
Linear Algebra and its Applications 440 (2014) 307–317

Contents lists available at ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Lineability, spaceability, and additivity cardinals
for Darboux-like functions

Krzysztof Chris Ciesielski a,b, José L. Gámez-Merino c,
Daniel Pellegrino d, Juan B. Seoane-Sepúlveda c,∗

a Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA
b Department of Radiology, MIPG, University of Pennsylvania, Blockley Hall – 4th Floor, 423 Guardian Drive,
Philadelphia, PA 19104-6021, USA
c Departamento de Análisis Matemático, Facultad de Ciencias Matemáticas, Plaza de Ciencias 3, Universidad
Complutense de Madrid, Madrid 28040, Spain
d Departamento de Matemática, Universidade Federal da Paraíba, 58.051-900 João Pessoa, Brazil

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 September 2013
Accepted 21 October 2013
Available online 18 November 2013
Submitted by R. Brualdi

MSC:
15A03
26A15
26B05

Keywords:
Additivity
Lineability
Spaceability
Darboux-like functions
Extendable functions

We introduce the concept of maximal lineability cardinal number,
mL(M), of a subset M of a topological vector space and study
its relation to the cardinal numbers known as: additivity A(M),
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on Rn , n ! 1: extendable, Jones, and almost continuous functions.
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1. Preliminaries and background

The work presented here is a contribution to a recent ongoing research concerning the follow-
ing general question: For an arbitrary subset M of a vector space W , how big can be a vector subspace V
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contained in M ∪ {0}? The current state of knowledge concerning this problem is described in the very
recent survey article [8]. So far, the term big in the question was understood as a cardinality of a basis
of V ; however, some other measures of bigness (i.e., in a category sense) can also be considered.

Following [1,29] (see, also, [17]), given a cardinal number µ we say that M ⊂ W is µ-lineable if
M ∪ {0} contains a vector subspace V of the dimension dim(V ) = µ. Consider the following lineability
cardinal number (see [4]):

L(M) = min
{
κ: M ∪ {0} contains no vector space of dimension κ

}
.

Notice that M ⊂ W is µ-lineable if, and only if, µ < L(M). In particular, µ is the maximal dimension
of a subspace of M ∪ {0} if, and only if, L(M) = µ+ . The number L(M) need not be a cardinal
successor (see, e.g., [1]); thus, the maximal dimension of a subspace of M ∪ {0} does not necessarily
exist.

If W is a vector space over the field K and M ⊂ W , let

st(M) =
{

w ∈ W :
(

K \ {0}
)

w ⊂ M
}
.

Notice that

if V is a subspace of W , then V ⊂ M ∪ {0} if, and only if, V ⊂ st(M) ∪ {0}. (1)

In particular,

L(M) = L
(
st(M)

)
. (2)

Recall also (see, e.g., [19]) that a family M ⊂ W is said to be star-like provided st(M) = M . Properties
(1) and (2) explain why the assumption that M is star-like appears in many results on lineability.

A simple use of Zorn’s lemma shows that any linear subspace V 0 of M ∪ {0} can be extended to
a maximal linear subspace V of M ∪ {0}. Therefore, the following concept is well defined.

Definition 1.1 (Maximal lineability cardinal number). Let M be any arbitrary subset of a vector space W .
We define

mL(M) = min
{

dim(V ): V is a maximal linear subspace of M ∪ {0}
}
.

Although this notion might seem similar to that of maximal-lineability and maximal-spaceability
(introduced by Bernal-González in [7]) they are, in general, not related.

In any case, (1) implies that mL(M) = mL(st(M)).

Remark 1.2. It is easy to see that HL(M) = mL(M)+ , where HL(M) is a homogeneous lineability
number defined in [4]. (This explains why HL is always a successor cardinal, as shown in [4].) Clearly
we have

HL(M) = mL(M)+ ! L(M).

The inequality may be strict, as shown in [4].

For M ⊂ W we will also consider the following additivity number (compare [4]), which is a gen-
eralization of the notion introduced by T. Natkaniec in [25,26] and thoroughly studied by the first
author [11–15] and F.E. Jordan [23] for V = RR (see, also, [20]):

A(M, W ) = min
({

|F |: F ⊂ W & (∀w ∈ W )(w + F ⊄ M)
}

∪
{
|W |+

})
,

where |F | is the cardinality of F and w + F = {w + f : f ∈ F }. Most of the times the space W , usually
W = RR , will be clear by the context. In such cases we will often write A(M) in place of A(M, W ).
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We are mostly interested in the topological vector spaces W . We say that M ⊂ W is µ-spaceable
with respect to a topology τ on W , provided there exists a τ -closed vector space V ⊂ M ∪ {0} of
dimension µ. In particular, we can consider also the following spaceability cardinal number:

Lτ (M) = min
{
κ: M ∪ {0} contains no τ -closed subspace of dimension κ

}
.

Notice that L(M) = Lτ (M) when τ is the discrete topology.1

In what follows, we shall focus on spaces W = RX of all functions from X = Rn to R and consider
the topologies τu and τp of uniform and pointwise convergence, respectively. In particular, we write
Lu(M) and Lp(M) for Lτu (M) and Lτp (M), respectively. Clearly

Lp(M) ! Lu(M) ! L(M).

Recall also a series of definitions that shall be needed throughout the paper.

Definition 1.3. For X ⊆ Rn a function f : X → R is said to be

• Darboux if f [K ] is a connected subset of R (i.e., an interval) for every connected subset K of X ;
• Darboux in the sense of Pawlak if f [L] is a connected subset of R for every arc L of X (i.e.,

f maps path connected sets into connected sets);
• almost continuous (in the sense of Stallings) if each open subset of X × R containing the graph of

f contains also a continuous function from X to R;
• a connectivity function if the graph of f " Z is connected in Z × R for any connected subset

Z of X ;
• extendable provided that there exists a connectivity function F : X × [0,1] → R such that f (x) =

F (x,0) for every x ∈ X ;
• peripherally continuous if for every x ∈ X and for all pairs of open sets U and V containing x and

f (x), respectively, there exists an open subset W of U such that x ∈ W and f [bd(W )] ⊂ V .

The above classes of functions are denoted by D(X), DP(X), AC(X), Conn(X), Ext(X), and PC(X),
respectively. The class of continuous functions from X into R is denoted by C(X). We will drop the
domain X if X = R.

Definition 1.4. A function f : Rn → R is called

• everywhere surjective if f [G] = R for every nonempty open set G ⊂ Rn;
• strongly everywhere surjective if f −1(y) ∩ G has cardinality c for every y ∈ R and every nonempty

open set G ⊂ Rn; this class was also studied in [13], under the name of c strongly Darboux
functions;

• perfectly everywhere surjective if f [P ] = R for every perfect set P ⊂ Rn (i.e., when f −1(r) is a Bern-
stein set for every r ∈ R (compare [10, Ch. 7]));

• a Jones function (see [22]) if f ∩ F ≠ ∅ for every closed set F ⊂ Rn × R whose projection on Rn

is uncountable.

The classes of these functions are written as ES(Rn), SES(Rn), PES(Rn), and J(Rn), respectively. We
will drop the domain Rn if n = 1.

1 Of course, there might be some other topological properties distinguishing between the families M with the same value
Lτ (M). For example, in [2] it is shown that if M is the family of strongly singular functions in CBV[0,1], then Lu(M) = c+

and M contains a linear subspace generated by a discrete set of the cardinality c. Similarly, if M is the family of all nowhere
differentiable functions in C[0,1], then Lu(M) = c+ , as proven in [28]. However, the linear subspace of M given in [28] is only
separable.
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Definition 1.5. A function f : R → R has:

• the Cantor intermediate value property if for every x, y ∈ R and for each perfect set K between f (x)
and f (y) there is a perfect set C between x and y such that f [C] ⊂ K ;

• the strong Cantor intermediate value property if for every x, y ∈ R and for each perfect set K be-
tween f (x) and f (y) there is a perfect set C between x and y such that f [C] ⊂ K and f " C is
continuous;

• the weak Cantor intermediate value property if for every x, y ∈ R with f (x) < f (y) there exists
a perfect set C between x and y such that f [C] ⊂ ( f (x), f (y));

• perfect roads if for every x ∈ R there exists a perfect set P ⊂ R having x as a bilateral (i.e., two
sided) limit point for which f " P is continuous at x.

The above classes of functions shall be denoted by CIVP, SCIVP, WCIVP, and PR, respectively.

Notice that all classes defined in the above three definitions are star-like.
The text is organized as follows. In Section 2 we study the relations between additivity and max-

imal lineability numbers. Sections 3 and 4 focus on the set of extendable functions on R and Rn ,
respectively. Surprisingly enough, we shall obtain very different results when moving from R to Rn .
The lineability of some of the above functions have been recently partly studied (see, e.g., [4,18–20])
but here we shall give definitive answers concerning the lineability and spaceability of several previ-
ous studied classes.

2. Relation between additivity and lineability numbers

The goal of this section is to examine possible values of numbers A(M), mL(M), and L(M) for
a subset M of a linear space W over an arbitrary field K . We will concentrate on the cases when
∅ ≠ M " W , since it is easy for the cases M ∈ {∅, W }. Indeed, as it can be easily checked, one has
A(∅) = L(∅) = 1 and mL(∅) = 0; A(W ) = |W |+ , L(W ) = dim(W )+ , and mL(W ) = dim(W ).

Proposition 2.1. Let W be a vector space over a field K and let ∅ ≠ M " W . Then

(I) 2 ! A(M)! |W | and mL(M) < L(M) ! dim(W )+;
(II) if A(st(M)) > |K |, then A(st(M)) ! mL(M).

In particular, if M is star-like, then A(M) > |K | implies that

(III) A(M)! mL(M) < L(M) ! dim(W )+ .

Proof. (I) These inequalities are easy to see.
(II) This can be proved by an easy transfinite induction. Alternatively, notice that A. Bartoszewicz

and S. Gła̧b proved, in [4, Corollary 2.3], that if M ⊂ W is star-like and A(M) > |K |, then A(M) <
HL(M). Hence, A(st(M)) > |K | implies that A(st(M)) < HL(st(M)) = mL(st(M))+ = mL(M)+ .
Therefore, A(st(M)) ! mL(M). ✷

In what follows, we will restrict our attention to the star-like families, since, by Proposition 2.1,
other cases could be reduced to this situation. Our next theorem shows that, for such families and
under assumption that A(M) > |K |, the inequalities (III) constitute all that can be said on these num-
bers.

Theorem 2.2. Let W be an infinite dimensional vector space over an infinite field K and let α, µ, and λ be the
cardinal numbers such that |K | < α !µ < λ ! dim(W )+ . Then there exists a star-like M " W containing 0
such that A(M) = α, mL(M) = µ, and L(M) = λ.
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The proof of this theorem will be based on the following two lemmas. The first of them shows
that the theorem holds when α = µ, while the second shows how such an example can be modified
to the general case.

Lemma 2.3. Let W be an infinite dimensional vector space over an infinite field K and let µ and λ be the
cardinal numbers such that |K | < µ < λ ! dim(W )+ . Then there exists a star-like M " W containing 0 such
that A(M) = mL(M) = µ and L(M) = λ.

Proof. For S ⊂ W , let V (S) be the vector subspace of W spanned by S .
Let B be a basis for W . For w ∈ W , let supp(w) be the smallest subset S of B with w ∈ V (S) and

let cw : supp(w) → K be such that w = ∑
b∈supp(w) cw(b)b. Let E be the set of all cardinal numbers

less than λ and choose a sequence ⟨Bη: η ∈ E⟩ of pairwise disjoint subsets of B such that |B0| = µ
and |Bη| = η whenever 0 ≠ η ∈ E . Define

M = A ∪
⋃

η∈E

V (Bη),

where

A =
{

w ∈ W : cw(b0) = cw(b1) for some b0 ∈ supp(w) ∩ B0,b1 ∈ supp(w) \ B0
}
.

We will show that M is as desired.
Clearly, M is star-like and 0 ∈ M " W . Also, L(M) # λ, since for any cardinal η < λ the set M

contains a vector subspace V (Bη) with dim(V (Bη)) # η.
To see that A(M) #µ, choose an F ⊂ W with |F | < µ. It is enough to show that |F | < A(M), that

is, that there exists a w ∈ W with w + F ⊂ A. As supp(F ) = ⋃
v∈F supp(v) has cardinality at most

|F | + ω < µ = |B0| = |Bµ| ! |B \ B0|, there exist b0 ∈ B0 \ supp(F ) and b1 ∈ B \ (B0 ∪ supp(F )). Let
w = b0 + b1 and notice that w + F ⊂ A ⊂ M , since for every v ∈ F we have b0 ∈ supp(w + v) ∩ B0,
b1 ∈ supp(w + v) \ B0, and cw+v (b0) = 1 = cw+v (b1).

Next notice that the inequalities |K | < µ ! A(M) and Proposition 2.1 imply that µ ! A(M) !
mL(M). Thus, to finish the proof, it is enough to show that mL(M) !µ and L(M) ! λ.

To see that mL(M) ! µ, it is enough to show that V (B0) is a maximal vector subspace of M .
Indeed, if V is a vector subspace of W properly containing V (B0), then there exists a non-zero
v ∈ V ∩ V (B \ B0). Choose a b0 ∈ B0 and a non-zero c ∈ K \ {cv(b): b ∈ supp(v)}. Then cb0 + v ∈ V \ M .
So, V (B0) is a maximal vector subspace of M and indeed mL(M) ! dim(V (B0)) = µ.

To see that L(M) ! λ, notice that this is obvious for λ = dim(W )+ . So, we can assume that λ !
dim(W ) and choose a vector subspace V of W of dimension λ. It is enough to show that V \ M ≠ ∅.
To see this, for every ordinal η ! λ let us define B̂η = ⋃{Bζ : ζ ∈ E ∩ η}. Notice that

for every η < λ there is a non-zero w ∈ V with supp(w) ∩ B̂η = ∅.

Indeed, if πη: W = V (B̂η) ⊕ V (B \ B̂η) → V (B̂η) is the natural projection, then there exist distinct
w1, w2 ∈ V with πη(w1) = πη(w2) (as |V (B̂η)| < λ = dim(V )). Then w = w1 − w2 is as required.

Now, choose a non-zero w1 ∈ V with supp(w1) ∩ B0 = supp(w1) ∩ B̂1 = ∅. Then, w1 /∈ A and if
supp(w1) ⊄ B̂λ = ⋃

η∈E Bη , then also w1 /∈ ⋃
η∈E V (Bη), and we have w1 ∈ V \ M . Therefore, we can

assume that supp(w1) ⊂ B̂λ = ⋃
η<λ B̂η . Let η < λ be such that supp(w1) ⊂ B̂η and choose a non-zero

w2 ∈ V with supp(w2) ∩ B̂η = ∅. Then w = w2 − w1 ∈ V \ M (since w /∈ A, being non-zero with
supp(w) ∩ B0 =∅, and w /∈ ⋃

ζ∈E V (Bζ ), as its support intersects both B̂η and B \ B̂η). ✷

Lemma 2.4. Let W , W0 , and W1 be the vector spaces over an infinite field K such that W = W0 ⊕ W1 . Let
M " W0 and

F = M + W1 = {m + w: m ∈ M & w ∈ W1}.
Then
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(I) If M is star-like, then F is also star-like.
(II) A(F , W ) = A(M, W0).

(III) If 0 ∈ M, then mL(F) = mL(M) + dim(W1).
(IV) If 0 ∈ M and dim(W1) < L(M), then L(F) = L(M) + dim(W1).

Proof. In the following, let π0: W = W0 ⊕ W1 → W0 be the canonical projection.
(I) Let x ∈ F and λ ∈ K \{0}. Since M is star-like and π0(x) ∈ M , we have that π0(λx) = λπ0(x) ∈ M ,

and hence λx ∈ M + W1 = F .
(II) Let us see that A(M, W0) ! A(F , W ). To this end, let κ < A(M, W0). We need to prove that

κ < A(F , W ). Indeed, if F ⊂ W and |F | = κ , then |π0[F ]| ! |F | = κ . So, there exists a w0 ∈ W0 such
that π0[w0 + F ] = w0 + π0[F ] ⊂ M , that is, w0 + F ⊂ M + W1 = F . Therefore, κ < A(F , W ).

To see that A(F , W ) ! A(M, W0) let κ < A(F , W ). We need to show that κ < A(M, W0). Indeed,
let F ⊂ W0 be such that |F | = κ . Since |F | < A(F , W ), there is a w ∈ W with w + F ⊂ F . Then
π0(w) ∈ W0 and π0(w) + F = π0[w + F ] ⊂ π0[F ] = M , so indeed κ < A(M).

(III) First notice that it is enough to show that

V is a maximal vector subspace of F if, and only if, V = V 0 + W1, where

V 0 is a maximal vector subspace of M. (3)

Indeed, if V is a maximal vector subspace of F with mL(F) = dim(V ), then, by (3), mL(F) =
dim(V ) = dim(V 0) + dim(W1) # mL(M) + dim(W1). Conversely, if V 0 is a maximal vector subspace
of M with mL(M) = dim(V 0), then we have

mL(M) + dim(W1) = dim(V 0) + dim(W1) = dim(V 0 + W1) # mL(F).

To see (3), take a maximal vector subspace V of F . Notice that W1 ⊂ V , since

V ⊂ V + W1 ⊂ F + W1 = F

and so, by maximality, V + W1 = V . In particular, V = V 0 + W1 ⊂ F = M + W1, where V 0 = π0[V ].
Thus, V 0 is a vector subspace of M . It must be maximal, since for any its proper extension V̂ 0 ⊂ M ,
the vector space V̂ 0 + W1 ⊂ F would be a proper extension of V .

Conversely, if V 0 is a maximal vector subspace of M , then V = V 0 + W1 is a vector subspace of F .
If cannot have a proper extension V̂ ⊂ F , since then the vector space π0[V̂ ] ⊂ M would be a proper
extension of V 0.

(IV) To see that L(F) ! dim(W1) + L(M), choose a vector space V ⊂ F . We need to show
that dim(V ) < dim(W1) + L(M). Indeed, V 1 = V + W1 is a vector subspace of F + W1 = F
and dim(V ) ! dim(V 1) = dim(W1) + dim(π0[V 1]), since V 1 = W1 ⊕ π0[V 1]. Therefore, dim(V ) !
dim(W1) + dim(π0[V 1]) < dim(W1) + L(M), since dim(W1) < L(M) and dim(π0[V 1]) < L(M), as
π0[V 1] is a vector subspace of M = π0[F ]. So, L(F)! dim(W1) + L(M).

To see that dim(W1) + L(M) ! L(F), choose a κ < dim(W1) + L(M). We need to show that
κ < L(F), that is, that there exists a vector subspace V of F with dim(V ) # κ . First, notice
that dim(W1) < L(M) and κ < dim(W1) + L(M) imply that there exists a µ < L(M) such that
κ ! dim(W1) + µ < dim(W1) + L(M). (For finite values of L(M), take µ = max{κ − dim(W1),0};
for infinite L(M), the number µ = max{κ,dim(W1)} works.) Choose a vector subspace V 0 of M with
dim(V 0) # µ. Then the vector subspace V = V 0 + W1 = V 0 ⊕ W1 of F is as desired, since we have
dim(V ) = dim(W1) + dim(V 0) # dim(W1) + µ# κ . ✷

Proof of Theorem 2.2. Represent W as W0 ⊕ W1, where dim(W0) = λ and dim(W1) = µ. Use
Lemma 2.3 to find a star-like M " W0 containing 0 such that A(M, W0) = mL(M) = α and L(M) = λ.
Let F = M + W1 " B . Then, by Lemma 2.4, F ∋ 0 is star-like such that A(F) = A(M, W0) = α,
mL(F) = mL(M)+dim(W1) = α+µ = µ, and L(F) = L(M)+dim(W2) = λ+α = λ, as required. ✷

A. Bartoszewicz and S. Gła̧b have asked [4, Open question 1] whether the inequality A(F)+ #
HL(F) (which is equivalent to A(F) # mL(F)) holds for any family F ⊂ RR . Of course, for the
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Fig. 1. Relations between the Darboux-like classes of functions from R to R. Arrows indicate strict inclusions.

star-like families F with A(F) > c, a positive answer to this question would mean that, under these
assumptions, we have A(F) = mL(F). Notice that Theorem 2.2 gives, in particular, a negative answer
to this question.

We do not have a comprehensive example, similar to that provided by Theorem 2.2, for the case
when A(M)! |K |. However, the machinery built above, together with the results from [4], lead to the
following result.

Theorem 2.5. Let W be a vector space over an infinite field K with dim(W ) # 2|K | . If 2 ! κ ! |W |, there
exists a star-like family F " W containing 0 such that A(F) = κ and mL(F) = dim(W ) (so that L(F) =
dim(W )+).

Proof. Represent W as W = W0 ⊕ W1, where dim(W0) = 2|K | and dim(W1) = dim(W ). If 2 ! κ !
|K |, then, by [4, Theorem 2.5], there exists a star-like family M ⊂ W0 such that A(M, W0) = κ . Notice
that the family constructed in that result contains 0. Then, by Lemma 2.4, the family F = M + W1
satisfies that A(F) = A(M, W0) = κ and mL(F) = mL(M) + dim(W1) = dim(W ). ✷

3. Spaceability of Darboux-like functions on RRR

Recall (see, e.g., [12, Chart 1] or [11]) that we have the strict inclusions, indicated in Fig. 1 by
the arrows, between the Darboux-like functions from R to R. The next theorem, strengthening the
results presented in the table from [8, p. 14], determines fully the lineability, L, and spaceability, Lp ,
numbers for these classes.

Theorem 3.1. Lp(Ext) = (2c)+ . In particular, all Darboux-like classes of functions from Fig. 1, except C, are
2c-spaceable with respect to the topology of pointwise convergence.

Proof. In [15, Corollary 3.4] it is shown that there exists an f ∈ Ext and an Fσ first category set
M ⊂ R such that

if g ∈ RR and g " M = f " M, then g ∈ Ext. (4)

It is easy to see that for any real number r ≠ 0 the function r f satisfies the same property.
Notice also that there exists a family {hξ ∈ RR: ξ < c} of increasing homeomorphisms such that

the sets Mξ = hξ [M], ξ < c, are pairwise disjoint. (See, e.g., [15, Lemma 3.2].) It is easy to see that
each function fξ = f ◦ h−1

ξ satisfies (4) with the set Mξ . Increasing one of the sets Mξ , if necessary,

we can also assume that {Mξ : ξ < c} is a partition of R. Let f⃗ = ⟨ fξ " Mξ : ξ < c⟩ and define

V ( f⃗ ) =
{⋃

ξ<c

t(ξ)( fξ " Mξ ): t ∈ Rc
}
. (5)

It is easy to see that V ( f⃗ ) is 2c-dimensional τp-closed linear subspace of Ext. ✷

As the cardinality of the family Bor of Borel functions from R to R is c, Theorem 3.1 easily implies
that Ext \ Bor is 2c-lineable: L(Ext \ Bor) = (2c)+ . Actually, we have an even stronger result:
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Proposition 3.2. Lp(Ext ∩ SES \ Bor) = (2c)+ .

Proof. The function f " M satisfying (4) may also have the property that

M is c-dense in R and f " M is SES non-Borel. (6)

Indeed, this can be ensured by enlarging M by a c-dense first category set N ⊂ R \ M and redefining
f on N so that f " N is non-Borel and SES.

Now, if f satisfies both (4) and (6) and f⃗ = ⟨ fξ " Mξ : ξ < c⟩ is defined as in Theorem 3.1, then
the space V ( f⃗ ) given in (5) is as required. ✷

Notice also that Ext∩PES = PR∩PES = ∅. In particular, the space V from Proposition 3.2 is disjoint
with PES.

Remark 3.3. Clearly, Theorem 3.1 implies that Ext is 2c-lineable. This result has been also indepen-
dently proved by T. Natkaniec in [27]. The idea used in [27] is similar, but the technique is different
from that used in the proof of Theorem 3.1. The similar technique was also used in the recent pa-
pers [3,5].

Recall, that it is known that L(AC \ Ext) = (2c)+ . See [19] or [8, p. 14]. However, we do not know
what the exact values of the following cardinals are.

Problem 3.4. Determine the following numbers:

Lp(F \ G), Lu(F \ G), and L(F \ G)

for F ∈ {Conn \ AC,D \ Conn,PC \ D} and G ∈ {SCIVP,CIVP,PR}.

Recall (see [15] or [11]) that for every F ∈ {Ext,AC,Conn,D} we have A(F)# c+ and so, by Propo-
sition 2.1,

c+ ! A(F) ! mL(F) < L(F)!
(
2c

)+
. (7)

In particular, under the generalized continuum hypothesis GCH we have A(F) = mL(F) = 2c and
mL(F)+ = L(F) = (2c)+ . However, without the GCH the situation is less clear. Of course, by
Theorem 3.1, the value of L(F) is determined to be (2c)+ , reducing the inequalities of (7) to
c+ ! A(F) ! mL(F) ! 2c. At the same time, it is consistent with ZFC that A(F) < 2c. (See [13]
or [11].) In such situation, the exact position of the number mL(F) between A(F) and 2c is unclear,
leading to the following problem.

Problem 3.5. Let F ∈ {Ext,AC,Conn,D}. Is it consistent with the axioms of set theory ZFC that
A(F) < mL(F)? What about the consistency of mL(F) < 2c?

It is worth to mention, that the formula (7) is also true when F is the class SZ of the Sierpiński–
Zygmund functions. Once again, it is consistent with ZFC that A(SZ) < 2c, as proved in [14]. However,
in contrast with Theorem 3.1, it is also consistent with ZFC that L(SZ) < (2c)+ . (See [21]; compare
also [6].)

4. Spaceability of Darboux-like functions on RRRn , n### 2

Recall (see, e.g., [12, Chart 2] or [11]) that we have the following strict inclusions, indicated in
Fig. 2 by the arrows, between the Darboux-like functions from Rn to R for n # 2.

The proof of the next theorem will be based on the following result [16, Proposition 2.7]:
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Fig. 2. Relations between the Darboux-like classes of functions from Rn to R, n ! 2. Arrows indicate strict inclusions.

Proposition 4.1. Let n > 0 and let f : Rn → R be a peripherally continuous function. Then for any x0 ∈ Rn

and any open set W in Rn containing x0 , there exists an open set U ⊆ W such that x0 ∈ U and the restriction
of f to bd(U ) is continuous. Moreover, given any ε > 0, the set U can be chosen so that | f (x0) − f (y)| < ε
for every y ∈ bd(U ).

Theorem 4.2. For n # 2, Lp(Ext(Rn)) = Lu(Ext(Rn)) = L(Ext(Rn)) = c+ . In particular, the classes C(Rn)
and Ext(Rn) are c-spaceable with respect to the pointwise convergence topology τp but are not c+-lineable.

Proof. First, notice that Lp(C(Rn)) = c+ is justified by the space C0 of all continuous functions linear
on the interval [k,k + 1] for every integer k ∈ Z. Indeed, C0 is linearly isomorphic to RZ .

Now, since c+ = Lp(C(Rn)) ! Lp(Ext(Rn)) ! Lu(Ext(Rn)) ! L(Ext(Rn)), it is enough to show that
L(Ext(Rn)) ! c+ , that is, that Ext(Rn) is not c+-lineable. To see this, by way of contradiction, assume
that there exists a vector space V ⊂ Ext(Rn) of cardinality greater than c. Fix a countable dense set
D ⊂ Rn and let ⟨⟨xk,εk⟩: k < ω⟩ be an enumeration of D× {2−m: m < ω}. By Proposition 4.1, for every
function f ∈ Ext(Rn) and k < ω we can choose an open neighborhood U f

k of xk of the diameter at

most εk such that f " bd(U f
k ) is continuous. Consider the mapping

V ∋ f 2→ T f =
〈
f " bd

(
U f

k

)
: k < ω

〉
.

Since its range has cardinality c, there are distinct f1, f2 ∈ V with T f1 = T f2 . In particular,

f = f1 − f2 ∈ V is equal zero on the set M = ⋃
k<ω bd(U f1

k ). Notice that the complement Mc of
M is zero-dimensional. We will show that f is not extendable, by showing that it does not satisfy
Proposition 4.1.

Indeed, since f1 ≠ f2, there is an x ∈ Rn with f (x) ≠ 0. Let ε = | f (x)| and let W be any bounded
neighborhood of x. Then, there is no set U as required by Proposition 4.1.

To see this, notice that for any open set U ⊆ W with x ∈ U , its boundary is of dimension at least 1.
In particular, M ∩ bd(U ) ≠∅ and, for y ∈ M ∩ bd(U ), we have | f (x) − f (y)| = | f (x)| = ε. ✷

Theorem 4.2 determines the values of the numbers Lp(F), Lu(F), and L(F) for F ∈ {C(Rn),
Ext(Rn),Conn(Rn),PR(Rn)} and n # 2. In the remainder of this section we will examine these cardinal
numbers for the remaining classes from the diagram in Fig. 2. For this, we will need the following
fact, improving a recent result of the second author. (See [18, Theorem 2.2].)

Proposition 4.3. Lp(J(Rn)) = (2c)+ for every n # 1. In particular, the families J(Rn), PES(Rn), SES(Rn), and
ES(Rn) are 2c-spaceable with respect to the topology of pointwise convergence.

Proof. Let {Mξ : ξ < c} be a decomposition of Rn into pairwise disjoint Bernstein sets. For every ξ < c,
let fξ : Mξ → R be such that fξ ∩ F ≠ ∅ for every closed set F ⊂ Rn × R whose projection on Rn is
uncountable. (All of this can be easily constructed by transfinite induction. See, e.g., [10].) Notice that

if g ∈ RR and g " Mξ = r fξ for some ξ < c and r ≠ 0, then g ∈ J
(
Rn).

Now, if f⃗ = ⟨ fξ " Mξ : ξ < c⟩ and V ( f⃗ ) is given by (5), then V ( f⃗ ) is 2c-dimensional τp-closed linear
subspace of J(Rn). ✷
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Every function in J(Rn) is surjective. In particular, the above result implies that the class of surjec-
tive functions is 2c-lineable. One could also wonder about the lineability of the family of one-to-one
functions from Rn to R, given below.

Remark 4.4. The family of one-to-one functions from Rn to R is 1-lineable but not 2-lineable.

Proof. Clearly the family is 1-lineable. To see that is not 2-lineable, choose two injective linearly
independent functions f and g generating a linear space Z . Take arbitrary x ≠ y in Rn and consider
the function h = f + αg ∈ Z \ {0}, where α = ( f (x) − f (y))/(g(y) − g(x)) ∈ R. Then, we have h(x) =
h(y), so Z contains a function which is not one-to-one. ✷

Other examples of 1-lineable but not 2-lineable sets and, in general, not lineable sets can be found
in [8,9].

Theorem 4.5. For n # 2, J(Rn) ⊂ AC(Rn) \ D(Rn). In particular, the class AC(Rn) \ D(Rn) is 2c-spaceable and
Lp(AC(Rn) \ D(Rn)) = (2c)+ .

Proof. By Proposition 4.3, it is enough to show that J(Rn) ⊂ AC(Rn) \ D(Rn). Clearly, J(Rn) ⊂ AC(Rn)∩
PES(Rn) for any n # 1. Thus, it is enough to show that PES(Rn)∩D(Rn) = ∅ for n # 2. But this follows
immediately from the fact that, under n # 2, every Bernstein set in Rn is connected. ✷

Remark 4.6. Notice that, since AC(Rn) ⊂ DP(Rn), then, for n # 2, we have Lp(DP(Rn)\D(Rn)) = (2c)+ .
So, DP(Rn) \ D(Rn) is also 2c-spaceable.

Theorem 4.7. For n # 2, Lp(D(Rn)\AC(Rn)) = (2c)+ . In particular, the class D(Rn)\AC(Rn) is 2c-spaceable.

Proof. Let π1: Rn → R the projection of Rn on its first coordinate. Let W = V ( f⃗ ) ⊂ J be the vector
space of cardinality 2c build in Proposition 4.3. Then the vector space

V = { f ◦ π1: f ∈ W }
is obviously contained in D(Rn) and has dimension 2c. On the other side, if f ∈ W then f ◦π1 cannot
be in AC(Rn), because then f would be continuous. (See [24].) This is not possible, because J ∩ C = ∅.
Therefore, V ⊂ D(Rn) \ AC(Rn). To finish, let us remark that the space V is also closed by pointwise
convergence. ✷

Remark 4.8. Notice that, in Rn (for every n ∈ N), we have that AC \ Ext is 2c-spaceable (since this
class contains the Jones functions). Also, in R, J ⊂ AC \ SCIVP ⊂ AC \ Ext and, since Lp(J) = (2c)+ , we
have (from the previous results) that

Lp(AC \ Ext) = Lu(AC \ Ext) =
(
2c

)+
.

Problem 4.9. For n # 2, determine the values of the numbers Lp(AC(Rn) ∩ D(Rn)), Lu(AC(Rn) ∩
D(Rn)), and L(AC(Rn) ∩ D(Rn)).

References

[1] R.M. Aron, V.I. Gurariy, J.B. Seoane-Sepúlveda, Lineability and spaceability of sets of functions on R, Proc. Amer. Math. Soc.
133 (3) (2005) 795–803.

[2] M. Balcerzak, A. Bartoszewicz, M. Filipczak, Nonseparable spaceability and strong algebrability of sets of continuous singu-
lar functions, J. Math. Anal. Appl. 407 (2) (2013) 263–269.
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