A short ordered commutative domain whose quotient field is not short

Krzysztof Ciesielski

Claus Borregaard in his Ph.D. thesis posed the following question (see [3]; compare also [1; problem 47]): "Does there exist a short ordered commutative domain whose quotient field is not short?" where an ordered set is said to be short if it doesn't contain a monotonic sequence of length ω_{1}. The purpose of this paper is to give an affirmative answer to this question.

Let us recall that a commutative ring $D=\langle D,+, \cdot, 0,1\rangle$ with a linear ordering \leq is said to be an ordered commutative domain provided for any $a, b, c \in D$.
(P1) $a<b$ implies $a+c<b+c$
(P2) $a<b$ and $0<c$ imply $a \cdot c<b \cdot c$.

Definition. Let X and Y_{x} for $x \in X$ be linearly ordered sets such that $0 \in Y_{x}$ for any $x \in X$. We define a set

$$
P\left(X,\left\{Y_{x}\right\}_{x \in X}\right)=\left\{f \in \prod_{x \in X} Y_{x}: \quad\{x: f(x) \neq 0\} \text { is finite }\right\}
$$

and an ordering on it by

$$
f<g \text { if and only if } f(m)<g(m), \text { where } m=\max \{x: f(x) \neq g(x)\}
$$

We write $P(X, Y)$ instead of $P\left(X,\left\{Y_{x}\right\}_{x \in X}\right)$ provided $Y_{x}=Y$ for all $x \in X$.
We will use the following several times

LEMMA 1. Let X and Y be linearly ordered sets.
(1) If $0,1 \in Y$ and $0<1$ then there exists an order-preserving embedding $e: X \hookrightarrow P(X, Y)$.

Presented by Jan Mycieiski. Received June 5, 1987. Accepted for publication in final form June 16, 1987.
(2) If $\langle Y,+, 0, \leq\rangle$ is an ordered commutative semigroup (i.e. the semigroup operation satisfies a condition (P 1$)$) with a neutral element 0 then so is $\langle P(X, Y)$, $\left.+, 0_{p}, \leq\right\rangle$ where $(f+g)(x)=f(x)+g(x)$ and $0_{p}(x)=0$ for all $x \in X$.
(3) If $\langle Y,+, 0, \leq\rangle$ is an ordered commutative group then so is $\langle P(X, Y)$, $\left.+, 0_{p}, \leq\right\rangle$.
(4) If $\langle X,+, 0, \leq\rangle$ is an ordered commutative semigroup with a neutral element 0 and $\langle Y,+, \cdot, 0,1, \leq\rangle$ is an ordered commutative domain than $\left\langle P(X, Y),+, \cdot, 0_{p}, 1_{p}, \leq\right\rangle$ is also an ordered commutative domain where

$$
1_{p}(x)=\left\{\begin{array}{lll}
0 & \text { for } & x \neq 0 \\
1 & \text { for } & x=0
\end{array}\right.
$$

and a product is defined by "poiynomial-like" methods

$$
(k \cdot l)(x)=\sum\left\{k\left(z_{1}\right) \cdot l\left(z_{2}\right): z_{1}, z_{2} \in X, z_{1}+z_{2}=x\right\} .
$$

Proof. (1) It is easy to see that the function

$$
e(x)(z)=\left\{\begin{array}{lll}
0 & \text { for } & x \neq z \\
1 & \text { for } & x=z
\end{array}\right.
$$

is one-to-one and preserves order.
The natural and easy proof of (2) and (3) can be found e.g. in [2; Section 1.5] or [5; Section 2].

The proof of (4) is also natural and can be found in [2; Section 8, Example 8.1.10] (see also [4]).

If N is the semigroup of natural numbers then, by Lemma $1(2), P(T, N)$ is an ordered commutative semigroup for any linearly ordered set T. In particular, if T is a well ordered set with order type $2^{\omega}+1\left(2^{\omega}+1\right.$ being the ordinal successor of 2^{ω}) and $R=P(P(T, N), Z)$ then, by Lemma 1 (4), R is an ordered commutative domain, where Z is the group of integers. Moreover, by Lemma 1 (1), $T \hookrightarrow P(T, N) \hookrightarrow P(P(T, N), Z)$ and, by construction, R has the cardinality of 2^{ω}. So we proved

LEMMA 2. There exists an ordered commutative domain R of the power of 2^{ω} which contains an increasing sequence of length $2^{\omega}+1$.

Now we are ready to construct our example. Put

$$
\bar{D}=P(P(\mathbb{R}, N), R)
$$

where (\mathbb{R}, \leq) is the set of reals. By Lemma 1 (2), (4) and Lemma 2, \bar{D} is an ordered commutative domain but clearly \bar{D} is not short.

Let i be a bijection between \mathbb{R} and R and for a finite set $A \subset \mathbb{R}$ let R_{A} be the subring of R generated by $\{i(a): a \in A\}$. Note that
(*) R_{a} is countable for any finite $A \subset \mathbb{R}$.
Put $G=P(\mathbb{R}, N)$ and

$$
D=P\left(G,\left\{R_{\operatorname{supp}(g)}\right\}_{g \in G}\right) \subset \bar{D}
$$

where $\operatorname{supp}(g)=\{r: g(r) \neq 0\}$.
We will see that D is a short commutative domain whose quotient field is not short.

LEMMA 3. D is a commutative domain.
Proof. Clearly $D \subset \bar{D}$ and $0_{\bar{D}}, 1_{\bar{D}} \in D$. Moreover $-k, k+l \in D$ for any $k, l \in D$, because R_{A} is an additive group for every finite $A \subset \mathbb{R}$.

So it is enough to prove that $k \cdot l \in D$ provided $k, l \in D$. But let us note that for all $f, g \in G=P(\mathbb{R}, N) \operatorname{supp}(g) \cup \operatorname{supp}(f)=\operatorname{supp}(f+g)$. So for any $h \in G$

$$
(k \cdot l)(h)=\sum\{k(f) \cdot l(g): f, g \in G, f+g=h\} \in R_{\operatorname{supp}(h)}
$$

because for $f, g \in G, f+g=h$ we have $k(f) \in R_{\text {supp }(f)}, l(g) \in R_{\text {supp }(g)}$, i.e.

$$
k(f) \cdot l(g) \in R_{\operatorname{supp}(f) \cup \operatorname{supp}(g)}=R_{\operatorname{supp}(f+g)}=R_{\operatorname{supp}(h)} .
$$

Hence $k \cdot l \in D$ for any $k, l \in D$.
LEMMA 4. The ordered domain R is embeddable into the quotient field F of D as an ordered structure. In particular F is not short.

Proof. Let $e: \mathbb{R} \hookrightarrow P(\mathbb{R}, N)=G$ and $e_{1}: G \hookrightarrow P\left(G, R_{\varnothing}\right) \subset D$ be embeddings from the proof of Lemma 1 (1). So, for $s \in \mathbb{R}, \operatorname{supp}(e(s))=\{s\}$.

For $r \in R$ let $h=e\left(i^{-1}(r)\right), d(r)=e_{1}(h)$ and $n(r)=r \cdot d(r)$ (i.e. $n(r)(g)=$ $r \cdot d(r)(g)$ for any $g \in G)$. Then, by definition, $d(r) \in D$. Moreover $n(r) \in D$ because $n(r)(g)=0 \in R_{\varnothing}$ for $g \neq h$ and $n(r)(h)=r \in R_{\{r\}}=R_{\text {supp }(h)}$.

Therefore we can associate with each $r \in R$ a quotient $n(r) / d(r)=$ $r \cdot d(r) / d(r) \in F$. Clearly, the described function is an order-preserving embedding of the ring R into the field F.

Now to finish the proof it is enough to show that D is short. We use for this the following

LEMMA 5. Let X be a short linearly ordered set. If Z_{x} is short linearly ordered set for every $x \in X$ then so is $P\left(X,\left\{Z_{x}\right\}_{x \in X}\right)$. In particular if the sets Z_{x} are countable then $P\left(X,\left\{Z_{x}\right\}_{x \in X}\right)$ is short.

We will use the lemma only in the case of countable Z_{x} so we will prove it only in this case. The general case can be found, for example, in [6, p. 167].

Proof. Let us assume by contradiction that there exists a monotonic sequence $\left\{g_{\zeta}: \zeta<\omega_{1}\right\} \subset P\left(X,\left\{Z_{x}\right\}_{x \in X}\right)$.

Without lost of generality we can assume that for some natural number $n>0$ the power $\left|\left\{x: g_{\zeta}(x) \neq 0\right\}\right|=n$ for all $\zeta<\omega_{1}$.

So let $n>0$ be the least natural number with the property that there exists a monotonic sequence $\left\{g_{\zeta}: \zeta<\omega_{1}\right\} \subset P\left(X,\left\{Z_{x}\right\}_{x \in X}\right)$ such that $\left|\left\{x: g_{\zeta}(x) \neq 0\right\}\right|=n$.

Let for $\zeta<\omega_{1}$

$$
x_{\zeta}=\max \left\{x: g_{\xi}(x) \neq 0\right\} .
$$

If a set $\left\{x_{\zeta}: \zeta<\omega_{1}\right\}$ is countable then we can assume, choosing a subsequence if necessary, that there exists $x \in X$ such that $x_{\zeta}=x$ for any $\zeta<\omega_{1}$. But Z_{x} is countable. So again we can assume that for some $z \in Z_{x}, g_{\xi}(x)=z$ for all $\zeta<\omega_{1}$. Now putting

$$
g_{\zeta}^{\prime}(y)= \begin{cases}g_{\zeta}(y) & \text { for } y \neq x \\ 0 & \text { for } y=x\end{cases}
$$

we conclude $\left\{g_{\zeta}^{\prime}: \zeta<\omega_{1}\right\}$ is monotonic and $\left|\left\{x: g_{\zeta}^{\prime}(x) \neq 0\right\}\right|=n-1<n$ for all $\zeta<\omega_{1}$ which contradicts minimality of n.

Therefore the set $\left\{x_{\zeta}: \zeta<\omega_{1}\right\}$ is uncountable. So we can assume that

$$
x_{\zeta} \neq x_{\eta} \quad \text { for any } \quad \zeta<\eta<\omega_{1}
$$

and either $g_{\zeta}\left(x_{\zeta}\right)>0$ for every $\zeta<\omega_{1}$ or $g_{\zeta}\left(x_{\zeta}\right)<0$ for every $\zeta<\omega_{1}$.
Let us now assume that our sequence $\left\{g_{\zeta}: \zeta<\omega_{1}\right\}$ is increasing and $g_{\zeta}\left(x_{\zeta}\right)>0$ for every $\zeta<\omega_{1}$. For the other three cases the proof is similar.

Then, for $\zeta<\eta<\omega_{1}, g_{\zeta}<g_{\eta}$ i.e. $g_{\zeta}(m)<g_{\eta}(m)$ where $m=\max \left\{x: g_{\zeta}(x) \neq\right.$ $\left.g_{\eta}(x)\right\} \in\left\{x_{\xi}, x_{\eta}\right\}$. But if $m=x$ then $g_{\zeta}\left(x_{\xi}\right)=g_{\xi}(m)<g_{\eta}(m)=g_{\eta}\left(x_{\zeta}\right)=0$ which contradicts our assumption $g_{\zeta}\left(x_{\xi}\right)>0$. Hence $m=x_{\eta}$ i.e. $x_{\zeta}<x_{\eta}$. Therefore $x_{\zeta}<x_{\eta}$ for any $\zeta<\eta<\omega_{1}$, so X is not short.

Now we are ready to prove
THEOREM. There exists a short ordered commutative domain D whose quotient field F contains an increasing sequence of length $2^{\omega}+1$. In particular F is not short.

Proof. Let $D=P\left(G,\left\{R_{\operatorname{supp}(g)}\right\}_{g \in G}\right)$ where $G=P(\mathbb{R}, N)$. By Lemma $3 D$ is an ordered commutative domain and by Lemma 2 and 4 its quotient field F contains an increasing sequence of length $2^{\omega}+1$.

Moreover, by Lemma 5, G is short and so, again by Lemma 5 and condition (*), D is also short.

In fact it is easy to prove by transfinite induction that an ordered field containing an increasing sequence of length $2^{\omega}+1$ contains an increasing sequence of length α for any ordinal $\alpha<\left(2^{\omega}\right)^{+}$. So we obtained the best possible result in this direction because of

PROPOSITION. If F is a quotient field of an ordered commutative domain (D, \leq) and the cardinality $|F|>2^{\omega}$ then D is not short.

Proof. $|F|>2^{\omega}$ implies $|D| \geq\left(2^{\omega}\right)^{+}$. Let $<$be some well ordering of D and let for $a, b \in D, a \leq b$

$$
f(\{a, b\})= \begin{cases}1 & \text { for } a<b \\ 0 & \text { otherwise } .\end{cases}
$$

Then by the Erdös-Rado partition relation theorem $\left(2^{\omega}\right)^{+} \rightarrow\left(\omega_{1}\right)_{2}^{2}$ (see e.g. [8; Thm. 6.4, p. 392]) there exist an uncountable $U \subset D$ and $i \in\{0,1\}$ such that $f\{a, b\}=i$ for any $a, b \in U, a \neq b$. So U is a monotonic sequence of length at least ω_{1}. (The above proof can be also found in [7]. Compare also [9].)

REFERENCES

[1] -, The Black Swamp Problem Book, an ongoing book of problems in ordered structures kept by Charles Holland at Bowling Green State University, Bowling Green, Ohio.
[2] A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Réticulés, Lecture Notes in Math. 608, Springer-Verlag 1977 (French).
[3] C. Borregaard, Cut completion and homogeneity properties of totally ordered sets, Ph.D. Thesis, University of Copenhagen, 1977, hand-written (Danish)
[4] P. Conrad, J. Dauns, An embedding theorem for lattice-ordered fields, Pacific J. of Math. 30, No. 2, 1969, 385-398.
[5] P. Conrad, J. Harvey, Ch. Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. of AMS 108, No. 1, 1963, pp. 143-169.
[6] F. Hausdorff, Grundzüge der Mengeniehre, Leipzig, Verlag von Veit \& Comp.. 1914 (German).
[7] I. JuHÁsz, Cardinal function in topology - ten years later, Math. Centrum, Amsterdam, 1980.
[8] K. Kunen, Combinatorics, Handbook of Mathematical Logic. North Holland, 1977.
[9] P. Uryson, Remarque sur ma note "un théorème sur la puissance des ensembles ordonnés", Fund. Math. 6 (1924), p. 278 (French).

Warsaw University
Warsaw
Poland

Department of Mathematics University of Louisville Louisville, Kentucky 40292 U.S.A.

