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In this paper we introduce a minimum barrier distance, MBD, defined for the (graphs of) real-valued
bounded functions fA, whose domain D is a compact subsets of the Euclidean space Rn. The formulation
of MBD is presented in the continuous setting, where D is a simply connected region in Rn, as well as in
the case where D is a digital scene. The MBD is defined as the minimal value of the barrier strength of a
path between the points, which constitutes the length of the smallest interval containing all values of fA

along the path.
We present several important properties of MBD, including the theorems: on the equivalence between

the MBD qA and its alternative definition uA; and on the convergence of their digital versions, cqA and cuA ,
to the continuous MBD qA = uA as we increase a precision of sampling. This last result provides an esti-
mation of the discrepancy between the value of cqA and of its approximation cuA . An efficient computa-
tional solution for the approximation cuA of cqA is presented. We experimentally investigate the
robustness of MBD to noise and blur, as well as its stability with respect to the change of a position of
points within the same object (or its background). These experiments are used to compare MBD with
other distance functions: fuzzy distance, geodesic distance, and max-arc distance. A favorable outcome
for MBD of this comparison suggests that the proposed minimum barrier distance is potentially useful
in different imaging tasks, such as image segmentation.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Over the past several decades, distance transform (DT) [1–7]
has been widely used as an effective tool for analyzing object mor-
phology and geometry [8–10]. Most DT measures described in the
literature essentially capture the Euclidean distance of a candidate
point from a target set, often the background. Rosenfeld and Pfaltz
[11] introduced the simple yet fundamental idea that, in a digital
grid, the global Euclidean distance transform may be approximated
by propagating local distances between neighboring pixels. Borgef-
ors [2,3] extensively studied DTs for binary objects including the
popular algorithm [2] that computes DT by using different local
step lengths for different types of neighbors. Also, she studied
the geometry and equations of 3D DT and presented a two-pass
raster scan algorithm for computing approximate Euclidean dis-
tance transform [3]. An algorithm for computing in linear time
the exact Euclidean distance transform for the rectangular digital
images was described in [12] and elaborated on in [13].
ll rights reserved.
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Other authors have considered distance functions where the
image data is taken into account, see, e.g., [5,14–16]. Distance
transforms for such distance functions are typically computed on
discrete sets using variations on Dijkstra’s algorithm. Falcão et al.
showed that this method of computation can be used for any
smooth distance function, as defined in [16].

Image processing on fuzzy subsets has gained a lot attention,
[9,10,17,18]. It provides a flexible framework for handling uncer-
tainty, arising from sampling artifacts, illumination inhomogeneities
and other imperfections in the image representation and acquisition
process. Fuzzy sets are defined using a membership function which
gives the degree of belongingness with respect to some set.

In this paper, we introduce a distance function defined for the
real-valued bounded functions fA (so, in particular, for fuzzy sets),
whose domain D is a compact subsets of the Euclidean space Rn.
We refer to the new distance as the ‘‘minimum barrier distance’’
and study its properties in the continuous setting, where D is a
simply connected region in Rn, as well as in the case where D is
a digital scene. In image processing and computer vision, ordinary
and fuzzy distance functions [1–6,11,14–16] have widely been
used to represent a spatial relation between each pair of points
in a Euclidean space or a fuzzy subset. For example, ordinary dis-
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Fig. 1. Topologists sine curve from Example 1.
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tance function, commonly used for binary images, is a measure of
the shortest digital path length between two points while, as
viewed by Saha et al. [5], fuzzy distance is a measure of the ‘‘min-
imum material to be traversed’’ to move from one point to the
other where the fuzzy membership function is linked to local
material density. Under both ordinary and fuzzy distance frame-
works, the length of a path strictly increases as the path grows.
The formulation of minimum barrier distance function possesses
the following property: The length of a path may remain constant
during its growth until a new stronger barrier is met on the path.
This subtle shift in the notion of path length allows the new dis-
tance function to capture separation between two points in the
sense of ‘‘connectivity’’ [19] in a fuzzy set unlike geometric proper-
ties commonly represented by existing distance functions. Thus, it
may be an interesting avenue to study strengths and limitations of
the new function that theoretically behaves like a distance while
resembling to ‘‘anti-connectivity’’ from a user perspective. For
example, the new distance may be useful to determine minimum
barrier to move from one region to another and also, to locate
the minimum barrier path. In the context of image processing
and computer vision, the new distance function may be useful in
image segmentation and region growing.

We show that (pseudo-)metric properties of the ‘‘minimum
barrier distance’’ are maintained by its formulation in a digital grid.
We give examples that show that the minimum-barrier distance
cannot be computed using the standard Dijkstra algorithm men-
tioned above. Instead, we give an approximation of the new dis-
tance measure for fuzzy subsets on digital grids and show that
the minimum barrier distance over a continuous fuzzy subset
can be approximated arbitrarily close in a digital grid by using a
sufficiently dense sampling grid. A similar approximation idea is
presented in [20]. An efficient computational solution for the min-
imum barrier distance is presented using the approximation. The
experiments show that the minimum barrier distance is robust
to noise, blur, and seed point position.

2. The Minimum Barrier Distance in Rn

Let fA : D! R be any bounded function and let A be its graph,
that is,

A ¼ fhx; fAðxÞi : x 2 Dg:

We will concentrate on the functions fA: D ? [0,1], in which case A
will be treated as a fuzzy subset of D and fA will be referred to as the
membership function of A in D. However, the presented material
works for mappings fA with any bounded range. For example, fA(x)
could be the intensity value at x in a digital image.

For D � Rn and p,q 2 D, a path from p to q (in D) is any continu-
ous function p: [0,1] ? D with p = p(0) and q = p(1). We use the
symbol Pp,q (or just P, when p and q are clear from the context)
to denote the family of all such paths. Recall, that D � Rn is path
connected provided for every p,q 2 D there exists a path p:
[0,1] ? D from p to q.

The goal of this section is to introduce and discuss the following
notion of the minimum barrier distance defined for the bounded
continuous functions fA : D! R in the case when D � Rn is path
connected.

Definition 1. For a path p: [0,1] ? D, the barrier along p is defined
as

sAðpÞ ¼max
t

fAðpðtÞÞ �min
t

fAðpðtÞÞ

¼max
t0 ;t1
ðfAðpðt1ÞÞ � fAðpðt0ÞÞÞ: ð1Þ

The minimum barrier distance qA: D � D ? [0,1) for a path con-
nected D � Rn is defined via formula
qAðp; qÞ ¼ inf
p2Pp;q

sAðpÞ: ð2Þ

Notice that the maxima and minima in the formula (1) are at-
tained (by the Extreme Value Theorem), since the composition
function fA � p is continuous. At the same time, the next example
shows that a path that defines the minimum barrier distance qA

is not always attained, that is, the infimum operation in the defini-
tion (2) cannot be replaced with the minimum operation.
Example 1. Let D = [�1,1]2 and T be the topologists sine curve, that
is, T is the closure of the set S = {hx, sin(1/x)i:x 2 (0,1]}, see Fig. 1. If
fA(x) is defined as the Euclidean distance from x 2 D to T, then fA is
continuous. If p = h0,0i and q = h1,sin1i, then infp2Pp;qsAðpÞ ¼ 0, but
sA(p) > 0 for any p 2P (since T is not path connected).

Notice that qA(p,q) is related to the geodesic distance gA(p,q) be-
tween the points hp, fA(p)i and hq, fA(q)i along the surface A. Actu-
ally, qA(p,q) is, in a way, a vertical component of gA(p,q), so that
qA(p,q) 6 gA(p,q).

Definition 2. A function d: D � D ? [0,1) is a metric on a set D
provided, for every x,y,z 2 D,

(i) d(x,x) = 0 (identity)
(ii) d(x,y) > 0 for all x – y (positivity)

(iii) d(x,y) = d(y,x) (symmetry)
(iv) d(x,z) 6 d(x,y) + d(y,z) (triangle inequality)

A function d that obeys properties (i), (iii), and (iv) is called a
pseudo-metric.

In the proof that qA is a pseudo-metric, we will use the following
notion. The concatenation p1 � p2 of the paths p1 and p2 such that
p1(1) = p2(0) is

ðp1 � p2ÞðtÞ ¼
p1ð2tÞ if t 2 ½0;1=2�
p2ð2tÞ otherwise:

�

Remark 1. If p1(1) = p2(0), then sA(p1) + sA(p2) P sA(p1 � p2).
Proposition 1. qA is a pseudo-metric.
Proof. It is obvious that qA is non-negative and symmetric. It satisfies
the identity property (i), since for the constant path px defined via
px(t) = x for all t 2 [0,1], we have qA(x,x)6 sA(px) = fA(x)� fA(x) = 0.

Now we prove the triangular inequality. Given three arbitrary
points p,q,r 2 D and an e > 0 chose the paths pp,q 2Pp,q and
pq,r 2Pq,r such that qA(p,q) P s(pp,q) � e and qA(q,r) P s(pq,r) � e.
Then, using Remark 1, we have

qAðp; qÞ þ qAðq; rÞP sðpp;qÞ � eþ sðpq;rÞ � e P sAðpp;q � pq;rÞ � 2e

P qAðp; rÞ � 2e:
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Since the inequality qA(p,q) + qA(q,r) P qA(p, r) � 2e holds for an
arbitrary e > 0, we must also have qA(p,q) + qA(q, r) P qA(p,r), as re-
quired. h

Notice that for a constant function fA we have qA� 0, so the prop-
erty (ii) does not hold. In particular, in general, qA is not a metric.

Now, consider the following alternative definition uA of the
function qA. In Theorem 1 we prove that under the very mild
assumptions on the set D, which include all convex subsets of Rn

(so, also, the rectangular regions), the mappings uA and qA are
identical. This gives a tool for approximating qA in the digital space
considered in Section 3.

Definition 3. Define the mapping uA: D � D ? [0,1) via formula

uAðp; qÞ ¼ inf
p12Pp;q

max
t

fAðp1ðtÞÞ � sup
p02Pp;q

min
t

fAðp0ðtÞÞ:

Note that uA is defined by two separate paths. Also, as in the
case of qA, the minimum/maximum over numbers t 2 [0,1] exists,
while neither infimum not supremum operators can be replaced
by maximum/minimum.

Recall, that a set D � Rn is simply connected, provided it is path
connected and for all p,q 2 D the paths p0,p1 2Pp,q are homotopic,
that is, there exists a continuous function h: [0,1]2 ? D, known as a
homotopy between p0 and p1, such that h(�,0) = p0(�), h(�,1) = p1(�),
and h(0, �), h(1, �) constant. Intuitively, the homotopy condition
means that D has no holes.

The proof of Theorem 1 will be based on the following two lem-
mas, the first of which is illustrated in Fig. 2.

Lemma 1. Let F0 and F1 be a closed disjoint subsets of [0,1]2 such that
F0n(0,1)2 � (0,1) � {1} and F1n(0,1)2 � (0,1) � {0}. Then, there exists
a continuous path �p : ½0;1� ! ½0;1�2 n ðF0 [ F1Þ from h0, .5i to h1, .5i.
Proof. The sets F0 ¼ F0 [ ðR� ½1;1ÞÞ and F1 ¼ F1 [ ðR� ð�1;0�Þ
are disjoint and closed in R2. Moreover, there is a path from h0, .5i
to h1,.5i both in R2 n F0 (following the lower boundary of [0,1]2)
and in R2 n F1 (following the upper boundary of [0,1]2). Therefore,
by a version of Alexander’s lemma from [22, p. 137], there exists a
path �p0 : ½0;1� ! R2 n ðF0 [ F1Þ � R� ð0;1Þ from h0, .5i to h1, .5i.
Now, if r : R� ð0;1Þ ! ½0;1� � ð0;1Þ is such that r(x) is the point in
[0,1]� (0,1) closest to x, then the continuous mapping
�p ¼ r � �p0 : ½0;1� ! ð½0;1� � ð0;1ÞÞ n ðF0 [ F1Þ is as desired. h
Lemma 2. Let D � Rn be simply connected. For every p,q 2 D and
e > 0 there exists a p 2Pp,q such that U0 � e < fA(p(t)) < U1 + e for
every t 2 [0,1], where U0 ¼ supp02Pp;q

mint fAðp0ðtÞÞ and
U1 ¼ infp12Pp;q maxt fAðp1ðtÞÞ.
Proof. Choose the paths p0,p1 2Pp,q for which maxtfA(p1(-
t)) < U1 + e and mintfA(p0(t)) > U0 � e. Let h: [0,1]2 ? D be a homot-
opy between the paths p0 and p1. Define F0 = {z 2 [0,1]2:
fA(h(z)) 6 U0 � e} and F1 = {z 2 [0,1]2: fA(h(z)) P U1 + e} and notice
that they satisfy the assumptions of Lemma 1. (Typical position
of sets F0 and F1 is shown in Fig. 2. Function h is constant on each
of the vertical segments of [0,1]2.)
Fig. 2. Illustration of Lemma 1. See the text for notation.
Indeed, since functions fA � p0 and fA � p1 are continuous, the sets
F0 and F1 are closed. They are disjoint, since U0� e < fA(p) = fA(p0(0,-
0� e < fA(p) = fA(p0(0,t)) < U1 + e for every t 2 [0,1]. This inequality
also implies that F0 [ F1 is disjoint with {0} � [0,1]. Similarly, F0 [ F1

is disjoint with {1}� [0,1]. Finally, F0 is disjoint with [0,1]� {0}, as
for any point z = ht,0i 2 [0,1]� {0} we have fA(h(z)) = fA(p0(t)) > U0 -
� e, and F1 is disjoint with [0,1]� {1}, as fA(h(z)) = fA(p1(t)) < U1 + e
for every t 2 [0,1] and z = ht,1i 2 [0,1] � {1}.

Since the assumptions of Lemma 1 are satisfied, there exists a
continuous path �p : ½0;1� ! ½0;1�2 n ðF0 [ F1Þ from h0, .5i to h1, .5i.
Then the path p ¼ h � �p : ½0;1� ! D is as desired, since pð0Þ ¼
hð�pð0ÞÞ ¼ hð0; :5Þ ¼ hð0;0Þ ¼ p0ð0Þ ¼ p and pð1Þ ¼ hð�pð1ÞÞ ¼
hð1; :5Þ ¼ hð1;1Þ ¼ p1ð1Þ ¼ q. Moreover, for every t 2 [0,1] we have
fAðpðtÞÞ ¼ fAðhð�pðtÞÞÞ 2 ðU0 � e;U1 þ eÞ, since otherwise �pðtÞ is in
F0 [ F1, contradicting the choice of �p. h
Theorem 1. If D � Rn is simply connected, then the mappings qA and
uA are equal, that is, qA(p,q) = uA(p,q) for all p,q 2 D.
Proof. Fix p,q 2 D and an e > 0. It is enough to prove the following
two inequalities: uA(p,q) 6 qA(p,q) + e and qA(p,q) 6uA(p,q) + 2e.
To prove the first of these, using the definition of qA choose a
p 2Pp,q for which qA(p,q) + e P sA(p). Then

qAðp; qÞ þ e P sAðpÞ ¼max
t

fAðpðtÞÞ �min
t

fAðpðtÞÞ

P inf
p12Pp;q

max
t

fAðp1ðtÞÞ � sup
p02Pp;q

min
t

fAðp0ðtÞÞ ¼ uAðp; qÞ;

giving the required inequality uA(p,q) 6 qA(p,q) + e.
To prove the second inequality, use Lemma 2 to find a path

p 2Pp,q for which the range of fA � p is contained in (U0 � e,U1 + e).
Then

qAðp; qÞ 6 sAðpÞ 6 ðU1 þ eÞ � ðU0 � eÞ ¼ uAðp; qÞ þ 2e;

finishing the proof. h

We will finish this section with a simple example of a continu-
ous function fA: D ? [�1,1] defined on a path connected, not sim-
ple connected, subset D of R2 for which the conclusion of
Theorem 1 does not hold.

Example 2. Let D ¼ fhx; yi 2 R2 : 1 6 x2 þ y2
6 4g, see Fig. 3, and

let fA: D ? [�1,1] be defined via formula fAðx; yÞ ¼ xffiffiffiffiffiffiffiffiffiffi
x2þy2
p . (This is

the cosine function of the argument of hx,yi.) Let p = h0,2i and
q = h0,�2i. Then, uA(p,q) = 0, as uA(p,q) 6maxtfA(p1(t)) �mintfA(-
q6 maxtfAp1t� mintfAp0t , where p1 2Pp,q is on the left
hand side of the inner circle and p0 2Pp,q is the right hand
side of this circle, see Fig. . On the other hand, it is eas to
see that qAp,q 1.
3. The Minimum Barrier Distance in Zn

In this section, we introduce a notion of the minimum barrier
distance in digital setting, that is, for the bounded functionsbfA : bD ! R, where bD—a digital scene—is a finite subset of a digital
space h/Zn;ai defined as follows. Z is the set of integers, / > 0 is
a constant, /Zn ¼ f/p : p 2 Zng, and a is an adjacency relation on
/Zn. In what follows we will use the adjacency a = a1, where for
j 2 {1, . . . ,n � 1}, two points in /Zn are aj-adjacent provided at
no coordinate they differ by more than / and that the points differ
in at most j coordinates. Note that a = a1 is equivalent to the
standard 6-adjacency [23] in a 3D digital space; the theoretical
formulations presented in the following is valid for aj for any other
choice of j, e.g., 18- or 26-adjacencies in 3D.



Fig. 3. The domain D ¼ fhx; yi 2 R2 : 1 6 x2 þ y2
6 4g of fAðx; yÞ ¼ xffiffiffiffiffiffiffiffiffiffi

x2þy2
p and the

paths p0 and p1 from Example 2. Note that fA is constant on the segments s1,s2,s3,s4;
it attains the values: 0 on s1 and s4, �1 on s2, and 1 on s3.
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Recall, that a (digital) path in a subset bD of h/Zn;ai is any or-
dered sequence p̂ ¼ hp̂ð0Þ; p̂ð1Þ; . . . ; p̂ðkÞi of points in bD such that
p̂ðiÞ is a-adjacent to p̂ði� 1Þ for all i 2 {1,2, . . . ,k}; the path p̂ is
from p to q when p̂ð0Þ ¼ p and p̂ðkÞ ¼ q. For a fixed set bD, a family
of all paths in bD from p to q is denoted by bPp;q (or just bP, if p and q
are clear from the context). Note that the digital paths are denoted
by p̂, while the paths in the continuous space Rn by p.

In what follows, we assume that the digital scenes bD are of the
rectangular form bD/ ¼ D \ /Zn, where D ¼ fx 2 Rn : Li 6 xðiÞ 6 Uig
for some real numbers Li, Ui such that Li < Ui for all i. In particular,
any two points in bD are connected by a path.

In view of Theorem 1, there are two natural ways of defining the
discrete minimum barrier distance for bfA : bD ! R, the discretiza-
tion of the formulas for qA(p,q) and for uA(p,q):

cqAðp; qÞ ¼ min
p̂2bPp;q

ðmax
i
½bfAðp̂ðiÞÞ� �min

j
½bfAðp̂ðjÞÞ�Þ; ð3Þ

cuAðp; qÞ ¼ minbp12bPp;q

max
i
½bfAðp̂1ðiÞÞ� � maxbp02bPp;q

min
j
½bfAðp̂0ðjÞÞ�: ð4Þ
3.1. Properties of cqA and cuA

Proposition 2.

(i) Each of the functions cqA and cuA is a pseudo-metric on bD.
(ii) cuAðp; qÞ 6 cqAðp; qÞ for all p; q 2 bD. The equality need not hold.

(iii) The paths cost functions maxi½bfAðp̂1ðiÞÞ� and minj½bfAðp̂0ðjÞÞ� are
smooth in the sense of [16]. So, the transform cuAðp; �Þ can be
efficiently calculated by Dijkstra’s algorithm. However, the path
cost function maxi½bfAðp̂ðiÞÞ� �minj½bfAðp̂ðjÞÞ� is not smooth in
the sense of [16] and effective computing of the transformcqAðp; �Þ presents a challenge.
Proof. The proof of (i) is an easier version of that for Proposition 1.
To see (ii), choose p̂ with cqA ðp; qÞ ¼ maxi½ bfA ðp̂ðiÞÞ� �minj½ bfA ðp̂ðjÞÞ�.

Then the inequalities min bp12bPp;q
maxi½bfAðp̂1ðiÞÞ� 6 maxi½ bfAðp̂ðiÞÞ�

and max bp02bPp;q
minj½ bfAðp̂0ðjÞÞ�P minj½ bfAðp̂ðjÞÞ� imply

cuAðp; qÞ 6 max
i
½bfAðp̂ðiÞÞ� �min

j
½bfAðp̂ðjÞÞ� ¼ cqAðp; qÞ:

An example that equality need not hold can be found in Fig. 4.
(iii) Smoothness of the path cost functions for cuAðp; qÞ is easy to

check and well known. (This was proved, for example, in [16].)
Lack of such smoothness for cqAðp; qÞ can be seen in Fig. 4: There is
a unique cqA -optimal path from the seed point to the upper right
element, but its restriction to the first three elements is not cqA -
optimal. h
Next we will prove, in Theorem 2, that if bfA : bDh ! R is a discret-
ization of a continuous function fA defined on a rectangular region
D, then, for a sufficiently small /, the numbers cuAðp; qÞ and cqAðp; qÞ
well approximate uA(p,q) = qA(p,q). Of course, in practice we do
not have continuous images fA : D! R, but the assumption is rea-
sonable since most image acquisition methods induce smoothing
of the image scene by a point spread function, see for example
[24] for a discussion. Such an fA can also be found by an interpola-
tion of a digital function (often, just an image intensity function).
We used this approach in our experiments presented in the next
section.

In the proof of Theorem 2 we will need the following notion.
The hypervoxel of a point p in /Zn is the Voronoi region of p in
Rn, that is, the set fx 2 Rn : jxðiÞ � pðiÞj 6 /=2 for all ig. The super-
cover digitization in /Zn of a subset A of Rn, denoted SðAÞ, is the un-
ion of all hypervoxels that meet the set A. The following simple fact
can be found, for example, in [25]. (Compare also [20].)

Remark 2. The supercover of any continuous path p in the
rectangular region D � Rn (or, more precisely, of its image
p[0,1] = {p(t): t 2 [0,1]}) induces, in bD/ ¼ D \ /Zn, an a-adjacent
path p̂ ¼ hp̂ð0Þ; p̂ð1Þ; . . . ; p̂ðkÞi with p½0;1� � Sðfp̂ð0Þ; p̂ð1Þ; . . . ;

p̂ðkÞgÞ and fp̂ð0Þ; p̂ð1Þ; . . . ; p̂ðkÞg � Sðp½0;1�Þ. In particular, the
Hausdorff distance between the sets fp̂ð0Þ; p̂ð1Þ; . . . ; p̂ðkÞg and
p[0,1] is at most /

ffiffiffi
n
p

=2, that is,

	 for every i there is a t with kp̂ðiÞ � pðtÞk 6 /
ffiffiffi
n
p

=2 and, similarly,
for every t there is an i with kp̂ðiÞ � pðtÞk 6 /

ffiffiffi
n
p

=2.
Theorem 2. Let D be a rectangular region in Rn and fA : D! R be
continuous. Let cqA and cuA be the discrete minimum barrier distance
functions for the sampling bfA of fA on bD/, that is, with bfAðpÞ ¼ fAðpÞ
for all p 2 bD/. Then, for every e > 0 there exists a /0 > 0 such that
for every / 2 (0,/0]

(	) jcqAðp; qÞ � qAðp; qÞj < e and jcuAðp; qÞ �uAðp; qÞj < e for all
p; q 2 bD/.

More precisely, this holds for any /0 > 0 such that jfA(x) � fA(y)j < e/4
for any x,y 2 D with kx� yk 6 /0

ffiffiffi
n
p

=2.
Proof. Since D is compact and fA is continuous, fA is uniformly con-
tinuous. So, there exists a /0 > 0 from the last sentence of the the-
orem. We need to show that (	) holds for such a /0. We will show
this only for the operator qA, the argument for the operator uA

being similar.
To show this, fix p; q 2 bD/. We need to prove thatcqAðp; qÞ < qAðp; qÞ þ e and qAðp; qÞ < cqAðp; qÞ þ e. To argue for the

first of these inequalities, choose a p 2Pp,q for which maxtfA

(p(t)) �mintfA(p(t)) < qA(p,q) + e/2. Let p̂ be as in Remark 2 and let
i0 be such that maxi½ bfAðp̂ðiÞÞ� ¼ fAðp̂ði0ÞÞ. Then, there is a t0 for
which kpðt0Þ � p̂ði0Þk 6 /0

ffiffiffi
n
p

=2. So, jfAðpðt0ÞÞ � fAðp̂ði0ÞÞj 6 e=4
and maxi½ bfAðp̂ðiÞÞ� ¼ fAðp̂ði0ÞÞ 6 fAðpðt0ÞÞ þ e=4 6 maxt½fAðpðtÞÞ�þ
e=4. Similarly, we prove that mini½ bfAðp̂ðiÞÞ�P mint ½fAðpðtÞÞ� � e=4.
Hence

cqAðp; qÞ 6max
i
½bfAðp̂ðiÞÞ� �min

j
½bfAðp̂ðjÞÞ�

6max
t

fAðpðtÞÞ �min
t

fAðpðtÞÞ þ e=2 < qAðp; qÞ þ e=2þ e=2;

proving bqAðp; qÞ < qAðp; qÞ þ e. The inequality qAðp; qÞ < bqAðp; qÞ þ e
is proved similarly. h

Since, by Theorem 2, both cqAðp; qÞ and cuAðp; qÞ converge, as /
? 0, to qA(p,q) = uA(p,q), we obtain the following corollary.



Fig. 4. Values of cqA and cuA obtained on a small image. Note the difference between cqA and its approximation cuA . The dark gray pixel corresponds to the point with respect to
which the path values are calculated.

1 Formula (5) can be also expressed as
Pn�1

i¼1 distðhpi;xfAðpiÞi; hpiþ1;xfAðpiþ1ÞiÞ,
where dist is the taxicab metric, that is, dist (hx1,y1i, hx2,y1i) = kx1 � x2k + ky1 � y2k. In
standard analysis courses, the geodesic distance is usually defined with the standard

Euclidean distance
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kx1 � x2k2 þ ky1 � y2k

2
q

.
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Corollary 1. max
p;q2bD/

jcqAðp; qÞ � cuAðp; qÞj ! 0 as / ? 0.

3.2. The algorithm

Among the two versions of the discrete minimum barrier dis-
tance functions, cqAðp; qÞ and cuAðp; qÞ, only the first one is defined
as the minimal (appropriately defined) length of a single path from
p to q—the feature shared by essentially all useful distance notions.
Because of this property, it is the function cqA , rather than cuA , that
we consider to be the proper definition of the discrete minimum
barrier distance. So, why did we not stick in this paper to the dis-
cussion cqA (and bothered with cuA , uA, and qA)?

An answer is given by Proposition 2(iii): there seems to be no
algorithm that efficiently computes the exact value of cqAðp; qÞ. To
solve this predicament, we turned to finding an efficient algorithm
for finding an approximation of cqA . According to Corollary 1, which
combines Theorems 1 and 2, the function cuA constitutes an approx-
imation of cqA . Moreover, cuAðp; �Þ can be found by a Dijkstra’s algo-
rithm, which computes each of the terms min bp12bPp;q

maxi½bfAðp̂1ðiÞÞ�
and max bp02bPp;q

minj½bfAðp̂0ðjÞÞ� separately. In particular, the time
complexity of such algorithm is O(N logN), where N is the number
of points in the image domain. In what follows, we will use the out-
put of this algorithm as an approximation of cqA .

It is worth to mention, that there are other algorithms with the
same computational complexity, that approximate cqA . For exam-
ple, in [21], an approximation of cqA (for vectorial functions bfA ) is
found by a version of Dijkstra’s algorithm, which propagates
according to the path cost function maxi½bfAðp̂ðiÞÞ� �minj½bfAðp̂ðjÞÞ�.
A similar approach was used in a preliminary version of this paper.
The experimental results show that the output of such algorithm is
very close to cuA (so, it approximates cqA ). However, at the present
time, there is no theoretical result (in form of Corollary 1) that the
output of such algorithm must approximate cqA . Thus, so far, cuA

constitutes the best approximation of cqA .

4. The experiments

In this section, we compare the minimum barrier distance cuA ,
approximating cqA , with the following distance functions, described
in detail below: fuzzy distance dF, geodesic distance dG, and max-
arc distance dmax. Having in mind the applicability of the distance
functions in image segmentations, we will concentrate on examin-
ing two desired properties that a distance function should have:
(A) producing the high ratios between the inter-object distances
and the intra-object distances; (B) being relatively unaffected by
a change of the position of seeds (robustness with respect seeds
position) and by an introduction of noise and blur to the image
intensity function. Therefore, our experiments are designed to
measure how each of these distances is influenced by a change
of the position of seeds, Fig. 5, and an introduction of noise and blur
to the image intensity function, Figs. 6 and 7. Notice, that the study
of noise and blur effects give, in particular, an information of the
ratio from (A). All distances we consider (cuA , dF, dG, and dmax) are
computed by minor variations of Dijkstra wave-front propagation
algorithm. So, the time complexity of each of these algorithms is
O(N logN), where N is the number of points in the image domain.

For each of the distance measures dF, dG, and dmax, the distance
between two points, p and q, is defined as the minimal cost of a
path between p and q, where the cost of a path hp1,p2, . . . ,pmi is de-
fined as follows:

	 For the fuzzy distance,
Xm�1

i¼1

fAðpiÞ þ fAðpiþ1Þ
2

� kpi � piþ1k:
See [5,15] for more details. We will also consider the fuzzy distance
on edge image, where the fuzzy distance is instead applied to an
edge image obtained by extracting edges of the image by an edge
detection filter. Here, we use gradient magnitude obtained by the
Prewitt operator.
	 For the geodesic distance dG
Xm�1

i¼1

xjfAðpiÞ � fAðpiþ1Þj þ kpi � piþ1k: ð5Þ
See [15,26] for details. The parameter x affects trade-off between
the fuzzy membership values and the distance on the image scene.1

	 For the max-arc distance Dmax
max
i¼1;...;m�1

wðfAðpiÞ; fAðpiþ1ÞÞ;
where w is a function that measures dissimilarity between points in
the image. Here, we use w(fA(pi), fA(pi+1)) = jfA(pi) � fA(pi+1)j. See [16]
for details. The max-arc distance can be seen as a reverse (with re-
spect to the order) of fuzzy connectedness measure with the affinity
function w. (See e.g. [17,18,20].)

4.1. The results

In all experiments we use 2D images considered with the 4-con-
nectedness (a-adjacency). Note that all algorithms are ‘‘blind’’ in
the sense that no prior information is considered. Fuzzy connected-



Fig. 5. Stability of the distance values d(p1,p2) for different distance functions, where the external seed point p2 is fixed and the internal seed point p1 is chosen randomly,
within the black region indicated on the left. The distance values are normalized, so that the mean distance value is one. The boxes in the boxplots cover the 25th to the 75th
percentile and central mark is the median. The whiskers of the boxplots extend to the most extreme data points not considered outliers.
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ness (and therefore max-arc distance), for example, can incorpo-
rate an object feature based component with prior information
about for example the expected intensity in an object, see
[17,18]. Including such features would require training.
4.1.1. Stability with respect to the seed points position
To test the different distance functions for its stability with re-

spect to the change of the seed points position, we use two test
images presented in each row of Fig. 5 as the top image of the left
column. The boxplots in Fig. 5 show, for each distance function, the
distribution of the distance value between a fixed (external) seed
point p2 and, for each of the 1000 repetitions of the experiment,
an internal seed point p1 randomly chosen within the black region
indicated on the left of the figure.
4.1.2. Stability with respect to noise and smoothing (blur)
The results of the experiments are presented, respectively, in

Figs. 6 and 7. The original tested images are shown at the top of
the figures. In the noise experiment, the images are degraded by
an additive Gaussian noise with zero mean and variance values
of: 0.0001, 0.001, 0.01, 0.1 and 1. For the blur experiment, we
use Gaussian smoothing with r between 0 and 3. The setup is as
follows: two inter-object seeds, p1 and p2, and an intra-object seed
p3 are fixed for the entire experiment; (i) Gaussian noise is ran-
domly generated 1000 times for each value of r; and (ii) the image
is filtered with a Gaussian filter with different values of r. In each
iteration, we calculate the inter-object distance between p1 and p2,
as well as the intra-object distance between p1 and p3. The distance
values are scaled so that the distance between p1 and p3 is 1 on the
original image. The figures show, for each distance function and



Fig. 6. Stability to Gaussian noise and smoothing, see the text. The distance values are normalized so that d(p1,p3) = 1 on the original image. The confidence intervals in the
upper plots cover one standard deviation.
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each distortion, the median of the obtained values as well as the
associated confidence interval.

4.2. Interpretation of the experimental results

According to Fig. 5, the max-arc distance dmax is by far the most
robust with respect to seed choice. This is not surprising, since
according to the seed-robustness theorem for fuzzy connectedness,
changing a seed p1 to another seed p01 within the same fuzzy con-
nectedness object (defined via dmax) does not affect at all the delin-
eated object. The strong point for the minimum barrier distance is
that, from this point of view, the minimum barrier distance is only
a bit worst than dmax and far better than other distances we consider.

The experiments also verify, see Figs. 6 and 7, that the minimum
barrier distance has, in general, low sensitivity to noise and blur. At
the same time, the distances based on gradient magnitude (fuzzy
distance on edge image and max-arc distance) are sensitive to noise,
see Fig. 7. In particular, while the max-arc distance gmax is stable
when strong gradients are present, the inter-object gmax distance is
not stable against Gaussian smoothing, as can be seen in Fig. 7.



Fig. 7. Stability to Gaussian noise and smoothing, see the text. The distance values are normalized so that d(p1,p3) = 1 on the original image. The confidence intervals in the
upper plots cover one standard deviation.
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The positive exception here is the fuzzy distance function,
which performs well on the intensity image when the intensities
within an object are low and the intensities between different ob-
jects are high. This can be seen in Fig. 6, where the intensities with-
in an object are low and the intensities between different objects
are high, and in Fig. 7, where the intensities within the object are
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high, which results in a high intra-object distance and a low inter-
object distance. (The weak performance of the fuzzy distance func-
tion is its dependence on seed position, see above.)

Finally, notice in Figs. 6 and 7, that all considered distances per-
form reasonably well in separating the object and background, in
the sense described in (A) above. However, as seen in Fig. 5, the
performance of the max-arc distance gmax is considerably better
for the images with the strong gradient and no noise (Fig. 6) than
when the gradients are weak as in Fig. 7. There is no similar drop of
performance with this respect for the minimum barrier distance.

In summary, the minimum barrier distance function compares
favorable with the other distances we compared it with. This make
it a good candidate for many many imaging tasks, that use distance
functions.

5. Conclusions and future work

In this paper we proposed a novel distance function, the mini-
mum barrier distance, which effectively computes the distance
values for digital images. It compares favorable with the fuzzy,
geodesic, and max-arc distances, when considered is stability with
respect to change of seed position and introduction of noice or
blur.

The main characteristic of the value of minimum barrier dis-
tance is based on the image homogeneity, making it robust against
weak gradients and noise. This stays in contrast with many other
distance functions, used in the wave-front propagation segmenta-
tion methods (like watersheds [27,28] and fuzzy connectedness
[17,18]), which are based on gradient information, image inhomo-
geneity, and so are less robust for noise and do not perform well for
the images with weak gradients.

In the geodesic distance, the parameter x in (5) gives the trade-
off between the accumulated gradient magnitude along the path
and the accumulated Euclidean distance between consecutive
points. High x gives low robustness to noise and low x gives a dis-
tance function that is independent of the intensities.

Notice that the computational complexity for finding the
approximation of the minimum barrier distance bu is low, since
the standard Dijkstra wave-front propagation algorithms can be
used. However, to approximate with higher accuracy and preci-
sion, we need to increase the resolution. If we need to better
approximate q, this could mean a substantial increase in computa-
tional complexity. We note that subsampling is not needed in
homogenous regions.

In our future work, we plan to make local approximations in re-
gions where the inhomogeneity of fA is high. In this way we think
that we will achieve better approximation without significant in-
crease in computational complexity. We also plan to examine the
case with multiple seed points in our future work.

We believe that this method has the potential of being useful in
many applications where homogeneous regions are extracted, for
example segmentation.
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