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A short ordered commutative domain whose quotient field is not 
short 

KRZYSZTOF CIESIELSKI 

Claus Borregaard in his Ph.D. thesis posed the following question (see [3]; 
compare also [1; problem 47]): "Does there exist a short ordered commutative 
domain whose quotient field is not short?" where an ordered set is said to be 
short if it doesn't  contain a monotonic sequence of length o)1. The purpose of this 
paper is to give an affirmative answer to this question. 

Let us recall that a commutative ring D = (D, + , . ,  0, 1) with a linear 
ordering --- is said to be an ordered commutative domain provided for any 
a,b, c e D .  

(P1) a < b  implies a + c < b + c  
(P2) a < b  and 0 < c  imply a . c < b - c .  

DEFINITION. Let X and Y~ for x e X be linearly ordered sets such that 0 s Yx 
for any x e X. We define a set 

P(X, {Yx}x~x) = { f e  I-~ Yx" {x : f ( x )~0}  is finite} 
x E X  

and an ordering on it by 

f < g  if and only if f (m)<g(m) ,  where m = m a x  {x: f (x )r  

We write P(X, Y) instead of P(X, {Yx}x~x) provided Y~ = Y for all x e X. 
We will use the following several times 

L E M M A  1. Let X and Y be linearly ordered sets. 
(1) If O, 1 e Y and 0 < 1 then there exists an order-preserving embedding 

e : X ~ P ( X ,  Y). 
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(2) I f  (Y,  +, O, <-) is an ordered commutative semigroup (i.e. the semigroup 
operation satisfies a condition (P1)) with a neutral element 0 then so is ( P(X, Y), 
+, 0~, < ) where ( f  + g)(x) = f ( x )  + g(x) and Op(x) = 0 for all x e X. 

(3) I f  (Y,  +, O, <-> is an ordered commutative group then so is (P(X, Y), 

(4) I f  (X, +, O,-<} is an ordered commutative semigroup with a neutral 
element 0 and (Y,  +, . ,  O, 1, <} is an ordered commutative domain than 
(P(X, Y), +, . ,  Op, lp, <-) is also an ordered commutative domain where 

0 for x r  
lp(X)= 1 for x = 0  

and a product is defined by "polynomial-like" methods 

( k . l)(x ) = ~ {k(zl)" l(zz) : zl, z2 e X, z, + zz =x}. 

Proof. (1) It is easy to see that the function 

{~ for x 4 : z  
e(x)(z) = for x = z 

is one-to-one and preserves order. 
The natural and easy proof of (2) and (3) can be found e.g. in [2; Section i,5] 

or [5; Section 2]. 
The proof of (4) is also natural and can be found in [2; Section 8, Example 

8.1.101 (see also [41). 
If N is the semigroup of natural numbers then, by Lemma 1 (2), P(T, N) is an 

ordered commutative semigroup for any linearly ordered set T. In particular, if T 
is a well ordered set with order type 2 ̀0 + 1 (2`0 + 1 being the ordinal successor of 
2 ~ and R = P(P(T, N), Z) then, by Lemma 1 (4), R is an ordered commutative 
domain, where Z is the group of integers. Moreover, by Lemma 1 (1), 
T ~ P(T, N) ,-> P(P(T, N), Z)  and, by construction, R has the cardinality of 2 '~ 
So we proved 

LEMMA 2. There exists an ordered commutative domain R of  the power of  2`0 
which contains an increasing sequence of  length 2" + 1. 

Now we are ready to construct our example. Put 

b = P ( P ( ~ , N ) ,  R) 
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where (~ ,  -<) is the set of reals. By Lemma 1 (2), (4) and Lemma 2, /3 is an 
ordered commutative domain but c lear ly/5  is not short. 

Let  i be a bijection between ~ and R and for a finite set A ~ N let RA be the 
subring of R generated by ( i (a) :a  �9 A}.  Note that 

(*) Ra is countable for any finite A c N. 

Put G = P(N,  N) and 

L) = P ( C ,  c b 

where supp (g) = {r :g(r)  4= 0}. 

We will see that D is a short commutative domain whose quotient field is not 
short. 

L E M M A  3. D is a commutative domain. 

Proof. Clearly D e / 5  and 0~5 ,1b �9  Moreover  - k , k + l � 9  for any 
k, l �9 D, because RA is an additive group for every finite A c E. 

So it is enough to prove that k �9 l e D provided k, l e D. But let us note that 

for all f ,  g e G = P ( E ,  N) supp (g) U supp ( f )  = supp ( f  + g). So for any h e G 

( k .  l ) (h)  = ~ {k ( f )  �9 l(g): f, g �9 G, f + g = h} �9 Rsupp(h) 

because for f, g �9 G, f + g = h we have k ( f )  �9 Rsupp(f), l(g) �9 Rsupp(g), i.e. 

k ( f )  " l (g)  �9 Rsupp(f)osupp(g) = Rsupp(.f+g) = Rsupp(h)- 

Hence k - l �9 D for any k, l �9 D. 

L E M M A  4. The ordered domain R is embeddable into the quotient field F o f  
D as an ordered structure. In particular F is not short. 

Proof. Let e : ~ ~ P ( ~ ,  N) = G and el : G ~ P(G,  R~)  = D be embeddings 
from the proof  of Lemma 1 (1). So, for s �9 R, supp (e(s)) = {s). 

For  r e R  let h =e( i -X(r)) ,  d(r)  =ea(h)  and n(r) = r .  d(r) (i.e. n(r)(g)  = 
r .  d (r ) (g)  for any g �9 G). Then,  by definition, d(r)  ~ D. Moreover  n(r)  �9 D 
because n(r)(g)  = 0 �9 R o for g g: h and n(r ) (h)  = r �9 R(~) = R~,pp(h). 

Therefore  we can associate with each r � 9  a quotient n ( r ) / d ( r ) =  
r .  d ( r ) / d ( r ) � 9  F. Clearly, the described function is an order-preserving embed- 
ding of the ring R into the field F. 
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Now to finish the proof  it is enough to show that D is short. We use for this 
the following 

L E M M A  5. Let X be a short linearly ordered set. If  Z, is short linearly ordered 
set for every x ~ X then so is P(X, {Z~}~,x). In particular if the sets Z~ are 
countable then P(X, {Z~},~x) is short. 

We will use the lemma only in the case of countable Zx so we will prove it 

only in this case. The general case can be found, for example, in [6, p. 167]. 

Proof. Let us assume by contradiction that there exists a monotonic sequence 

Without lost of generality we can assume that for some natural number n > 0 

the power ]{x :g~(x) r 0}[ = n for all ~ < wl. 
So let n > 0 be the least natural number with the property that there exists a 

monotonic sequence {g_~: ~ < o91} c P(X, {Zx}x~x) such that [{x :g~(x) :/: 0}t = n. 
Let  for ~ < o91 

x~ = max {x : g~(x) r  

If a set {x~ : ~ < o91} is countable then we can assume, choosing a subsequence 

if necessary, that there exists x e X such that x~ = x for any ~ < o~1. But Zx is 
countable. So again we can assume that for some z e Zx, g~(x) = z for all r < co~. 

Now putting 

g, (y)= {g~(y) for y--#x 

for y = x 

we conclude {g~: ~ < c01} is monotonic and [{x :g~(x) :/: 0}l = n - ! < n for all 
< wl which contradicts minimality of n. 

Therefore  the set {xr : ~ < Wx} is uncountable. So we can assume that 

xr n for any ~ < r / < ~ o l  

and either g:(xc) > 0 for every ~ < r 1 or gg(x~) < 0 for every ~ < ~1o 
Let us now assume that our  sequence {g~ : ~ < wl} is increasing and g~(x~) > 0 

for every ~ <r For  the other  three cases the proof is similar. 
Then,  for ~ < rl < wl, gr <gn i.e. g~(m) < g o ( m )  where m = max {x :g~(x) :# 

gn(x)} e {xr xn}. But if m = x  then gr = gr < g n ( m )  =g , (x~)  = 0 which 
contradicts our  assumption g~ (x ; )>0 .  Hence m = x ,  i.e. xr <x~.  Therefore  
x~ < xn for any ~ < r / <  o91, so X is not short. 
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Now we are ready to prove 

T H E O R E M .  There exists a short ordered commutative domain D whose 
quotient field F contains an increasing sequence of  length 2 ̀0 + 1. In particular F is 
not short. 

Proof. Let D = P(G, {Rsupp(g))g~G ) where G = P(~,  N). By Lemma 3 O is 
an ordered commutative domain and by Lemma 2 and 4 its quotient field F 
contains an increasing sequence of length 2 ̀ 0 + 1. 

Moreover, by Lemma 5, G is short and so, again by Lemma 5 and condition 
(*), D is also short. 

In fact it is easy to prove by transfinite induction that an ordered field 
containing an increasing sequence of length 2~ 1 contains an increasing 
sequence of length a: for any ordinal oc < (2~) § So we obtained the best possible 
result in this direction because of 

PROPOSITION. I f  F is a quotient field of an ordered commutative domain 
(D, <-) and the cardinality IFI > 2 ̀ o then D is not short. 

Proof. IF[ > 2 ̀ 0 implies [D] - (2'0) +. Let < be some well ordering of D and let 
for a, b s D ,  a<--b 

{~ for a < b  
f ( (a ,  b}) = otherwise. 

Then by the Erd6s-Rado partition relation theorem (2'~)+--~(~ol) 2 (see e.g. [8; 
Thin. 6.4, p. 392]) there exist an uncountable U c D  and i s {0, 1} such that 
f{a,  b} = i for any a, b c U, a 4: b. So U is a monotonic sequence of length at 
least COl. (The above proof can be also found in [7]. Compare also [9].) 
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