Algebra Universalis, 25 (1988) 1-6

A short ordered commutative domain whose quotient field is not short

KRZYSZTOF CIESIELSKI

Claus Borregaard in his Ph.D. thesis posed the following question (see [3]; compare also [1; problem 47]): "Does there exist a short ordered commutative domain whose quotient field is not short?" where an ordered set is said to be short if it doesn't contain a monotonic sequence of length ω_1 . The purpose of this paper is to give an affirmative answer to this question.

Let us recall that a commutative ring $D = \langle D, +, \cdot, 0, 1 \rangle$ with a linear ordering \leq is said to be an ordered commutative domain provided for any $a, b, c \in D$.

(P1) a < b implies a + c < b + c(P2) a < b and 0 < c imply $a \cdot c < b \cdot c$.

DEFINITION. Let X and Y_x for $x \in X$ be linearly ordered sets such that $0 \in Y_x$ for any $x \in X$. We define a set

$$P(X, \{Y_x\}_{x \in X}) = \left\{ f \in \prod_{x \in X} Y_x \colon \{x : f(x) \neq 0\} \text{ is finite} \right\}$$

and an ordering on it by

f < g if and only if f(m) < g(m), where $m = \max \{x : f(x) \neq g(x)\}$.

We write P(X, Y) instead of $P(X, \{Y_x\}_{x \in X})$ provided $Y_x = Y$ for all $x \in X$. We will use the following several times

LEMMA 1. Let X and Y be linearly ordered sets.

(1) If $0, 1 \in Y$ and 0 < 1 then there exists an order-preserving embedding $e: X \hookrightarrow P(X, Y)$.

Presented by Jan Mycielski. Received June 5, 1987. Accepted for publication in final form June 16, 1987.

(2) If $\langle Y, +, 0, \leq \rangle$ is an ordered commutative semigroup (i.e. the semigroup operation satisfies a condition (P1)) with a neutral element 0 then so is $\langle P(X, Y), +, 0_p, \leq \rangle$ where (f + g)(x) = f(x) + g(x) and $0_p(x) = 0$ for all $x \in X$.

(3) If $\langle Y, +, 0, \leq \rangle$ is an ordered commutative group then so is $\langle P(X, Y), +, 0_{\rho}, \leq \rangle$.

(4) If $\langle X, +, 0, \leq \rangle$ is an ordered commutative semigroup with a neutral element 0 and $\langle Y, +, \cdot, 0, 1, \leq \rangle$ is an ordered commutative domain than $\langle P(X, Y), +, \cdot, 0_p, 1_p, \leq \rangle$ is also an ordered commutative domain where

 $1_p(x) = \begin{cases} 0 & for \quad x \neq 0 \\ 1 & for \quad x = 0 \end{cases}$

and a product is defined by "polynomial-like" methods

$$(k \cdot l)(x) = \sum \{k(z_1) \cdot l(z_2) : z_1, z_2 \in X, z_1 + z_2 = x\}.$$

Proof. (1) It is easy to see that the function

 $e(x)(z) = \begin{cases} 0 & \text{for } x \neq z \\ 1 & \text{for } x = z \end{cases}$

is one-to-one and preserves order.

The natural and easy proof of (2) and (3) can be found e.g. in [2; Section 1.5] or [5; Section 2].

The proof of (4) is also natural and can be found in [2; Section 8, Example 8.1.10] (see also [4]).

If N is the semigroup of natural numbers then, by Lemma 1 (2), P(T, N) is an ordered commutative semigroup for any linearly ordered set T. In particular, if T is a well ordered set with order type $2^{\omega} + 1$ ($2^{\omega} + 1$ being the ordinal successor of 2^{ω}) and R = P(P(T, N), Z) then, by Lemma 1 (4), R is an ordered commutative domain, where Z is the group of integers. Moreover, by Lemma 1 (1), $T \hookrightarrow P(T, N) \hookrightarrow P(P(T, N), Z)$ and, by construction, R has the cardinality of 2^{ω} . So we proved

LEMMA 2. There exists an ordered commutative domain R of the power of 2^{ω} which contains an increasing sequence of length $2^{\omega} + 1$.

Now we are ready to construct our example. Put

 $\bar{D} = P(P(\mathbb{R}, N), R)$

where (\mathbb{R}, \leq) is the set of reals. By Lemma 1 (2), (4) and Lemma 2, \overline{D} is an ordered commutative domain but clearly \overline{D} is not short.

Let *i* be a bijection between \mathbb{R} and *R* and for a finite set $A \subset \mathbb{R}$ let R_A be the subring of *R* generated by $\{i(a): a \in A\}$. Note that

(*) R_a is countable for any finite $A \subset \mathbb{R}$.

Put $G = P(\mathbb{R}, N)$ and

$$D = P(G, \{R_{\operatorname{supp}(g)}\}_{g \in G}) \subset \overline{D}$$

where supp $(g) = \{r : g(r) \neq 0\}$.

We will see that D is a short commutative domain whose quotient field is not short.

LEMMA 3. D is a commutative domain.

Proof. Clearly $D \subset \overline{D}$ and $0_{\overline{D}}, 1_{\overline{D}} \in D$. Moreover $-k, k+l \in D$ for any $k, l \in D$, because R_A is an additive group for every finite $A \subset \mathbb{R}$.

So it is enough to prove that $k \cdot l \in D$ provided $k, l \in D$. But let us note that for all $f, g \in G = P(\mathbb{R}, N)$ supp $(g) \cup$ supp (f) = supp (f + g). So for any $h \in G$

$$(k \cdot l)(h) = \sum \{k(f) \cdot l(g): f, g \in G, f + g = h\} \in R_{\operatorname{supp}(h)}$$

because for $f, g \in G$, f + g = h we have $k(f) \in R_{\text{supp}(f)}$, $l(g) \in R_{\text{supp}(g)}$, i.e.

 $k(f) \cdot l(g) \in R_{\operatorname{supp}(f) \cup \operatorname{supp}(g)} = R_{\operatorname{supp}(f+g)} = R_{\operatorname{supp}(h)}.$

Hence $k \cdot l \in D$ for any $k, l \in D$.

LEMMA 4. The ordered domain R is embeddable into the quotient field F of D as an ordered structure. In particular F is not short.

Proof. Let $e: \mathbb{R} \hookrightarrow P(\mathbb{R}, N) = G$ and $e_1: G \hookrightarrow P(G, R_{\emptyset}) \subset D$ be embeddings from the proof of Lemma 1 (1). So, for $s \in \mathbb{R}$, supp $(e(s)) = \{s\}$.

For $r \in R$ let $h = e(i^{-1}(r))$, $d(r) = e_1(h)$ and $n(r) = r \cdot d(r)$ (i.e. $n(r)(g) = r \cdot d(r)(g)$ for any $g \in G$). Then, by definition, $d(r) \in D$. Moreover $n(r) \in D$ because $n(r)(g) = 0 \in R_{\emptyset}$ for $g \neq h$ and $n(r)(h) = r \in R_{\{r\}} = R_{supp}(h)$.

Therefore we can associate with each $r \in R$ a quotient $n(r)/d(r) = r \cdot d(r)/d(r) \in F$. Clearly, the described function is an order-preserving embedding of the ring R into the field F.

Now to finish the proof it is enough to show that D is short. We use for this the following

LEMMA 5. Let X be a short linearly ordered set. If Z_x is short linearly ordered set for every $x \in X$ then so is $P(X, \{Z_x\}_{x \in X})$. In particular if the sets Z_x are countable then $P(X, \{Z_x\}_{x \in X})$ is short.

We will use the lemma only in the case of countable Z_x so we will prove it only in this case. The general case can be found, for example, in [6, p. 167].

Proof. Let us assume by contradiction that there exists a monotonic sequence $\{g_{\zeta}: \zeta < \omega_1\} \subset P(X, \{Z_x\}_{x \in X}).$

Without lost of generality we can assume that for some natural number n > 0the power $|\{x: g_{\zeta}(x) \neq 0\}| = n$ for all $\zeta < \omega_1$.

So let n > 0 be the least natural number with the property that there exists a monotonic sequence $\{g_{\zeta}: \zeta < \omega_1\} \subset P(X, \{Z_x\}_{x \in X})$ such that $|\{x: g_{\zeta}(x) \neq 0\}| = n$.

Let for $\zeta < \omega_1$

 $x_{\zeta} = \max \{ x : g_{\zeta}(x) \neq 0 \}.$

If a set $\{x_{\zeta}: \zeta < \omega_1\}$ is countable then we can assume, choosing a subsequence if necessary, that there exists $x \in X$ such that $x_{\zeta} = x$ for any $\zeta < \omega_1$. But Z_x is countable. So again we can assume that for some $z \in Z_x$, $g_{\zeta}(x) = z$ for all $\zeta < \omega_1$. Now putting

$$g'_{\zeta}(y) = \begin{cases} g_{\zeta}(y) & \text{for } y \neq x \\ 0 & \text{for } y = x \end{cases}$$

we conclude $\{g'_{\zeta}: \zeta < \omega_1\}$ is monotonic and $|\{x:g'_{\zeta}(x) \neq 0\}| = n-1 < n$ for all $\zeta < \omega_1$ which contradicts minimality of n.

Therefore the set $\{x_{\zeta}: \zeta < \omega_1\}$ is uncountable. So we can assume that

 $x_{\zeta} \neq x_{\eta}$ for any $\zeta < \eta < \omega_1$

and either $g_{\zeta}(x_{\zeta}) > 0$ for every $\zeta < \omega_1$ or $g_{\zeta}(x_{\zeta}) < 0$ for every $\zeta < \omega_1$.

Let us now assume that our sequence $\{g_{\zeta}: \zeta < \omega_1\}$ is increasing and $g_{\zeta}(x_{\zeta}) > 0$ for every $\zeta < \omega_1$. For the other three cases the proof is similar.

Then, for $\zeta < \eta < \omega_1$, $g_{\zeta} < g_{\eta}$ i.e. $g_{\zeta}(m) < g_{\eta}(m)$ where $m = \max \{x : g_{\zeta}(x) \neq g_{\eta}(x)\} \in \{x_{\zeta}, x_{\eta}\}$. But if m = x then $g_{\zeta}(x_{\zeta}) = g_{\zeta}(m) < g_{\eta}(m) = g_{\eta}(x_{\zeta}) = 0$ which contradicts our assumption $g_{\zeta}(x_{\zeta}) > 0$. Hence $m = x_{\eta}$ i.e. $x_{\zeta} < x_{\eta}$. Therefore $x_{\zeta} < x_{\eta}$ for any $\zeta < \eta < \omega_1$, so X is not short.

Vol. 25, 1988

Now we are ready to prove

THEOREM. There exists a short ordered commutative domain D whose quotient field F contains an increasing sequence of length $2^{\omega} + 1$. In particular F is not short.

Proof. Let $D = P(G, \{R_{\sup p(g)}\}_{g \in G})$ where $G = P(\mathbb{R}, N)$. By Lemma 3 D is an ordered commutative domain and by Lemma 2 and 4 its quotient field F contains an increasing sequence of length $2^{\omega} + 1$.

Moreover, by Lemma 5, G is short and so, again by Lemma 5 and condition (*), D is also short.

In fact it is easy to prove by transfinite induction that an ordered field containing an increasing sequence of length $2^{\omega} + 1$ contains an increasing sequence of length α for any ordinal $\alpha < (2^{\omega})^+$. So we obtained the best possible result in this direction because of

PROPOSITION. If F is a quotient field of an ordered commutative domain (D, \leq) and the cardinality $|F| > 2^{\omega}$ then D is not short.

Proof. $|F| > 2^{\omega}$ implies $|D| \ge (2^{\omega})^+$. Let < be some well ordering of D and let for $a, b \in D, a \le b$

 $f(\{a, b\}) = \begin{cases} 1 & \text{for } a < b \\ 0 & \text{otherwise.} \end{cases}$

Then by the Erdös-Rado partition relation theorem $(2^{\omega})^+ \rightarrow (\omega_1)_2^2$ (see e.g. [8; Thm. 6.4, p. 392]) there exist an uncountable $U \subset D$ and $i \in \{0, 1\}$ such that $f\{a, b\} = i$ for any $a, b \in U, a \neq b$. So U is a monotonic sequence of length at least ω_1 . (The above proof can be also found in [7]. Compare also [9].)

REFERENCES

- [1] —, *The Black Swamp Problem Book*, an ongoing book of problems in ordered structures kept by Charles Holland at Bowling Green State University, Bowling Green, Ohio.
- [2] A. BIGARD, K. KEIMEL, S. WOLFENSTEIN, Groupes et Anneaux Réticulés, Lecture Notes in Math. 608, Springer-Verlag 1977 (French).
- [3] C. BORREGAARD, Cut completion and homogeneity properties of totally ordered sets, Ph.D. Thesis, University of Copenhagen, 1977, hand-written (Danish).
- [4] P. CONRAD, J. DAUNS, An embedding theorem for lattice-ordered fields, Pacific J. of Math. 30, No. 2, 1969, 385-398.
- [5] P. CONRAD, J. HARVEY, CH. HOLLAND, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. of AMS 108, No. 1, 1963, pp. 143–169.

KRZYSZTOF CIESIELSKI

- [6] F. HAUSDORFF, Grundzüge der Mengenlehre, Leipzig, Verlag von Veit & Comp., 1914 (German).
- [7] I. JUHÁSZ, Cardinal function in topology ten years later, Math. Centrum, Amsterdam, 1980.
- [8] K. KUNEN, Combinatorics, Handbook of Mathematical Logic. North Holland, 1977.
- [9] P. URYSON, Remarque sur ma note "un théorème sur la puissance des ensembles ordonnés", Fund. Math. 6 (1924), p. 278 (French).

Warsaw University Warsaw Poland

Department of Mathematics University of Louisville Louisville, Kentucky 40292 U.S.A.

6