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Abstract A deep theoretical analysis of the graph cut im-
age segmentation framework presented in this paper simul-
taneously translates into important contributions in several
directions.

The most important practical contribution of this work
is a full theoretical description, and implementation, of a
novel powerful segmentation algorithm, GCmax. The out-
put of GCmax coincides with a version of a segmentation
algorithm known as Iterative Relative Fuzzy Connectedness,
IRFC. However, GCmax is considerably faster than the clas-
sic IRFC algorithm, which we prove theoretically and show
experimentally. Specifically, we prove that, in the worst case
scenario, the GCmax algorithm runs in linear time with re-
spect to the variable M = |C| + |Z|, where |C| is the image
scene size and |Z| is the size of the allowable range, Z, of
the associated weight/affinity function. For most implemen-
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tations, Z is identical to the set of allowable image inten-
sity values, and its size can be treated as small with respect
to |C|, meaning that O(M) = O(|C|). In such a situation,
GCmax runs in linear time with respect to the image size |C|.

We show that the output of GCmax constitutes a solution
of a graph cut energy minimization problem, in which the
energy is defined as the �∞ norm ‖FP ‖∞ of the map FP

that associates, with every element e from the boundary of
an object P , its weight w(e). This formulation brings IRFC
algorithms to the realm of the graph cut energy minimizers,
with energy functions ‖FP ‖q for q ∈ [1,∞]. Of these, the
best known minimization problem is for the energy ‖FP ‖1,
which is solved by the classic min-cut/max-flow algorithm,
referred to often as the Graph Cut algorithm.

We notice that a minimization problem for ‖FP ‖q ,
q ∈ [1,∞), is identical to that for ‖FP ‖1, when the orig-
inal weight function w is replaced by wq . Thus, any al-
gorithm GCsum solving the ‖FP ‖1 minimization prob-
lem, solves also one for ‖FP ‖q with q ∈ [1,∞), so just
two algorithms, GCsum and GCmax, are enough to solve
all ‖FP ‖q -minimization problems. We also show that,
for any fixed weight assignment, the solutions of the
‖FP ‖q -minimization problems converge to a solution of the
‖FP ‖∞-minimization problem (‖FP ‖∞ = limq→∞ ‖FP ‖q

is not enough to deduce that).
An experimental comparison of the performance of

GCmax and GCsum algorithms is included. This concentrates
on comparing the actual (as opposed to provable worst sce-
nario) algorithms’ running time, as well as the influence of
the choice of the seeds on the output.
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1 Introduction

The image segmentation field has a rich literature dating
back to the 60’s. For the consideration of this paper, it is
useful to categorize the segmentation algorithms into three
groups: purely image-based (pI), appearance model-based
(AM), and hybrid. pI methods focus on delineating objects
based entirely on the information about the object that can
be harnessed from the given image. AM approaches bring
in information about the object family in terms of its ap-
pearance variation in the form of statistical/fuzzy texture
and/or shape models to bear on the segmentation problem.
Hybrid approaches are recent; they combine synergistically
the pI and AM approaches in an attempt to overcome the
weaknesses of the individual approaches. The major frame-
works existing under the pI approaches include level sets
(LS), active boundaries, fuzzy connectedness (FC), graph
cut (GC), watershed (WS), clustering, and Markov Ran-
dom Field. Since pI approaches rely mostly on informa-
tion present in the given image, they offer the opportunity
of studying them under a unified mathematical theory, irre-
spective of the different mathematical frameworks utilized
in expressing the individual methods, such as variational cal-
culus for LS, graph theory for GC, etc. In this paper, we will
continue such a study previously dedicated to a comparison
of FC and LS [18], but now focusing on GC and its varia-
tions and its comparison to FC.

We will put a special emphasis on the delineation algo-
rithms, that is, the segmentation procedures returning only
one object region of interest at a time rather than multiple
objects simultaneously. This makes the presentation clearer,
even when a method can be easily extended to a multi-object
version. In addition, the comparisons of different segmenta-
tion methods, both theoretical and experimental, is easier in
this single-object setting. The general, multi-object segmen-
tation algorithms will be also discussed here, but in a for-
mat of generalizations of the appropriate delineation meth-
ods and only at a theoretical level.

We will focus on the Graph Cut image segmentation
methods, in which the image information is represented
in the form of a weighted graph and the delineated ob-
jects P minimize the energy functions ‖FP ‖q for different
q ∈ [1,∞], where FP is a map that assigns to every ele-
ment e from the boundary of object P its weight w(e). In
this formulation, our approach is similar to that from papers
[21, 44]. We will show that all minimization problems asso-
ciated with the energies ‖FP ‖q can be solved by only two
types of algorithms: GCsum and GCmax, that solve, respec-
tively, the minimization problems for the energies ‖FP ‖1

and ‖FP ‖∞.
The graph cut GCsum algorithms, minimizing the energy

εsum(P ) = ‖FP ‖1, have a rich literature [5–11]. (See also
[28, 29, 43].) The energy εmax(P ) = ‖FP ‖∞ used as an op-
timizer is relatively a new phenomenon—it seems to appear

so far only in the papers [17, 21, 44] and in a slightly differ-
ent setting from the one we use in this paper. (But see also [1,
2, 23].) However, as we will show here, the energy εmax is
actually minimized by most of the algorithms from the fuzzy
connectedness, FC, framework, which was extensively stud-
ied since 1996 [19, 39, 40, 45–47]. (See also [13, 14, 27],
where a slightly different approach to this methodology is
used. For other extensions of FC, compare e.g., [26, 35],
and the references listed in [15, 16].) Recall also that the
watershed, WS, framework [3, 4, 22, 23, 32, 34, 42] can be
encompassed in the FC framework [1, 23, 29], so it too min-
imizes the energy εmax.

The paper is organized as follows. In Sect. 2, we for-
mally introduce the graph cut energy minimization frame-
work for delineation of objects in digital images. All terms
are precisely defined in such a way that the proofs can be
presented with mathematical rigor and precision rather than
as an outline at the intuitive level. In Sect. 3, we will de-
scribe the results from [21] and discuss their relation to
the presented work. In particular, while both in [21] and
in this paper, the optimizing energies, ‖FP ‖q , are identi-
cal, they are actually used to optimize different mathemat-
ical objects: we optimize the actual delineated (hard) ob-
jects; in [21], on the other hand, the optimization returns the
labeling (fuzzy subset) of the scene, which only at the fi-
nal step is transformed to (not necessarily ‖FP ‖q optimal)
hard object. Nevertheless, the output of the main algorithm
from [21], Power Watershed, is closely related to the one
we introduce here: GCmax, a fast implementation of the It-
erative Relative Fuzzy Connectedness, IRFC, algorithm. In
Sect. 4, we prove that the standard FC optimization algo-
rithms, Relative Fuzzy Connectedness, RFC and Iterative
Relative Fuzzy Connectedness, IRFC, minimize the energy
εmax(P ) = ‖FP ‖∞. We will also present the novel GCmax

algorithm and prove that it returns, in linear time with re-
spect to the variable M = |C| + |Z| discussed in the ab-
stract (so, practically, with respect to the image size), a de-
lineated IRFC object, so an εmax-optimizer. The GCmax al-
gorithm can be used to return multi-object segmentations, in
both IRFC and RFC settings. The final output of the GCmax

algorithm, the object, is an εmax-optimizer for essentially
an arbitrary choice of seeds. In Sect. 5, we compare opti-
mization problems related to εsum and εmax and the associ-
ated algorithms GCsum and GCmax. In particular, we show
that, for any fixed weight assignment, the solutions of the
‖FP ‖q -minimization problems converge to a solution of the
‖FP ‖∞-minimization problem. We point out the differences
between algorithms GCsum and GCmax that can be deduced
theoretically, emphasizing computational speed and the de-
pendence on the choice of seeds. Finally, we compare em-
pirically different versions of algorithms GCsum and GCmax,
concentrating on comparing the actual (as opposed to prov-
able worst scenario) algorithms’ running time, as well as in-
fluence of the choice of the seeds on the algorithms’ output.
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2 The Graph Cut Segmentation Framework

2.1 Image Segmentations as Energy Minimizers

We will identify a digital image I = 〈C,f 〉 with its inten-
sity function f :C → R

�, that is, a map from its domain—
a finite set C, whose elements will be referred to as spels,
short for space elements—into R

�. The value f (c) of f at
c represents image intensity, an �-dimensional vector (each
component of which indicates a measure of some aspect of
the signal, like color), at this spel.

A segmentation of an image I = 〈C,f 〉 is any sequence
�P = 〈P1, . . . ,Pm〉 of pairwise disjoint subsets of C. We will

be especially interested in the segmentations consisting of a
single object (i.e., with m = 1), to which we refer as delin-
eations. In this special case, the objects will be indicated by
two disjoint sets S and T of seeds, S indicating the object,
while T indicating the background. For such a pair 〈S,T 〉,
a “desired delineated object” will be chosen from the family
P (S,T ) of all objects P ⊂ C containing S and which are
disjoint with T .

The “desired delineated objects” are chosen with the
help of an energy (or cost) function ε (sometimes denoted
as εf , to stress that it is derived from the image intensity
map f ), which to any object P assigns a number ε(P ).
Specifically, the “desired object” will be a Pmin ∈ P (S,T )

which minimizes ε in P (S,T ), that is, such that ε(Pmin) ≤
ε(P ) for every P ∈ P (S,T ).1 More precisely, if, for an
energy threshold θ , Pθ (S,T ) stands for the family of all
P ∈ P (S,T ) such that ε(P ) ≤ θ , then Pmin belongs to the
family Pθmin(S,T ), where θmin is the smallest number θ for
which the family Pθ (S,T ) is non-empty.

We will use the term minimization problem, MP(εf ),
when we refer to the process described above, that is, find-
ing the map 〈f,S,T 〉 �→ Pθmin(S,T ). We will use the term
delineation (or segmentation) algorithm (for MP(εf )) when
we refer to a specific numerical recipe that, given f and
〈S,T 〉, returns a Pmin from Pθmin(S,T ).

The framework indicated above is very general and ap-
plies to a large class of image segmentation methods in the
pI group. It leaves open two fundamental questions, which
must be answered in any specific case of image segmenta-
tion algorithm: (Q1) How to define an energy function ε, so
that the family Pθmin(S,T ) contains the “desired segmen-
tation?” (Q2) How to find an algorithm that returns Pmin

from Pθmin(S,T ) constituting the “desired segmentation?”
Below we discuss several possible answers to these ques-
tions within the graph cut segmentation framework.

1A minimizing argument, in our case Pmin, for a function, in our case
ε, is often denoted as Pmin = arg minP ε(P ). (See e.g. [21].) However,
such a notation incorrectly suggests that a minimizing object is unique.

2.2 Specifics of Graph Cut Segmentation

Graph cut delineations (and segmentations) of the images
are found through a two-stage process: (S1) formation of a
weighted graph associated with an image, and (S2) object
delineation in the graph. All results presented in this paper
concern the second stage (S2). In particular, since the quality
of the segmentations considered in (S2) depends solely on
the structure of the graph formed in stage (S1), all theoretical
results of this paper remain true, independently of how the
edges of the graph and their weights are assigned.

2.2.1 Formation of a Graph Associated With an Image

A weighted directed graph G = 〈V,E,w〉 associated with a
digital image I = 〈C,f 〉 has the following properties.

• V is the set of vertices of the graph and is equal to
the image domain C. (In the min-cut/max-flow algorithm
GCsum, the set is V often expanded by two additional
vertices, a source and a sink. However, in the set-up we
consider, this expansion is non-essential, as explained in
Sect. 5.)

• E ⊂ V × V is a binary relation representing the set of all
directed edges of G, that is, 〈c, d〉 is an edge if, and only
if, 〈c, d〉 ∈ E. We will assume that E is symmetric, that
is, 〈d, c〉 is an edge provided so is 〈c, d〉. In particular, all
considered graphs can be treated as undirected graphs.

• w:E → [0,∞) is a weight function associating with any
edge e ∈ E its weight w(e). Once again, we will assume
that w is symmetric, that is, that w(c, d) = w(d, c) for
every edge 〈c, d〉.

These properties are the only requirements we impose on G

in our theoretical investigations. However, it seems appro-
priate to provide here the standard interpretations of these
notions used in digital imaging, which we also use in our
experiments.

The scene’s domain C is of the rectangular form C1 ×
· · ·×Cn (the symbol n = 2,3,4, . . . standing for the dimen-
sion of the scene, which, in our experiments is either 3 or 2),
where each Ci is a set {1, . . . ,mi} of integers. The set E of
edges is identified with the adjacency relation on C, often
denoted as α. It is routine to declare c ∈ C to be adjacent
to d ∈ C when the Euclidean distance ‖ · ‖ (or any other
form of distance) does not exceed some fixed number. In
most applications, we use adjacencies like 4-adjacency (for
n = 2) or 6-adjacency (in the three-dimensional case), de-
fined as ‖c − d‖ ≤ 1. Similarly, the 8-adjacency (for n = 2)
and 26-adjacency (for n = 3) relations can be defined as
‖c − d‖ ≤ √

3.
One of the most standard weight assignments, measur-

ing the level of inhomogeneity between a pair of spels, is
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given by the following formula, where σ > 0 is a fixed con-
stant:

w(c, d) = e−‖f (c)−f (d)‖2/σ 2
, where 〈c, d〉 ∈ E. (1)

This w is related to the notion of directional derivative in
direction given by �cd and it has a value close to 1 (meaning
that c and d are well connected) when the spels have very
similar intensity values. In the fuzzy connectedness litera-
ture, w given by (1) is usually denoted as ψ and is called the
homogeneity based affinity. (See e.g. [15, 16].) In general, a
weight function is also often referred to as a cost function or,
in FC literature, as an affinity function (and often denoted
as κ).

The algorithms discussed in this paper rely on edge
weights (costs) that are preferably much lower across the ob-
ject’s border than inside and outside it. Edge-weight assign-
ment is an application-dependent task, which can exploit
local image properties, such as pixel intensity, and object
properties, such as its intensity distribution, shape, and tex-
ture, which can be obtained from user-drawn markers [31]
and/or by matching with an object model [30]. The algo-
rithms discussed here can take advantage of all these ap-
proaches for edge-weight assignment.

2.2.2 Graph Cut Energies and Minimizing Segmentations

The boundary bd(P ) of an object P ⊂ C (in a graph G =
〈C,E,w〉) is the set of all edges 〈c, d〉, 〈d, c〉 ∈ E for which
c ∈ P and d is not in P . We often refer to the set bd(P ) as a
graph cut, since removing these edges from G disconnects
P from its complement C \ P in C (i.e., in this modified
graph, there is no path from P to C \ P ).

For B ⊂ E let WB :E → [0,∞) be defined for every edge
e ∈ E as WB(e) = w(e)χB(e), where χ

B :E → {0,1} is the
characteristic function of B , that is, defined as χ

B(e) = 1
for e ∈ B and χ

B(e) = 0 for e /∈ B . For q ∈ [1,∞) we define
the energy functions: εq as

εq(P ) = ‖Wbd(P )‖q = q

√∑
e∈E

[
Wbd(P )(e)

]q

= q

√ ∑
〈c,d〉∈bd(P )

[
w(c, d)

]q
and ε∞ as

ε∞(P ) = lim
q→∞ εq(P ) = max

〈c,d〉∈bd(P )
w(c, d). (2)

(Notice that ‖Wbd(P )‖q equals ‖FP ‖q for the mapping FP

defined earlier.)
In what follows, we will concentrate on the functions εq

for q = 1 and q = ∞. We will use the notation εsum for ε1

and εmax for ε∞, so that

εsum(P ) =
∑

〈c,d〉∈bd(P )

w(c, d) and

εmax(P ) = max
〈c,d〉∈bd(P )

w(c, d).

Of course, the minimization problem MP(εsum) is solved
by the popular graph cut segmentation algorithm: the min-
cut/max-flow algorithm. In what follows, we will show
that MP(εmax) is solved by the fuzzy connectedness (so,
also standard watershed) segmentation algorithms. All de-
lineation algorithms we consider in Sects. 4 and 5 return, as
Pmin, the smallest set2 in Pθmin(S,T ) or in some well defined
subfamily P ∗(S,T ) of Pθmin(S,T ). This additional property
defines uniquely the solution of every optimization problem
we consider.

3 Hard Versus Fuzzy Graph Cut Minimization
Problems

This section can be treated as a discussion of the results pre-
sented in the papers [44] and [21]. In these papers the au-
thors discuss image delineation algorithms that use a very
similar approach to that described above: the same weighted
graphs are associated with the images and the same en-
ergy functions εp are used to find their minimizers which,
in turn, are transformed to final image delineations. How-
ever, for most cases, the actual outputs of these algorithms
need not to minimize the energy functionals εp which they
employ, see Theorem 3.2. As such, they actually do not
fit the general framework described in the previous sec-
tion. Nevertheless, there are interesting relationships be-
tween the two approaches, as we describe in more detail
below.

Recall that a fuzzy subset (or, according to the termi-
nology from [21, 44], a labeling) of a set C is any func-
tion x:C → [0,1], with the value x(c) indicating a degree
of membership with which c belongs to the set. Many de-
lineation algorithms considered in the literature, as those
surveyed in [21], deal with the fuzzy minimization prob-
lems, the notion obtained from that of minimization prob-
lem MP(εf ) upon replacing in its definition the “hard” sub-
sets of C by the “fuzzy” subsets of C. More precisely, for
disjoint sets S,T ⊂ C, we define P F (S,T ) as the fam-
ily of all fuzzy sets x:C → [0,1] with x(c) = 1 for all
c ∈ S and x(c) = 0 for all c ∈ T . For a threshold θ and

an energy map ε̂ from P F def= P F (∅,∅) into [0,∞), we de-
fine P F

θ (S,T ) as the family of all x ∈ P F (S,T ) such that
ε̂(x) ≤ θ . Then, a fuzzy minimization problem, MPF (ε̂f ), is

2Smallest in the set inclusion sense, that is, such that Pmin ⊂ P for
all P ∈ Pθmin (S,T ). Notice that the existence of the smallest element
of Pθmin (S,T ) is not obvious. Actually, its existence depends on the
definition of the energy function ε.
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a map 〈f,S,T 〉 �→ P F

θ̂min
(S,T ), where θ̂min is the smallest

number θ for which the family P F
θ (S,T ) is non-empty. Fi-

nally, a delineation algorithm for MPF (ε̂f ) is any specific
numerical recipe that, given f and 〈S,T 〉, returns an xmin

from P F

θ̂min
(S,T ).

Any hard set P ⊂ C can be treated as a fuzzy set,
by identifying it with its characteristic function χ

P :C →
{0,1}, defined as χ

P (c) = 1 for c ∈ P and χ
P (c) = 0 for

c /∈ P . This allows us to identify the family P (S,T ) with
P H (S,T ) = {χP :P ∈ P (S,T )} and recognize χ

Pmin as a
minimizer of the energy εH defined as εH (χP ) = ε(P ).
In particular, if εH is equal to the restriction ε̂ � P H of ε̂

to P H def= P H (∅,∅), then the three minimization problems
MP(ε), MPF (εH ), and MPF (ε̂ � P H ) coincide. In what fol-
lows, we will often write ε to denote εH .

If we are happy to accept a fuzzy minimizer that returns
an x from P F (S,T ), not necessarily from P H , as a “de-
sired object,” this is a viable approach. (This can be useful,
for example, in filtering [20].) However, most of the time,
we are after the hard delineated objects. In particular, al-
though the delineation algorithms presented in [21, 44] min-
imize the “fuzzy” energy functions ε̂: P F → [0,∞), they
actually return a characteristic function x̄:C → {0,1} of a
hard object, rather than a fuzzy minimizing object (label-
ing) xmin ∈ P F

θ̂min
(S,T ) indicated by the fuzzy minimization

problem, where

x̄(c) = 1 when xmin(c) ≥ 0.5 and
(3)

x̄(c) = 0 for xmin(c) < 0.5.

In [21], the authors consider the energy functions on P F

defined for every p ∈ [0,∞) and q ∈ [1,∞) via formula3

Ep,q(x) =
∑

〈c,d〉∈E

[
w(c, d)

]p∣∣x(c) − x(d)
∣∣q . (4)

Actually, for p = 0, the formula (4) is undefined when-
ever w(c, d) = 0. We interpret E0,q as limp→0+ Ep,q , which
leads to treating [w(c, d)]0 as sgn[w(c, d)], where the value
of the sign function sgn(a) is defined as 0 for a = 0 and 1
for a > 0. In [21, 44], the authors also allow p = ∞ and
q = ∞, through different limiting processes, which we will
discuss below.

Notice that, for every q , Ep,q � P H = Ep,1 � P H (i.e.,
Ep,q agrees with Ep,1 for the hard delineations), rendering
the parameter q in Ep,q redundant for the hard optimization
problem set-up:

3Actually, the most general energy formula defined in [21] is of the

form Êp,q (x) = Ep,q(x) + ∑
c∈V (wc)

p|x(c) − y(c)|q for a y ∈ P F .
However, in all theoretical investigations there, the unary constants wc

are taken as 0, in which case Êp,q = Ep,q . Our analysis here applies
only to this simplified case.

Remark 3.1 If, for any energy functions ε̄ and ε̂ defined on
P F , their restrictions ε̄ � P H and ε̂ � P H are equal, then the
hard minimization problems MP(ε̄ � P H ) and MP(ε̂ � P H )

associated with them coincide.

3.1 Cases p,q ∈ R and p = q → ∞

Paper [44] discusses the following variants of Ep,q :

εq(x)
def= (

Eq,q(x)
)1/q = q

√ ∑
〈c,d〉∈E

(
w(c, d)

∣∣x(c) − x(d)
∣∣)q

= ‖Fx‖q, (5)

where Fx :E → R, Fx(c, d) = w(c, d)|x(c) − x(d)| for
〈c, d〉 ∈ E, and ‖ · ‖q is the standard �q -norm. In particu-

lar, for q = ∞, the formula (5) is interpreted as ε∞(x)
def=

limq→∞(Eq,q(x))1/q = limq→∞ ‖Fx‖q , leading to

ε∞(x) = ‖Fx‖∞ = max〈c,d〉∈E
w(c, d)

∣∣x(c) − x(d)
∣∣. (6)

This energy function is the only form of the energy Ep,q ,
with p,q → ∞, considered in [21] and in this paper.

The following theorem summarizes the relationships be-
tween these minimization problems.

Theorem 3.2 Let 1 ≤ q < ∞ and 0 ≤ p < ∞.

(a) The hard delineation optimization problem associated
with ε∞ coincides with MP(εmax).

(b) The hard delineation optimization problems associ-
ated with Ep,q and with (Ep,q)1/q (so, also with εq =
(Eq,q)1/q ) coincide with MP(εsum

p ), where εsum
p is the

energy εsum associated with the graph G = 〈C,E,wp〉.
(c) Moreover, if q �= 1, then the hard object x̄ associated, as

in (3), with a fuzzy minimizer xmin for the fuzzy energy
function Ep,q need not minimize the associated hard de-
lineation energy function; that is, x̄ need not belong to
the appropriate family P H

θmin
(S,T ).

Proof (a) Clearly ε∞ � P H = εmax, so also MP(ε∞ �
P H ) = MP(εmax).

(b) The map y �→ y1/q is strictly increasing for every
q ∈ [1,∞), so the optimization problem (fuzzy or hard) as-
sociated with Ep,q is clearly equivalent to that for (Ep,q)1/q

(since the associated families Pθmin(S,T ) are identical).
Since Ep,q � P H = εsum

p , (b) follows.
(c) This part is justified by Example A.1 in the Appendix.

�

It was noticed in [44] that, for the energy ε1 = E1,1 (i.e.,
for q = 1), we have P F

θmin
(S,T ) = P H

θmin
(S,T ), so, in this

case, the fuzzy MP(E1,1) and the hard MP(E1,1 � P H ) mini-
mization problems coincide with the “classic” min-cut/max-
flow problem MP(εsum

p ). For all other energy functions con-
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sidered in Theorem 3.2 (including the cases of random walk
ε2 = (E2,2)

1/2 and of the �∞ energy ε∞ studied in [21, 44]),
the algorithmic output x̄ (derived from xmin) does not con-
stitute (an exact) solution to the related hard optimization
problem. This, for example, explains why the experimental
results from [44] for the �∞ algorithm are not robust (i.e.,
the delineations lack stability with changing seeds), in spite
of Theorem 5.2, according to which the related hard opti-
mization problem is provably robust. We will come back to
this point in Sect. 5.

3.2 The Case of q → ∞ and p ∈ R

The most natural understanding of this case would be to de-
fine the energy as

Ep,∞(x)
def= lim

q→∞Ep,q(x)

=
∑

〈c,d〉∈E

[
w(c, d)

]p lim
q→∞|x(c) − x(d)|q

=
∑

〈c,d〉∈E

[
w(c, d)

]p⌊
x(c) − x(d)

⌋
,

where the value of the floor function �a� is defined as the
largest integer less than or equal to a. (This is the case
since, for a ∈ [0,1], we have limq→∞ aq = �a�.) However,
for such function, P F

θ̂min
(S,T ) contains all x ∈ P F (S,T )

with 0 < x(c) < 1 for all c ∈ C not in S ∪ T . In particu-
lar, any element of P H (S,T ) could end up as x̄, render-
ing such Ep,∞ useless. Instead, in [21, Sect. 3.3] the au-

thors use the function εp,∞(x)
def= limq→∞(Ep,q(x))1/q =

limq→∞ q

√∑
〈c,d〉∈E([w(c, d)]p/q |x(c) − x(d)|)q , that is,

εp,∞(x) = max〈c,d〉∈E
sgn

(
w(c, d)

)∣∣x(c) − x(d)
∣∣

and relate it to the Voronoi diagram delineation. It is clear,
that εp,∞ is equal to ε∞ associated with the graph G =
〈C,E, sgn(w)〉, so Theorem 3.2(a) is applicable in this case.

3.3 The Case of p → ∞ and q ∈ R

Let G = 〈C,E,w〉 be a weighted graph associated with an
image and let S,T ⊂ C be fixed disjoint sets of seeds. Let
W = S ∪ T . A forest for G is any subgraph F = 〈C,E′〉
free of cycles; a forest F is spanning with respect to W pro-
vided any connected component of F contains precisely one
element of W . With any forest F for G we associate a set
P(S,F) ∈ P (S,T ) of all vertices connected to S by a path
in F. A maximal spanning forest, MSF, for G and W is any
forest F = 〈C,E′〉 for G spanning with respect to W for
which the number

∑
e∈E′ w(e) is maximal.

The delineation algorithm in [21] associated with q ∈
[1,∞) and p → ∞ is referred to as Power Watershed, PW,

algorithm. Although, as in the previous cases, its hard set
output x̄ is obtained from a fuzzy object (labeling) x, it is
proved in [21, Property 2] that such an x̄ belongs to the fam-
ily

PM(S,W) = {
P(S,F): F is an MSF for G and S ∪ T

}
,

that is, x̄ is generated by a maximal spanning forest. At the
same time, every object from PM(S,W) maximizes the en-
ergy εmax on P (S,T ), as proved in Theorem 4.6. (This last
result is closely related to the subject of papers [2, 23].)

The above shows that PW returns an optimizer for the
energy εmax. Since the same is true about IRFC returned
objects (see Theorem 4.4), it can be argued that PW is noth-
ing more than a version of Fuzzy Connectedness algorithm.
This impression is even deepened by the fact (Theorem 4.6)
that the output of the GCmax algorithm also belongs to the
family PM(S,W) of objects indicated by MSF. In particu-
lar, if PM(S,W) has only one element (no tie-zones), then
the outputs of PW and GCmax are identical.

Nevertheless, the algorithms PW and GCmax use dif-
ferent paradigms to choose their outputs from PM(S,W):
GCmax always chooses its smallest element, while, within
each plateau of the graph, PW chooses the object that min-
imizes the energy Ep,q for a current value of q (which, for
q > 1, is unique). In particular, Fig. 1 provides an example
of a graph, in which outputs of GCmax and PW are different.

The association of PW with the limiting process p →
∞ comes from the following (fuzzy) limiting property, that
holds for q > 1 and essentially no restriction on the seed
choice (see [21, Theorem 3]):

(LPF) the fuzzy labeling x returned by PW is equal to a
limit, as p → ∞, of the fuzzy sets (labelings) xp

minimizing the energy Ep,q .

Since, in this paper, we are predominantly interested in the
hard set objects, of considerably more interest to us is the
following (hard) limiting property, which is analogous to the
property of the GCmax algorithm proved in Theorem 5.3:

(LPH) the output x̄ of PW is equal to a limit, as p → ∞, of
x̄p , where each is a fuzzy set (labeling) xp minimiz-
ing the energy Ep,q .

However, unlike (LPF) or Theorem 5.3, the property (LPH)
is proved in [21, Theorem 1] only under an additional strong
assumption4 on seeds S and T . Moreover, as noted in [21,
Fig. 2], (LPH) may be false without the assumption on seeds.

In summary,

• The algorithms GCmax and PW return outputs with very
similar properties: they both minimize the same energy

4The assumption is that for every threshold t , the set S ∪ T intersects
every connected component of the graph 〈C,Et 〉, where Et = {e ∈
E:w(e) ≥ t}.
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Fig. 1 Example of different outputs of GCmax and PW used with q > 1; the intermediate labeling x for PW is given by x(c) = 1/3 and x(d) = 2/3
(these numbers can be verified by multivariable calculus technique)

εmax and, in both cases, can be generated by an MSF. Nev-
ertheless, their outputs can be different (Fig. 1).

• The algorithm GCmax is very fast: it provably runs in lin-
ear time with respect to the variable M = |C| + |Z| dis-
cussed in the abstract (so, practically, with respect to the
image size), see Theorem 4.5. There is no similar theo-
retical result for PW. (The experimental results presented
in [21] suggest that PW runs in linear time, at least for a
simple case of q = 2. It is also true that components of the
PW algorithm, Kruskal’s algorithm and plateau optimiza-
tions for Ep,2, run, provably, in a linear time with respect
to the image size. However, their complicated amalgama-
tion, formation of merged graphs, puts under question,
whether a provable linear time implementation of PW can
be found.)

Finally, notice that, at first glance, the most natural can-

didate for E∞,q (x) is the limit L(x)
def= limp→∞ Ep,q(x) =

limp→∞
∑

〈c,d〉∈E[w(c, d)]p|x(c)−x(d)|q , rather than ε∞,q .
However, L(x) does not exist, unless w(c, d) ≤ 1 for all
〈c, d〉 ∈ E. Moreover, even if the limit exists (i.e., when

w(c, d) ≤ 1 for all 〈c, d〉 ∈ E), the energy E∞,q (x)
def=

L(x) = ∑
〈c,d〉∈E�w(c, d)�|x(c) − x(d)|q does not lead to

a new optimization problem, as such E∞,q is equal to E1,q

for the graph G = 〈C,E, �w�〉.

4 Fuzzy Connectedness as εmax-Energy Graph Cut
Minimizer

In this section, we will prove that the standard Fuzzy Con-
nectedness, FC, segmentation algorithms are graph cut min-
imizers for the energy function ε = εmax, where a weighted
graph G = 〈C,E,w〉 is associated with an image I as de-
scribed in Sect. 2. As it is standard in the FC literature, we
will denote here the graph weight function w as κ and refer
to it as an affinity function. (The affinity functions are dis-
cussed in detail in [15, 16, 31, 41].) We will assume here
that affinity is normalized, that is, that its values are in the
interval [0,1]. (This assumption is not essential [15, 16].
However, it is standard in the FC literature and it facilitates
expression of several results in the fuzzy setting.)

We will also describe, in detail, a new version of an
algorithm, GCmax (based on the Image Forest Transform,
IFT, [25, 29]), which returns IRFC and RFC image seg-
mentations. Assuming that the range of the weight/affinity
function w = κ is restricted to a fixed finite set Z, we prove
that GCmax runs in linear time with respect to the vari-
able M = |C| + |Z|. (For a finite set S, the symbol |S| de-
notes the number of elements in S.) For most weight func-
tions, O(|Z|) is of the same order as the size of the set
of allowable image intensity values. Moreover, |Z| usually
can be treated as small with respect to |C|, meaning that
O(M) = O(|C|). In such situations, GCmax runs in linear
time with respect to the image size |C|. (Even without a
prior information on the range Z of w = κ , GCmax runs
in O(|C| ln |C|) time, the sorting time of an arbitrary set of
size |C|.)

4.1 FC Basics

A path p in a subset A of C is any finite sequence
〈c1, . . . , ck〉 of spels in A such that any consecutive spels
ci, ci+1 in p are adjacent (i.e., 〈ci, ci+1〉 ∈ E). The family
of all paths in A is denoted by P

A. Spels c and s are con-
nected in A provided that there exists a path p = 〈c1, . . . , ck〉
in A from c to s such that c1 = c and ck = s. The family of
all paths in A from c to d is denoted by P

A
cd .

The strength of a path p = 〈c1, . . . , ck〉, k > 1, is defined

as μ(p)
def= min{κ(ci−1, ci): 1 < i ≤ k}, that is, the strength

of the κ-weakest link of p. For k = 1 (i.e., when p has
length 1) we associate with p the strongest possible value:

μ(p)
def= 1.5 For c, d ∈ A ⊆ C, the (global) κ-connectedness

strength in A between c and d is defined as the strength of a
strongest path in A between c and d ; that is,

μA(c, d)
def= max

{
μ(p):p ∈ P

A
cd

}
. (7)

5For k = 1, the set {κ(ci−1, ci ): 1 < i ≤ k} is empty, so the first part of
the definition leads to equation μ(〈c1〉) = min∅. This agrees with our
definition of μ(〈c1〉) = 1 if we define min∅ as equal to 1, the highest
possible value for κ . Thus, in the rest of this article we will assume that
min∅ = 1.
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Notice that μA(c, c) = μ(〈c〉) = 1. We will refer to the func-
tion μA as a connectivity measure (on A) induced by κ .6

For c ∈ A ⊆ C and a non-empty D ⊂ A, we also define

μA(c,D)
def= maxd∈D μA(c, d). The basic FC object deter-

mined by S and a threshold θ is called the absolute fuzzy
connectedness, AFC, object and can be defined as

PSθ
def= {

c ∈ C: θ < μC(c,S)
}
.

Recall that Pθ (S,T ) = {P ∈ P (S,T ): ε(P ) ≤ θ}, where,
in this section, ε = εmax. We will write also Pθ (S) for
Pθ (S,∅). The relation between AFC objects and energy
ε = εmax is described by the following two facts.

Lemma 4.1 If S ⊂ P ⊂ C and PSθ �⊂ P , then ε(P ) > θ .

Proof Fix a c ∈ PSθ \ P and let p = 〈c1, . . . , ck〉 be a path
from c to an s ∈ S with μ(p) = μC(c,S) > θ . As c1 =
c /∈ P and ck = s ∈ S ⊂ P , there is a j ∈ {2, . . . , k} such that
cj−1 /∈ P while cj ∈ P . This means that 〈cj−1, cj 〉 ∈ bd(P ).
Hence, ε(P ) = max〈c,d〉∈bd(P ) κ(c, d) ≥ κ(cj−1, cj ) ≥
min{κ(ci−1, ci): 1 < i ≤ k} = μ(p) > θ . �

Theorem 4.2 If ∅ �= S ⊂ C and θ < 1, then PSθ is the
smallest element of the family Pθ (S).

Proof We will show first that PSθ belongs to the family
Pθ (S) and then that it is its smallest member.

To see that PSθ ∈ Pθ (S) we need to show that S ⊂ PSθ

and that ε(PSθ ) ≤ θ . The first condition holds, since for
every s ∈ S we have μC(s, S) ≥ μ(〈s〉) = 1 > θ , that is,
s ∈ PSθ .

To prove that ε(PSθ ) = max〈c,d〉∈bd(PSθ ) κ(c, d) ≤ θ , take
〈c, d〉 ∈ bd(PSθ ) with c ∈ PSθ . Then d /∈ PSθ . We need to
show that κ(c, d) ≤ θ . Since c ∈ PSθ , there exists a path
p = 〈c1, . . . , ck〉 in C from c to an s ∈ S with μ(p) =
μC(c, s) > θ . Then, the inequality κ(c, d) > θ implies
that μC(d,S) ≥ μ(〈d, c1, . . . , ck〉) = min{κ(d, c),μ(p)}
> θ , implying d ∈ PSθ , which contradicts d /∈ PSθ . There-
fore, indeed κ(c, d) ≤ θ .

To see that PSθ is the smallest set in Pθ (S), we need to
show that PSθ ⊂ P for every P ∈ Pθ (S). But this follows
immediately from Lemma 4.1: if P ∈ Pθ (S), then PSθ �⊂ P

is impossible, since otherwise, by the lemma, we would have
ε(P ) > θ , what contradicts P ∈ Pθ (S). �

If a set of seeds S contains only one seed s, then we will
write Psθ for the object PSθ = P{s}θ . It is easy to see that

6The min-max concept for capturing the strength of connectivity was
first suggested by Rosenfeld [36–38], although by different notion of
path strength without the use of affinity.

PSθ is a union of all objects Psθ for s ∈ S, that is, PSθ =⋃
s∈S Psθ .
Notice that Psθ is connected, since for every c ∈ Psθ

there is a path p = 〈c1, . . . , ck〉 from s to c with μ(p) =
μC(c, s) > θ , and such a path is contained in Psθ . More-
over, if Gθ = 〈C,Eθ 〉 is a graph with Eθ consisting of the
graph edges 〈c, d〉 with weight κ(c, d) greater than θ , then
Psθ is a connected component of Gθ containing s, and PSθ

is a union of all components of Gθ intersecting S.

4.2 Simple Optimization: Relative FC

An FC object that minimizes energy ε = εmax is indicated by
two non-empty disjoint sets S,T ⊂ C. It is referred to as the
relative fuzzy connectedness, RFC, object and is classically
defined via competition of seed sets S and T for attracting a
given spel c to their realms (see [39]):

PS,T
def= {

c ∈ C:μC(c,S) > μC(c,T )
}
.

Clearly, we would like for PS,T to belong to P (S,T ). It is
easy to see that for this to be true, it is necessary that the

number μC(S,T )
def= maxs∈S μC(s, T ) is strictly less than 1.

Therefore, we will always assume that the seed sets are cho-
sen properly, that is, such that μC(S,T ) < 1.

Notice also that

PS,T =
⋃
s∈S

P{s},T ,

since PS,T = {c ∈ C: (∃s ∈ S)μC(c, s) > μC(c,T )} =⋃
s∈S P{s},T , as μC(c,S) = maxs∈S μC(c, s).
The fact that PS,T minimizes the energy ε in P (S,T ) fol-

lows, in particular, from the following theorem. Notice also
that its part (iii) indicates that PS,T = ⋃

s∈S P{s},T not only
minimizes ε globally, but that each of its components P{s},T
minimizes ε on P ({s}, T ) with its own version of the min-
imum, θs = μC(s, T ), which may be (and often is) smaller
than the global minimizer θS = μC(S,T ). In other words,
the object PS,T can be viewed as a result of minimization
procedure used separately for each seed s ∈ S, which gives
a sharper result than a simple minimization of global energy
for the entire object PS,T .

Theorem 4.3 Assume that μC(S,T ) < 1. Then PS,T mini-
mizes the energy ε = εmax on P (S,T ). Moreover,

(i) The number θS = μC(S,T ) is the minimum of ε on
P (S,T ), that is, θS = min{ε(P ):P ∈ P (S,T )}.

(ii) If S is a singleton, then PS,T is the smallest set in
PθS

(S,T ).
(iii) For general S, let P ∗

θS
(S,T ) be the family of all

sets of the form
⋃

s∈S P s , where each P s belongs to
Pθ{s}({s}, T ). Then P ∗

θS
(S,T ) ⊂ PθS

(S,T ) and PS,T is
the smallest set in P ∗

θS
(S,T ).
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Proof First we will show that, if μC(S,T ) < 1, then

PS,T ∈ P (S,T ). (8)

Indeed, S ⊂ PS,T , as for every s ∈ S, μC(s, S) = 1 >

μC(S,T ) ≥ μC(s, T ). Similarly, T is disjoint with PS,T

since for every t ∈ T we have μC(t, S) ≤ μC(S,T ) < 1 =
μC(t, T ).

Next, notice that

if P ∈ P (S,T ), then ε(P ) ≥ μC(S,T ). (9)

Indeed, choose a path p = 〈c1, . . . , ck〉 from s ∈ S to a
t ∈ T such that μ(p) = μC(S,T ). Since c1 = s ∈ P and
ck = t /∈ P , there exists a j ∈ {2, . . . , k} with cj−1 ∈ P while
cj /∈ P . This means that 〈cj−1, cj 〉 ∈ bd(P ). Hence, ε(P ) =
max〈c,d〉∈bd(P ) κ(c, d) ≥ κ(cj−1, cj ) ≥ min{κ(ci−1, ci): 1 <

i ≤ k} = μ(p) = μC(S,T ).
Now, to finish the proof, it is enough to prove (iii). In-

deed, (iii) implies that PS,T ∈ PθS
(S,T ). So, ε(PS,T ) ≤

θS = μC(S,T ). On the other hand, (8) and (9) imply that
μC(S,T ) ≤ ε(PS,T ). Thus, ε(PS,T ) = θS = μC(S,T ). So,
using (8) and (9) again, we conclude that min{ε(P ):P ∈
P (S,T )} is equal to ε(PS,T ) = θS = μC(S,T ). This con-
cludes the argument for (i) and the fact that PS,T minimizes
ε on P (S,T ). Also, (ii) is a particular case of (iii), since for
a singleton S we have P ∗

θS
(S,T ) = PθS

(S,T ). Therefore, it
remains to prove (iii).

For this, notice first that for every s ∈ S

P{s},T = P{s}θ{s} ∈ Pθ{s}
({s}). (10)

Indeed, for any spels c, s, t ∈ C we have the equivalence:
μC(c, s) > μC(c, t) if and only if μC(c, s) > μC(s, t). An
easy proof of this fact can be found in [19, Proposition 2.1].
Therefore, for every T ⊂ C we also have:

μC(c, s) > μC(c,T ) if and only if μC(c, s) > μC(s, T ).

(11)

This implies the second equation in the following

P{s},T = {
c ∈ C:μC(c, s) > μC(c,T )

}
= {

c ∈ C:μC(c, s) > μC(s, T )
}

= {
c ∈ C:μC(c, s) > θ{s}

} = P{s}θ{s} .

The relation P{s}θ{s} ∈ Pθ{s}({s}) follows from Theorem 4.2.
Now, (8) and (10) imply PS,T = ⋃

s∈S P{s},T =⋃
s∈S P{s}θ{s} ∈ P ∗

θS
(S,T ). Next, we will show that ε(P ) ≤

θS for every P ∈ P ∗
θS

(S,T ). This will imply that P ∗
θS

(S,T ) ⊂
PθS

(S,T ).
To see ε(P ) ≤ θS , assume that P = ⋃

s∈S P s , where
P s belongs to Pθ{s}({s}, T ) for every s ∈ S. Then, since
bd(P ) ⊂ ⋃

s∈S bd(P s), we conclude

ε(P ) = max
〈c,d〉∈bd(P )

κ(c, d) ≤ max
s∈S

max
〈c,d〉∈bd(P s)

κ(c, d)

= max
s∈S

ε(P s) = max
s∈S

θs = max
s∈S

μC(s, T ) = θS.

To finish the proof it is enough to show that PS,T

is the smallest set in P ∗
θS

(S,T ). But, by (10), P{s},T =
P{s}θ{s} ∈ Pθ{s}({s}), so, by Theorem 4.2, P{s},T ⊂ P s for ev-
ery P s ∈ Pθ{s}({s}, T ). Therefore, every P = ⋃

s∈S P s from
P ∗

θS
(S,T ) contains PS,T = ⋃

s∈S P{s},T . �

The above described RFC delineation procedure easily
and naturally generalizes to the segmentation algorithm of
m > 1 separate objects. More precisely, assume that for an
image I = 〈C,f 〉 we have a sequence S = 〈S1, . . . , Sm〉
of pairwise disjoint non-empty sets of seeds, each Si indi-
cating an associated object Pi . If for each i we put Ti =
(
⋃m

j=1 Sj ) \ Si , then the RFC segmentation is defined as a
family P = {PSi,Ti

: i = 1, . . . ,m}. It is easy to see that the
different objects in P are disjoint. Moreover, each object
PSi,Ti

contains Si provided the seeds are chosen properly,
that is, when μC(Si, Sj ) < 1 for every j �= i.

It is worth to mention that while each PSi,Ti
minimizes

the energy ε = εmax in P (Si, Ti) with the energy value θi =
μC(Si, Ti), the numbers θi ’s need not be equal when the
number m of objects is greater than 2.

To find the RFC segmentation P = {PSi,Ti
: i = 1, . . . ,m}

for a given sequence S = 〈S1, . . . , Sm〉 of seeds, it is enough
to use m-times an algorithm that, for disjoint non-empty sets
S,T ⊂ C, with μC(S,T ) < 1, returns the object PS,T . In the
experimental section we examine two versions of such an
algorithm: RFC-standard and RFC-IFT. Each version fol-
lows the same simple procedure, as displayed. They differ
only in a routine that, given a non-empty set S ⊂ C, returns
μC(·, S). So, their outputs are identical.

Algorithm RFC (-standard or -IFT)
Input: Affinity function defined on a graph G = 〈C,E〉

and non-empty disjoint sets S,T ⊂ C.
Output: The RFC object

PS,T = {c ∈ C:μC(c,S) > μC(c,T )}.
begin

1. calculate μC(·, S) and μC(·, T )

(running appropriate subroutine twice, once for S

and once for T );
2. return PS,T = {c ∈ C:μC(c,S) > μC(c,T )};

end

The RFC-standard algorithm calculates function μC(·, S)

using the routine κFOEMS [45] (not presented in this pa-
per) that runs in time of order O(|C|2), (or, more precisely,
O(
2|C|2)), where |C| is the size of the image domain C

and 
 is the degree of the graph (i.e., the largest number of
vertices that can be adjacent to a single vertex; e.g., 
 = 6
for the 6-adjacency).

Thus, since line 2 of RFC runs in time O(|C|), the RFC-
standard algorithm stops in time of order O(|C|2).
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The RFC-IFT algorithm calculates function μC(·,W) us-
ing the GCmax routine described in the next section, which
takes as an input a non-empty set W ⊂ C and returns,
in O(M) time (which is smaller than O(|C|2), see Theo-
rem 4.6), the function μC(·,W). Clearly, RFC-IFT runs in
O(M) time, since so does GCmax.

4.3 Iterative RFC and the Algorithm

The RFC segmentation P = {PSi,Ti
: i = 1, . . . ,m} of a

graph G, associated with a sequence S = 〈S1, . . . , Sm〉 of
seeds, can still leave quite a sizable “leftover” background
set B = BP of all spels c outside any of the objects wherein
the strengths of connectedness are equal with respect to the
seeds. The goal of the iterative relative fuzzy connectedness
segmentation, IRFC, is to find a way to naturally redistribute
some of the spels from BP among the object regions in a
new generation (iteration) of segmentation. There are two
FC delineation approaches that lead to the IRFC objects:
the standard, bottom-up approach, in which the RFC object
PSi,Ti

is expanded to the “maximal” IRFC object P ∞
Si ,Ti

; and

the IFT top-down approach, in which the IRFC object P IFT
Si ,Ti

is chosen as the minimal among all Si -indicated objects that
result from different IFT S -indicated segmentations. In this
section we describe briefly both of these approaches and
prove that indeed the objects P ∞

Si ,Ti
and P IFT

Si ,Ti
are identical.

In addition, we show that this common object can be viewed
as a result of the energy ε = εmax minimization, that is, it
satisfies an analog of Theorem 4.3.

Historically, the first IRFC approach was bottom-up [19,
40], so we start with it. The idea is to treat the RFC de-
lineated objects PSi,Ti

as the first iteration P 1
Si ,Ti

approx-
imation of the final segmentation, while the next step it-
eration is designed to redistribute some of the background
spels c ∈ BP , for which μC(c,Si) = μC(c,Ti) for some i.
Such a tie can be resolved if the strongest paths justifying
μC(c,Si) and μC(c,Ti) cannot pass through the spels al-
ready assigned to another object. In other words, we like
to add spels from the set P ∗ = {c ∈ B:μB∪PSi ,Ti (c, Si) >

μ
B∪PSj ,Ti (c, Sj ) for every j �= i}, to a new generation P 2

Si ,Ti

of P 1
Si ,Ti

, that is, define P 2
Si ,Ti

as P 1
Si ,Ti

∪ P ∗. This formula
can be taken as a definition. However, from the algorithmic
point of view, it is more convenient to define P 2

Si ,Ti
as

P 2
Si ,Ti

= P 1
Si ,Ti

∪ {
c ∈ C \ P 1

Si ,Ti
:μC(c,Si) > μ

C\P 1
Si ,Ti (c, Ti)

}
,

while the equation P 2
Si ,Ti

= P 1
Si ,Ti

∪ P ∗ always holds, as
proved in [19, Thm. 3.7]. Thus, the IRFC object is defined
as P ∞

Si ,Ti
= ⋃∞

k=1 P k
Si ,Ti

, where sets P k
Si ,Ti

are defined recur-

sively by the formulas P 1
Si ,Ti

= PSi,Ti
and

P k+1
Si ,Ti

= P k
Si ,Ti

∪ {
c ∈ C \ P k

Si ,Ti
:μC(c,Si) > μ

C\Pk
Si ,Ti (c, Ti)

}
.

(12)

Notice that formula (12) holds also for k = 0, where we de-
fine P 0

Si ,Ti
as the empty set ∅.

The IRFC segmentation associated with the sequence
S of seeds is defined as the collection P I

S = {P ∞
Si ,Ti

: i =
1, . . . ,m}. Its members are still disjoint, as proved in [19].
More importantly, each IRFC object P ∞

Si ,Ti
has the same en-

ergy value as its RFC counterpart PSi,Ti
:

Theorem 4.4 Assume that θ = μC(S,T ) < 1. Then P ∞
S,T

minimizes energy ε = εmax on P (S,T ), i.e., P ∞
S,T ∈ Pθ (S,T )

def= {P ∈ P (S,T ): ε(P ) ≤ θ}.

Proof Clearly P ∞
S,T ∈ P (S,T ). In Theorem 4.3 we proved

that the number θ = μC(S,T ) constitutes the minimal
energy ε in P (S,T ). Thus, it is enough to show that
ε(P ∞

S,T ) ≥ θ . For this, take an adjacent pair 〈c, d〉 of spels
such that c ∈ P ∞

S,T while d /∈ P ∞
S,T . We need to show that

κ(c, d) ≤ θ .
By way of contradiction, assume that κ(c, d) > θ and let

i be the such that c ∈ P i
S,T \ P i−1

S,T . (Recall that P 0
S,T = ∅.)

We will show that this implies d ∈ P i+1
S,T , contradicting d /∈

P ∞
S,T .

Indeed, c ∈ P i
S,T \ P i−1

S,T implies that μC(c,S) >

μ
C\P i

S,T (c, T ). We will show that μC(d,S) > μ
C\P i+1

S,T (d, T ).

First notice that κ(c, d) > μ
C\P i

S,T (c, T ), since other-

wise we would have μC(c,S) > μ
C\P i

S,T (c, T ) ≥ κ(c, d) >

μ(S,T ), leading to a path from S to T (via spel c) of
strength κ(c, d) > μ(S,T ), contradicting the definition
of μ(S,T ). Then μC(d,S) ≥ min{μC(c,S), κ(c, d)} >

μ
C\P i

S,T (c, T ). Finally, notice that μ
C\P i

S,T (c, T ) ≥
μ

C\P i
S,T (d, T ), since otherwise a strongest path in C \ P i

S,T

from T to d extended to the spel c would have the strength

min{μC\P i
S,T (d, T ), κ(c, d)} > μ

C\P i
S,T (c, T ), contradicting

the definition of number μ
C\P i

S,T (d, T ). Thus, μC(d,S) >

μ
C\P i

S,T (c, T ) ≥ μ
C\P i

S,T (d, T ), leading to the promised
contradiction d ∈ P i+1

S,T . �

Next, we will describe the IFT, top-down approach,
which was originally developed in [29]. In this subsection,
we will use a definition of a forest for a graph G = 〈C,E〉
which is equivalent to that from Sect. 3.3, but is more conve-
nient for constructing IFT. Thus, for a graph G = 〈C,E〉 and
a non-empty set W ⊂ C, a forest rooted at W will be under-
stood here as any family F of paths initiating from W such
that: (1) for every spel c ∈ C there is at most one path pc in
F which terminates at c; (2) for every path p = 〈c1, . . . , ck〉
in F, every initial segment of p (i.e., a path 〈c1, . . . , cj 〉
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with j = 1, . . . , k) also belongs to F. A forest F rooted at
W is spanning provided every c ∈ C belongs to a path in
F. A spanning forest F (rooted at W ) is often (e.g. [25,
29]) identified with its predecessor map PrF:C → C ∪ {nil}
defined as follows: if pc = 〈c1, . . . , ck〉 ∈ F is the unique
path with ck = c, then PrF(c) = nil provided k = 1 and
PrF(c) = ck−1 whenever k > 1. The forest F can be easily
recovered from the predecessor function PrF, so the objects
F and PrF are often identified with each other.

Any spanning forest F for G rooted at W induces also

its root function RF from C onto SF

def= {c ∈ C: PrF(c) =
nil} = W defined for any c ∈ C as RF(c) = c1, where
pc = 〈c1, . . . , ck〉 is the unique path in F which termi-
nates at c (i.e., with ck = c). For an S ⊂ C we also define
P(S,F) as the set of all c ∈ C with RF(c) ∈ S. In par-
ticular, if S = 〈Si : i = 1, . . . ,m〉 is a sequence of pairwise
disjoint non-empty sets of seeds in G, and F is a span-
ning forest on G for which SF = ⋃m

i=1 Si , then the family
PF,S = {P(Si,F): i = 1, . . . ,m} is a partition of C to which
we refer as the segmentation indicated by F and S . Notice
that Si ⊂ P(Si,F) for every P(Si,F) ∈ PF,S .

For a fixed non-empty S ⊂ C, we say that a path p =
〈c1, . . . , ck〉 is optimal (with respect to S and a path cost
function μ) provided that c1 ∈ S and μ(p) = μC(ck, S).
A spanning forest F (rooted at SF) is an optimum path for-
est, OPF, (with respect to a path cost function μ) provided
every path in F is optimal with respect to SF. Following [25]
(compare also [29]), we say that any partition PF,S of C for
which F is optimal is an IFT segmentation by Seed Competi-
tion, IFT-SC. Such partitions PF,S are closely related to the
IRFC partition P I

S = {P ∞
Si ,Ti

: i = 1, . . . ,m}, as recognized in
[25]. However, the segmentations PF,S are, in general, not
unique and, usually, not equal to P I

S , since P I
S is usually

not a partition of C (i.e., there may be spels in C that belong
to no P ∞

Si ,Ti
). In addition, not all segmentations PF,S must

minimize the energy function ε. Therefore, we need to mod-
ify slightly the IFT-SC approach to make the objects P IFT

Si ,Ti

it generates equal to the IRFC objects P ∞
Si ,Ti

.
For a sequence S = 〈Si : i = 1, . . . ,m〉 of seeds in G,

i ∈ {1, . . . ,m}, and Ti = ⋃
j �=i Sj , we define P IFT

Si ,Ti
as the

smallest set in the family

P IRFC(Si, Ti) = {
P(Si,F): F is an OPF with respect to

SF = Si ∪ Ti

}
.

Of course, for this definition to be correct, it needs to be ar-
gued that the family P IRFC(Si, Ti) indeed has the smallest
element. This, and the fact that P IFT

Si ,Ti
= P ∞

Si ,Ti
, is proved in

Theorem 4.5.
The proof of Theorem 4.5 and the effective construc-

tion of objects P IFT
Si ,Ti

will be based on the following GCmax

algorithm, which is a version of Dijkstra’s procedure for
computing minimum-cost path from a single source in a

graph. GCmax also constitutes a modification of the algo-
rithm from [29] to the format that best suits our goals
here. Actually, GCmax is a relatively simple modification of
the Dijkstra’s procedure. In the classical Dijkstra’s proce-
dure, a spel d assignments (the value of an optimal path,
in our case h(d), and the root and predecessor pointers,
R(d) and Pr(d)) are updated only when the new value
h(d) of the optimal path is strictly better than the old one.
In GCmax, a spel d assignment is also updated, when the
optimal path value h(d) remains unchanged but the new
assigned root R(d) has strictly higher rank (i.e., higher
λ(R(d))-value) than the old root assignment. This addi-
tional updating strategy is insured by the preorder rela-
tion 〈h(c1), λ(R(c1))〉 � 〈h(c2), λ(R(c2))〉 used in GCmax.
The rank between all spels, including the set W of all
seeds (which, in application, equals either Si ∪ Ti or, in
the RFC algorithm, S ∪ T , where the roles of S and T

can be swapped), is indicated by function λ. The smallest
rank is assigned to S = Sλ, which ensures that the resulting
output object P IFT

S,T is the smallest member of the family

P IRFC(S,T ).
In the algorithm we will use a dictionary linear order

relation defined on a set R
2 as

〈r1, r2〉 � 〈s1, s2〉 if, and only if,

either r1 < s1 or both r1 = s1 and r2 ≤ s2.

We will write 〈r1, r2〉 ≺ 〈s1, s2〉 when 〈r1, r2〉 � 〈s1, s2〉 but
〈r1, r2〉 �= 〈s1, s2〉.

In GCmax we will use the following data structure Q,
ordered by � as indicated in the description of GCmax. Q

will hold at most |C| spels at any given time and it can be
defined as a simple priority queue, like binary heap, that
allows insertion and deletion of any element in O(ln |C|)
time [33]. However, in digital imaging practice, the set of
possible values of an affinity function κ is usually restricted
to a fixed set Z of a modest size, most frequently of the
form {i/D: i = 0,1, . . . ,D} for D of the order 212 = 4096.
With such, up-front given, information on the range Z of
κ , we can use a more efficient data structure, as described
below, to obtain a better estimate of the running time of
GCmax.

Notice, that the restriction on the form of the range Z of
κ can be insured either directly, by imposing that the values
for κ(c, d) are rounded to numbers from Z, or by assuming
that the values of the image intensity function f belong to
a fixed set Z0 (different from Z) and the value of κ(c, d) is
given as �(f (c), f (d)) for some function � (see e.g. (1)),
that is, when κ(c, d) depends only on the intensity values
at c and d . In this second case, the values of κ are in the
set Z = {�(z1, z2): z1, z2 ∈ Z0}, which has a fixed structure,
independent of the format of the image, and contains at most
|Z0|2 elements.
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Algorithm GCmax

Input: Affinity function κ with values in a set Z ⊂ [0,1]
and defined on a connected graph G = 〈C,E〉. A
non-empty set W ⊂ C of seeds. A priority labeling
map λ:C → {0,1} such that ∅ �= Sλ ⊆ W , where

Sλ
def= {c ∈ C:λ(c) = 0}.

Output: Function μC(·,W); an optimum path forest F,
with SF = W , indicated by its predecessor map
PrF; and the object P IFT

S,T = P(S,F), where S =
Sλ and T = W \ S.

Auxiliary
Data
Structures:

Functions: h:C → {−1} ∪ Z approximat-
ing μC(·,W), Pr:C → C∪{nil} eventually
becoming the predecessor map PrF, and
R:C → C eventually becoming the root
function RF. A priority queue Q (of size n)
for spels which are ordered such that: spel
c1 can precede spel c2 in Q (denoted c1 �
c2) if, and only if, 〈h(c1), λ(R(c1))〉 �
〈h(c2), λ(R(c2))〉 (see text for a descrip-
tion).

begin
1. initialize: h(c) = 1, R(c) = c, and Pr(c) = nil

for all c ∈ W ,
h(c) = −1, R(c) = c, and Pr(c) = c for all
c ∈ C not in W ;

2. insert every c ∈ C into Q according to the
priority �;

3. while Q is not empty do
4. remove from Q a �-maximal spel c;
5. for every spel d adjacent to c do
6. if 〈h(d),λ(R(d))〉 ≺

〈min{h(c), κ(c, d)}, λ(R(c))〉 then
7. set h(d) = min{h(c), κ(c, d)};
8. set R(d) = R(c) and Pr(d) = c;
9. remove temporarily d from Q;

10. push d to Q with the current val-
ues of h and R;

11. endif ;
12. endfor;
13. endwhile;
14. return h as μC(·,W), forest F indicated by

Pr = PrF, and
the object P(S,F) which, for
μC(S,T ) < 1, equals P IFT

S,T ;
end

In the (most important) case when the range of κ is re-
stricted to a set Z, we define Q as an array of buckets in-
dexed by Y = ({−1} ∪Z)×{0,1}, which is ordered accord-
ing to �. Each bucket, say with an index 〈z, �〉 ∈ Y , is rep-
resented by a pointer (possibly empty) to the first element
of a doubly linked list, DLL, of all spels with the current
label value of 〈z, �〉. Each DLL (of spels in a bucket) is rep-
resented by associating with every spel two pointers, ‘prev’
and ‘next,’ indicating, respectively, the previous and the next

spel in this bucket. These pointers can have null value, if no
previous (next) spel in the bucket exists. Notice that, these
pointers never point to spels in different buckets. In particu-
lar, the execution of lines 9 and 10 in GCmax can be done in
O(1) time. (The insertion of a spel into Q, line 10, in O(1)

time might be impossible, if the pointers between consec-
utive non-empty buckets are required as a structure of Q.)
The above described Q is described in more detail in [24,
Figs. 4 and 5].

Theorem 4.5 The output of GCmax is as indicated in the al-
gorithm. GCmax runs, the worst case scenario, in time of or-
der O(M), where M = |C| + |Z|. Alternatively, without the
explicit structure of Z, GCmax’s running time can be esti-
mated as O(|C| ln |C|). Moreover, if T �= ∅ and μC(S,T ) <

1, then

(i) P(S,F) = P ∞
S,T ;

(ii) P(S,F) is the smallest element of the family
P IRFC(S,T ) ⊂ P (S,T );

(iii) P(S,F) minimizes the energy ε on P (S,T ).

In particular, P(S,F) = P IFT
S,T = P ∞

S,T ;

Notice that, in essentially all practical applications, the
set Z is known and O(|Z| + |C|) coincides with O(|C|), in
which case, GCmax runs in a linear time with respect to the
image size.

The proof of Theorem 4.5 is presented in the next sub-
section.

According to Theorem 4.5(ii), the output P IFT
S,T of GCmax

is given by an OPF. The next theorem shows, in particular,
that it is also given by a maximal spanning forest, MSF. It
also relates the family Pθ (S,T ) of all εmax optimizing ob-
jects with the families FM(S,W) and F IRFC(S,W) of all
objects P(S,F) associated with MSF and OPF, respectively.

Theorem 4.6 Let G = 〈V,E,w〉 be a weighted graph,
S,T ⊂ V be non-empty disjoint sets of seeds and W =
S ∪ T . If μ(S,T ) < 1, then

P IFT
S,T ∈ FM(S,W) ⊂ F IRFC(S,W) ∩ Pθ (S,T ), (13)

where P IFT
S,T = P(S,F) is the object returned by GCmax. In

particular, the families FM(S,W) and F IRFC(S,W) share
the same minimal element, P IFT

S,T .

Notice, that the OPF F returned by GCmax need not be
MSF. (See Fig. 1.) However, by Theorem 4.6, there is always
an MSF F̂ for which P IFT

S,T = P(S,F) = P(S, F̂). Moreover,

if one is after MSF F̂ for which P(S, F̂) = P IFT
S,T , such an F̂

can still be found (in time O(M)) as follows: (1) Run GCmax

(which returns P IFT
S,T as P(S,F) for some OPF F, which

need not be an MSF). (2) Find an MSF F̂ with P(S, F̂) =
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Fig. 2 Weighted graph G, with
S = {s, t}

Fig. 3 The OPF F in (b)
indicates object
P (S,F) ∈ Pθ (S,T )\ FM(S,W)

P (S,F) using Kruskal’s algorithm, as indicated in the proof
of the theorem.

It was proved in [2, Proposition 8] that every MSF is also
an OPF. (The same result, proved independently, is also in-
cluded in [23, Theorem 21]. In both papers optimum path
spanning forests are referred to as shortest path forests.) This
justifies inclusion FM(S,W) ⊂ F IRFC(S,W). The proof or
the other parts of Theorem 4.6 is postponed to Appendix.

Next, we will provide several examples, in form of the
graphs shown on figures, indicating that little can be im-
proved in the statement of Theorem 4.6. In all figures forest
edges are indicated by thicker lines. Figure 2(b) shows that
the OPF F returned by GCmax (i.e., with P IFT

S,T = P(S,F))
need to be MSF. Thus, the additional work for finding MSF
F̂ (indicated on Fig. 2(c)) with P(S, F̂) = P(S,F) = P IFT

S,T

is essential.
An example of an object in F IRFC(S,W)∩ Pθ (S,T ) but

not in FM(S,W) is given in Fig. 3. So, inclusion in Theo-
rem 4.6 cannot be reversed.

Also, there is no inclusion between FO(S,W) and
Pθ (S,T ). An object in Pθ (S,T ) \ FO(S,W) can be cho-
sen as {s, d} for the graph from Fig. 1. The object indicated
in Fig. 1(b) belongs to FO(S,W) \ Pθ (S,T ), if the weight
of the middle edge is changed to .5.

We will finish this section, by relating the above results
to the minimizers of the energy εsum(P ) = ∑

e∈bd(P ) we ,
which are usually calculated via graph cut algorithm GCsum.
It is well known that the graph cut algorithms have the so
called shrinking problem: if the object is indicated only by
a small set of seeds, it is likely that the object minimized by
εsum will have a short boundary composed of edges with
high weights, even if there is another object with a long

boundary of edges with very small weight. In such a case,
the families of minimizers of εsum and εmax are disjoint, in-
dicating no relation between such minimizers.

Still an interesting question is: what happens if we know
that the objects minimizing εsum also minimize εmax? Is it
true, that an object P IFT

S,T returned by GCmax (so, minimiz-
ing εmax) minimizes also εsum? A negative answer to this
question is provided in Fig. 4.

Actually, the results presented in Fig. 4 remain the same,
if all weights in the graph are raised to some finite power p.
This shows that the limit, as p → ∞, of the εsum-minimizers
need not coincide with the output of GCmax, although, as we
proved in Theorem 5.3, the limit minimizes εmax.

4.4 Proof of Correctness of GCmax Algorithm

Proof of Theorem 4.5 Since initially Q contains n
def= |C|

spels and a spel can be removed from Q only during an ex-
ecution of line 4, the loop from lines 3–13 must be executed
at least n times. We will start our proof with showing, that it
will be executed exactly n times.

In the proof, we will use the following notation. For every
i = 0,1, . . . , n and c ∈ C let hi(c), Ri(c), Pri (c), and Qi

represent, respectively, the values of h(c), R(c), Pr(c), and
Q immediately after the ith execution of the loop 3–13 is
completed. (For i = 0, we mean the moment right after the
execution of line 2.) Also, to shorten the notation, we put

γi(d)
def= 〈hi(d), λ(Ri(d))〉. In addition, for i = 0, . . . , n−1,

let ci be the spel removed from Q = Qi during the (i + 1)st
execution of line 4.

Notice that, for every i = 0, . . . , n − 1 and d ∈ C, we
have
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Fig. 4 The object
P IFT

S,T = P (S,F) has
εsum-energy .2, while minimum
εsum-energy on P(S,T ) is .1,
for the object {s, c, d, g}

(A) either 〈hi+1(d),Ri+1(d)〉 = 〈hi(d),Ri(d)〉 or γi(d) ≺
γi+1(d) � γi(ci).

Indeed, 〈hi+1(d),Ri+1(d)〉 �= 〈hi(d),Ri(d)〉 means that we
execute lines 7 and 8 for this d . So, γi(c) = 〈hi(d), λ(Ri(d))〉
≺ 〈min{hi(ci), κ(ci, d)}, λ(Ri(ci))〉 holds, and, in lines
7–8, we put γi+1(c) = 〈min{hi(ci), κ(ci, d)}, λ(Ri(ci))〉.
Thus, γi(c) ≺ γi+1(c) = 〈min{hi(ci), κ(ci, d)}, λ(Ri(ci))〉
� γi(ci).

Property (A) implies, in particular, that

(A∗) γj (d) � γi(d) for every d ∈ C and 0 ≤ j ≤ i ≤ n.

Next, we prove the following property by induction on
i = 0, . . . , n.

(Bi ) Qi = C \ {cj : j < i} and γi(ci) � γi(cj ) for every
j ≤ i.

For i = 0, clearly (Bi ) is satisfied, since Q0 = C. So, assume
that (Bi ) is satisfied for some 0 ≤ i < n. We will show that
this implies (Bi+1).

To prove the first part, consider the (i + 1)st execu-
tion of the loop 3–13. Since i < n, Q = Qi is still not
empty at line 3, and, after the execution of line 4, we have
Q = C \ {cj : j < i + 1}. To prove that Qi+1 is indeed equal
to this Q, we need to notice only that any d for which lines
7–10 are executed belongs already to Q. But if lines 7–10
are executed for d , then γi+1(d) �= γi(d). Therefore, by (A),
γi(d) ≺ γi(ci). But, by the second part of the inductive as-
sumption (Bi ), this inequality is false for any d ∈ {cj : j ≤ i}.
Thus, indeed d ∈ C \ {cj : j < i + 1}.

To prove the second part of (Bi+1), take a j ≤ i + 1. We
need to show that γi+1(ci+1) � γi+1(cj ). Clearly, this is true
for j = i + 1. So, assume that j ≤ i. We already proved that
Qi+1 = C \{cj : j < i +1}, which, by (Bi ), is a subset of Qi .
So, ci+1 ∈ Qi+1 ⊂ Qi . Since ci is a �-maximal element of
Qi , we have γi(ci+1) � γi(ci). So, by (A) used with d =
ci+1, we have

γi+1(ci+1) � γi(ci). (14)

In addition, by (Bi ), we have γi(ci) � γi(cj ). In particular,
γi(cj ) ≺ γi(ci) is false, and, by (A) used with d = cj , we
have γi(cj ) = γi+1(cj ). Combining this with (14), we con-
clude γi+1(ci+1) � γi+1(cj ), as needed.

Notice also that

(C) 〈hn(ci),Rn(ci)〉 = 〈hi(ci),Ri(ci)〉 for every i < n.

Indeed, to prove (C) it is enough to show that, for every i ≤
j < n, we have 〈hj (ci),Rj (ci)〉 = 〈hj+1(ci),Rj+1(ci)〉.
But this is true, since property (Bj ) implies that γj (cj ) �
γj (ci), so γj (ci) ≺ γj (cj ) is false. Therefore, 〈hj+1(ci),

Rj+1(ci)〉 = 〈hj (ci),Rj (ci)〉 follows from (A) used with j

in place of i and d = ci .
Now, we are in a position to prove our running time es-

timate for GCmax. By (Bi ), for every i < n we have ci ∈
Qi = C \ {cj : j < i}. In particular, ci �= cj for all j < i < n.
Therefore, Qn is empty, that is, the loop 3–13 is executed
precisely n times.

The time estimate O(|C| + |Z|) is obtained by noticing
that lines 1–2 are executed in this time, while the execution
of lines 5–10 is done in O(1) time. Thus, putting aside the
execution of line 4, the loop is executed in n ·O(1) = O(|C|)
time. Therefore, the final estimate is obtained by noticing
that during the entire algorithm run, the execution of line 4
requires at most |Y | + n (i.e., O(|C| + |Z|)) operations. In-
deed, although the structure of Q does not keep track of its
top element (we do this only for individual buckets, but not
globally), we assume that a pointer to the last non-empty
bucket we considered is maintained. If this bucket is non-
empty, we simply remove its top element; this kind of oper-
ation is executed precisely n-times. If, on the other hand, the
pointed bucket is empty, we consecutively move the pointer
to the next bucket, until we find a non-empty one; since the
pointer moves only in one direction along the list of length
|Y | (i.e., O(|Z|)), this operation can be executed at most |Y |
many times.

The time estimate O(|C| ln |C|) (with a different struc-
ture of Q) follows by noting that lines 1–2 are executed in
O(|C| ln |C|) time and the loop is executed n-times, each of
its execution requiring O(lnn) operations. (Note, that in this
case, we keep a global pointer to the top element of Q, so
the execution of line 4 always requires just one operation.)

To argue that GCmax indeed returns an optimum path
forest, let IRFC* represent the modification of GCmax in
which we replace an input function λ with a constant 0
mapping—this effectively reduces the dictionary order �
on C to the standard order given by the function h, that
is, 〈h(c1), λ(R(c1))〉 � 〈h(c2), λ(R(c2))〉 becomes equiva-
lent to h(c1) ≤ h(c2). The resulting algorithm IRFC* is
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precisely7 the algorithm from [25]. So, as proved in [25],
IRFC* returns an optimum path forest. However, if A =
〈〈hi(c),Ri(c),Pri (c)〉: c ∈ C & i ≤ n〉 constitutes a descrip-
tion of an execution of our algorithm GCmax, then it is also
one possible execution of the algorithm IRFC*. It particular,
F associated with A is indeed an OPF.

Next, we will prove (i)–(iii). Clearly P IRFC(S,T ) ⊂
P (S,T ), as for every spanning forest F̂ with S

F̂
= W , the as-

sociated set P(S, F̂) contains S and is disjoint with T . Since
P IFT

S,T ∈ P IRFC(S,T ), to prove (i) and the rest of (ii), it is
enough to show the following two facts.

(a) P ∞
S,T ⊂ P(S, F̂) for every OPF F̂ with S

F̂
= W .

(b) P(S,F) ⊂ P ∞
S,T .

To show (a), fix an OPF F̂ with S
F̂

= W and, by way of

contradiction, assume that P ∞
S,T �⊂ P(S, F̂).

Let k ≥ 0 be the smallest number such that P k+1
S,T �⊂

P(S, F̂) and let c ∈ P k+1
S,T \ P k

S,T . We will show that c ∈
P(S, F̂), contradicting the choice of k. Since c ∈ P k+1

S,T \
P k

S,T , we have μC(c,S) > μ
C\Pk

S,T (c, T ). Take a pc =
〈c1, . . . , cm〉 ∈ F̂ with cm = c and notice that c1 ∈ S. In-
deed, otherwise c1 ∈ T and the path pc is disjoint with
P(S, F̂). Since, by minimality of k, we have P k

S,T ⊂
P(S, F̂), the path pc is also disjoint with P k

S,T . Hence,

μ(pc) ≤ μ
C\Pk

S,T (c, T ) < μC(c,S) ≤ μC(c,W), contra-
dicting optimality of pc. So, c1 ∈ S and indeed c ∈ P(S, F̂),
completing the proof for (a).

To prove (b), we need to show P(S,F) ⊂ P ∞
S,T , where F

is an OPF returned by GCmax. Pick i ≥ 1 with P(S,F) ∩
P i

S,T = P(S,F) ∩ P ∞
S,T and, by way of contradiction, as-

sume that the set P(S,F) \ P ∞
S,T = P(S,F) \ P i

S,T is non-
empty. Notice that

μ
C\P i

S,T (d, T ) ≥ μC(d,S) = μC(d,W)

for any d ∈ P(S,F) \ P i
S,T . (15)

Indeed, μC(d,S) = μC(d,W) = θ is implied by d ∈
P(S,F). The inequality follows from d /∈ P ∞

S,T , since any

d with μ
C\P i

S,T (d, T ) < μC(d,S) belongs to P i+1
S,T ⊂ P ∞

S,T .
Let θ be a maximal number for which there exists a d ∈

P(S,F) \ P i
S,T with μC(d,S) = μC(d,W) equal to θ . For

this θ , there exists a k for which the following condition
holds.

(Pk) There is a path p = 〈d1, . . . , dk〉 in C \ P i
S,T from

T to d ∈ P(S,F) \ P i
S,T with μ(p) ≥ μ

C\P i
S,T (d, T ) ≥

μC(d,S) ≥ θ .

7Modulo changes of notation and of order of optimization.

Let k be a minimal number for which (Pk) holds and fix
p = 〈d1, . . . , dk〉 and d = dk satisfying (Pk).

Notice, that k > 1, since otherwise d = dk = d1 ∈ T , con-
tradicting d ∈ P(S,F). Let c = dk−1 and notice that

c ∈ P(T ,F). (16)

To see this, by way of contradiction, assume that c be-
longs to P(S,F). Then we have c ∈ P(S,F) \ P i

S,T , as

c = dk−1 /∈ P i
S,T . Therefore, by (15), μ

C\P i
S,T (c, T ) ≥

μC(c,S) = μC(c,W). Also, maximality of θ implies that
μC(c,W) ≤ θ . So,

μC(c,W) ≥ μ
C\P i

S,T (c, T ) ≥ μ
(〈d1, . . . , dk−1〉

)
≥ θ ≥ μC(c,W) = μC(c,S).

Thus, p̂ = 〈d1, . . . , dk−1〉 is a path in C \P i
S,T from T to c ∈

P(S,F) \ P i
S,T with μ(p̂) = μ

C\P i
S,T (c, T ) = μC(c,S) = θ ,

contradicting minimality of k. So, (16) has been proved.
Next, notice that θ ≤ μ(p) ≤ μ(〈d1, . . . , dk−1〉) ≤

μC(c,W) = hn(c) and θ ≤ μ(p) ≤ κ(ck−1, ck) = κ(c, d).
Since, by (16), λ(Rn(d)) > 0, this implies that 〈θ,1〉 �
〈min{hn(c), κ(c, d)}, λ(Rn(c))〉.

Let c = ci . Then, by (C), 〈hn(c),Rn(c)〉 = 〈hi(c),Ri(c)〉,
so

〈θ,1〉 � 〈
min

{
hi(c), κ(c, d)

}
, λ

(
Ri(c)

)〉
.

Look at the (i+1)st execution of the loop 3–13. Then, c = ci

and d will satisfy the condition from line 5, so spel d will
enter the execution of lines 6–11. This leads to

〈θ,1〉 � 〈
hi+1(d), λ

(
Ri+1(d)

)〉
. (17)

Indeed, if 〈θ,1〉 � 〈hi(d), λ(Ri(d))〉, then 〈hi+1(d),

Ri+1(d)〉 = 〈hi(d),Ri(d)〉 and (17) holds. Otherwise, lines
5–10 are executed, resulting with

〈θ,1〉 � 〈
min

{
hi(c), κ(c, d)

}
, λ

(
Ri(c)

)〉
= 〈

hi+1(d), λ
(
Ri+1(d)

)〉
,

finishing the argument for (17).
But (17) and (A∗) imply that

〈θ,1〉 � 〈
hi+1(d), λ

(
Ri+1(d)

)〉
� 〈

hn(d), λ
(
Rn(d)

)〉 = 〈
θ,λ

(
Rn(d)

)〉
.

This is a desired contradiction, since this implies that
λ(R(d)) > 0, so that R(d) /∈ S, contradicting d ∈ P(S,F).
This completes the argument for (b).

The remaining condition (iii) follows from (i) and The-
orem 4.4. Alternatively, it can be concluded from Theo-
rem 4.6. �
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5 FC Versus GCsum Algorithms

The term GC algorithm will be used here in the standard
way, that is, for any GCsum algorithm minimizing energy
functions εsum. Nevertheless, perhaps in a more general
sense, the term may be used to refer to either εsum-GC or
εmax-GC energy optimizing algorithm.

For the GCsum algorithms, a graph GI = 〈V,E,w〉 as-
sociated with the image I = 〈C,f 〉 is usually a slight mod-
ification of the graph G = 〈C,α,κ〉 (with V = C, α = E

the adjacency relation, and κ = w the affinity/weight func-
tion) defined in Sect. 2. Specifically, the set of vertices V is
usually defined as C ∪ {s, t}; that is, the standard set C of
image spels considered as vertices is expanded by two new
additional vertices s and t called terminals. Individually, s

is referred to as source and t as sink. The set of edges is
defined as

E = α ∪ {〈b, d〉: one of b, d is in C, the other in {s, t}}.
In other words, the edges between vertices in C remains as
in G, while we connect each terminal vertex to each c ∈ C.

The simplest way to think about the terminals is that they
serve as the seed indicators: s for seeds S ⊂ C indicating
the object; t for seeds T ⊂ C indicating the background.
The indication works as follows. For each edge connecting
a terminal r ∈ {s, t} with a c ∈ C, associate the weight: ∞ if
either r = s and c ∈ S, or r = t and c ∈ T ; and 0 otherwise.
This means, that the source s has infinitely strong connec-
tion to any seed c in S, and the weakest possible to any other
spel c ∈ C. Similarly, for the sink t and seeds c from T .

Now, assume that for every edge 〈c, d〉 ∈ α we give a
weight κ(c, d) associated with the image I = 〈C,f 〉. Since
the algorithm for delineating the FC object uses only the
information on the associated graph (which includes the
weights given by the affinity κ), we can delineate RFC ob-
ject P ∗{s},{t} ⊂ V associated with this new graph GI . It is
easy to see that the RFC object PS,T ⊂ C associated with I

is equal to P ∗{s},{t} ∩ C. Similarly, for θ < 1, if P ∗
sθ ⊂ V is

an AFC object associated with the graph GI , then the AFC
object PSθ ⊂ C associated with I is equal to P ∗

Sθ ∩C. All of
this proves that, from the FC framework point of view, the
matter of replacing the graph G = 〈C,α,κ〉 with GI is only
technical in nature and results in no delineation differences.

Historically, the rationale for using in GC framework’s
graphs GI , with distinctive terminals, is algorithmic in na-
ture. More precisely, for a weighted graph G = 〈V,E,w〉
with positive weights and two distinct vertices s and t in-
dicated in it, there is an algorithm returning the small-
est set PG in Pmin = {P ∈ P (s, t): εsum(P ) = ε0}, where
P (s, t) = {P ⊂ V \ {t}: s ∈ P }, ε0 = min{εsum(P ):P ∈
P (s, t)}, εsum(P ) = ∑

e∈bd(P ) w(e), and w(e) is the weight
of the edge e in the graph.

Now, let GI = 〈C ∪ {s, t},E,w〉 be the graph associated
with an image I as described above; that is, the weights of

edges between spels from C are obtained from the image
I (in a manner similar to the affinity numbers) and weights
between the other edges by seed sets S and T indicating
foreground and background. In this setting we can restate the
above comments in a format similar to that of Theorems 4.3
and 4.4:

Theorem 5.1 The GC object P �
S,T = C ∩ PGI minimizes

the energy εsum on P (S,T ), and P �
S,T is the smallest set in

P (S,T ) with this energy.

5.1 GC vs FC Algorithms: Theoretical Comparison

In spite of similarities between the GC and RFC methodolo-
gies as indicated above, there are also considerable differ-
ences between them. One of the most important differences
is sensitivity to the choice of seeds. From this point of view,
the FC algorithms behave very nicely: the FC delineation
results do not change if the seeds S indicating an object are
replaced by another set U of seeds within the same segmen-
tation.

Theorem 5.2 (Robustness) Let I = 〈C,f 〉 be a digital im-
age.

AFC: For every s ∈ C and θ < 1, if Psθ is an associated
AFC object, then PUθ = Psθ for every U ⊂ Psθ . More
generally, if S ⊂ C and U ⊂ PSθ is such that U ∩
Psθ �= ∅ for every s ∈ S, then PUθ = PSθ .

RFC: Let P = {PSi,Ti
: i = 1, . . . ,m} be an RFC segmenta-

tion associated with a sequence S = 〈S1, . . . , Sm〉 of
seeds. For every i and s ∈ Si let g(s) be in P{s},Ti

and let S′
i = {g(s): s ∈ Si}. Then, for every i, if T ′

i =
(
⋃m

j=1 S′
j ) \ S′

i , then PSi,Ti
= PS′

i ,T
′
i
.

In other words, if each seed s present in S is shifted to
a new position g(s) ∈ P{s},Ti

, then the RFC segmenta-
tion {PS′

i ,T
′
i
: i = 1, . . . ,m} for the modified sequence

of seeds is identical to the original one P .

The IRFC segmentations (returned by either GCmax or
old fashioned IRFC algorithm) are robust similarly as RFC
outputs: if in the above RFC formulation, the seed choice
is restricted to the first iteration approximations P 1

Si ,Ti
of

P ∞
Si ,Ti

, then seed modification does not affect IRFC segmen-
tation results.

The proof of Theorem 5.2 follows easily from the graph
interpretation of FC objects. The proof based only on the
topological description of the FC segmentations can be
found in [19, 39].

Below we list several theoretical advantages of the FC
framework over the GC εsum-minimization algorithms:

Speed: The FC algorithms run faster than those for GC. The
theoretical estimation of the worst case run time of the two
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main FC algorithms, RFC-IFT and GCmax, is O(|C|+ |Z|)
(or O(|C| ln |C|)) with respect to the scene size |C| (see
Sect. 4), while the best theoretical run time for delineating
P �

S,T is of order O(|C|3) (for the best known algorithms)

or O(|C|2.5) (for the fastest currently known), see [8]. The
experimental comparisons of the running time also confirm
that FC algorithms run faster as theoretically predicted.
(See Sect. 5.2, Fig. 5.)

Robustness: The outcome of FC algorithms is unaffected
by reasonable (within the objects) changes of the position
of seeds, Theorem 5.2. On the other hand, the results of GC
delineation may become sensitive for even small perturba-
tions of the seeds. See Sect. 5.2, Figs. 5 and 6.

Multiple objects: The FC framework handles easily the
segmentation of multiple objects, retaining its running time
and robustness property from the single object case. (See
Sect. 4.) In the multiple object setting, GC leads to an NP-
hard problem (see [10]); so all existing algorithms for per-
forming the required precise delineation run in exponential
time, rendering them impractical. (However, there are al-
gorithms that render approximate solutions for such GC
problems in a practical time [10].)

GC shrinking problem: The GC algorithms have a ten-
dency of choosing the objects with a very small size of the
boundary, even if the weights of the boundary edges are
very high. (See e.g. [5, 43]. Compare also Sect. 5.2, Figs. 5
and 6.) This may easily lead to the segmented object be-
ing very close to either the foreground seed set S, or to the
background seed set T . Therefore, unless sets S and T are
already good approximations for the desired delineation,
the object returned by GC may be far from desirable. This
problem has been addressed by many authors, via modi-
fication of the GC method. The best known among these
modifications is the method of normalized cuts (see [43]),
in which the energy εsum is replaced by another “normal-
ized” measure of energy cost. However, finding the result-
ing delineation minimizing this new energy measure is NP-
hard as well (see [43]), and so only approximate solutions
can be found in practical time. Notice that neither RFC nor
the IRFC (so GCmax) method has any shrinking problem.

Iterative approach: The FC framework allows an iterative
refinement of its connectivity measure μA (leading to the
iterative relative FC), which in turn makes it possible to
redefine ε as we go along. From the viewpoint of algorithm
design, this is a powerful strategy. No such methods exist
for GC at present.

All this said, it should be noted that GC also has some
nice properties that FC does not possess. First notice that the
shrinking problem is the result of favoring shorter bound-
aries over the longer; that is, GC has a smoothing effect on
the boundaries. This, in several (but not all) cases of med-
ically important image delineations, is perhaps a desirable
feature. There is no boundary smoothing factor built into the

FC basic framework, and, if desirable, boundary smoothing
must be done at the FC post processing stage.

Another nice feature of GC graph representation GI of
an image I is that it allows effortless amalgamation of im-
age homogeneity information (via weights of regular edges)
with expected object intensity information (via weights of
edges to terminal vertices). Similar amalgamation is diffi-
cult to achieve in the FC framework, since the εmax energy
chooses just one of these two types of information.

Next, notice that an FC delineation, output of GCmax,
can be considered as a limiting case of the GC delin-
eations, outputs of GCsum. For this, first notice that the
optimization problem for the energy function εq(P ) =
q

√∑
〈c,d〉∈bd(P )[w(c, d)]q coincides with the optimization

problem for the energy [εq(P )]q = ∑
〈c,d〉∈bd(P )[w(c, d)]q ,

which constitutes the energy εsum = ε1 for the weight func-
tion wq . In particular, the FC optimizing energy εmax is a
limit of the GC optimizing energies εsum for the modified
weight function wq . The next theorem says more: that for q

large enough, the GC optimizing delineations for εsum used
with the weigh function wq become FC optimizing delin-
eation for the weight function w.

In the theorem, we will use the following notation,
where we assume that the graph G = 〈C,α,κ〉 and dis-
joint non-empty sets S,T ⊂ C are fixed: Pmax(S,T ) =
{P ∈ P (S,T ): εmax(P ) = θmin} is the set of all delineations
minimizing the energy εmax; P̂max(S,T ) is the set of all
P̂ ∈ P (S,T ) such that |P̂η| ≤ |Pη| for any P ∈ P (S,T ) and
η ∈ R, where Pη = {e ∈ bd(P ):w(e) ≥ η};8 for every q ∈
[1,∞), P q(S,T ) is the family of all P ∈ Pmax(S,T ) min-
imizers for the energy [εq ]q(P ) = ∑

〈c,d〉∈bd(P )[w(c, d)]q ;

and P IFT
S,T (κ) and P �

S,T (κ) are the GCmax and GCsum ob-
jects, respectively, determined by the set of seeds S and T ,
while using the same affinity/cost function w = κ .

In [29] it was proved that, under some assumptions, the
objects P IFT

S,T (κq) and P �
S,T (κq) converge to the same set,

as q goes to ∞. Notice also that, by [15, Theorems 3 and 5],
P IFT

S,T (κq) = P IFT
S,T (κ) for every q > 0, since function xq is

increasing.

Theorem 5.3 Let G = 〈C,α,κ〉 and S,T ⊂ C be such that
θ = μC(S,T ) < 1 and let

q0 = logδ N,

where δ = min{q > 1:q = η/θ̂ for positive η, θ̂ ∈ Z},
(18)

8 P̂max(S,T ) is the family of all P ∈ Pmax(S,T ) minimizing the energy
εlex , where εlex(P ) is a function from R to {0,1, . . .}, with εlex(η) =
|Pη|, and the range of εlex is ordered by the lexicographical order ≤lex ,
that is, f <lex g provided f (m) < g(m), where m = max{η:f (η) �=
g(η)}.
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N is the size of α, and Z is the range of κ , i.e., Z =
{κ(c, d): 〈c, d〉 ∈ α}. Then

P q(S,T ) = P̂max(S,T ) ⊂ Pmax(S,T )

for every q > q0. In particular, P �
S,T (κq) belongs to

Pmax(S,T ) for every q > q0 and, if Pmax(S,T ) has only
one element, then P �

S,T (κq) = P IFT
S,T (κ).

Proof Theorem 4.3 implies that θ = θmin = min{εmax(P ):P
∈ P (S,T )}.

To see that P̂max(S,T ) ⊂ Pmax(S,T ) take objects P̂ ∈
P̂max(S,T ) and P ∈ Pmax(S,T ). Then, for η > θ , |P̂η| ≤
|Pη| = 0 (as εmax(P ) = θ ). Therefore, εmax(P̂ ) ≤ θ and so,
P̂ ∈ Pmax(S,T ).

To see that P q(S,T ) ⊂ P̂(S,T ) take a P̂ ∈ P q(S,T )

and an arbitrary P ∈ P (S,T ). We need to show that, for
arbitrary η, |P̂η| ≤ |Pη|. By way of contradiction, assume
that this is not the case and let η be the largest number with
|P̂η| > |Pη|. Then[
εq

]q
(P̂ ) ≥

∑
e∈P̂η

[
w(e)

]q ≥
∑
e∈Pη

[
w(e)

]q + ηq

>
∑

e∈bd(P )

[
w(e)

]q = [
εq

]q
(P ),

since ηq > Nθ̂q ≥ ∑
e∈bd(P )\Pη

[w(e)]q , where θ̂ is the
largest θ ∈ Z with θ < η. (The first inequality follows
from the choice of q0, since N = δq0 < (η/θ̂)q .) However,
[εq ]q(P̂ ) > [εq ]q(P ) contradicts P̂ ∈ P q(S,T ).

To see that P̂(S,T ) ⊂ P q(S,T ), take a P̂ ∈ P q(S,T )

and an arbitrary P ∈ P (S,T ). We need to show that
[εq ]q(P̂ ) ≤ [εq ]q(P ). Using the fact that |P̂η| ≤ |Pη| for
every η, an easy recursion in decreasing order over η ∈ Z

shows that
∑

e∈P̂η
[w(e)]q ≤ ∑

e∈Pη
[w(e)]q for every η. In

particular, [εq ]q(P̂ ) = ∑
e∈P̂0

[w(e)]q ≤ ∑
e∈P̂0

[w(e)]q =
[εq ]q(P ).

The last comment follows from the fact that P IFT
S,T (κ) ∈

Pmax(S,T ), proved in Theorem 4.5. �

Notice that, in general, the families P̂max(S,T ) and
Pmax(S,T ) need not be equal. If P̂max(S,T ) � Pmax(S,T ),
then the optimization problem MP(εq) for q > q0 in place
of MP(εmax) may reduce the number of ties, that is, the min-
imizing family Pmax(S,T ) to P̂max(S,T ). The natural algo-
rithm for solving MP(εq) is that of the classical graph cut,
which is computationally expensive (as indicated above).

5.2 GC vs FC Algorithms: Experimental Comparison

In this section, we describe the experiments that were
designed to verify and demonstrate the main differences
between FC and GC delineation algorithms discussed in

Sect. 5.1: speed and robustness of FC versus GC and the
GC shrinking problem.

We compared four algorithms: GCsum using the min-
cut/max-flow algorithm [9]; RFC algorithm, standard “old-
fashioned” implementation [45]; RFC-IFT, implemented by
using the IFT approach, as indicated in Sect. 4.2; GCmax—
IRFC-IFT algorithm—which iteratively refines the choice of
output among all energy minimizers from P (S,T ), [19, 29].
The last two algorithms are described in detail in Sect. 4.

Simulated MR image phantom data from the BrainWeb
repository [12] pertaining to 20 different normal patient
anatomies were utilized for our evaluation. We used the
T1 data sets, since separation of white matter (WM) and
grey matter (GM) tissue regions is less challenging in these
images than in images of other protocols such as T2 or
PD. The parameters for the simulated T1 acquisition were
as follows: spoiled FLASH sequence with TR = 22 ms
and TE = 9.2 ms, flip angle = 30◦, voxel size = 1 × 1 ×
1 mm3, noise = 3 %, and background non-uniformity =
20 %. In these simulated data sets, true segmentations are
known, since the simulations were done starting with known
anatomy. In the experiments we used a PC with an AMD
Athlon 64 X2 Dual-Core Processor TK-57, 1.9 GHz, 2 ×
256 KB L2 cache, and 2 GB DDR2 of RAM.

The affinity function κ(c, d) was defined as follows. Each
given image I = 〈C, f 〉 was filtered by a Gaussian func-
tion Gk with mean μk and standard deviation σk , where
k ∈ {WM,GM}, separately for WM and GM, to produce two
new images Ik = 〈C, fk〉, where fk(c) = Gk(f (c)) for any
c ∈ C. Parameters μk and σk were chosen appropriately sep-
arately for WM and GM. In each image Ik , the appropriate
tissue k was segmented by using each algorithm, where the
affinity was defined for Ik via formula (1). For the GCsum al-
gorithm, the weight function w(c, d) = (κ(c, d))q was used
with q = 1,5, and 30. The rationale for this choice of w

was that, according to Theorem 5.3 (compare also [29]), the
output of GCsum converges to the output of GCmax when q

goes to infinity. Changing q does not influence the output of
the FC algorithms [15, Theorems 3 and 5]. Thus, for large
q , the outputs of these two forms of algorithms should be
similar. Different sets of seeds were generated, and fed au-
tomatically as input to the algorithms, by applying different
degrees of erosion operations to the known true segmenta-
tion binary images. The degree of erosion is expressed by
the erosion radius—the larger the radius, the greater is the
degree and smaller is the seed set. As the radius of erosion
increases, we may therefore expect lower delineation accu-
racy.

The graphs in Fig. 5 summarize our experimental results.
(Only the graphs for WM are shown. The graphs for GM
are similar.) Figures 5(a), (c), and (e) display the run time
of each algorithm, as a function of the erosion radius, aver-
aged over the 20 images, for q = 1,5, and 30, respectively.
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Fig. 5 Time and accuracy graphs for segmenting WM for GC algorithm and FC methods

Similarly, Fig. 5(b), (d), and (f) demonstrate the accuracy

of the algorithms expressed in terms of the Dice coefficient

as a function of the erosion radius, for q = 1,5, and 30, re-

spectively. In Fig. 6, some slices of the given image I are

displayed overlaid with the seed sets and the resulting seg-

mentations for different algorithms. A non-medical example

is shown in Fig. 7 to illustrate the differences in the sensi-

tivity of the algorithms to the selection of seeds. Below, we

will examine the efficiency, precision, and accuracy of the

different algorithms.
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Fig. 6 (a)&(d) The same
segment is obtained independent
of seed location with the RFC
algorithm. (b)&(e) The results
of IRFC were also not affected
by these seed translations.
(c)&(f) However, GC
segmentation may be sensitive
to the seed location, when the
power q is not large enough

Fig. 7 (a)&(b) Results from
IRFC (GCmax) segmentation for
two different seed locations
indicated by the dots. (c)&(d)
Results from GC (GCsum, with
q = 1) segmentation for the
same seed locations as in
(a)&(b)
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As to the efficiency of delineations, as described earlier,
the theoretical worst case run times for GC, standard RFC,
RFC-IFT, and GCmax are O(|C|2.5) (or O(|C|3)), O(|C|2),
O(|C|) (or O(|C| ln |C|)), and O(|C|) (or O(|C| ln |C|)),
respectively. These are borne out and supported by the
graphs in Figs. 5(a)–(c). The time curve of GC should be
properly interpreted in conjunction with its accuracy curve.
It shows an unstable time behavior—the peak represents the
high computational cost of GC and its drop off denotes the
shrinkage problem or finding small cuts when larger ero-
sions (and hence small seed sets) are used that lead to highly
inaccurate segmentations. That is, in order to obtain fast seg-
mentations via GC, in many situations in these data sets, we
need to specify seed sets that are close to the true segmenta-
tion.

As to the robustness of delineations, GC is sensitive to
the position of the seed sets, not just their size, as illustrated
in Figs. 6 and 7, as it has a bias toward small boundaries un-
like the FC family. This implies that, in an interactive setup,
its precision may suffer owing to intra- and inter-operator
variability in seed specification. If seeds are selected auto-
matically, the lack of robustness implies lower accuracy as
we decrease the seed set to insure that it is properly included
within an object region, for example, guided by a statistical
model of the object. One way to circumvent this problem is
to increase the value of q , which will bring the accuracy of
GCsum close to that of GCmax. However, this will further add
to the computational cost of GCsum. In practice, in addition
to the burden of the power of computation, large q may also
cause integer overflow and otherwise storage issues. Note
that an efficient implementation of GCsum requires integer
weight values, but choices such as 2555 already cause inte-
ger overflow in a 32-bit machine. Thus (κ(c, d))q must be
subsequently normalized within a valid integer value range
to avoid overflow. Thus it is possible to only approximate
the theoretical results because an exact match is not possi-
ble due to loss of information during normalization. How-
ever, in our experiments, these effects were minimal, since
GC and IRFC showed almost the same results for q = 30.

As to the accuracy of delineations, it is clear from
Figs. 5(b), (d), and (f) that, as the seed set becomes smaller,
the delineations by GC become less accurate, mainly due to
the shrinkage issue. Even when q = 30, this effect is notice-
able. The accuracy of FC algorithms, however, is more or
less completely independent of the seed set size. In the best
case, FC algorithms require only two seeds—one inside and
another outside the object, especially when κ(c, d) is strictly
lower across the object’s boundary than elsewhere in the im-
age. However, GC may face the shrinkage problem even in
such ideal scenarios. In summary, the higher efficiency, the
high degree of independence of the efficiency, precision, and
accuracy of FC algorithms to the size and position of seed

sets, and their results not losing precision when using inte-
ger arithmetic are the strongest features and advantages of
FC algorithms over GC methods.

6 Concluding Remarks

Focusing on FC and GC algorithms, we have presented
a unified mathematical theory for describing these pI ap-
proaches as energy optimization methods. We have taken a
graph and topological approach to present these combinato-
rial optimization analyses. In the process, we have arrived
at a linear time algorithm GCmax that retains the robustness
and accuracy of the erstwhile IRFC algorithm but improves
upon its efficiency. The unifying theory established the lim-
iting relationship between GC and FC and has helped us
in delineating the similarities and differences among these
methods. We have also demonstrated the forecast theoreti-
cal behavior via experiments conducted on the 20 BrainWeb
MR image data sets.

The results demonstrate that, while the theoretical under-
pinning for GC and FC are similar, the subtle differences
that remain between them are vitally responsible for their
different behavior. The major differences are the dependence
of GC’s results on the size and position of the seed set com-
pared to a relative independence of FC’s results of these
parameters. Traceable exactly to those characteristics, GC
suffers in computational efficiency (time and storage), pre-
cision (repeatability), and accuracy compared to FC algo-
rithms. Also due to these characteristics, there is a complex
interplay among GC’s efficiency, precision, and accuracy.

A couple of issues we have not addressed in this paper
are perhaps worth investigating further. First, the simulta-
neous segmentation of multiple (more than 2) objects. This
leads to an NP-hard problem in the case of GC, while pos-
ing no difficulties for FC in retaining its properties relating
to its run time behavior and precision (or robustness). We did
not consider the multiple object case in this paper because
of the theoretical challenges these differences bring about.
(However, a multi-object version of the GCmax algorithm is
indicated in the text.) Second, the graph formulation of GC
seems more natural than FC in handling the unary and binary
relations implied by the object feature (intensity/texture) and
homogeneity properties, respectively. Whether an appropri-
ate FC-type theory can be developed on such a graph re-
mains to be seen. Finally, to extend these studies to a scale-
based setting and to vectorial images may allow us to har-
ness the full power of these different frameworks.

Appendix

Example A.1 For the energies εq and Eq,q with q ∈ (1,∞]
it is possible that P F

θ̂min
(S,T ) and P H

θmin
(S,T ) are disjoint
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and that x̄ ∈ P H (S,T ) associated with xmin ∈ P F

θ̂min
(S,T )

does not belong to P H
θmin

(S,T ).

Proof Take C = {s, c, d, t}, where s is a foreground seed
and t is a background seed, that is, S = {s} and T = {t}.
Consider a graph on C with just three symmetric edges,
{s, c}, {c, d}, and {d, t} (so, with six directed edges) with the
respective weights 1, v, and v for v > 1 to be determined.
Then, P F (S,T ) consists of all fuzzy sets xy,z:C → [0,1]
with y, z ∈ [0,1], where xy,z(s) = 1, xy,z(c) = y, xy,z(d) =
z, and xy,z(t) = 0.

First fix a q ∈ (1,∞). Then, Eq,q(xy,z) = 2[(1 − y)q +
vq |y − z|q + vqzq ] is a function of two variables, y and z.
It has precisely one minimum9 at zq = (vq/(q−1) + 2)−1

and yq = 2(vq/(q−1) + 2)−1. Thus, P F

θ̂min
(S,T ) = {xyq,zq },

leading to xmin = xyq,zq . Now, if v ∈ (1,2(q−1)/q), then
1 < vq/(q−1) < 2 and we have 0 < zq < 0.5 < yq < 1, lead-
ing to x̄ with x̄(s) = x̄(c) = 1 and x̄(d) = x̄(t) = 0. But
this implies that Eq,q(x̄) = vq > 1 = Eq,q(χ {s}), so indeed
x̄ /∈ P H

θmin
(S,T ).

To see that the same example works for q = ∞, fix
a v ∈ (1,21/2). Then, for every q > 2 and y, z ∈ R,
we have ‖F(xy,z)‖q ≥ ‖F(xyq,zq )‖q . Taking the limit, as
q → ∞, gives ‖F(xy,z)‖∞ ≥ ‖F(xy∞,z∞)‖∞, where z∞ =
limq→∞ zq = (v + 2)−1 and y∞ = 2z∞. Then, similarly
as above, P F

θmin
(S,T ) = {xy∞,z∞}, leading to xmin = xyq,zq

and x̄ with x̄(s) = x̄(c) = 1 and x̄(d) = x̄(t) = 0. But this
implies that ε∞(x̄) = v > 1 = ε∞(χ {s}), so once again
x̄ /∈ P H

θmin
(S,T ). �

Proof of Theorem 4.6 We start with proving that P IFT
S,T ∈

FM(S,W). Let F be the OPF returned by GCmax, so that we
have P IFT

S,T = P(S,F). We will find an MSF F̂ relative to W

which returns the same object, that is, such that P(S, F̂) =
P(S,F).

Recall, that the Kruskal’s algorithm creates MSF F̂ =
〈C, Ê〉 as follows:

• it lists all edges of the graph in a queue Q such that their
weights form a decreasing sequence;

9This can be found by simple multivariable calculus. First notice, that

both second partial derivatives, ∂2

∂z2 Eq,q(xy,z) = 2q(q − 1)vq [|y −
z|q−2 + zq−2] and ∂2

∂y2 Eq,q(xy,z) = 2q(q − 1)[(1 − y)q−2 + vq |y −
z|q−2] are positive, so the function Eq,q is convex and it can have only
one global minimum. For y ≥ z, ∂

∂z
Eq,q (xy,z) = 2[−qvq(y − z)q−1 +

qvqzq−1] equals 0 when (y −z)q−1 = zq−1, that is, when y = 2z. Sim-
ilarly, the other derivative ∂

∂y
Eq,q (xy,z) = 2[−q(1 − y)q−1 + qvq(y −

z)q−1] equals 0 when (1 − y)q−1 = vq(y − z)q−1, which, with y = 2z,
leads to ( 1−2z

2z−z
)q−1 = vq and 1

z
− 2 = vq/(q−1). So, z = (vq/(q−1) +

2)−1 and y = 2(vq/(q−1) +2)−1 minimize Eq,q on [0,1]×[0,1], since
for z > y, the derivative ∂

∂z
Eq,q (xy,z) = 2[qvq(z − y)q−1 + qvqzq−1]

never equals 0.

• it removes consecutively the edges from Q, adding to Ê

those, whose addition creates in the expanded F̂ = 〈C, Ê〉
neither a cycle nor a path between different spels from W ;
other edges are discarded.

This schema has a leeway in choosing the order of the edges
in Q: those that have the same weight can be ordered arbi-
trarily.

Let B be the boundary of P(S,F), B = bd(P (S,F)). As-
sume, that we create the list Q in such a way that, among
the edges with the same weight, all those that do not belong
to B precede all those that belong to B . We will show that
Kruskal’s algorithm with Q so chosen, indeed returns MSF
F̂ with P(S, F̂) = P(S,F).

Clearly, by the power of Kruskal’s algorithm, the re-
turned F̂ = 〈C, Ê〉 will be MSF relative to W . We will show
that Ê is disjoint with B . This easily implies the equation
P(S, F̂) = P(S,F).

To prove that Ê is disjoint with B , choose an edge e =
{c, d} ∈ B . Consider the step in Kruskal’s algorithm when
we remove e from Q. We will argue, that adding e to the
already existing part of Ê would add a path from S to T ,
which implies that e would not be added to Ê.

Let pc and pd be the paths in F from W to c and d ,
respectively. By symmetry, we can assume that c ∈ V \
P(S,F) = P(T ,F) and d ∈ P(S,F). We will first show that

μ(pc) ≥ we and μ(pd) ≥ we. (19)

Indeed, if μ(pc) > μ(pd), then we ≤ μ(pd), since other-
wise μ(d,S) = μ(pd) < min{μ(pc),we} ≤ μ(d,T ), im-
plying that d belongs to the RFC object PT,S ⊂ P(T ,F),
which is disjoint with P(S,F). Similarly, if μ(pc) < μ(pd),
then we ≤ μ(pc), since otherwise μ(c,T ) = μ(pc) <

min{μ(pd),we} ≤ μ(c,S), implying that c belongs to the
RFC object PS,T ⊂ P(S,F). Finally, assume that μ(pc) =
μ(pd). Then we < μ(pc) = μ(pd), since otherwise GCmax

(during the execution of lines 6–8 for c and d) would reas-
sign d to P(T ,F), which is disjoint with P(S,F). So, (19)
is proved.

Next, let E′ = {e′ ∈ E:we′ ≥ we} \ B . Then, every edge
in E′ is already considered by the Kruskal’s algorithm by the
time we remove e from Q. In particular, Ê ∩ E′ is already
constructed. We claim, that there is a path p̂d in Ĝ = 〈C, Ê∩
E′〉 from S to d .

Indeed, the component of d in Ĝ must intersect S, since
otherwise there is an edge ê in pd (so, in E′) only one ver-
tex of which intersects this component. But this means that
ê ∈ E′ would have been added to Ê, which was not the case.
So, indeed, there is a path p̂d in Ĝ from S to d . Similarly,
there is a path p̂c in Ĝ from T to c. But this means that
adding e to Ê would create a path from S to T , which is a
forbidden situation. Therefore, indeed, Kruskal’s algorithm
discards e, what we had to prove. This completes the argu-
ment for P IFT

S,T ∈ FM(S,W).
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The inclusion FM(S,W) ⊂ F IRFC(S,W) is proved in
[2, Proposition 8]. Thus, to finish the proof, we need to show
that FM(S,W) ⊂ Pθ (S,T ). So, fix a P ∈ FM(S,W). Then,
there is an MSF F = 〈C,E′〉 with respect to W for which
P = P(S,F). Clearly, P = P(S,F) ∈ P (S,T ). So, to fin-
ish the proof, it is enough to show that εmax(P ) ≤ θmin =
μ(S,T ).

By way of contradiction, assume that this is not the case.
Then, there exists an edge e = {c, d} ∈ E with c ∈ P =
P(S,F) and d ∈ V \ P = P(T ,F) for which we > θmin =
μ(S,T ). Let pc and pd be the paths in F from W to c and d ,
respectively. Then either μ(pc) < we or μ(pd) < we, since
otherwise the path p starting with pc , followed by e, and
then by pd is a path from S to T with μ(p) = we > μ(S,T ),
a contradiction.

Assume that μ(pc) < we . Then pc = 〈c1, . . . , ck〉 with
k > 1 and the edge e′ = {ck−1, ck} has weight ≤ μ(pc) <

we. But then F̂ = 〈C, Ê〉 with Ê = E′ ∪ {e} \ {e′} is a span-
ning forest rooted at W with

∑
e∈Ê

w(e) = ∑
e∈E′ w(e) +

we − we′ >
∑

e∈E′ w(e), what contradicts maximality of F.
This completes the proof of the theorem. �
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