
RESEARCH Real Analysis Exchange
Vol. 38(2), 2012/2013, pp. 377–390

Krzysztof Chris Ciesielski, Department of Mathematics, West Virginia
University, Morgantown, WV 26506-6310 and Department of Radiology,
MIPG, University of Pennsylvania, Blockley Hall – 4th Floor, 423 Guardian
Drive, Philadelphia, PA 19104-6021, U.S.A. email: KCies@math.wvu.edu

Timothy Glatzer,∗ Mathematics, University of Great Falls, 1301 20th Street
South, Great Falls, MT 59405. email: ttglatzer01@ugf.edu

SETS OF DISCONTINUITIES OF
LINEARLY CONTINUOUS FUNCTIONS

Abstract

The class of linearly continuous functions f : Rn → R, that is, having
continuous restrictions f |̀ ` to every straight line `, have been studied
since the dawn of the twentieth century. In this paper we refine a de-
scription of the form that the sets D(f) of points of discontinuities of
such functions can have. It has been proved by Slobodnik that D(f)
must be a countable union of isometric copies of the graphs of Lipschitz
functions h : K → R, where K is a compact nowhere dense subset of
Rn−1. Since the class Dn of all sets D(f), with f : Rn → R being lin-
early continuous, is evidently closed under countable unions as well as
under isometric images, the structure of Dn will be fully discerned upon
deciding precisely which graphs of the Lipschitz functions h : K → R,
K ⊂ Rn−1 being compact nowhere dense, belong to Dn. Towards this
goal, we prove that D2 contains the graph of any such h : K → R when-
ever h can be extended to a C2 function h̄ : R → R. Moreover, for
every n > 1, Dn contains the graph of any h : K → R, where K is
closed nowhere dense in Rn−1 and h is a restriction of a convex function
h̄ : Rn−1 → R. In addition, we provide an example, showing that the
above mentioned result on C2 functions need not hold when h̄ is just
differentiable with bounded derivative (so Lipschitz).
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1 Background

A function f : Rn → R is: separately continuous if the restriction f |̀ ` is con-
tinuous for any line ` parallel to one of the coordinate axes; it is linearly con-
tinuous whenever f |̀ ` is continuous for every line ` in Rn. Separate continuity
is frequently described as a continuity in each variable separately.

Clearly, continuity implies linear continuity which, in turn, implies separate
continuity. None of these implications can be reversed, although this may not
be obvious at the first glance. Actually, the study of separately continuous
functions seems to have been sparked by a mistake of Cauchy who, in his
1821 book Cours d’analyse, incorrectly claimed that separate continuity of
f : R2 → R implies its continuity. (See, e.g., [15] or [11].)

The study of discontinuous separately continuous functions has had a long
and illustrious history, riddled with contributions from some of the giants of
nineteenth and early twentieth century mathematics. Perhaps the simplest
example of a discontinuous separately continuous function is the following

f(x, y) =

{
2xy
x2+y2 if 〈x, y〉 6= 〈0, 0〉

0 if 〈x, y〉 = 〈0, 0〉.
(1)

This example, attributed to Peano, first appeared in 1884 calculus text of
Genocchi and Peano [10]. A somewhat more complicated example of such a
function, apparently due to E. Heine (see [15]), appeared earlier in the 1870
calculus text of J. Thomae [22]. The early contributions to the theory of sep-
arately continuous functions came also from Volterra (cited by Baire, see [1]),
Baire (1899, citation in [12] and [1]), and Hahn (1919, citation in [12]). A
question on the regularity of separately continuous functions was settled in
1905 by Lebesgue (see [13] or [12]), who proved that every separately contin-
uous function f : Rn → R is of (n − 1)st Baire class and that the Baire class
cannot be lowered in this result.

A full characterization of the sets D(f) of discontinuity points of separately
continuous functions f : Rn → R was given by Kershner [12] and reads as
follows.

Theorem 1.1. A set D ⊂ Rn is the set of discontinuities of a separately con-
tinuous function f : Rn → R if, and only if, D is an Fσ set and the projection
of D onto each (n− 1)-dimensional coordinate hyperplane is meager.

In particular, a separately continuous function f : Rn → R can be discon-
tinuous at every point of an (n − 2)-dimensional linear manifold parallel to
the coordinate axes (e.g., on Rn−2 × {0} × {0}). Actually, the same is also
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true for the class of linearly continuous function from Rn to R, as immediately
follows from our Corollary 3.5 (used with K = Rn−2 × {0}).

Recall that the necessary and sufficient condition for a subset of Rn to be
the set of discontinuities of a function from Rn into R is precisely that the set
be an Fσ set. (See e.g. [14].) So, Kershner’s result tells us that a subset of Rn
which is a set of discontinuity points of some function, is a set of discontinuity
points of a separately continuous function if, and only if, its projection onto
each of the (n− 1)-dimensional coordinate hyperplanes is meager. Kershner’s
result has been the object of intense study over the past several years and
has been generalized in many ways—see, for instance, [1] and the references
therein.

The first examples of discontinuous linearly continuous functions were dis-
covered at about the same time as those of discontinuous separately continuous
functions. Genocchi and Peano in their text [10] give an easy example of a
discontinuous linearly continuous function:

f(x, y) =

{
xy2

x2+y4 if 〈x, y〉 6= 〈0, 0〉
0 if 〈x, y〉 = 〈0, 0〉.

(2)

Notice that although the function from (1) is separately continuous, it is not
linearly continuous. So the two classes of functions discussed above are indeed
different.

The study of linearly continuous functions has been developing at a consid-
erably slower rate than that of separately continuous functions. In 1910 Young
and Young [23] (see also [12, 16]) constructed a linearly continuous function
f : [0, 1]2 → R for which the set of points of discontinuity is uncountable in
any open set. However, to the authors’ best knowledge, presently no char-
acterization in the vein of Kershner’s exists for the sets of discontinuities of
linearly continuous functions.1 The problem of finding such a characterization
was posed by Kronrod (see [21]) and the only result toward this goal seems to
be a 1976 result of Slobodnik, which we describe in detail in the next section.

There has also been work in examining functions f : R2 → R which are
continuous when restricted to the curves in R2 more general than lines. In
particular, Scheeffer (1890, see [20]) and Lebesgue (1905, see [13, pp. 199-
200]) noticed, that the continuity along all analytic curves does not implies
continuity. The most powerful result in this direction was proved in 1955 by
Rosenthal [19]:

1We have recently found a characterization of the sets D(f) of discontinuity point of
linearly continuous functions f : R2 → R, see [5]. However, our characterization is in terms
of a topology on the set of all lines in R2, which lacks the elegant simplicity of Kershner’s
result.
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Theorem 1.2. For any function F : R2 → R, if

• F � G is continuous whenever G is a graph of a continuously differen-
tiable function f : R→ R from x to y or from y to x,

then G is continuous. However, there exists a discontinuous function H : R2 →
R with H � G continuous whenever G is a graph of twice differentiable function
f : R→ R from x to y or from y to x.

Notice, that every function H as in Theorem 1.2 is, in particular, lin-
early continuous. In this direction, the authors have recently constructed an
example of a function H as in Theorem 1.2 for which the set of points of dis-
continuity has Hausdorff dimension 1. (See [4].) By the results discussed in
the next section, this is the best possible result in this direction.

We use the standard terminology and notation as in [3], [14], or [9]. In
particular, we often identify a function with its graph. We will write D(f) for
the set of discontinuity points of a function f . We use the notation

Dn = {D(f) : f : Rn → R is linearly continuous}.

Recall, that the oscillation of f : Rn → R at x0 is defined as

osc(f, x0) = lim
δ→0+

{|f(x)− f(y)| : x, y ∈ B(x0, δ)},

where B(x0, δ) = {x ∈ Rn : ||x− x0|| < δ} is an open ball centered at x0 with
radius δ. (We use the euclidean norm || · ||.) Note (see e.g. [14]) that f is
continuous at x0 if, and only if, osc(f, x0) = 0. The support of a function
g : Rn → R, denoted as supp(g), will be defined, as usual, as the closure of the
set {x ∈ Rn : g(x) 6= 0}.

2 Sets of points of discontinuity of linear continuous func-
tions

We say that two subsets of Rn are isometric provided there is an isometry
(i.e., distance preserving map from Rn onto Rn) which maps one into another.
Consider the following theorem of Slobodnik [21].

Theorem 2.1. If D ⊂ Rn is the set of discontinuity points of some linearly
continuous function f : Rn → R, then D admits a representation D =

⋃∞
i=1Di,

where each Di is isometric to the graph of a Lipschitz function φi : Ki → R
with Ki being a compact nowhere dense subset of Rn−1.
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Let Dns be the collection of all sets D(f), where f : Rn → R is separately
continuous. Clearly Dn ⊂ Dns .

Theorems 1.1 and 2.1 show a striking difference between the sizes of the
sets belonging to families Dn and Dns . The family Dns contains sets of full
n-dimensional Lebesgue measure (e.g., Mn, where M ⊂ R is a meager and of
full measure). At the same time, every D ∈ Dn is of n-dimensional Lebesgue
measure 0, since this is is true for a graph of any continuous function. Actually,
a graph of a Lipschitz function φ : K → R with K ⊂ Rn−1 (so, also any
D ∈ Dns ) can have Hausdorff dimension at most n − 1, since Lipschitz maps
cannot raise Hausdorff dimension (see, for instance [9]). At the same time,
it follows from Corollary 3.5 that there are sets in Dn of infinite Hausdorff
(n − 1)-dimensional measure. In fact, Dn contains any meager Fσ subset of
an (n− 1)-dimensional hyperplane H, including one of full measure in H.

Notice also that, by Kershner’s result, Theorem 1.1, the projection πn[D]
along the nth axis of any D ∈ Dns must be meager in Rn−1. In particular, if
φ � K ∈ Dns for some function φ : Rn−1 → R, then K must be meager, that
is, a countable union of compact nowhere dense. This explains the restriction
condition on the sets Ki in Theorem 2.1.

For a class F of (possibly partial) functions from Rn−1 into R, let E(F)
be a collection of all sets D =

⋃∞
i=1Di, where each Di is isometric to φ � K

for some φ ∈ F and a compact nowhere dense K ⊂ Rn−1. In this notation,
Theorem 2.1 reduces to

Dn ⊂ E(Lip(Rn−1)),

where Lip(Rn−1) is the class of all Lipschitz functions φ : Rn−1 → R. (Recall
that every partial Lipschitz function on a subset of Rn can be extended to a
Lipschitz function on the entire space, see e.g. [8, p. 80].) Moreover, since
the family Dn is clearly closed under isometric images (i.e., if D ∈ Dn, then
i[D] ∈ Dn for every isometry i of Rn) and under countable unions,2 we have
the following result, where R(F) represents the property:

R(F): φ � K ∈ Dn for every φ ∈ F and a compact nowhere dense K ⊂ Rn−1.

Fact 2.2. For every family F of functions from H ⊂ Rn−1 into R, if R(F)
holds then then E(F) ⊂ Dn.

The main result of this paper is as follows, where symbols Conv(Rn) and
C2(Rn) stand for all functions φ : Rn → R that are, respectively, convex and
continuously twice differentiable.

2We may fix the oscillation of f on any set D ∈ Dn to be at most 1 and use a procedure
similar to what is found in [14, pp. 31–32].
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Theorem 2.3. The property R(F) holds for F = Conv(Rn−1) for any n ≥ 2
and for F = C2(R1).

We will prove this theorem in the latter sections. Below, we discuss its
consequences.

Corollary 2.4. For every n ≥ 2

(a) E(Conv(Rn−1)) ( Dn ( E(Lip(Rn−1)),

(b) E(C2(R)) ( D2 ( E(Lip(R)).

Proof. The inclusions follow from Theorem 2.3, Fact 2.2, and Theorem 2.1.
To see that they are all strict, first notice that, clearly, neither of the

classes C2(R) and Conv(R) contains the other. Actually, if Φ: R → R is a
convex function with a (countable) dense sets A of points at which Φ′′ does
not exist (see e.g. [18]) and K is a nowhere dense perfect set for which the set
A0 = {a ∈ A : a is a bilateral limit point of K} is dense in K, then f � K ∈
E(Conv(R))\E(C2(R)). It is also possible to find a C∞ function Φ: R→ R and
a nowhere dense perfect set K ⊂ R for which f � K 6∈ E(Conv(R)). Therefore,
the first inclusions in (a) and (b) are indeed strict (at least, for n = 2).

The fact that the remaining inclusions are strict follows from Proposi-
tion 2.5.

Now, let bD1(Rn) stand for the class of all differentiable functions φ : Rn →
R with bounded derivative. Notice that bD1(Rn) ⊂ Lip(Rn).

Proposition 2.5. There exists a differentiable function φ : Rn−1 → R and a
nowhere dense perfect set K ⊂ Rn−1 such that φ � K 6∈ Dns . In particular,
E(bD1(Rn−1)) is contained in none of the classes E(F) from Corollary 2.4.

Proof. First, we prove this for n = 2. Let K ⊂ [0, 1] be nowhere dense
of positive measure. By Kershner result, Theorem 1.1, it is enough to find
a function φ : R → R from bD1(R) for which φ[K] has non-empty interior
(as φ[K] is a projection of φ � K along x-axis). The easiest example of
such a function is given by φ(x) =

∫ x
0
g(t) dt for an appropriate function

g : R → [0, 1]. Notice, that g = χK , the characteristic function of K, has
almost all these properties: it maps K onto a non-empty interval and resulting
φ has bounded derivative almost everywhere. To insure that φ is actually
everywhere differentiable, it is enough to take as g : R → [0, 1] a nonnegative
approximately continuous function with {x ∈ R : g(x) > 0} being a subset ofK
of positive measure. Then φ[K] still has a non-empty interior and φ′(x) = g(x)
for all x ∈ R. (For more on approximately continuous functions, see e.g. [2]
or [6].)
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For n > 2, let K be as above and put K̂ = K × [0, 1]n−2. Define
φn(x1, x2, . . . , xn−1) = φ(x1). Then the projection πx1 [φ � K] has nonempty
interior.

3 The case of convex functions

Our construction will be based on the following simple general observation.

Lemma 3.1. Let P ⊂ Rn be closed nowhere dense and let

(∗) {Bi : i < ω} be a family of pairwise disjoint closed balls in Rn disjoint
with P , with non-empty interiors, and such that the closure of

⋃
i<ω Bi

is equal to P ∪
⋃
i<ω Bi.

For every i < ω, let fi be a continuous function from Rn onto [0, 1] with the
support contained in Bi. Then f =

∑
i<ω fi is from Rn onto [0, 1] and

(a) D(f) = P = {x ∈ Rn : osc(f, x) = 1}.

Moreover, if

(b) for every N > 0 and line ` in Rn the set {i < ω : `∩Bi ∩ [−N,N ]n 6= ∅}
is finite,

then f is linearly continuous.

Proof. Condition (b) implies that the family {supp(fi)∩ ` : i < ω} is locally
finite for every line `. So, indeed, f � ` is continuous.

Property (a) is obvious, after one notices that every open set intersect-
ing P fully contains one of the balls Bi. (This can be additionally imposed
in the assumptions, but in Rn it actually is already ensured by the current
assumptions.)

All linearly continuous functions we construct in this paper will be of the
form of a function f from Lemma 3.1. Clearly, we will use this with P being
φ � K for appropriate φ and K. The construction of the balls satisfying (∗) is
an easy exercise. It is the property (b) that will require care.

We will also need the following simple result.

Lemma 3.2. Let B̂i’s and P̂ ⊂ Rn−1 be as in Lemma 3.1. Then there exists
a C2 function h : Rn−1 → [0, 1] such that h(x) > 0 if, and only if, x belongs to
the interior of one of the balls B̂i.
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Proof. Actually, such a function can be even C∞. Simply, for any i < ω
choose a C∞ function hi : Rn−1 → [0, 1] for which {x ∈ Rn−1 : hi(x) > 0} is the
interior of the ball B̂i. Then, for appropriately chosen numbers ai > 0 (with
the sequence 〈ai〉i converging quickly to 0), the function h =

∑
i<ω aihi is C∞

and as required. (For similar constructions of C∞ functions, see also [7].)

We will also use the following lemma, in which the term “a line ` in Rn
is non-vertical” is understood as “` is not parallel to the last axis of Rn =
Rn−1 × R.”

Lemma 3.3. Let φ : Rn−1 → R be an arbitrary continuous function, P̂ ⊂
Rn−1 be closed nowhere dense, and let h and the B̂i’s be as in Lemma 3.2.
For every i < ω choose an arbitrary closed ball Bi inside the set

Ti = {〈x, y〉 : x ∈ B̂i & y ∈ (φ(x), (φ+ h)(x))}.

In particular, each Bi is strictly above the graph of φ. Then, for every N > 0
and line ` in Rn if the set {i < ω : ` ∩Bi ∩ [−N,N ]n 6= ∅} is infinite, then

(i) ` is non-vertical, so it can be identified with a function L from a line `0
in Rn−1 into R,

(ii) there is a sequence 〈bik ∈ `0 ∩ B̂ik : k < ω〉 converging monotonically on

`0 to a b ∈ `0 ∩ P̂ and such that: φ(b) = L(b) and limk→∞
φ(bik )−φ(b)
‖bik−b‖

exists and is equal limk→∞
L(bik )−L(b)
‖bik−b‖

, the slope of the line L : `0 → R
when `0 is oriented in such a way, that points bik are to the right of b.

Proof. Clearly ` cannot be vertical, since each Bi is a subset of the set
Ti = {〈x, y〉 : x ∈ B̂i & y ∈ (φ(x), (φ+ h)(x))} and B̂i’s are pairwise disjoint.
So, there is an `0 as in (i) and we can choose a sequence 〈bik〉k<ω of points

in `0, each from a different ball B̂ik , with 〈bik , L(bik)〉 ∈ Bik ∩ [−N,N ]n for
every k < ω. By (∗), choosing a subsequence, if necessary, we can assume
that 〈bik〉k<ω converges monotonically on `0 to some b ∈ P̂ ∩ `0. So, L(b) =
limk→∞ L(bik) and φ(b) = limk→∞ φ(bik).

The rest is a consequence of the squeeze theorem. Indeed, for every k < ω
we have φ(bik) ≤ L(bik) ≤ (φ+ h)(bik) = φ(bik) + h(bik). Hence, taking limit
over k →∞, we get φ(b) ≤ L(b) ≤ φ(b) + h(b) = φ(b), where h(b) = 0 follows
from the fact that b ∈ P̂ does not belong to any interior of a ball B̂i. Similarly,

lim
k→∞

h(bik)− h(b)

‖bik − b‖
= 0,
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since the limit equals the directional derivative D~uh(b) of h at b in the direction
of the line `0 and D~uh(b) = 0, since between any bi+k and b there is a cik ∈ `0
(from the boundary of B̂ik) with h(cik) = 0.

Finally, for every k < ω we have L(bik)− h(bik) ≤ φ(bik) ≤ L(bik), so

L(bik)− L(b)

‖bik − b‖
− h(bik)− h(b)

‖bik − b‖
=

(L(bik)− h(bik))− φ(b)

‖bik − b‖

≤ φ(bik)− φ(b)

‖bik − b‖
≤ L(bik)− L(b)

‖bik − b‖
and, taking limit over k →∞, we get

lim
k→∞

L(bik)− L(b)

‖bik − b‖
− 0 ≤ lim

k→∞

φ(bik)− φ(b)

‖bik − b‖
≤ lim
k→∞

L(bik)− L(b)

‖bik − b‖

and the desired equation limk→∞
φ(bik )−φ(b)
‖bik−b‖

= limk→∞
L(bik )−L(b)
‖bik−b‖

holds.

Theorem 3.4. If φ : Rn−1 → R is convex and P̂ is a closed nowhere dense
subset of Rn−1, then φ � P̂ ∈ Dn.

Proof. Notice, that φ is continuous, as it is convex. (See e.g. [17].)
Choose balls B̂i’s for P̂ satisfying (∗). Use Lemma 3.3 to find balls Bi,

each with non-empty interior. Clearly these balls satisfy (∗) from Lemma 3.1
used with P = φ � P̂ . Therefore, to finish the proof, it is enough to show that
its property (b) is satisfied.

So, choose N > 0 and a line ` in Rn and, by way of contradiction, assume
that the set {i < ω : ` ∩ Bi ∩ [−N,N ]n 6= ∅} is infinite. Then, there is a
sequence satisfying (ii) from Lemma 3.3. In particular, the line ` is tangent
to φ (more precisely, tangent to φ � `0 from the side of points bik) and so,
by the convexity of φ, ` is below the graph of φ. This gives us the desired
contradiction, since no line below the graph of φ can intersect any ball Bi,
each ball Bi being chosen, according to Lemma 3.3, strictly above the graph
of φ.

Clearly, Theorem 2.3 for F = Conv(Rn−1) immediately follows from The-
orem 3.4. Moreover, we can conclude the following.

Corollary 3.5. If K is an Fσ meager subset of Rn−1, then K × {0} ∈ Dn.
Moreover, if K is closed in Rn−1, then there exists a linearly continuous func-
tion f : Rn → R such that D(f) = {x ∈ Rn : osc(f, x) = 1} = K × {0}.
Proof. If K is closed in Rn−1, then K×{0} = Φ � K, where φ : Rn−1 → {0}
is constant (so convex) function. Thus, Theorem 3.4 implies the second part
of the corollary. Then, the first part of the corollary follows, as Dn is closed
under countable unions.
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4 The case of C2 functions

Throughout this section we assume that n = 2. Our goal is show, using the
machinery developed in the previous section, that φ � K ∈ D2 for every C2
function φ : R→ R and closed nowhere dense K ⊂ R.

We start with the following lemma which, in particular, shows that the
function constructed in Proposition 2.5 (i.e., with an image of a nowhere dense
set having non-empty interior), cannot be continuously differentiable.

Lemma 4.1. If φ : R → R is C1 and P is compact nowhere dense subset of
R, then φ[P ] is also nowhere dense in R.

Proof. Let Z = {x ∈ P : φ′(x) = 0}. Then, by Sard’s theorem, φ[Z] has
measure zero. Since Z is compact, as φ′ is continuous, φ[Z] is also compact.
Therefore, φ[Z] is nowhere dense in R.

Next, let Jk be the closures the component intervals of the complement of
Z. Since φ � Jk is a homeomorphism, each set Mk = φ[P ∩ Jk] is nowhere
dense, as a homeomorphic image of a nowhere dense set. So, φ[P ] is meager,
being equal to a meager set Z ∪

⋃
kMk. Being compact, it must be nowhere

dense.

Lemma 4.2. Let φ : R → R be C2 and P be compact nowhere dense subset
of R. For every x ∈ R let `x be the line tangent to φ at 〈x, φ(x)〉. Then the
set KP =

⋃
x∈P `x is nowhere dense in the plane.

Proof. First, notice that KP is closed in R2. Indeed, let 〈a, b〉 be in the
closure of KP . Choose points 〈ak, bk〉 ∈ KP converging to 〈a, b〉. For every
k < ω choose xk ∈ P for which 〈ak, bk〉 ∈ `xk

. By compactness of P , choosing a
subsequence, if necessary, we can assume that points xk converge to an x̂ ∈ P .
Since φ′(xk) converge to φ′(x̂), it is easy to see that 〈a, b〉 = 〈a, `x̂(a)〉 ∈ `x̂ ⊂
KP . So, indeed KP is closed in R2.

Next, we prove that for every vertical line `, the intersection KP ∩ ` is
nowhere dense in `. By the Kuratowski-Ulam theorem, this implies that KP

is meager, so nowhere dense.
So, let ` = {a} × R. Then ` ∩ `x = 〈a, φ(x) + (a− x)φ′(x)〉. In particular,

`∩KP = {a}× φ̂[P ], where φ̂ : R→ R is defined as φ̂(x) = φ(x)+(a−x)φ′(x).

Since φ̂ is C1, as φ is C2, Lemma 4.1 implied that φ̂[P ] is nowhere dense in R.
So, indeed KP is nowhere dense in R2.

Proof of Theorem 2.3 for F = C2(R). Let P̂ ⊂ R be compact nowhere
dense and φ : R → R be C2. We need to show that φ � P̂ ∈ D2. We proceed
as in the previous section.
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Choose balls (intervals) B̂i’s for P̂ satisfying (∗). Use Lemma 3.3 to find
balls Bi, each with non-empty interior. Since, by Lemma 4.2, the set KP̂ is
nowhere dense in R2, we can additionally assume (this is the key trick) that
the balls Bi are disjoint with KP̂ . Once again, the balls Bi satisfy (∗) from

Lemma 3.1 used with P = φ � P̂ .
To finish the proof, it is enough to show that the property (b) from

Lemma 3.1 is satisfied. For this, choose a line ` in R2 and, by way of con-
tradiction, assume that ` intersects infinitely many balls Bi. Then, there is a
sequence satisfying (ii) from Lemma 3.3. This means, that ` is equal to the
tangent line `b ⊂ KP̂ . So, ` could not have intersected any balls Bi, since all
these balls are disjoint with KP̂ .

5 Final remarks

Notice, that we have actually proved a bit stronger result than perviously
claimed:

Theorem 5.1. Let φ : Rn−1 → R and let K be a closed nowhere dense subset
of Rn−1. Assume that either

• φ is convex, or

• K is compact and φ is continuously twice differentiable, where we allow
the second derivative to be infinite.

Then, there exists a linearly continuous function f : Rn → R such that D(f) =
φ � K = {x ∈ Rn : osc(f, x) = 1}.

Proof. The oscillation strengthening comes directly from the formulation of
Lemma 3.1. The fact that we can allow the second derivative to be infinite,
requires noticing that we never used in our proof the assumption that the
derivative is finite.

Finally, let point out some natural open questions.

Problem 5.2. Does E(C2(Rn−1)) ⊂ Dn for n > 2?

Notice that analogue of Lemma 4.2 for n > 2 is false.

Problem 5.3. Does E(C1(R)) ⊂ D2? What about E(D2(R)) ⊂ D2?

Here, D2(R) stands for the class of twice differentiable functions.
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