
GPU-based relative fuzzy connectedness image segmentation
Ying Zhugea)

Radiation Oncology Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland 20892

Krzysztof C. Ciesielskib)

Department of Mathematics, West Virginia University, Morgantown, West Virginia 26506 and Medical Image
Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Jayaram K. Udupac)

Medical Image Processing Group, Department of Radiology, University of Pennsylvania, Philadelphia,
Pennsylvania 19104

Robert W. Millerd)

Radiation Oncology Branch, National Cancer Institute, National Institutes of Health,
Bethesda, Maryland 20892

(Received 14 June 2012; revised 28 September 2012; accepted for publication 9 November 2012;
published 17 December 2012)

Purpose: Recently, clinical radiological research and practice are becoming increasingly quantita-
tive. Further, images continue to increase in size and volume. For quantitative radiology to become
practical, it is crucial that image segmentation algorithms and their implementations are rapid and
yield practical run time on very large data sets. The purpose of this paper is to present a parallel ver-
sion of an algorithm that belongs to the family of fuzzy connectedness (FC) algorithms, to achieve an
interactive speed for segmenting large medical image data sets.
Methods: The most common FC segmentations, optimizing an �∞-based energy, are known as rel-
ative fuzzy connectedness (RFC) and iterative relative fuzzy connectedness (IRFC). Both RFC and
IRFC objects (of which IRFC contains RFC) can be found via linear time algorithms, linear with
respect to the image size. The new algorithm, P-ORFC (for parallel optimal RFC), which is imple-
mented by using NVIDIA’s Compute Unified Device Architecture (CUDA) platform, considerably
improves the computational speed of the above mentioned CPU based IRFC algorithm.
Results: Experiments based on four data sets of small, medium, large, and super data size, achieved
speedup factors of 32.8×, 22.9×, 20.9×, and 17.5×, correspondingly, on the NVIDIA Tesla C1060
platform. Although the output of P-ORFC need not precisely match that of IRFC output, it is very
close to it and, as the authors prove, always lies between the RFC and IRFC objects.
Conclusions: A parallel version of a top-of-the-line algorithm in the family of FC has been devel-
oped on the NVIDIA GPUs. An interactive speed of segmentation has been achieved, even for the
largest medical image data set. Such GPU implementations may play a crucial role in automatic
anatomy recognition in clinical radiology. © 2013 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4769418]

Key words: image segmentation, fuzzy connectedness, graph-based methods, GPU implementations

I. INTRODUCTION

In spite of several decades of research, image segmentation
remains a challenging problem in medical image analysis.1

Graph-based algorithms make up a prominent class of purely
image based segmentation algorithms. Among these, as sum-
marized in Refs. 2 and 3, the graph cut methods4 employ
the �1-norm while random walker5 optimizes the �2-norm.
The fuzzy connectedness6–9 and the shortest path (geodesics)
(Refs. 10 and 11) use the �∞-norm. The fuzzy connectedness
(FC) framework has some unique properties such as robust-
ness to seed points and computational speed. As such, it has
been extensively utilized in many medical applications, in-
cluding multiple sclerosis lesion detection and quantification
via magnetic resonance imaging (MRI),12 upper airway seg-
mentation via MRI for studying pediatric obstructive sleep

apnea,13 automatic brain segmentation in MRI with the assis-
tance of an atlas,14 clutter-free volume rendering and artery-
vein separation in MR angiography,15 in brain tumor delin-
eation via MRI,16 etc. Several different forms of the math-
ematical definition of FC and the associated algorithms are
reported in the literature.17–20 The theoretical framework of
FC has been compared rigorously to the popular level set and
graph cut methods21–24 and has been shown to have some
theoretical and practical advantages over the latter includ-
ing computational efficiency. However, when processing large
image data sets, the run times for FC algorithms are still too
high to meet practical clinical demands.

Both graph cut and random walk methods have been
implemented on the GPU,3, 25–27 achieving the speed im-
provement, with respect to their CPU counterparts and using
different platforms, of the order of 0.7–19 fold. Several

011903-1 Med. Phys. 40 (1), January 2013 © 2013 Am. Assoc. Phys. Med. 011903-10094-2405/2013/40(1)/011903/10/$30.00

http://dx.doi.org/10.1118/1.4769418
http://dx.doi.org/10.1118/1.4769418
http://crossmark.crossref.org/dialog/?doi=10.1118/1.4769418&domain=pdf&date_stamp=2012-12-17

011903-2 Zhuge et al.: GPU-based RFC image segmentation 011903-2

parallel implementations have been developed to improve the
efficiency of the FC algorithms. A parallel implementation
of the scale-based FC algorithm has been developed for
implementation on a Cluster of Workstations (COW) by us-
ing the message passing interface (MPI) parallel-processing
standard.28 A manager-worker scheme has been used in
this implementation. A speedup factor of approximately 3
has been achieved on a COW with six workstations. An
OpenMP-based parallel implementation of the FC algorithm
has been reported in Ref. 29. A speed increase of approx-
imately five has been achieved, relative to the sequential
implementation on a SGI Altix 4700; an expensive, shared
memory multiprocessor system. A parallel implementation
of the absolute FC method, AFC,6 on the NVIDIA GPU has
also been developed achieving a speed increase of more than
ten over the CPU version.30

This paper focusses on a GPU implementation of a log-
arithm optimizing the �∞-based energy εmax , in the �p-norm
formulation proposed in Ref. 2. The energy optimization
is what truly distinguishes this work from that presented in
Ref. 30, as AFC objects have no build-in energy optimization
factor.

The objects optimizing the energy εmax are carefully dis-
cussed in Ref. 24. The most efficient currently existing CPU
algorithm returning an εmax -optimizer, GCmax from Ref. 24
(compare also Ref. 31), is a version of Dijkstra algorithm. It
returns, in a linear time with respect to the image size, an ob-
ject known as the iterative relative FC, IRFC, object. (Com-
pare Refs. 8 and 9.) The smallest (in the sense of inclusion)
among all εmax -optimizers always exists and is called the rel-
ative FC, RFC, object. The RFC object can be strictly smaller
than the IRFC object. The RFC object can also be found in a
linear time with respect to the image size (by a simple mod-
ification of the GCmax algorithm); however, such modifica-
tion runs slower (by a factor of 2) than the original GCmax

algorithm.
The new algorithm, called P-ORFC (for parallel optimal

relative FC), is implemented on NVIDIA’s Compute Uni-
fied Device Architecture (CUDA) platform for segmenting
medical image data sets and achieves a speedup factor of
17–32 over the top-of-the-line CPU algorithm GCmax dis-
cussed above. The output of P-ORFC is close to the I RFC
object and, as we prove here, always lies between the RFC
and IRFC objects; however, it may be strictly between these
two objects. Certainly, it would be more desirable to have a
fast GPU-based algorithm that returns precisely the known
IRFC (or RFC) object. This was our initial idea, as reported
in the conference proceedings version of this paper,32 which
describes the CPU-based implementation CUDA-IRFC-IFT
of the GCmax algorithm. However, the experiments of seg-
menting large size image data with CUDA-IRFC-IFT (not
included in the study reported in Ref. 32) did not achieve
the performance substantially better the CPU based GCmax

algorithm. Therefore, for the study presented in this paper,
we redesigned the CUDA-IRFC-IFT algorithm to the new al-
gorithm P-ORFC, which clearly outperforms (with respect to
running time) the GCmax and CUDA-IRFC-IFT algorithms,
while it has a similar quality of the output.

The paper is organized as follows. In Sec. II.A, we first
summarize the principles of fuzzy connectedness and describe
some of the CPU-based FC algorithms. Section II.B describes
our new algorithm and its implementation on the NVIDIA
Tesla C1060 GPU by using CUDA. It also contains the proof
of its correctness. The experimental results are presented in
Sec. III. Finally, we state our concluding remarks in Sec. IV.

II. MATERIALS AND METHODS

II.A. Principles of fuzzy connectedness

In this section, the principles of FC are briefly summarized
(following Refs. 6, 8, 9, 22, and 24), to make this paper self-
contained.

II.A.1. Digital image and its scene

We will identify a digital image I = 〈C, f〉 with its intensity
function f : C → R�, that is, a map from its domain—a finite
set C, whose elements will be referred to as spels, short for
space elements—into R�. The value f(c) of f at c represents
image intensity, an �-dimensional vector, at this spel.

The domain C of the image comes with an adjacency rela-
tion function α: C × C → {0, 1}, independent of the image
intensity function, and the structure C = 〈C, α〉 is referred to
as a digital scene. The spels c, d ∈ C are adjacent, when α(c,
d) > 0. Intuitively, the adjacent spels are defined as spatially
close to each other and are considered to be connected (in
a topological and graph-theoretical sense). Recall22, 24 that a
scene C is often identified with the directed graph G = 〈C,
E〉, where the sets E of graph directed edges are defined as
{〈c, d〉 ∈ C × C: α(c, d) > 0}. (Since α is usually a symmet-
ric function, the graph can be also naturally identified with a
nondirected graph.)

In the experimental part of this paper, Sec. III, we will
concentrate on the gray scalar images (i.e., having range R1)
defined on the 3D domains of the rectangular form C = C1

× C2 × C3, each Ci being the set of integers {1, . . . , mi}.
(Thus, in what follows, we often refer to spels as voxels.)
Also, we will use the six-adjacency relation of voxels. How-
ever, none of the results presented in Sec. II.B (including the
algorithm P-ORFC) requires these additional restrictions. In
fact, the results even apply to a more relaxed definition of the
adjacency α, which allows its range to contain the fractional
values in [0, 1].

A path p in the scene C is any finite sequence 〈c1, . . . ,
ck〉 of elements of C such that any consecutive voxels in p
are adjacent, that is, with α(ci, ci + 1) > 0 for all i = 1, . . . ,
k − 1. For A ⊂ C and c ∈ C, we say a path p = 〈c1, . . . , ck〉: is
in A, provided ci ∈ A for all i; and is from A to c, when c1 ∈ A
and ck = c.

II.A.2. Affinity and connectivity functions

The affinity function (also, referred to as a graph weight
or cost function) is a map κ: E → [0, 1] which assigns to
every pair 〈c, d〉 of adjacent voxels a strength κ(c, d) of local

Medical Physics, Vol. 40, No. 1, January 2013

011903-3 Zhuge et al.: GPU-based RFC image segmentation 011903-3

hanging togetherness. The strength κ(c, d) usually depends
on: the value of α(c, d) (important only, when we allow
fractional values of α), the similarity between the intensities
f(c) and f(d) (this is a homogeneity-based affinity component
ψ), and the object feature-based affinity component φ defined
below. The affinity functions are discussed in detail in
Refs. 7 and 33. In the experimental part of this paper, the
following functional form for κ is used:

κ(c, d) = α(c, d)
√

ψ(c, d)φ(c, d), (1)

where ψ(c, d) is given by

ψ(c, d) = e
− ‖f (c)−f (d)‖2

σ2
h , (2)

with σ 2
h being the variance of the intensity difference ‖f(c)

− f(d)‖ for all adjacent c and d, and the object feature based
affinity φ(c, d) is given by

φ(c, d) = e
− max{‖f (c)−m‖,‖f (d)−m‖}2

σ2
o . (3)

Here, m and σ 2
o are related to the mean and variance of the

intensity of the object that we wish to find in C.
For a fixed affinity κ , we define a strength μ(p) of a path p

= 〈c1, . . . , ck〉 in C, with k > 1, as μ(p) = min {κ(ci − 1, ci): 1
< i ≤ k}, that is, the strength of the κ-weakest link of p. For
k = 1, we associate with p the strongest possible value: μ(p)
= 1. For c ∈ C and a nonempty S ⊂ C, we define the connec-
tivity value μ(c, S) (of c with respect to S) as the maximum
strength μ(p) among all paths from S to c. In addition, if a set
A ⊂ C contains both c and S, then μA(c, S) is defined as the
maximum of μ(p) among all paths from S to c in A. Finally,
if T ⊂ C\S is nonempty, then μ(S, T) = max s ∈ Sμ(s, T) is the
maximum of the strength of all possible paths from S to T.

II.A.3. Absolute and relative fuzzy connectedness

For a nonempty set S ⊂ C of seeds, indicating the fore-
ground, and a threshold θ < 1, the absolute fuzzy connect-
edness, AFC, object is defined as

PSθ = {c ∈ C : μ(c, S) > θ}.
Notice that S ⊂ PSθ = ⋃

s∈S P{s}θ and that each object P{s}θ

is connected (in the topological and graph-theoretical sense).
The AFC object is robust with respect to seed choice in the
sense that P{c}θ = P{s}θ for every c ∈ P{s}θ .

The necessity of specifying the threshold vanishes in the
RFC definition. The RFC object is defined in terms of the
disjoint nonempty sets S, T ⊂ C of seeds, the former indicating
an object, the latter the background

P 1
S,T = {c ∈ C : μ(c, S) > μ(c, T)}.

The RFC object is always disjoint with T. It contains S, when
μ(S, T) < 1. Notice also that, if S is a singleton, then P 1

S,T

equals the AFC object PSθ with θ = μ(S, T). The RFC object
is also robust with respect to seed choice.

It has been recently noticed (see Refs. 22 and 24) that the
RFC object P 1

S,T minimizes an �∞-energy εmax in the family

P(S, T) = {P ⊂ C : S ⊂ P ⊂ C \ T },

where εmax (P) = ‖FP‖∞ = max {κ(c, d): 〈c, d〉 ∈ bd(P)} and
the boundary bd(P) of P is defined as the set of adjacent pairs
〈c, d〉 for which P contains precisely one of c and d. Here, FP

is a mapping from E to [0, ∞), defined as FP(c, d) = κ(c, d)
for 〈c, d〉 ∈ bd(P) and FP(c, d) = 0 for other adjacent pairs.
The minimal energy min{εmax(P) : P ∈ P(S, T)} is equal to
μ(S, T) and the RFC object P 1

S,T is the smallest (with re-
spect to inclusion) element of the collection {P ∈ P(S, T) :
εmax(P) = μ(S, T)}. It is worth mentioning here that the stan-
dard min cut/max flow graph cut algorithm produces an object
that minimizes the �1-energy ‖FP‖1 on P(S, T).

II.A.4. Iterative relative fuzzy connectedness

The RFC procedure leads naturally to two objects: the
foreground P 1

S,T and the background P 1
T ,S . These two objects,

however, can still leave a sizable leftover zone B = {c ∈ C :
μ(c, S) = μ(c, T)} = C \ (P 1

S,T ∪ P 1
T ,S), where there is tie in

strength of connectedness. The goal of IRFC is to find a way
to naturally redistribute some of the spels from B to a new
version of objects, P ∞

S,T and P ∞
T ,S . The IRFC object is defined

as P ∞
S,T = ⋃∞

k=1 P k
S,T , where the objects P k

S,T are found itera-
tively, starting from the RFC object P 1

S,T

P k+1
S,T = P k

S,T ∪ {
c ∈ C \ P k

S,T : μ(c, S) > μC\P k
S,T (c, T)

}
.

Objects P ∞
S,T and P ∞

T ,S are disjoint and P ∞
S,T still minimizes

the energy εmax on P(S, T), as proved in Ref. 24. The paper24

describes also a linear time (with respect to image size) algo-
rithm GCmax, which returns P ∞

S,T . (Compare also Refs. 11, 34,
and 31.) Actually, GCmax returns the optimal path forest for
S ∪ T, that is, a family P = {pc : c ∈ C} of paths such that for
every c ∈ C, pc = 〈c1, . . . , ck〉 is from S ∪ T to c, μ(pc) = μ(c,
S ∪ T), and any initial restriction 〈c1, . . . , cj〉 (1 ≤ j < k) of pc

is also in P . For this family, P ∞
S,T equals {c ∈ C: pcstartsatS}.

The IRFC object is also robust with respect to seed choice.
The GCmax algorithm can be also used to find, still in a

linear time with respect to the image size, the RFC object.24

II.B. The new GPU-based algorithm

In this section, we present the new GPU-based algorithm
P-ORFC. We start with a brief description of the NVIDIA
GPU hardware architecture and the CUDA programming
model. For a full description of NVIDIA GPU and CUDA,
readers are referred to the CUDA programming guide.35

Then, we describe the new algorithm, P-ORFC, devised for
the CUDA model and implemented in NVIDIA GPU. Finally,
we state and prove the theoretical properties of P-ORFC and
relate the P-ORFC-returned object to the RFC and IRFC
objects.

II.B.1. NVIDIA GPU architecture and CUDA
programming

The underlying hardware architecture of a NVIDIA GPU
is illustrated in Fig. 1. The NVIDIA Tesla C1060 GPU
is used as an example to provide a brief overview of the
architecture. The Tesla C1060 GPU has 240 processing

Medical Physics, Vol. 40, No. 1, January 2013

011903-4 Zhuge et al.: GPU-based RFC image segmentation 011903-4

FIG. 1. NVIDIA GPU hardware architecture.

cores with a clock rate of 1.3 GHz for each core, delivering
nearly 1 Tera FLOPS of computational power. To support
access to this computing power, NVIDIA provides the CUDA
programming framework,35 based on the C-language model,
which is briefly described below.

The 240 cores of the Tesla C1060 GPU are grouped into
30 multiprocessors. Each multiprocessor has eight processing
cores, organized in a single instruction multiple data (SIMD)
fashion. Each core has its own register file and arithmetic
logic unit which allows it to accomplish a specific compu-
tational task. The Tesla C1060 has 4 GB of onboard device
memory, which can be used as read-only texture memory or
read-write global memory. The GPU device memory features
very high bandwidth, recorded at 102 GB per second, but it
suffers from high access latency. In each multiprocessor unit,
there is 16 kbyte of user-controlled L1 cache, called shared
memory. If it is used efficiently, it can be employed to hide
the latency in global memory access.

In CUDA programming, the parts of the algorithm that
are executed in parallel mode on P-ORFC are referred to as
kernels. A CUDA kernel is executed by an array of threads.
All threads run the same kernel code and each thread has an
ID that it uses to compute memory addresses make control
decisions.

II.B.2. The new algorithm, P-ORFC, implemented
in CUDA

The P-ORFC algorithm is presented below.
In any FC algorithm, including P-ORFC, there are two ma-

jor computational tasks: (C1) computing the fuzzy affinity re-
lations, and (C2) computing the fuzzy connectivity measure
μ(· , S ∪ T). In addition, we record in (C2) the labels for the
objects of interest. We shall refer to (C1) as “affinity compu-
tation” and (C2) as “tracking” connectivity. These two tasks
are implemented as CUDA kernels in the P-ORFC algorithm
illustrated in the flow chart of Fig. 2.

II.B.2.a. Affinity computation kernel. The CUDA imple-
mentation of fuzzy affinity computation is straightforward.
The fuzzy affinity computation of every pair 〈c, d〉 of adjacent
voxels [i.e., six-adjacent or, more generally, with α(c, d) > 0]
is totally independent of other pairs of voxels. Thus, for the
pair 〈c, d〉, one thread is assigned to compute the correspond-

FIG. 2. The flow chart of the CUDA implementation of the P-ORFC
algorithm.

ing affinity components ψ(c, d) and φ(c, d) from (2) and (3),
and the fuzzy affinity κ(c, d) result, given by the formula (1),
is written to the specific allocated GPU device memory.

Actually, in our experiments, we use as the affinity func-
tion κ̄(c, d) = D κ̂(c, d), with D = 212 = 4096, where κ̂(c, d)
is the greatest number in the set Z = {i/D: i = 0, 1, . . . , D}
less than or equal to κ(c, d). [Thus, κ̄(c, d) is the integer part
of D κ(c, d).] Although replacing κ with its approximation
κ̂ can slightly change the segmentation output, it consider-
ably speeds up the running time of the algorithm. On the other
hand, according to the results from the paper,33 the affinities
κ̄ and κ̂ produce identical FC results.

II.B.2.b. Tracking kernel. The top of the line in the se-
quential IRFC algorithm GCmax (Ref. 24) (compare also
Ref. 31) is a (relatively simple) modification of the Dijkstra’s
algorithm DA. In particular, the order in which the voxels are
accessed by DA (so, also by GCmax) is strictly regulated, and
so this regulation does not allow full exploitation of the par-
allel processing features offered by the GPU. (We tried GPU
implementation of GCmax, as reported in the conference pro-
ceedings version of this paper,32 and found that such a version
of the algorithm runs considerably slower than the P-ORFC
algorithm presented here. This seems to be due to the fact
that, during the execution of the GPU version of GCmax, most
of the CUDA threads actually do not update a voxel’s connec-
tivity values.) The challenges of parallel implementation of
the Dijkstra’s algorithm are also reported in Refs. 36 and 37.

To avoid the difficulties caused by the priority queue
structure required by DA, a “brute-force” method was used to
update the connectivity value μ(c, S ∪ T) of each voxel c. In
particular, all threads are made to be actively involved in the
updating operations: each GPU thread independently checks
the connectivity value of the voxel it processes and compares
it with that of its neighbors. A global boolean variable β,
indicating whether any connectivity update was made during
each kernel run, is maintained on the GPU to track the update

Medical Physics, Vol. 40, No. 1, January 2013

011903-5 Zhuge et al.: GPU-based RFC image segmentation 011903-5

ALGORITHM I. P-ORFC

Input: An image 〈C, f〉; Nonempty sets S, T ⊂ C of seeds, indicating the
foreground (object) and background, respectively;
Output: Functions: h: C → { − 1} ∪ [0, 1] approximating μ(· , S ∪ T) and
a labeling map λ: C → {0, 1} (1 for the background, 0 for the foreground);
Auxiliary: A global boolean variable β, to help in deciding on stopping of
the main loop;
begin
1: Allocate GPU global memory for the affinity κ;
2: Invoke AFFINITY-KERNEL on GPU to compute κ;
3: Allocate GPU global memory for h and λ;
4: h(c) ← 1 for all c ∈ S ∪ T and h(c) ← −1 for all c�∈(S ∪ T);
5: λ(c) ← 1 for all c ∈ T, and λ(c) ← 0 for all c ∈ S; β ← “true”;
6: while β = “true” do
7: β ← “false”;
8: Invoke TRACKING-KERNEL(h, λ, β);
9: Transfer β back to CPU;
10: end while
11: Copy h and λ from GPU to CPU;
12: Return {c ∈ C: λ(c) = 0} as the foreground;
end

status. Its local counterpart, b, is kept on the shared memory
of each multiprocessor and the b’s are combined to yield β at
the end of each kernel execution.

The atomic read/write operations in the device memory are
used for concurrent memory access. Actually, the read/write
conflict can occur only in Algorithm III in lines 4 and 5, when
the values of h and λ are accessed/modified. The multiple
write/write can appear only for line 6, but then the same mod-
ifications are made, so there is no conflict, as at least one of
the modifications will be performed.

The Algorithm I was executed on the host (CPU) side
while the kernels were executed on the device (GPU) side,
as shown in Fig. 2. The values of h, κ , and λ were stored in
GPU global memory, which was accessible by all threads on
GPU. The different threads of TRACKING-KERNEL oper-
ate on voxels for updating connectivity and label information
simultaneously. In one invocation, they all updated connectiv-
ity information as much as they could on the voxels in their
purview. The CPU boolean variable β determines whether any
updating has been done in the last invocation of the tracking
kernel. If so, the kernel was invoked again with the updated
information on the voxels. The CPU terminates the run of the
algorithm when no updates were performed during the last
run of the tracking kernel.

The affinity and tracking kernels are presented below. The
kernels start with computing thread index t(id), which deter-
mines which thread handles each voxel.

Note that in Algorithm II, each pair 〈c, d〉 is considered
only once. Thus, different threads independently compute
affinities for different pairs of voxels.

In the tracking kernel, the value of the global variable β

is updated in the following manner. A boolean variable bi is
maintained in the shared memory of each block Bi, i denoting
an index of the associated multiprocessor, which indicates if
there are any changes of connectivity in the voxels processed

ALGORITHM II. AFFINITY-KERNEL

1: Compute thread index t(id);
2: for each voxel c processed by t(id) do
3: for each voxel d such that α(c, d) > 0 do
4: Compute affinity κ(c, d);
5: Write κ(c, d) to the corresponding GPU memory;
6: end for
7: end for

by threads in Bi. When a thread in Bi updates connectivity and
label map information, the value of bi is set to “true.” After
all threads in each Bi finish their work, the value of β is then
updated in terms of bi’s. We take this strategy to update the
value of β because the memory access in the shared memory
is much faster than that in the global memory.

To understand the meaning of TRACKING-KERNEL, one
needs to put it in the perspective of the entire algorithm P-
ORFC, which is an iterative procedure. At the first iteration,
only the threads which process the voxels c neighboring e ∈
S ∪ T are active. TRACKING-KERNEL is called to update
the connectivity measure h and the label map λ. More threads
will be involved and become active for the connectivity and
label map information update at the successive iterations.

Because of the limited communication capability among
threads from different blocks, the CPU side collects the global
index information from each block on GPU that is updated by
each thread in the block through shared memory and decides
when to terminate calling the TRACKING-KERNEL. Each
thread checks the connectivity and label values of each voxel
under its control, and the values of its neighbors, to see if
it is allowed to operate on the current voxel c for updating
connectivity and label information.

In line 5 of TRACKING-KERNEL, atomic operation was
used for consistency. Otherwise, write/read conflict can oc-
cur. [Actually, a pair 〈h(c), λ(c)〉 was coded as a single integer
atomic variable, to insure that the update was always done si-
multaneously by the same thread.] In lines 6 and 12, there

ALGORITHM III. TRACKING-KERNEL(h, λ, β)

Auxiliary: A boolean variable b in a shared memory of each block B, initial-
ized as b ← “false.”
1: Compute thread index t(id);
2: for each voxel c processed by t(id) do
3: for each voxel e such that α(c, e) > 0 do
4: if (h(c) < min {h(e), κ(c, e)}) or (h(c) = min{h(e), κ(c, e)} and λ(c)

< λ(e)) then
5: h(c) ← min {h(e), κ(c, e)}, λ(c) ← λ(e);
6: b ← “true”;
7: end if
8: end for
9: end for
10: Synchronize all threads in the block;
11: if b = “true” for at least one block then
12: β ← “true”;
13: end if

Medical Physics, Vol. 40, No. 1, January 2013

011903-6 Zhuge et al.: GPU-based RFC image segmentation 011903-6

may be multiple writings happening simultaneously. How-
ever, atomic operation was not used here since, according to
CUDA manual, it is guaranteed that at least one writing oper-
ation will be performed.

The algorithm P-ORFC terminates when all voxels are
fully processed and no further changes to connectivity or label
can be made.

II.B.3. Properties of P-ORFC

Theorem 1. The object P returned by the algorithm P-
ORFC contains the RFC object and is contained in the IRFC
object. Moreover, P minimizes the �∞-energy εmax.

Proof. Assume that during the execution of P-ORFC we
keep track of the path function p such that, at any voxel c and
at any time of the program execution, p(c) represents the path
from S ∪ T to c which justifies the current values h and λ. To
do this formally, we would need to initialize p as

� set h(c) ← 〈c〉 for all c ∈ S ∪ T and h(c) ← ∅ for all
c �∈ (S ∪ T);

and, between lines 5 and 6 in the tracking kernel, add the com-
mand

� set p(c) ← p(e)ˆ〈c〉, i.e., the extension of p(e) by c.

(This would not change the algorithm’s output and, since
we do not need the variable p except for this proof, we do not
actually implement it.)

Let P = {pc : c ∈ C} be the family of paths forming an
optimal path forest for S ∪ T such that {c ∈ C: pc starts at S}
is the IRFC object P∞. (See Subsection II.A.4.) Notice that
at the end of the execution of P-ORFC, for every voxel c we
have

(�) h(c) = μ(c, S ∪ T) and, whenever c �∈ P∞, also λ(c) = 1.

To see this, first notice that, if (�) holds for some c af-
ter any execution of the tracking kernel, then this property is
preserved by any further kernel’s execution, since in any con-
secutive execution the condition from line 4 is not satisfied.
Thus, to show that (�) holds, it is enough to prove, by induc-
tion on the length |pc| of pc, that (�) holds for c after |pc|-
many executions of the tracking kernel. Indeed, this is clearly
true for |pc| = 1. Also, if (�) is true for any c with |pc| = k
− 1, then for any pc = peˆ〈c〉 of length k, during the kth exe-
cution of TRACKING-KERNEL, (�) already holds for e and
the execution of lines 4–7 insures that (�) holds also for c.
This concludes the argument for (�).

Next, we will show that the RFC object P1 = {c ∈ C: μ(c,
S) > μ(c, T)} is contained in P. For this, fix a c ∈ P1. Then, at
the end of the execution of P-ORFC, we have μ(p(c)) = h(c)
= μ(c, S ∪ T) = μ(c, S) > μ(c, T), insuring that λ(c) = 0, as
p(c) must start at S. So, indeed, c ∈ P.

To see that P is contained in the IRFC object P∞, fix a
c from C\P∞. We need to show that c�∈P. Indeed, by (�),
c ∈ C\P∞ implies that λ(c) = 1 and so c�∈P.

Finally, we prove that P minimizes the �∞-energy εmax .
Recall, that this energy is minimized at θ = μ(S, T). So, take
adjacent voxels v0 and v1, one from P, another from its com-

ALGORITHM IV. P-RFC

Input: An image 〈C, f〉; Nonempty sets S, T ⊂ C of seeds, indicating the
foreground (object) and background, respectively;
Output: The RFC object P 1

S,T = {c ∈ C : μ(c, S) > μ(c, T)};
begin
1: Invoke P-ORFC with Ŝ = S and T̂ = ∅ to compute hS(·) = μ(· , S);
2: Invoke P-ORFC with Ŝ = T and T̂ = ∅ to compute hT(·) = μ(· , T);
3: Return {c ∈ C: hS(c) > hT(c)} as the foreground;
end

plement. Let i ∈ {0, 1} be such that h(vi) ≥ h(vi−1) and put
c = vi , e = vi−1. Then, h(c) ≥ h(e). By definition of εmax , we
need to show that κ(c, e) ≤ θ . So, by way of contradiction,
assume that κ(c, e) > θ . Then, h(c) ≥ h(e) ≥ κ(c, e) is im-
possible, since the concatenation of the paths p(c), 〈c, e〉, and
p(e) would form a path from S to T of strength ≥κ(c, e) > θ

= μ(S, T). The inequality min {h(c), κ(c, e)} > h(e) is also
impossible, since then the path p(c)ˆe from S ∪ T to e would
have a strength greater than h(e) = μ(e, S ∪ T), contradicting
maximality of h(e). The only remaining possibility is that of
the inequality κ(c, e) ≥ h(c) = h(e). However, in this case the
algorithm would insure that both λ(c) and λ(e) are 1, meaning
that neither c nor e is in P, a contradiction.

The above three cases show, that the assumption κ(c, e)
> θ leads to contradiction, so that indeed we must have κ(c,
e) ≤ θ , as required.

II.B.4. RFC object via P-ORFC algorithm

As Fig. 3 shows, the output of P-ORFC does not need to
coincide with either RFC or IRFC object. However, the fol-
lowing algorithm shows how to use P-ORFC to return the
RFC object.

The output of P-RFC agrees with the RFC object
P 1

S,T , since P-ORFC returns h(·) = μ(· , S ∪ T). How-
ever, we invoke P-ORFC twice, so the computation time of
P-RFC will be greater than (roughly twice) the computation
time of P-ORFC.

Finally, an example is presented in Fig. 3, for which
none of the objects RFC P 1

S,T , IRFC P ∞
S,T , and the out-

put P of P-ORFC, coincide. Indeed, it is easy to see that

FIG. 3. Graph used to illustrate the segmentation difference between the
RFC P 1

S,T and IRFC P ∞
S,T objects and the output P of P-ORFC. The seed sets

for the object and background are S = {s} and T = {t}, respectively.

Medical Physics, Vol. 40, No. 1, January 2013

011903-7 Zhuge et al.: GPU-based RFC image segmentation 011903-7

TABLE I. Data set information and performance of the GPU implementation with respect to an optimal CPU
implementation.

Data set Small Medium Large Super

Protocol PD MRI T1 MRI T1 MRI T1 MRI
Scene domain 256 × 256 × 55 256 × 256 × 124 512 × 512 × 192 512 × 512 × 576
Voxel size (mm) 0.98 × 0.98 × 3.0 0.94 × 0.94 × 1.5 0.5 × 0.5 × 1.0 0.5 × 0.5 × 0.33
CPU time (s) 8.21 19.24 101.45 312.24
GPU time (s) 0.25 0.84 4.85 17.85
Speedup 32.8 22.9 20.9 17.5

P 1
S,T = {s, a, b, c}, since μ(v, S) = 1 > 0.5 = μ(v, T) for

v ∈ {s, a, b, c} and μ(w, S) = μ(w, T) = 0.5 for w ∈ {d, e}.
Also, P 2

S,T = P ∞
S,T = {s, a, b, c, d, e}, since there is no path

from T to w ∈ {d, e} disjoint with P 1
S,T , which means that

μ(w, S) = 0.5 > μ(w, T) = 0. Finally, P = {s, a, b, c, d},
since after the third invocation of the tracking kernel, the
last when any change is made, we have 〈h(v), λ(v)〉 = 〈1, 0〉
for v ∈ {s, a, b, c}, 〈h(d), λ(d)〉 = 〈0.5, 0〉, and 〈h(e), λ(e)〉
= 〈0.5, 1〉. [After the second invocation of the tracking kernel
these parameters are: 〈h(v), λ(v)〉 = 〈1, 0〉 for v ∈ {s, a, b},
〈h(d), λ(d)〉 = 〈0.5, 0〉, and 〈h(w), λ(w)〉 = 〈0.5, 1〉 for w

∈ {c, e}.] In summary, for this example, we have P 1
S,T � P

� P ∞
S,T .

III. EXPERIMENTAL RESULTS

In this section, the running times of the GPU and CPU
implementations of the P-ORFC algorithm are compared for
image data of different sizes, and the similarity and accuracy
of the segmentations are assessed.

The CPU version is implemented in C++. The computer
used is a DELL PRECISION T7400 with a quad-core 2.66
GHz Intel Xeon CPU. It runs Windows XP and has 2 GB of
main memory. The GPU used is the NVIDIA Tesla C1060
with 240 processing cores and 4 GB of device memory.
CUDA SDK 3.2 is used in our GPU implementation. Four
image data sets—small, medium, large, and super—are uti-
lized to test the performance of the GPU and CPU imple-
mentations. Table I lists the image data set information and
shows the performance of the GPU versus CPU implementa-
tion. (The “super” data set was obtained by interpolating the
“large” data set.) The parameters and seeds used in both CPU
and GPU implementations are identical. The parameters m,
σ h, and σ o are estimated from a small training region.

A speedup factor of 32.8×, 22.9×, 20.9×, and 17.5×, re-
spectively, has been achieved, for the four data sets over the
optimal CPU implementation. Here, the speedup factor is de-
fined as ts/tp, where ts and tp are the times taken for the
sequential and parallel implementations, respectively. Seem-
ingly there is some loss of achievable speedup as the data size
increases. This is mainly because, for larger data sets, typi-
cally a larger number of iterations in the algorithm of P-ORFC
will be required, which means more costly transfers between
GPU and CPU. In addition, the affinity and tracking kernels
require much more device global memory access, which has

high latency. However, the loss seems to level off once the
data set size crosses the medium size, as depicted in Fig. 4,
where the value on the horizontal axis represents the ratio of
image data size to the small data size. Note that, in all our ex-
periments, we segmented the white matter object (foreground)
from the other co-objects (background). For each scene in our
experiment, the white matter object covers almost the whole
scene domain.

Figure 5 shows the example of the small size data set,
which comes from MRI of the head of a clinically nor-
mal human subject. A fast spin-echo dual-echo protocol was
used. Figures 5(a) and 5(b) show one slice of the original
PD-weighted scene and the corresponding white matter pro-
duced by the algorithm P-ORFC. Figure 5(c) shows the white
matter segmented by the CPU implementation. A region of
interest is shown magnified to demonstrate how segmenta-
tion results may differ qualitatively between CPU and GPU
implementations.

Figure 6 shows the example of the medium size data set,
which is a T1-weighted MRI scene of the head of a clinically
normal human subject. A spoiled gradient recalled (SPGR)
acquisition was used. This data set was obtained from the
web site of National Alliance for Medical Image Computing
(http://www.na-mic.org). Again, Figs. 6(a) and 6(b) show one
slice of the original scene, and the separated white matter.

Figure 7 shows the example of the large size data set,
which is a T1-weighted MRI scene of the head of a patient
with a large brain tumor. The original scene slice and the cor-
responding segmented white matter are shown in Figs. 7(a)
and 7(b).

FIG. 4. Curve of the speedup factor vs image size ratio.

Medical Physics, Vol. 40, No. 1, January 2013

http://www.na-mic.org

011903-8 Zhuge et al.: GPU-based RFC image segmentation 011903-8

FIG. 5. (a) A slice of PD-weighted MRI scene from the small data set, (b) the white matter segmented by the GPU implementation, and (c) the white matter
segmented by the CPU implementation.

FIG. 6. (a) A slice of T1-weighted MRI scene from the medium data set,
and (b) the final label map.

FIG. 7. (a) A slice of T1-weighted MRI scene from the large data set, and
(b) the final label map.

TABLE II. Comparison between segmentation results obtained from the
CPU and GPU versions of the algorithm, for the data sets in Table I.

Data set Small Medium Large Super

dν 0.992 0.995 0.994 0.994

TABLE III. Accuracy of the algorithm P-ORFC on the simulated PD-
weighted MRI scene of normal brain with different levels of noise.

Noise level 1% 3% 5%

dν 0.968 0.943 0.926

It is noted that the connectivity measures h produced by the
GPU and CPU implementations are identical. However, the
label maps λ may be slightly different in these two implemen-
tations. The differences are at the level of label assignment of
voxels when the strengths of connectedness are equal with re-
spect to object seeds S and background seeds T, as illustrated
in Sec. II via Fig. 3. Note that the optimal CPU implementa-
tion outputs an IRFC object P ∞

S,T .24

The Dice coefficient38 is used to quantitatively assess the
similarity between segmentation results obtained from the
CPU and GPU implementations (objects P and P ∞

S,T). Given
two segmented binary scenes X and Y from two methods, the
Dice coefficient is defined as

dν(X, Y) = 2|(X ⋂
Y |)

(|X| + |Y |) , (4)

where |X| represents the number of voxels in scene X with
value 1. The Dice coefficient varies from 0 to 1 and it mea-
sures the degree of agreement between the two segmented re-
gions. It is 1 when the two regions are identical and 0 when
they are completely disjoint. The values of dν are listed in
Table II for segmented white matter objects produced by the
two algorithms for the four data sets. The high value of dν

(>0.99) for all data sets indicates the high degree of agree-
ment between the segmentation results of the two algorithms.

The accuracy of the algorithm P-ORFC is evaluated on
the BrainWeb simulated brain database with several noise
levels.39 PD-weighted MRI scenes of normal brain with 1%,
3%, and 5% noise levels are used in our experiment. Each
scene has a size of 181 × 217 × 181 and voxel size of
1.0 × 1.0 × 1.0mm3. The white matter tissue is segmented
by using the algorithm P-ORFC and the result compared to
known ground truth is expressed via the Dice coefficient in
Table III. Note that we did not employ any preprocessing step
for noise suppression in segmentation, and even for the high-
est noise level, a dν value of 0.93 was achieved. Figures 8(a)
and 8(b) show one slice of the original PD-weighted scene
with 3% noise and the corresponding white matter segmented
by the algorithm P-ORFC. Figure 8(c) shows ground truth of
the white matter.

Medical Physics, Vol. 40, No. 1, January 2013

011903-9 Zhuge et al.: GPU-based RFC image segmentation 011903-9

FIG. 8. (a) A slice of PD-weighted MRI scene with 3% noise from the simulated BrainWeb database, (b) the segmented white matter by the algorithm P-ORFC,
and (c) the ground truth.

IV. DISCUSSION AND CONCLUDING REMARKS

Recently, clinical radiological research and practice are be-
coming increasingly quantitative. Further, images continue to
increase in size and volume. For quantitative radiology to be-
come practical, it is crucial that image segmentation algo-
rithms and their implementations are rapid and yield prac-
tical run time on very large data sets. This paper describes
an example of a practical and cost-effective solution to the
problem.

A parallel version of an algorithm that optimizes an �∞-
based energy and belongs to the family of FC algorithms,
has been developed on the NVIDIA GPUs, which provides
a far more cost and speed-effective solution than both clusters
of workstations and multiprocessing systems. The parallel
implementation achieves speed increases by factors ranging
from 17.5× to 32.8× on the Tesla C1060 GPU over the top-
of-the-line CPU implementation of the IRFC algorithm, opti-
mized and efficient (near-linear time), for image data sets with
a wide range of sizes. An interactive speed of segmentation
has been achieved, even for the largest data set. For some spe-
cific applications, several free parameters (e.g., fuzzy affinity
parameter) in fuzzy connected image segmentation may be
difficult to optimize. The interactive speed of segmentation
can give users immediate feedback on parameter settings, thus
allowing them to fine-tune free parameters and produce more
accurate segmentation results. The accuracy of the parallel al-
gorithm on GPU has been evaluated on the BrainWeb simu-
lated PD-weighted MRI scenes with 1%, 3%, and 5% level of
noise, and has been shown to yield a Dice coefficient of 0.93–
0.97, with greater than 99% similarity to the results from CPU
algorithms. The algorithm can be generalized to GPU imple-
mentation of other �∞-norm minimization methods such as
the image foresting transform.11

In the current implementation, the tracking kernel is iter-
atively launched, which is computationally expensive. The
performance of the parallel implementation can be further
improved by devising a better mechanism for interblock
communication on the GPU. In addition, other parallel
implementation methods of the Dijkstra’s algorithm need

to be investigated.40 In the future, we will study clinical
applications of the GPU-based RFC image segmentation
method, and the integration of this algorithm with the method
of fuzzy model-based automatic anatomy recognition.41 Such
GPU implementations may play a crucial role in automatic
anatomy recognition in clinical radiology.

Note that in the algorithm P-ORFC, the number of calls
to TRACKING-KERNEL may be sensitive to the spatial dis-
tribution of seed locations; thus, its running time will be af-
fected by the distribution of seed voxels relative to the shape
of the object being segmented. In our experiments, sets S and
T were specified as those voxels whose intensities were equal
to the mean intensity for the white matter and gray matter
tissues, respectively. The relationship between the number of
iterations in P-ORFC and the spatial distribution of seed vox-
els will need to be investigated in the future to study opti-
mum ways of specifying seeds for the best possible algorithm
speed. In fuzzy model-based FC, seed specification tailored
to the particular object shape can be potentially implemented.

ACKNOWLEDGMENT

This research was supported by the Intramural Research
Program of the National Cancer Institute, NIH.

a)Electronic mail: zhugey@mail.nih.gov
b)Electronic mail: KCies@math.wvu.edu
c)Electronic mail: jay@mail.med.upenn.edu
d)Electronic mail: rwmiller@mail.nih.gov
1J. S. Duncan and N. Ayache, “Medical image analysis: Progress over two
decades and the challenges ahead,” IEEE Trans. Pattern Anal. Mach. Intell.
22(1), 85–105 (2000).

2C. Couprie, L. Grady, L. Najman, and H. Talbot, “Power watershed: A
unifying graph-based optimization framework,” IEEE Trans. Pattern Anal.
Mach. Intell. 33(7), 1384–1399 (2011).

3A. Bhusnurmath and C. J. Taylor, “Graph cuts via �1 norm minimization,”
IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1866–1871 (2008).

4Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimiza-
tion via graph cuts,” IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–
1239 (2001).

Medical Physics, Vol. 40, No. 1, January 2013

http://dx.doi.org/10.1109/34.824822
http://dx.doi.org/10.1109/TPAMI.2010.200
http://dx.doi.org/10.1109/TPAMI.2010.200
http://dx.doi.org/10.1109/TPAMI.2008.82
http://dx.doi.org/10.1109/34.969114

011903-10 Zhuge et al.: GPU-based RFC image segmentation 011903-10

5L. Grady, “Random walks for image segmentation,” IEEE Trans. Pattern
Anal. Mach. Intell. 28(11), 1768–1783 (2006).

6J. K. Udupa and S. Samarasekera, “Fuzzy connectedness and object defini-
tion: Theory, algorithms, and applications in image segmentation,” Graph.
Models Image Process. 58, 246–261 (1996).

7P. K. Saha, J. K. Udupa, and D. Odhner, “Scale-based fuzzy connectedness
image segmentation: Theory, algorithms, and validation,” Comput. Vis. Im-
age Underst. 77(2), 145–174 (2000).

8J. K. Udupa, P. K. Saha, and R. A. Lotufo, “Relative fuzzy connectedness
and object definition: Theory, algorithms, and applications in image seg-
mentation,” IEEE Trans. Pattern Anal. Mach. Intell. 24(11), 1485–1500
(2002).

9K. C. Ciesielski, J. K. Udupa, P. K. Saha, and Y. Zhuge, “Iterative relative
fuzzy connectedness for multiple objects with multiple seeds,” Comput.
Vis. Image Underst. 107(3), 160–182 (2007).

10X. Bai and G. Sapiro, “A geodesic framework for fast interactive image
and video segmentation and matting,” in Proceedings of the International
Conference on Computer Vision, ICCV’07, Rio de Janeiro, Brazil (IEEE,
Piscataway, NJ, 2007), pp. 1–8.

11A. X. Falcão, J. Stolfi, and R. A. Lotufo, “The image foresting transforms:
Theory, algorithms and applications,” IEEE Trans. Pattern Anal. Mach. In-
tell. 26(1), 19–29 (2004).

12J. K. Udupa, L. Wei, S. Samarasekera, Y. Miki, M. A. Buchem, and
R. I. Grossman, “Multiple sclerosis lesion quantification using fuzzy
connectedness principles,” IEEE Trans. Med. Imaging 16(5), 598–609
(1997).

13J. Liu, J. K. Udupa, D. Odhner, J. M. McDonough, and R. Arens, “Sys-
tem for upper airway segmentation and measurement with mr imaging and
fuzzy connectedness,” Acad. Radiol. 10(1), 13–24 (2003).

14Y. Zhou and J. Bai, “Atlas-based fuzzy connectedness segmentation and
intensity non-uniformity correction applied to brain MRI,” IEEE Trans.
Biomed. Eng. 54(1), 121–129 (2007).

15T. Lei, J. K. Udupa, P. K. Saha, and D. Odhner, “Artery-vein separation via
MRA—An image processing approach,” IEEE Trans. Med. Imaging 20(8),
689–703 (2001).

16G. Moonis, J. Liu, J. K. Udupa, and D. Hackney, “Estimation of tumor vol-
ume using fuzzy connectedness segmentation of MRI,” Am. J. Neuroradiol.
23(3), 356–363 (2002).

17Y. Zhuge, P. K. Saha, and J. K. Udupa, “Vectorial scale-based fuzzy con-
nected image segmentation,” Comput. Vis. Image Underst. 101, 177–193
(2006).

18A. Pednekar and I. A. Kakadiaris, “Image segmentation based on fuzzy
connectedness using dynamic weights,” IEEE Trans. Image Process. 15(6),
1555–1562 (2006).

19G. T. Herman and B. M. Carvalho, “Multiseeded segmentation using fuzzy
connectedness,” IEEE Trans. Pattern Anal. Mach. Intell. 23(5), 460–474
(2001).

20K. C. Ciesielski and J. K. Udupa, “Affinity functions in fuzzy connected-
ness based image segmentation II: Defining and recognizing truly novel
affinities,” Comput. Vis. Image Underst. 114(1), 155–166 (2010).

21K. C. Ciesielski and J. K. Udupa, “A framework for comparing different
image segmentation methods and its use in studying equivalences between
level set and fuzzy connectedness frameworks,” Comput. Vis. Image Un-
derst. 115(6), 721–734 (2011).

22K. C. Ciesielski and J. K. Udupa, “Region-based segmentation: Fuzzy con-
nectedness, graph cut, and other related algorithms,” in Biomedical Image
Processing, edited by T. M. Deserno (Springer-Verlag, Berlin, 2011), Part
4, pp. 251–278.

23K. C. Ciesielski, J. K. Udupa, P. A. Miranda, and A. X. Falcão, “Compari-
son of fuzzy connectedness and graph cut segmentation algorithms,” Proc.
SPIE 7962, 796203 (2011).

24K. C. Ciesielski, J. K. Udupa, A. X. Falcão, and P. A. V. Miranda, “Fuzzy
connectedness image segmentation in graph cut formulation: A linear-time
algorithm and a comparative analysis,” J. Math. Imaging Vision 44(3),
375–398 (2012).

25V. Vineet and P. J. Narayanan, “CUDA cuts: Fast graph cuts on the GPU,”
in Proceedings of the CVPR Workshops, Anchorage, AK (IEEE, Piscataway,
NJ, 2008), pp. 1–8.

26L. Grady, T. Schiwietz, S. Aharon, and R. Westermann, “Random walks
for interactive organ segmentation in two and three dimensions: Imple-
mentation and validation,” in Proceedings of the International Conference
on Medical Image Computing and Computer Assisted Intervention, Palm
Springs, CA (Springer-Verlag, Berlin, Heidelberg, 2005), pp. 773–780.

27M. Collins, J. Xu, L. Grady, and V. Singh, “Random walks based multi-
image segmentation: Quasiconvexity results and GPU-based solutions,” in
Proceedings of Computer Vision and Pattern Recognition, Providence, RI
(IEEE, Piscataway, NJ, 2012), pp. 1656–1663.

28G. Grevera, J. K. Udupa, D. Odhner, Y. Zhuge, A. Souza, S. Mishra,
and T. Iwanaga, “CAVASS: A computer-assisted visualization and analysis
software system,” J. Digital Imaging 20(1), 101–118 (2007).

29B. M. Carvalho and G. T. Herman, “Parallel fuzzy segmentation of multiple
objects,” Int. J. Imaging Syst. Technol. 18(5–6), 336–344 (2008).

30Y. Zhuge, Y. Cao, J. K. Udupa, and R. W. Miller, “Parallel fuzzy connected
image segmentation on GPU,” Med. Phys. 38(7), 4365–4371 (2011).

31P. A. Miranda and A. X. Falcão, “Links between image segmentation based
on optimum-path forest and minimum cut in graph,” J. Math. Imaging Vi-
sion 35(2), 128–142 (2009).

32Y. Zhuge, J. K. Udupa, K. C. Ciesielski, A. X. Falcão, P. A. V. Miranda,
and R. W. Miller, “GPU-based iterative relative fuzzy connectedness image
segmentation,” Proc. SPIE 8316, 831604 (2012).

33K. C. Ciesielski and J. K. Udupa, “Affinity functions in fuzzy connected-
ness based image segmentation I: Equivalence of affinities,” Comput. Vis.
Image Underst. 114(1), 146–154 (2010).

34A. X. Falcão and F. P. G. Bergo, “Interactive volume segmentation with
differential image foresting transforms,” IEEE Trans. Med. Imaging 23(9),
1100–1108 (2004).

35NVIDIA, NVIDIA CUDA programming guide 3.2, NVIDIA Corporation,
2010, see http://developer.nvidia.com/cuda.

36A. S. Nepomniaschaya and M. A. Dvoskina, “A simple implementation of
dijkstra’s shortest path algorithm on associative parallel processors,” Fund.
Inform. 43(1–4), 227–243 (2000).

37P. Harish and P. J. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proceedings of the High Performance Computing,
HiPC’07, Goa, India (Springer-Verlag, Berlin, Heidelberg, 2007), pp. 197–
208.

38L. R. Dice, “Measures of the amount of ecologic association between
species,” Ecology 26(3), 297–302 (1945).

39D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani,
C. J. Holmes, and A. C. Evans, “Design and construction of a realistic
digital brain phantom,” IEEE Trans. Med. Imaging 17(3), 463–468 (1998).

40U. Meyer and P. Sanders, “�-stepping: A parallel single source shortest
path algorithm,” J. Algorithms 49(1), 114–152 (2003).

41J. K. Udupa, D. Odhner, A. X. Falcão, K. C. Ciesielski, P. A. V. Miranda,
M. Matsumoto, G. J. Grevera, B. Saboury, and D. A. Torigian, “Automatic
anatomy recognition via fuzzy object models,” Proc. SPIE 8316, 831605
(2012).

Medical Physics, Vol. 40, No. 1, January 2013

http://dx.doi.org/10.1109/TPAMI.2006.233
http://dx.doi.org/10.1109/TPAMI.2006.233
http://dx.doi.org/10.1006/gmip.1996.0021
http://dx.doi.org/10.1006/gmip.1996.0021
http://dx.doi.org/10.1006/cviu.1999.0813
http://dx.doi.org/10.1006/cviu.1999.0813
http://dx.doi.org/10.1109/TPAMI.2002.1046162
http://dx.doi.org/10.1016/j.cviu.2006.10.005
http://dx.doi.org/10.1016/j.cviu.2006.10.005
http://dx.doi.org/10.1109/TPAMI.2004.1261076
http://dx.doi.org/10.1109/TPAMI.2004.1261076
http://dx.doi.org/10.1109/42.640750
http://dx.doi.org/10.1016/S1076-6332(03)80783-3
http://dx.doi.org/10.1109/TBME.2006.884645
http://dx.doi.org/10.1109/TBME.2006.884645
http://dx.doi.org/10.1109/42.938238
http://dx.doi.org/10.1016/j.cviu.2005.07.009
http://dx.doi.org/10.1109/TIP.2006.871165
http://dx.doi.org/10.1109/34.922705
http://dx.doi.org/10.1016/j.cviu.2009.09.005
http://dx.doi.org/10.1016/j.cviu.2011.01.003
http://dx.doi.org/10.1016/j.cviu.2011.01.003
http://dx.doi.org/10.1117/12.872522
http://dx.doi.org/10.1117/12.872522
http://dx.doi.org/10.1007/s10851-012-0333-3
http://dx.doi.org/10.1007/s10278-007-9060-5
http://dx.doi.org/10.1002/ima.20170
http://dx.doi.org/10.1118/1.3599725
http://dx.doi.org/10.1007/s10851-009-0159-9
http://dx.doi.org/10.1007/s10851-009-0159-9
http://dx.doi.org/10.1117/12.911794
http://dx.doi.org/10.1016/j.cviu.2009.09.006
http://dx.doi.org/10.1016/j.cviu.2009.09.006
http://dx.doi.org/10.1109/TMI.2004.829335
http://developer.nvidia.com/cuda
http://dx.doi.org/10.3233/FI-2000-43123412
http://dx.doi.org/10.3233/FI-2000-43123412
http://dx.doi.org/10.2307/1932409
http://dx.doi.org/10.1109/42.712135
http://dx.doi.org/10.1016/S0196-6774(03)00076-2
http://dx.doi.org/10.1117/12.911580

