indeed, the two paths
p1 ¼ hs; a; d; si and p2 ¼ hs; b; d; si between s and c have the barrier
weights bwðp1Þ ¼ :8� :4 ¼ :4 and bwðp2Þ ¼ :8� :5 ¼ :3, and so
dbw
ðs; cÞ ¼ bwðp2Þ ¼ :3. However, the initial restriction p ¼ hs; b; di

of p2 is not dbw -optimal for d (as bwðpÞ ¼ :7� :5 ¼ :2, while
dbw
ðs; dÞ ¼ bwðhs; a; diÞ ¼ :5� :4 ¼ :1 < bwðpÞ), which is impossible

for the Dijkstra’s algorithm.
Even for the good cases, when Algorithm 1 returns k-optimal

paths, it seems that to find the object Pdk
ðS; TÞ ¼

fc 2 C : dkðc; SÞ < dkðc; TÞg it is necessary to run DA twice: DAðk; SÞ
to compute dkð�; SÞ and DAðk; TÞ to compute dkð�; TÞ. To avoid this,
in the experiments we used a modification DA�ðk; S; TÞ of
DAðk;WÞ with W ¼ S [ T obtained by replacing the condition
‘‘‘ < LðcÞ’’ in line 7 with ‘‘either k(pd̂ c)<k(pc) or



Fig. 1. The minimum barrier distance dbw
ðs; cÞ ¼ :8� :5 for the indicated weight

function w. However, DAðbw; fsgÞ returns suboptimal pc , with bwðpcÞ ¼ :8� :4.
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‘ ¼ LðcÞ and pcð0Þ 2 S and pdð0Þ 2 T .’’

The additional condition insures, that for the path of same strength,
the algorithm favors those that initiate at T.

If F ¼ fpc : c 2 Cg is a forest returned by DA�ðk; S; TÞ, then the
object

P�dk
ðS; TÞ ¼ fc 2 C : pcð0Þ 2 Sg

is uniquely defined, in a sense that any two forests returned by
DA�ðk; S; TÞ (which may be different, subject to possible differences
in order of processing the vertices from Q) lead to the same set
P�dk
ðS; TÞ. Moreover, P�dk

ðS; TÞ contains Pdk
ðS; TÞ and is disjoint with

Pdk
ðT; SÞ; in other words, P�dk

ðS; TÞ is a union of Pdk
ðS; TÞ and some

of the vertices from the ‘‘boundary’’ set fc 2 C : dkðc; SÞ ¼ dkðc; TÞg.
All these facts on P�dk

ðS; TÞ were rigorously proved in [29] for the
FC case, showing, in particular, that P�dk

ðS; TÞ is the Iterative Relative
Fuzzy Connectedness, IRFC, object studied earlier. The arguments
presented in [29] easily generalize to the case of a general path cost
function.

3.2. Algorithms finding approximation of MBD

Let uðc; dÞ ¼minfbþwðpÞ : p 2 Pc;dg �maxfb�wðp0Þ : p0 2 Pc;dg,
that is,

uðc;dÞ ¼ dbþw
ðc;dÞ � db�wðc;dÞ:

Clearly, uðc; dÞ 6 dbw
ðc; dÞ, that is, u gives a lower bound for the

MBD db. The equation need not hold, as uðs;dÞ ¼ 0 < :1 ¼ dbw
ðs;dÞ

for the example from Fig. 1. Nevertheless, for image induced graphs,
the map u approximates the MBD, as proved in [1] and explained in
more details in Theorem 1. The additional advantage of using u as
an approximation of MBD is that its values can be easily computed
by the following algorithm introduced in [1].

Algorithm 2. Aappr
MBDðfsgÞ

Input: A vertex weight map w on a graph G ¼ hC; Ei, an s 2 C.
Output: A map uð�; fsgÞ.
begin
1: Run DA bþw; fsg

� �
and record dbþw

ðc; fsgÞ ¼ bþwðpcÞ for every
c 2 C;

2: Run DA bþv ; fsg
� �

, where v ¼ M �w and M ¼maxc2CwðcÞ,
and record db�w ðc; fsgÞ ¼ M � bþv ðpcÞ for every c 2 C;

3: Return map uðc; fsgÞ ¼ dbþw
ðc; fsgÞ � db�w ðc; fsgÞ;

end

The following theorem is a variant of a theorem proved in [1]. It
specifies an upper bound of a difference between MBD and u.
Theorem 1. Let G ¼ hC; E;wi be a vertex weighted graph of a
rectangular k-D image and let e ¼maxfjwðxÞ �wðyÞj : x; y 2 C
are ð3k � 1Þ � adjacentg. Then for every c; d 2 C there exists a path
p 2 Pc;d with the range in db�w ðc; dÞ � e; dbþw
ðc; dÞ þ e

h i
. In particular,

0 6 dbðc; dÞ �uðc; dÞ 6 2e, that is, u approximates the MBD with at
most 2e error.

The proof of the theorem translates the discrete MBD to the
continuous case and uses the fact that in the continuous case the
distance u coincides with MBD. This last fact is based heavily on
a version of Alexander’s lemma (see e.g. [32, p. 137]), a deep topo-
logical result.

Unfortunately, the number uð�; SÞ returned by Aappr
MBDðSÞ well

approximates the MBD distance dbw ðc; SÞ only when S is a singleton.
Thus, for larger sets S, to find uð�; SÞ using Aappr

MBD within 2e error, it is
necessary to run Aappr

MBDðfsgÞ for every s 2 S to find maps uð�; fsgÞ and,
at the end, compute uð�; SÞ as mins2Suð�; fsgÞ. Then, the approxima-
tion given by Theorem 1 still holds. However, such a procedure
essentially increases the computational complexity of finding
uð�; SÞ.

Of course, the forest fpc : c 2 Cg returned by the algorithm
DAðbw;RÞ gives an upper bound bwðpcÞ of MBD map dbw ðc;RÞ. How-
ever, there is no known theoretical result giving an upper bound
for the error for the difference bwðpcÞ � dbw ðc;RÞ. Nevertheless, all
three measures, uðc; sÞ; dbw

ðc; sÞ, and bwðpcÞ, are experimentally
compared, see Section 4.1.

3.3. Novel algorithm AMBD for finding the exact MBD

The proof of correctness of the main algorithm presented in this
section, AMBD, is a bit involved. However, an idea behind AMBD is
relative simple and can be already seen in its simpler version, pre-
sented here as the algorithm Asimple

MBD ðSÞ. Therefore, we start here
with the discussion of Asimple

MBD ðSÞ.
For a vertex weight map w on a graph G ¼ hC; Ei and an a 2 R

define a modified vertex weight map wa as

waðcÞ ¼ wðcÞ provided wðcÞP a and waðcÞ ¼ 1 otherwise:
Theorem 2. The paths pc returned by Asimple
MBD ðSÞ indeed satisfy

bwðpcÞ ¼ dbw
ðc; SÞ. Moreover, if n ¼ jCj, the size of C, and we assume

that OðjEjÞ ¼ n, then Asimple
MBD ðSÞ stops after at most Oðn2 ln nÞ

operations.
In addition, if the range of w is a subset of a fixed set of size m 6 n,

then there exists a small modification of DAðbþw; SÞ such that Asimple
MBD ðSÞ

requires at most Oðm2nÞ operations.
Algorithm 3. Asimple
MBD ðSÞ

Input: A vertex weight map w on a graph G ¼ hC; Ei, non-
empty S � C.

Output: For every c 2 C a path pc from S to c with
bwðpcÞ ¼ dbw

ðc; SÞ.
begin
1: Initialize: U ¼maxfwðsÞ : s 2 Sg; for c 2 C; pc ¼ ; and

bwðpcÞ ¼ 1;
2: Push all numbers from fwðcÞ 6 U : c 2 Cg to a queue Q,

each only once;
3: while Q is not empty do
4: Pop a from Q; run DAðbþv ; SÞ with v ¼ wa, returning pc ’s

& bvðpcÞ’s;
5: for every c 2 C do
6: if bvðpcÞ < bwðpcÞ then
7: Put pc ¼ pc and update the value of bwðpcÞ to bvðpcÞ;
8: end if
9: end for

10: end while
end
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Proof. Notice that if there exists a path p from S to c with the
þ
range in ½a;1Þ, then the path pc returned by DAðbv ; SÞ with

v ¼ wa also has this property. This immediately implies correct-
ness of the algorithm.

The first complexity estimate follows from the fact that the
complexity of the standard form of DAðbþw; SÞ is Oðn ln nÞ, while we
run it at most n-many times. The second complexity estimate
follows from the fact that, under the assumption, there is a form of
DAðbþw; SÞ that runs in OðmnÞ time, as shown in [29] (compare
discussion below), and that in this case the loop is executed at
most m times. h

Notice that in image processing it is very common that indeed
m is a lot smaller than n, in which case the complexity of Asimple

MBD be-
comes OðnÞ. However, the constants in this estimate are significant,
so Asimple

MBD runs many times (of order OðmÞ) slower than DA bþw; S
� �

.
As it can be seen, an idea behind the algorithm Asimple

MBD is that for
every c 2 C we consider all possible lower bounds b�wðpÞ among the
paths p 2 PS;c and, for each such lower bound a, we find a path ap
minimizing bþw; then bw-minimizer of PS;c is found among such
ap’s. This idea is also present in the algorithm AMBD, though in its
dual form: we consider all possible upper bounds bþwðpÞ among
the paths p 2 PS;c and, for each such upper bound b, we find a path
bp maximizing b�w; a bw-minimizer of PS;c is one of the bp’s with
the smallest bw-value. The main difference between Asimple

MBD and
AMBD is in how we choose ‘‘all possible one-sided bounds:’’ in the
case of Asimple

MBD we consider for this purpose all a 2W; a 6 U. In
AMBD this process is considerably more subtle.

More precisely, AMBD can be considered as a Dijkstra’s algorithm
for finding pc 2 PS;c with the minimal value of b�wðpcÞ, in which ‘‘ill-
advised order’’ of the queue Q is used: instead of ordering Q accord-
ing to the values of b�w of already found paths, we order it according
the values of bþw of such paths. Although this order would be sub-
optimal if we were only to find the b�w-optimal paths, this allows
us: (1) to consider as ‘‘all possible upper bounds of p 2 PS;c ’’ only
the upper bounds of the paths examined during the execution of
the algorithm; (2) while considering such an upper bound, say b,
to examine all paths p 2 PS;c with bþwðpÞ 6 b, to choose among such
paths one, say bp, with the largest lower bound, and to update our
current best bw-estimate pc among p 2 PS;c to bp, if appropriate.
Algorithm 4. AMBDðSÞ

Input: A vertex weighted graph G ¼ hC; E;wi, non-empty
S � C.

Output: For every c 2 C a path pc from an s 2 S to c such that
the number bwðpcÞ is the minimum barrier distance from S
to c.

Auxiliary: For every c 2 C a path pc from S to c being b�w-
optimal.

A priority queue Q: if c precedes d in Q then either
bþwðpcÞ < bþwðpdÞ or bþwðpcÞ ¼ bþwðpdÞ and b�wðpcÞP b�wðpdÞ.

begin
1: For every s 2 S initialize: ps ¼ ps ¼ hsi and

b�wðpcÞ ¼ bþwðpcÞ ¼ wðsÞ;
2: For every c 2 C n S put: pc ¼ pc ¼ ;; b�wðpcÞ ¼ �1, and

bþwðpcÞ ¼ 1;
3: Push all s 2 S to Q;
4: whileQ is not empty do
5: Pop c from Q;
6: for every d 2 C connected by an edge to c do
7: Set L�  b�wðpc ^ dÞ ¼minfb�wðpcÞ;wðdÞg;
8: Set Lþ  bþwðpc ^ dÞ ¼maxfbþwðpcÞ;wðdÞg;
9: if L� > b�wðpdÞ then
10: Set pd  pc ^ d, b�wðpdÞ  L�, bþwðpdÞ  Lþ,

bwðpdÞ  Lþ � L�;
11: Remove d from Q, if needed; place d into (a right

place) in Q;
12: if bwðpdÞ < bwðpdÞ then
13: Set pd  pd;
14: end if
15: end if
16: end for
17: end while
end

The proof of the complexity (but not of the correctness) of
AMBDðSÞ, presented in Theorem 3, requires the assumption that the
graph’s degree (i.e., the largest number of edges connected to a sin-
gle vertex) is small, Oð1Þ, with respect to the size n of the set C of
graph’s vertices. This assumption is essentially always true for the
graphs associated with images. Moreover, we make some additional
assumptions about the structure of the queue Q it utilizes. Actually,
the algorithm works correctly if Q has a simple structure of a double
linked list. However, in such structure the insertion of a vertex, as in
the line 11 of AMBD, would require OðnÞ operation. Therefore, we will
consider two other structures for Q. The first is a binary heap that al-
lows insertion and deletion of any element in Oðln nÞ time [33]. How-
ever, for the graphs associated with image processing, the set Z of
possible values of a weight function w is usually restricted to a fixed
set of a modest size, most frequently of a form
Z ¼ fi=D : i ¼ 0;1; . . . ;mg for m not exceeding 212 ¼ 4096. In this
case, Q can be defined as an array of buckets indexed by the set
V ¼ fhbþ; b�i 2 Z2 : bþ P b�g and ordered as described in the algo-
rithm AMBD. This is, essentially, the structure described in [29]. Each
bucket with an index hbþ; b�i 2 V consists of the pointers to vertices
c for which bþwðpcÞ ¼ bþ and b�wðpcÞ ¼ b�. An advantage of Q to be
represented in such an array format is that this allows Oð1Þ-time
insertion into Q and deletion from Q of any element c with a fixed la-
bel hz; ‘i. Emptying Q in the priority order from the largest to the
smallest vertex in V, as done when executing line 5 of the algorithm,
may require OðjV jÞ ¼ Oðm2Þ operations during the complete execu-

tion of Asimple
MBD ðSÞ. For large images, Oðm2Þ is usually considered as

smaller than OðnÞ, favoring the array of buckets implementation.

However, in our implementations, including Asimple
MBD ðSÞ, we use Dijk-

stra’s algorithm with the binary heap queue structure.
Theorem 3 (On the correctness and complexity of AMBDðSÞ).

CORRECTNESS: After AMBDðSÞ terminates, we have bwðpcÞ ¼ dbw
ðc; SÞ

for all c 2 C.
COMPLEXITY: Let n be the size of the graph and m be the size of a fix
set Z, containing W ¼ fwðcÞ : c 2 Cg. The algorithm computational
complexity is either
(BH) Oðm n ln nÞ, if we use binary heap as Q, or
(LS) OðmðnþmÞÞ, if we use as Q a list structure described
above.

Proof of the Complexity Part of Theorem 3. The complexity of
each execution of the while loop, lines 4–17, is determined by the
line 11, which is either Oðln nÞ in case (BH), or OðmÞ in case (LS).
Moreover,

(�) a vertex d can be popped from the queue, line 5, at most m
times.



58 K.C. Ciesielski et al. / Computer Vision and Image Understanding 123 (2014) 53–64
To see this property, notice that with an ith appearance of d in Q
we associate, in line 11, a path pi

d from S to d. For d to appear in Q
for the ðiþ 1Þ-st time, we must have executed the line 11, meaning
that b�w piþ1

d

� �
> b�w pi

d

� �
. This means that hb�w pi

d

� �
ii is a strictly

increasing sequence of numbers from W. So, the sequence cannot
have more than m elements and (�) is proved.

Now, in the case of (BH), (�) implies that the loop can be exe-
cuted at most mn-times, meaning that the algorithm’s complexity
is Oðmn ln nÞ.

In the case of (LS), the true execution of the loop is OðmnÞ.
However, in addition, we may need Oðm2Þ operations for searching,
in line 4, for the top of the queue. This gives complexity OðmnÞþ
Oðm2Þ ¼ OðmðnþmÞÞ. h

Before we prove the correctness of AMBDðSÞ, it might be useful to
follow the execution of AMBDðfsgÞ for the graph from Fig. 1. In this
example, we use the convention that bþwð;Þ ¼ 1 and b�wð;Þ ¼ �1.
After the execution of lines 1–3, we have ps ¼ ps ¼ hsi, and this
state does not change, so we will not list it below. The state of
the remaining variables is listed as follows, where index i repre-
sents the time just before the ith execution of line 4 (so state 1,
is just after the initialization).

1: px ¼ px ¼ ; for x 2 fa; b; c; dg and Q ¼ hsi;
2: pa ¼ pa ¼ hs; ai;pb ¼ pb ¼ hs; bi;pc ¼ pc ¼ ;;pd ¼ pd ¼ ;,
Q ¼ ha; bi (bþwðpaÞ ¼ :5 < :7 ¼ bþwðpbÞ);
3: pa ¼ pa ¼ hs;ai;pb ¼ pb ¼ hs;bi;pc ¼ pc ¼ ;;pd ¼ pd ¼ hs;a;di,

Q ¼ hd;bi (bþwðpdÞ ¼ :5 < :7 ¼ bþwðpbÞ);
4: pa ¼ pa ¼ hs; ai;pb ¼ pb ¼ hs; bi;pc ¼ pc ¼ hs; a; d; ci,
pd ¼ pd ¼ hs; a; di;Q ¼ hb; ci (bþwðpbÞ ¼ :7 < :8 ¼ bþwðpcÞ);
5: pa ¼ pa ¼ hs; ai;pb ¼ pb ¼ hs; bi;pc ¼ pc ¼ hs; a; d; ci,
pd ¼ hs; a; di, pd ¼ hs; b; di, Q ¼ hd; ci (bþwðpdÞ ¼ :7 < :8 ¼ bþwðpcÞ);
6: pa ¼ pa ¼ hs; ai;pb ¼ pb ¼ hs; bi;pc ¼ pc ¼ hs; b; d; ci,
pd ¼ hs; a; di;pd ¼ hs; b; di, Q ¼ hci;
7: pa ¼ pa ¼ hs; ai;pb ¼ pb ¼ hs; bi;pc ¼ pc ¼ hs; b; d; ci,
pd ¼ hs; a; di;pd ¼ hs; b; di;Q ¼ ;;

Proof of the Correctness part of Theorem 3. To facilitate the proof
of algorithm’s correctness, we insert into its pseudo code the
auxiliary variables: a counter j initialized as 0, and a one
dimensional array �M of numbers. We also expand the line 5 to:

5⁄: Pop c from Q; Set j jþ 1 and �M½j� ¼ bþwðpcÞ.

Let hM½j�ij be the array recorded during the execution of the
algorithm. Then, by the order imposed on Q, it is non-decreasing
(i.e., �M½k� 6 �M½kþ 1� for all allowable indices k).

For any real number M define the sets PM ¼ fp 2 P : bþwðpÞ
6 Mg and P<M ¼ fp 2 P : bþwðpÞ < Mg. We prove that for every
M 2W the following property holds. This will finish the proof,
since (�) for M ¼max W is precisely the desired correctness of
the algorithm.

(�) Let k be the largest index with �M½k� 6 M. Then, for every
d 2 C with PS;d \PM – ;, after the kth execution of the loop
5–16 we have

(a) pd maximizes b�w on PS;d \PM , and
(b) pd minimizes bw on PS;d \PM .
To see (a), for every m 2W and ‘ ¼ 1;2; . . . consider the
property:

(am
‘ ) For every d 2 C, if there exists a p 2 PS;d \PM of length 6 ‘

such that b�wðpÞP m and p maximizes b�w on PS;d \PM , then
pd also maximizes b�w on PS;d \PM .
We need to show that (am
‘ ) holds for every m 2W and

‘ ¼ 1;2; . . .. To prove this, for l 2W consider the statement:

(al) The property (al
‘ ) holds for every ‘ ¼ 1;2; . . ..

By the power of recursion, it is enough to prove that for every
m 2W: if (al) holds for every l > m with l 2W , then (am) is also
true.

So, fix an m 2W and assume that (al) holds for every l > m
with l 2W . We must show (am), that is, that (am

‘ ) holds for every
‘ ¼ 1;2; . . .. This will be proven by induction on ‘.

Clearly, am
‘

� �
holds for ‘ ¼ 1, since in this case we need only to

consider d from S and then pd must be equal hdi, what is insured
in line 1. So, assume that for some ‘ ¼ 1;2; . . . the property am

‘

� �
holds. We need to prove am

‘þ1

� �
. To see am

‘þ1

� �
, fix a

p ¼ hc0; . . . ; c‘i 2 PS;d maximizing b�w on PS;d \PM , for which
b�wðpÞP m. We need to show that pd maximizes b�w on PS;d \PM .

If l ¼ b�wðpÞ > m, then this maximization is insured by (al). So,
assume that b�wðpÞ ¼ m and let p0 ¼ hc0; . . . ; c‘�1i. Notice that for
c ¼ c‘�1,

(�) pc maximizes b�w on PS;c \PM .

Indeed, if b�wðp0Þ > m, then for any p00 maximizing b�w on
PS;c \PM (which may have length greater than ‘) we have
b�wðp00ÞP b�wðp0Þ > m. Thus, (�) is insured by (al). On the other
hand, if b�wðp0Þ ¼ m, then (�) is insured by am

‘

� �
.

Finally, notice that, by (�), vertex c, together with the path pc ,
must have been placed into Q prior to kth execution of the loop
5–16 (through the execution of either line 3 or line 11). Therefore,
for some k0 6 k, this c, with the same path pc , is popped from Q and
after the consecutive execution of the lines 10–11 we must have
b�wðpdÞ ¼maxfb�wðpcÞ;wðdÞgP m ¼ b�wðpÞ. This means, that pd

maximizes b�w on PS;d \PM , finishing the proof of (a).
We prove part (b) by induction along the increasing order of W.

So, let M 2W be such that (b) holds for every M0 2W smaller than
M. By the power of induction, it is enough to prove that (b) holds
for M. So, fix a d 2 C with PS;d \PM – ; and let p be a path mini-
mizing bw on PS;d \PM . Let p be equal the value of pd after the
kth execution of the loop 5–16. Clearly p 2 PS;d \PM . To finish
the proof, it is enough to show that p minimizes bw, that is, that
bwðpÞ 6 bwðpÞ.

If M0 ¼ bþwðpÞ is less than M, then, by the inductive assumption,
for some k0 < k, after the k0th execution of the loop 5–16 we have
bwðpdÞ 6 bwðpÞ. Clearly, the value of bwðpdÞ cannot increase during
the algorithm’s execution, so after the kth execution of the loop
5–16 still bwðpÞ ¼ bwðpdÞ 6 bwðpÞ, that is, p minimizes bw on
PS;d \PM . Therefore, in what follows we can assume that
bþwðpÞ ¼ M.

If PS;d \P<M ¼ ;, then, by part (a), for some k0 6 k (with
�M½k0� ¼ M), during the k0th execution of the loop 5–16, pd becomes
a maximizer of b�w on PS;d \PM . Then bþwðpdÞ ¼ M, since pd R P<M .
Thus, the execution of lines 12–14 during the same execution of
the loop insures that, from this point on, pd also minimizes bw on
PS;d \PM . So, in what follows we can assume that PS;d \P<M – ;.

Since P<M – ;, there exists an M0 2W (the largest number in W
smaller than M) such that PM0 ¼ P<M . In particular, PS;d \PM0 – ;.
By the inductive assumption, (�) holds for M0. So, let k0 be the larg-
est index with �M½k0� 6 M0 and let and p0 be the path pd immediately
after the k0th execution of the loop 5–16. Then, p0 maximizes b�w on
PS;d \PM0 . Let m0 ¼ b�wðp0Þ.

Next, notice that m0 < b�wðpÞ. Indeed, the inequality m0 P b�wðpÞ
would imply bwðp0Þ 6 M0 �m0 < M � b�wðpÞ ¼ bwðpÞ, contradicting
the fact that p minimizes bw on PS;d \PM . Therefore, the maxi-
mum of b�w on PS;d \PM is strictly greater than the maximum of



Fig. 2. Images from the grabcut dataset used in the 2D experiments.

Fig. 3. The mean execution time for the algorithms AMBDðSÞ (exact), DAðbw; SÞ,
Aappr

MBDðSÞ, and AHappr
MBD ðSÞ, for the seed set S having an indicated number of elements.
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Fig. 4. The mean error of the output values of the algorithms DAðbw; SÞ, Aappr
MBDðSÞ, and

AHappr
MBD ðSÞ, as compared with the exact values of MBD returned by AMBDðSÞ. The

intensity range of the images is ½0;255�.
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b�w on PS;d \PM0 . So, by (a), there exists a k00 2 ðk0; k� such that dur-
ing the k00th execution of the loop 5–16, the condition on line 9 is
satisfied. In particular, directly after the execution of the line 10,
m0 6 b�wðpdÞ 6 M, implying that after the execution of lines 12–
14, bwðpdÞ 6 M �m0 ¼ bwðpÞ. In particular, bwðpÞ 6 bwðpÞ, finishing
the proof. h

3.4. Discussion of AMBD

The algorithms Asimple
MBD ðSÞ and AMBDðSÞ have the same computa-

tion efficiency, when measured in terms of the worst case scenario.
So, why do we bother with a more complicated version AMBDðSÞ?
Actually, it is easy to argue that the execution time of AMBDðSÞ is
never worse than that of Asimple

MBD ðSÞ and, in most cases, AMBDðSÞ is
more efficient. To see this, let d be the degree of the graph (for
the images, d ¼ 4 in 2D and d ¼ 6 in 3D), put
U ¼maxfwðsÞ : s 2 Sg, and let l be the size of the set
WU ¼ fwðcÞ 6 U : c 2 Cg. In Asimple

MBD ðSÞ algorithm, the bw-strength of
a path from S to c is checked always (often unnecessarily) between
l- and dl-many times.
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Fig. 5. The mean number of pixels with incorrect value of MBD for the output of the
algorithms DAðbw; SÞ, Aappr
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Fig. 6. Comparison of mean execution time on small images obtained by cutting out
subimages from the images in Fig. 2. A single seed point was used for each image.
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Fig. 7. Comparison of the segmentation of the images from Fig. 2, produced with the d
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On the other hand, the number of similar checks in AMBDðSÞ for
each spel may be considerably smaller than l. Certainly, this is
the case for each seed. But also, if a spel c is connected to an
s 2 S with a large value m of b�w (meaning that the size lc of the
set fwðdÞ 2 ½m;wðsÞ� : d 2 Cg is smaller than l), then the
bw-strength of c will be updated at most dlc many times, an
improvement from dl.

Also, it is good to mention here that, for some seed sets S and T,
the resulted MBD object PðS; TÞ remains unchanged upon small
changes of sets S and T. More specifically, this is the case for the
seed pairs hs; ti 2 S� T that are essentially separated in the barrier
sense, that is, when for any bw-optimal path p from s to t,
b�wðpÞ < minfwðsÞ;wðtÞg 6 maxfwðsÞ;wðtÞg < bþwðpÞ. Of course, this
robustness for the seed choice is not as potent as the robustness
of RFC; however, it is considerable better than for the segmenta-
tions associated with the geodesic or fuzzy distances.
4. Experimental evaluation of the algorithms computing MBD
and of the related segmentation algorithms

All experiments presented in this section were conducted on a
computer HP Proliant ML350 G6 with 2 Intel X5650 6-core proces-
sors (2.67 Hz) and 104 GB memory.
4.1. Experimental comparison of the algorithms that compute MBD

In these experiments we have compared four different versions
of the algorithms returning MBD: the novel exact MBD algorithm
AMBDðSÞ, the interval Dijkstra’s algorithm DAðbw; SÞ approximating
MBD from above, the Aappr

MBDðSÞ executed once for each seed point,
which approximates MBD from below with an error 6 2e (see
Theorem 1), and AHappr

MBD ðSÞ executed only once even for multiple
seeds. The aim for these experiments was to evaluate the practical
usefulness of each of these algorithms and to use this information
to decide which of them to use in the next set of experiments, com-
paring MBD with other distance measures.

For the experiments we used 2D images from the grabcut data-
set [35], converted to gray scale by using the mean of the three col-
or band values. The images come with the true segmentations. The
examples of the images are given in Fig. 2. Their sizes range from
113,032 pixels (for 284� 398 image) to 307,200 (for 640� 480 im-
age), while the intensity range of the images is ½0;255�. The exper-
iments were conducted as follows. For each number s ¼ 1; . . . ;25,
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for the seeds chosen for the indicated erosion radius, represents the average over the



Fig. 8. Example of seed points given by (from left to right) users 1–4, respectively.
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Fig. 9. Boxplots of Dice coefficient for the indicated algorithm. For each distance
function, the four boxes correspond to the seed points given by users 1–4,
respectively.

K.C. Ciesielski et al. / Computer Vision and Image Understanding 123 (2014) 53–64 61
the following procedure was repeated 100 times: (1) extract a ran-
dom image from the subset of the images in the grabcut database;
(2) generate randomly the set S of s-many seed points in the image;
and (3) run each of the four MBD algorithms on this image with the
chosen set S. The averages, for each value of s and each of the algo-
rithms, of the execution time and error in computed distance val-
ues are presented in Figs. 3 and 4, respectively. See also Fig. 5.
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Fig. 10. The performance of the five algorithm
Based on the presented results, we concluded that the algo-
rithms AHappr

MBD ðSÞ and Aappr
MBDðSÞ are not worth pursuing any further:

the first one because of its high computing time cost in the pres-
ence of multiple seeds, while the second because its higher level
of errors, in comparison with the remaining two algorithms.

The experimental performance of the other two algorithms was
better than theoretically insured worst case scenarios: (1) The time
performance of the exact MBD algorithm AMBDðSÞ seems to be inde-
pendent of the number of seeds and is only a bit worst than the
execution time of the linear time algorithms AHappr

MBD ðSÞ and
DAðbw; SÞ. As expected (Theorem 3), we see in Fig. 6 that, in prac-
tice, the execution time of AMBDðSÞ depends on the image size in a
linear manner. (2) The error level of DAðbw; SÞ is clearly smaller
than that of the other two algorithms approximating MBD. More-
over, DAðbw; SÞ is the most efficient in terms of the computing time.

As a result, in the remaining experiments we used only two
MBD algorithms: AMBDðSÞ and DAðbw; SÞ.

4.2. Comparison of the segmentation algorithms on 2D natural images

In this section, we compare the segmentations, as described in
Section 2.2, associated with the following distance functions (see
Section 2.1) for the 2D gray-scale digital images f : C ! ½0;1Þ
obtained from the grabcut dataset, see Fig. 2.

� The exact MBD computed with AMBDðSÞ, where wðcÞ ¼ f ðcÞ.
� An approximate MBD computed with DAðbw; SÞ, where

wðcÞ ¼ f ðcÞ.
� The geodesic distance computed with DAðR; SÞ, where, for

adjacent c; d 2 C;wðc; dÞ ¼ jf ðcÞ � f ðdÞj.
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s as a function of smoothing the images.



10−4 10−2 100
0

0.5

1

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

10−4 10−2 100
0

20

40

60

80
exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

Fig. 11. The performance of the five algorithms as a function of adding noise to the images.

1 5 10
0

0.5

1

exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

1 5 10
0

15

30

45
exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

Fig. 12. The performance of the five algorithms as a function of smoothing, applied to the images with added fixed level of noise.
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Fig. 13. The performance of the five algorithms as a function of adding noise, applied to the smoothed images.
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� The fuzzy distance computed with DAðbR; SÞ, where wðcÞ ¼ f ðcÞ.
� The Fuzzy Connectedness computed with DAðw; SÞ, where, for

adjacent c; d 2 C, wðc; dÞ ¼ M � jðc; dÞ ¼ jf ðcÞ � f ðdÞj.

We start with comparing how the execution time of these
algorithms depends on the image size. The summary of our
results is displayed in Fig. 6. The algorithms were executed
on the small subimages of the images in Fig. 2. For each side
length between 1 and 316, a square centered subset of the
original images was extracted. A single seed point was placed
in the center pixel in the small images. By this procedure,
the frequency representation does not depend on image
size as would be the case if the images were upsampled or
downsampled.



Fig. 14. The 3D T1-weighted MRI image of the brain, smoothed by Gaussian blur with sigma value 0.5. (a) Three perpendicular slices; (b) reference segmentation of the same
slices; and (c) surface rendering of the reference segmentation.
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Notice that, according to these experiments, the execution time
of AMBDðSÞ depends on the image size in a linear manner, in agree-
ment with Theorem 3.

4.2.1. Seeds chosen by erosion
In these experiments, the seed sets were chosen in the images

via erosion of different magnitude of the known true segmenta-
tions, see e.g. [34]. Such choice allows varying the seed sets in a
more controlled manner, as compared to the alternative of opera-
tors specifying seeds interactively or the random seed choice, and
thereby we can study the influence of seed sets on results also in a
controlled manner. However, there is a concern that such choose
may favor the distance measures similar to the Euclidean distance.
Although this concern does not seem to be present in our experi-
ments, presented in Fig. 7, we restricted this approach only to
the presented small study to avoid any possible bias. (But see also
Section 4.3.)

4.2.2. User selected seeds; noise and smoothing influence
In these experiments, involving the images from Fig. 2, the user

defined seeds are used. Four different users have placed seed
points in the object and background of each image. A sample of
such choice is shown in Fig. 8.

Fig. 9 shows boxplots, where the central mark of the box is the
median and the edges of the box represent the 25th and 75th per-
centiles. The whiskers extend to the most extreme data points not
considered outliers, which are marked by plus-signs. Four different
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exact MBD
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geodesic distance
fuzzy connectedness
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Fig. 15. The performance of the five algorithms on the image from Fig. 14, for the seeds ch
users have provided object and background seed points for all 17
images. These seed points are used to compute the object for the
five different distance function.

The images are degraded by Gaussian smoothing with r values
between 1 and 10. Fig. 10 shows the averaged Dice coefficient
results and the execution times for the images with added
indicated level of smoothing.

In the experiments presented in Fig. 11 the images were
degraded by the additive Gaussian noise with zero mean and var-
iance r as indicated on the horizontal axis. The figure shows the
averaged Dice coefficient results and the execution times for the
images with indicated level of noise.

Finally, Figs. 12 and 13 show the similar results for the images
with added noise followed by the indicated level of smoothing and
for the images with added smoothing followed by the indicated le-
vel of noise, respectively.

The experiments presented in this section show that the quality
of the segmentations associated with both versions of MBD algo-
rithms compare favorably with those associated the other three
methods. This is particularly well visible in the case of blurred
images. But the same pattern is also present at the lower level of
noise. In the case of the exact MBD distance algorithm, the price
of this improvement is a (slightly) higher execution time. (Though,
this disadvantage quickly decreases, as a function of level of ap-
plied smoothing.) Therefore, if the execution time is an issue, the
approximate MBD algorithm DAðbw; SÞ is the best performer, unless
the image is very noisy.
1 10
0

10

20

30
exact MBD
approximate MBD
geodesic distance
fuzzy connectedness
fuzzy distance

osen, at the indicated erosion radius, asymmetrically in a way explained in the text.
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4.3. Comparison of the segmentation algorithms on a 3D medical
image

In the last experiment, presented in this section, we compared
the performance of the five algorithms on the 3D T1-weighted
MRI image of the brain, shown in Fig. 14.

The presented experiments were performed on the image that
has been slightly blurred. We added blur, since the segmentation
results performed on the original image were so close to the
ground truth for all five algorithms, that there was no basis to dif-
ferentiate between them.

The seeds were chosen by erosion, with respect to the ground
truth. However, to avoid a concern expressed in Section 4.2.1, the
erosion was done in an asymmetric manner: increasing radius of
the structuring element (with origin located at the border of the
structuring element). More specifically, an asymmetric erosion of
the ground truth object P of radius r was defined as the set of all
spels c ¼ hc1; c2; c3i 2 C such that the (structuring) set Sðc; sÞ ¼
fhd1; d2; d3i 2 C : ci 6 di 6 ci þ r for i ¼ 1;2;3g is a subset of P.

The results of the experiments are presented in Fig. 15. They show
that, in a 3D medical image, the quality of the MBD based segmenta-
tions is at least as good (the case of FC) or clearly better (geodesic and
fuzzy distances) then those produced by the other methods. This
advantage increases, with the decrease of the seed sets.

5. Conclusions

In this paper we introduced a new efficient algorithm, AMBD, that
computes the exact values of the Minimum Barrier Distance trans-
form, introduced by the authors in [1]. We provided a detailed
proof that AMBD indeed returns the exact MBD and that its execu-
tion time is, in the worst case scenario, of order Oðn2 ln nÞ;n being
the size of the image. Moreover, the experimental results indicate
that, in practice, the execution time of AMBD is actually linear with
respect to n, and comparable to the execution time of the standard
Dijkstra’s algorithm.

We also investigated an algorithm DAðbw; SÞwhich is faster than
AMBD (has, provably, the same complexity as Dijkstra’s algorithm)
but returns only approximate values of MBD. The presented exper-
iments show that the quality of the output of DAðbw; SÞ is remark-
ably similar to that of AMBD.

Finally, we experimentally compared the segmentations associ-
ated with both versions of MBD algorithms with that associated
with geodesic distance, fuzzy distance, and Fuzzy Connectedness.
The segmentation results associated with MBD compare favorable
with the other three methods. In particular, MBD is considerable
more robust to smoothing than the other algorithms. The same
can be also observed when the lower level of noise is added.
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