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In the current vast image segmentation literature, there seems to be considerable redundancy among
algorithms, while there is a serious lack of methods that would allow their theoretical comparison to
establish their similarity, equivalence, or distinctness. In this paper, we make an attempt to fill this
gap. To accomplish this goal, we argue that: (1) every digital segmentation algorithm A should have a
well defined continuous counterpart MA , referred to as its model, which constitutes an asymptotic of
A when image resolution goes to infinity; (2) the equality of two such models MA and MA0 establishes
a theoretical (asymptotic) equivalence of their digital counterparts A and A0. Such a comparison is of full
theoretical value only when, for each involved algorithm A, its modelMA is proved to be an asymptotic of
A. So far, such proofs do not appear anywhere in the literature, even in the case of algorithms introduced
as digitizations of continuous models, like level set segmentation algorithms.

The main goal of this article is to explore a line of investigation for formally pairing the digital segmen-
tation algorithms with their asymptotic models, justifying such relations with mathematical proofs, and
using the results to compare the segmentation algorithms in this general theoretical framework. As a first
step towards this general goal, we prove here that the gradient based thresholding model MO is the
asymptotic for the fuzzy connectedness Udupa and Samarasekera segmentation algorithm used with gra-
dient based affinity AO . We also argue that, in a sense,MO is the asymptotic for the original front prop-
agation level set algorithm of Malladi, Sethian, and Vemuri, thus establishing a theoretical equivalence
between these two specific algorithms. Experimental evidence of this last equivalence is also provided.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Most scientific contributions to any practical application-moti-
vated model theory fall under one of two related, but slightly dif-
ferent, archetypes: (1) application-oriented engineering-standard,
which is focused on the work’s practical usability (like numerical
stability of an implemented algorithm or a degree of similarity of
its output to a real phenomenon it models), but is less preoccupied
with a formal theoretical analysis of the contribution; and (2) the-
oretically-oriented mathematical-standard, which is focussed on a
logically impeccable theoretical analysis of one or more models,
but is less preoccupied with (often even oblivious to) a practical
usability and/or value of the models. In the application-motivated
theories that model a given phenomenon (including the image
segmentation theory, in which we are interested in), usually many
engineering-standard contributions are made before a mathemat-
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ical-standard work starts to appear. This seems to be caused by
the initial user-induced demand for different model-based usable
products and by the fact that the mathematical-standard work
especially thrives at the later stage, when there is enough engi-
neering-standard contributions to analyze. It is our belief, that
the image segmentation theory has long reached the stage in its
development where mathematical-standard analysis of the exist-
ing models should start to appear.

In this work, we present new tools for theoretical analysis and
comparison of segmentation algorithms with the hope that they
will help to initiate a greater influx of mathematical-standard con-
tributions to image segmentation theory. To stress the value of the
approach we have taken, we needed to point out different mathe-
matical-standard weaknesses in the current image segmentation
literature. This, however, does not mean that we do not appreciate
the great scientific value of this literature. In particular, we have
chosen to cite only the papers whose contribution we highly value
and which are relevant in one way or another to this paper.

Image segmentation—the process of partitioning the image
domain into meaningful object regions—is perhaps the most chal-
lenging and critical problem in image processing and analysis. Its

http://dx.doi.org/10.1016/j.cviu.2011.01.003
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central position in image processing comes from the fact that the
delineation of objects is usually the first step in other higher level
processing tasks, like image interpretation, diagnosis, analysis,
visualization, virtual object manipulation, and often even registra-
tion. Image segmentation may be thought of as consisting of two
related processes: recognition and delineation. Recognition is the
high-level process of determining roughly the whereabouts of an
object of interest in the image. Delineation is the low-level process
of determining the precise spatial extent and point-by-point com-
position (material membership percentage) of the object in the im-
age. The topic of this paper concerns image delineation.

General segmentation frameworks are usually broadly classified
into three groups: boundary-based [14,21,22,27,31,33,35,36], re-
gion-based [5,9,44,48–51], and hybrid [12,25]. However, for the pur-
pose of this paper, the more important classification comes from the
mode of algorithm introduction, that is, either as discretizations of
continuous models (e.g., functional optimization methods, usually
implemented via level sets [31,36,44], including active contour
[27,29]), or as purely discrete algorithms (e.g., graph-cut [7–9], fuzzy
connectedness [16,40,41,51], and watershed1 [53,37,45]). The first
group of algorithms comes always with two theoretical constructs:
the continuous model M and its discretization algorithm A. On the
other hand, for any algorithm A introduced in a purely discrete fash-
ion, the existence and format of its continuous counterpart M is, in
general, not clear. Our main tool for algorithm comparison will require
a full description of the pairs hM; Ai and a good understanding of the
relation betweenM and A. Therefore, in what follows, we will argue
that all reasonable segmentation algorithms, including those intro-
duced in a purely discrete fashion, should have their continuous coun-
terparts. We will also formalize the intuitive relation between the
continuous segmentation modelsM and the related algorithms A. It
should be stressed that, even for the algorithms introduced as discret-
izations of continuous models, there are very few published proofs
connecting in any mathematically meaningful way the models with
the algorithms. (Important exceptions are the papers [6,1,2,13], but
see comments in the footnote #2.) Therefore, even in this class of algo-
rithms, there is currently no mathematically sound theory of segmen-
tation algorithms.2 Thus, the most fundamental and theoretical goal of
this paper is to initiate the study that will connect in a provable math-
ematical way the theory of continuous image segmentation models
with the theory of discrete segmentation algorithms.
1 Of course, the ideas for watershed were always continuous. However, the
continuous version of watershed models were formally introduced after discrete
watershed algorithms (see [37]) and there still seems to be no formal connections
between the two in the sense defined in this paper. In fact, the approximation of the
continuous watershed model with the discrete watershed algorithms is not a
straightforward matter, as the results from [8] indicate.

2 Intuitively, we need to prove that the segmentation algorithms constitute
‘‘appropriate numerical schemas for their continuous models.’’ The convergence and
stability of numerical systems is well studied in numerical analysis, especially when
applied to solve PDE (where it is known as finite-element approximation). It seems
that these results can be simply applied to the methods like level sets delineation
methods, where the object is defined as S = {z 2X: W(z, t) 6 0} (X being an open,
bounded, and connected subset of Rn) for some function W : X� ½0;1Þ ! R

constituting a solution of PDE, see e.g. Section 4. The problem is that even if the
approximations Wn (finite, or defined on the entire domain) of W converge to W, the
approximate objects Sn = {z: Wn(z, t) 6 0} may be very far from S, see Example 16.
The text [4] is a typical example of overlooking this crucial difference—although it
contains an entire chapter on the numerical behavior and convergence of solutions for
PDEs relevant for image processing, there is no discussion of how such convergence
translates (or not) to the actual image processing output. A similar problem (of lack of
full interpretation of proved results) is also visible in a very interesting paper [6],
which contains a rare example of a formal proof of convergence in the spirit of this
article: the authors prove [6, thm. 2] that for a family {ue}e>0 of numerical
approximations of image segmentation, where e is related to image resolution, there
is a sequence heji converging to 0, for which the sequence huej i of segmentations
converges to a single (idealized) image segmentation. However, unless every such
sequence converges, the delineations {ue}e>0 are actually numerically unstable, when
e ? 0.
A practical motivation for the development of a general theoret-
ical study of image segmentation methodologies as alluded to above
is to address several gaps that currently exist in our knowledge in
this subject, which are denoted (G1)–(G3) in the following: (G1)
Are all different families of segmentation methods/models really
fundamentally distinct or are there similarities, or even theoretical
equivalences, among them? Although there are some rare attempts
to compare the methods at a theoretical level (see e.g. [3,19,24,34]),
this is largely an uncharted territory. (G2) Segmentation research
has two clearly distinct components: the practical, focused on
describing efficient segmentation algorithms that can be practically
implemented; and theoretical, concerning development and use of
sophisticated tools of infinite (i.e., not discrete) mathematics for
the purpose of describing segmentation models of idealized images.
One of the peculiarities of the current state of segmentation research
is that these two tracks are hardly connected in any formal way.
True, the papers that start with a description of a segmentation
model of idealized images usually transcribe such a model into a
digital image segmentation procedure. However, all such transla-
tions are done only at an imprecise intuitive3 level, without a formal,
mathematical argument. In fact, there is even no evidence of the use of
any definition formally connecting idealized images (infinite objects)
with their digital representations (which are finite). (G3) Another ele-
ment clearly missing from current segmentation research is a set of
properties that any digital segmentation algorithm must or should
have. For example, it seems desirable to have the output of any rea-
sonable segmentation algorithm to be reasonably stable if it is fed
with the digital approximations of the same idealized image with bet-
ter and better resolution. It would be also desirable for the segmenta-
tion output to remain reasonably unchanged when applied to the
same resolution digital representations of the same idealized image
that was rotated and/or shifted. (This latter aspect becomes important
when we keep in mind that, in many areas such as medical imaging,
there is no guarantee that the same object with subtle and fine
features will be digitized in the same manner in repeated scans/digi-
tizations, although some empirical evaluations of segmentation algo-
rithms have assessed the variability in repeated scans.) So far, there is
little research done systematically addressing points (G1)–(G3), espe-
cially for the algorithms that were not motivated by idealized image
segmentation models. This paper is a first attempt to fill some of these
gaps via the general theory proposed in Section 2.

In the fuzzy connectedness, FC, framework [51], a fuzzy topolog-
ical construct, called fuzzy connectedness, characterizes how the
spatial elements (abbreviated as spels) of an image hang together
to form an object. This construct is arrived at roughly as follows. A
function called affinity is defined on the image domain; the strength
of affinity between any two spels depends on how close the spels are
spatially and how similar their intensity-based properties are in the
image. Affinity is intended to be a local relation. A global fuzzy rela-
tion called fuzzy connectedness is induced on the image domain by
affinity as follows. For any two spels c and d in the image domain,
all possible paths connecting c and d are considered. Each path is as-
signed a strength of fuzzy connectedness which is simply the mini-
mum of the affinities of consecutive spels along the path. The level of
fuzzy connectedness between c and d is considered to be the maxi-
mum of the strengths of all paths between c and d. For segmentation
purposes, FC is utilized in several ways as described below. See [49]
for a review of the different FC definitions and how they are em-
ployed in segmentation and applications.

In absolute FC (abbreviated AFC) [51], the support of a seg-
mented object is considered to be the maximal set of spels, con-
taining one or more seed spels, within which the level of FC is at
3 The general framework of finite-element approximations remain imprecise,
without formal convergence results in a format similar to that given in [6].
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or above a specific threshold. To obviate the need for a threshold,
relative FC (or RFC) [40] was developed by letting all objects in
the image to compete simultaneously via FC to claim membership
of spels in their sets. To avoid treating the core aspects of an object
(that are very strongly connected to its seeds) and the peripheral
subtle aspects (that may be less strongly connected to the seeds)
in the same footing, an iterative refinement strategy is devised in
iterative RFC (or IRFC) [16,50]. RFC and IRFC can be viewed as graph
cut optimizations for appropriate cost functions [19]. The FC family
of methods developed to date consists of various combinations of
absolute, relative, and iterative FC. In this paper we will study (in
Section 4.1) only the AFC algorithm, considered with a gradient
based affinity. Note that gradient based affinity is a generalized
affinity notion, in a format introduced and examined in [17,18].
The other forms of FC algorithms will be examined within the gen-
eral framework of Section 2 in our future work.

The level set method refers to the specific model of an evolving
front (surface or curve) in a time dependent manner and to the
numerical algorithm tracking such propagating fronts. The model
and the associated narrow band propagation algorithm were
introduced in 1985 by Sethian [43] which made their way into
image segmentation research in 1995 with paper [31]. The popu-
larity of the level set method in segmentation tasks led to a mul-
titude of research papers, as exemplified by the books [38,39,44].
Although the level set method in image segmentation is nowa-
days more often used indirectly to solve the PDE optimizing the
segmentation cost functions (see e.g., [15,32,52]), the original seg-
mentation algorithms are still studied [46,47]. Therefore, in this
paper, for the purpose of using the theoretical framework for
comparing methods, we have chosen the level set method with
front propagation, because of its popularity, and FC, because of
our familiarity with it. Our choice of the particular algorithms
with each of these classes is not for their popularity or power (fac-
tually, the level set algorithms are far more popular than the FC
algorithms), but rather to make our point that the algorithms
introduced via very different mathematical tools can be asymptot-
ically equivalent.

Our general theoretical framework and its variations are de-
scribed in Sections 2 and 3. The application of the theory to the
analysis of a particular model of FC [51] and to a comparison of
its algorithms with the level set delineation algorithm of [31] is
presented in Section 4. (An attempt at expressing this level set algo-
rithm [31] without PDE can also be found in [46,47].) Although in
this paper we focus only on the algorithms of [51,31] for a theoret-
ical comparison, the general framework can be utilized to compare
any methods in the literature. In Section 5, we present some prac-
tical segmentation examples to illustrate the equivalence proved in
Section 4 and state our conclusions.
4 Clearly, for practical applications, only images with ‘‘meaningful information’’ are
of concern. However, the notion of ‘‘meaningful information’’ seems to be impossible
to express in a formal mathematical form and the distinction is irrelevant to our
theory, which will work independent of such a subjective factor.
2. A general image segmentation framework

2.1. Stage set up: What is an image?

We will start off by formalizing the notions of an idealized im-
age and its digitization. This formalization is intuitive and rather
standard in the imaging literature. However, most of the imaging
papers concentrate only on one of these two kinds of images, leav-
ing unanswered or hazy the fundamental question as to what the
relation between them is.

Definition 1. An (n-dimensional) idealized image (notice gothic n) is
any function F from a bounded connected subset X of the n-
dimensional Euclidean space Rn into R‘. In what follows, we will
always assume that X is an open subset of Rn, and often it will be
just an n-dimensional cube X ¼ ða; bÞn.
In general, we do not assume any nice properties for function F.
However, it will be often necessary to assume that F is piecewise
(uniformly) continuous or that it has (uniformly) continuous deriv-
atives.4 Note, that the intensity value F(x) of F at x 2X is assumed to
be a vector in R‘, although the scalar case of ‘ = 1 is included. We will
always assume that n P 2, although we will allow it to be larger than
3, as a time sequence of three-dimensional images, for example, can
be interpreted as a four-dimensional image.

Definition 2. An (n-dimensional) digital image is any function f
from a finite subset C of Rn into R‘.

In this definition, we slightly depart from the standard assump-
tion that the coordinates of C are the integer numbers, that is, that
C � Zn. Our generality will help us to lay our theory, while it
creates no real implementation difficulty, especially in the most
important case when C is a subset of a rectangular grid
fhk : k 2 Zgn, where h > 0 is fixed.

The relation between these two types of images can be ex-
pressed as follows.

Definition 3. A digital image f : C ! R‘ is a digitization of an
idealized image F : X! R‘ provided f is the restriction F(C of F to C,
that is, C �X and f(c) = F(c) for every c 2 C.

In what follows, symbol kxkwill stand for the Euclidean norm of

the vector x ¼ hx1; . . . ; xni 2 Rn, that is, kxk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ � � � þ x2
n

q
. The

distance from an x 2 Rn to a T � Rn is defined as
dist(T,x) = inf{kx � tk:t 2 T}.

Remark 4. Possibly the digitization f : C ! R‘ of a true image F
should be defined more generally by allowing f(c) to be some

appropriate average of F around c, e.g., f ðcÞ ¼
R

Rn
FðxÞ�Kðx�cÞR
Rn

KðxÞ
for some

kernel K. One might use as K a Gaussian function g(x) = exp(�kxk2/
r2) with a constant r associated with the resolution of the digital
image. (The idea here is that K corresponds roughly to the point
spread function of the imaging device.) Definition 3, which we will
use in this paper, falls under this schema when K is the Dirac delta.
Remark 5. In all practical digital image acquisitions, some image
distortion due to various artifacts, such as noise, background varia-
tion, must be expected. Because of this fact of life, it is quite com-
mon in the imaging literature to assume that the acquired image
intensity is in a form f þN, where f is the ‘‘clear’’ digital image like
in Remark 4 and N is the noise/artifact component. Although this
approach is very desirable from the practical application point of
view, in what follows, we will ignore noise in our current consider-
ations. The rationale for this is that the main goal of this paper is to
analyze the segmentation algorithms from the theoretical point of
view and the most fundamental situation in which they should
work is the noiseless environment. In other words, including the
image noise analysis in what follows would only obscure the clarity
of the presented material. Nevertheless, we indicate, in Section 5, a
possibility to extend the presented framework to encompass
images with the noise component. The detailed analysis of such
theory will be considered in our future extension of this work.
2.2. The segmentation algorithms

The following definition treats a delineation algorithm as a ‘‘black
box:’’ Given an input (a digital image map and the parameters of the
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algorithm, which may include also some prior knowledge on the ob-
ject to be segmented), the only outcome that is considered is the ac-
tual output of the algorithm, which is a segmented image. This
definition is general enough to encompass essentially all possible
delineation algorithms. As such, it is pertinent, but not restricted,
to the two algorithms to be discussed in the next section: fuzzy con-
nectedness, FC, of Udupa and Samarasekera [51] (see Section 4.1) as
well as level set Malladi et al. [31] (see Section 4.2). We do not re-
strict the algorithms, as we define them, to any particular applica-
tion domain, as it is not important for our considerations.
Nevertheless, for practical purposes, many algorithms are often con-
sidered only for some specific applications. Thus, the same (general)
algorithm may be ‘‘good’’ in one application domain, while it may
give unacceptable results in another domain. This discrepant behav-
ior, however, will have no effect on the theory presented below.

Definition 6. A (digital) delineation algorithm A is any effectively
defined mapping hf ;~pi#A S which to any digital image f : C ! R‘

(possibly restricted to some subclass) and a parameter vector ~p
associates a subset S of C interpreted as a segment of the image f
indicated by the parameters. We will write Aðf ;~pÞ for the output S
of A applied to hf ;~pi.

The parameters may include a threshold number h 2 R and some
subsets of Rn (like a simple closed curve, as in the case of some level
set algorithms) approximating respective subsets of the domain C
of f which carry information on the objects we seek. Often, a seed
point s 2 C is used as a parameter which indicates the segment S,
that is, with the goal that s 2 S. Some algorithms use also another
seed point t 2 C indicating the background, that is, with the goal
that t R S. In the applications that follow, the algorithms will have
one, g, or two, hg,ei, real parameters (g will be a threshold, e—the
curvature weight) that will need to be explicitly indicated, leading
to the parameters hg;~pi and hg; e;~pi in place of simple ~p, and algo-
rithm representations Aðf ;g;~pÞ and Aðf ;g; e;~pÞ for Aðf ;~pÞ.

We will often refer to a delineation algorithm as a segmentation
algorithm. The segmentation algorithm, in general, can return as an
output a finite sequence hS1, . . . ,Ski of (usually pairwise disjoint)
subsets of C, while a delineation algorithm returns only one set
S � C. The theory presented below is considerably easier to express
for the delineation algorithms, while with little effort it can be ap-
plied also to any general segmentation procedure, since any seg-
mentation algorithm A that returns a k-element sequence
Aðf ;~pÞ ¼ hA1ðf ;~pÞ; . . . ;Akðf ;~pÞi can be treated as k separate (but
dependent) segmentation algorithms A1; . . . ;Ak.

Next, we will formalize what we believe to be the most funda-
mental property that any reasonable delineation algorithm should
possess:

(�) The better the resolution of the digital approximation of the ide-
alized image, the closer the algorithm’s output is to the ‘‘real
object’’ in the idealized image.

Intuitively, this property expresses the natural requirement
that: (1) the algorithm applied to the ‘‘digital image’’ with the
infinitesimal size of the spels returns the ‘‘real object,’’ and (2)
the output of the algorithm should approximate, in a limit, the ob-
ject from (1). Notice also that (�) expresses the intuition connecting
continuous models with their digitizations and that rejection of (�)
would imply rejection of the logical connection between abstract
continuous mathematical models and their digital counterparts.5
5 In fact, if an algorithm is a digitization of a mathematically-precise continuous
model but there is no mathematical proof that the model is an asymptotic of the
algorithm, then there is no complete mathematical theory for the algorithm. In such
situations, which are currently predominant in the image segmentation literature, the
mathematical theory of a continuous model should be treated only as an inspiration
for the algorithm, but not as a complete mathematical theory of the algorithm.
If F : X! R‘ is the idealized image we approximate, the prop-
erty (�) can be expressed in a mathematical language as:

The limit L ¼ limC!XAðF�C;~pÞ over finite sets C �X exists and rep-
resents the ‘‘real object.’’6

This template definition requires the explanation of several
terms as described below for completion.

2.2.1. Mode of convergence
First, we need to decide the meaning of convergence of sets C to

X as well as sets A ¼ AðF�C;~pÞ � C to L �X. We will treat these as
convergences in Hausdorff distance q, although in our actual appli-
cations described in the next sections, we will use a slightly more
general notion of convergence. In what follows, the Hausdorff dis-
tance will be used only in a simple situation of bounded subsets of
Rn comparable by inclusion, say B # U, in which case, q can be ex-
pressed as

qðB;UÞ ¼ supfdistðx;BÞ : x 2 Ug:

Since any q-convergence can be expressed in term of sequences, in
what follows, the above limit requirement for A will be replaced by
the equivalent form:

There is a set L �X, depending on A, F, and ~p, with the property
that L ¼ limn!1AðF�Cn;~pÞ for any (appropriate) sequence of finite
sets Cn converging to X.

Note that q(B,U) = 0 implies only that B is a dense subset of U
(i.e., the topological closure cl(B) of B contains U), but not the
equality B = U, unless both sets are closed. (Hausdorff distance is
a metric only when restricted to the family of compact sets.) Since
we will be mainly interested in the situation when the result of the
limit is dense in some open set (so, not closed), it will be conve-
nient to have the following definition of the limit, which does
not use the notion of the Hausdorff distance.

For a subset A of an underlying space X (we can take X = X), a
characteristic (or indicator) function vA of A is defined as vA(x) = 1
for x 2 A and vA(x) = 0 for x 2 XnA. Recall (see e.g. [28, p. 173]) that
for a sequence hAii1i¼1 of subsets of X we define lim supiAi ¼T1

j¼1

S
iPjAi. Note that A = limsupi Ai holds precisely when vA ¼

lim supivAi
. Similarly, we define lim inf iAi ¼

S1
j¼1

T
iPjAi and we have

A = liminfiAi precisely when vA ¼ lim inf ivAi
. The limit L = limiAi

exists and is equal to limsupiAi provided limsupiAi = liminfiAi.
Notice that, for L so defined, sets Ai converge to L in Hausdorff

distance,7 but hAiii converges in Hausdorff distance also to any
U � L contained in the closure of L.

2.2.2. Allowable images and approximating grids
Second, for every algorithm A it will be necessary to decide for

what family F of idealized images F and for what parameters~p the
algorithm should have the above limit property. This needs to be
answered for each algorithm separately, with an answer provided
in the statement of each convergence theorem. Similarly, we will
usually restrict our attention to the limits over the sequences hCnin
from some fixed family C of sequences. In what follows we will use
two kinds of such families. The larger of these will be the family C0

of all � -increasing sequences hCnin (i.e., with C1 � C2 � � � �) of fi-
nite subsets of X for which the sequence of X-resolution numbers

rXðCnÞ ¼def qðCn;XÞ ð1Þ

converges to 0. Clearly, requirement limn?1rX(Cn) = 0 is equivalent
to that for hCnin converging to X in the Hausdorff distance. We will
6 More generally, we can consider also limits L ¼ limf!FAðf ;~pÞ over all functions
f : C ! R‘ , C �X being finite, for an appropriately defined notion of convergence
(most likely, via Hausdorff distance) of f to F.

7 Meaning that q(Ai,L)?i0.
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be also interested in a family CR � C0 formed from uniformly spaced
rectangular grids in X. More precisely, for h > 0, let ðhZÞn ¼
fhk : k 2 Zgn be the rectangular grid of points in Rn with the basic
distance h and let Xh ¼ X \ ðhZÞn. Then CR is the family of all
sequences hXh=2i i1i¼1 for some h > 0. Thus, we are doubling the reso-
lution8 when passing from Ci ¼ Xh=2i to Ci+1. Since X is an open set,
clearly qðXh=2i ;XÞ!i0.

2.2.3. ‘‘Real object’’ and its approximation
Finally, we should make clear that we see no mathematical way

of treating the ‘‘real object’’ as may be expected in the intuitive
sense, that is, there is no mathematical way to directly define a
‘‘real object.’’ Instead, we will identify this notion with the output
MðF;~pÞ of the (idealized) models, as described below. Moreover,
since the set MðF;~pÞ will be open, there is no way that
L ¼ limn!1AðF�Cn;~pÞ, being a subset of a countable set

S
nCn, is

actually equal to MðF;~pÞ. However, if L is a dense subset of
MðF;~pÞ, then the sequence hAðF�Cn;~pÞin q-converges to MðF;~pÞ.
Thus, in what follows, the expression sequence hAnin converges to
U ¼MðF;~pÞ will be interpreted as ‘‘L = limnAn is a dense subset of
U’’ and will be often expressed (slightly incorrectly) as U = limnAn.

2.3. Segmentation models and related algorithms

In this section, we will define the notion of a segmentation
model for an idealized image as well as a fundamental relation be-
tween the segmentation models and the related algorithms.

Definition 7. A delineation model M for a class F of idealized
images is any mapping hF;~pi#M O which for any image F : X! R‘

from F and any parameters ~p associates a subset O of X
interpreted as a segment of the image F indicated by the
parameters. We will write MðF;~pÞ for the output O of M applied
to hF;~pi. A segmentation model M that returns k objects is defined
as a k-element sequence Mðf ;~pÞ ¼ hM1ðf ;~pÞ; . . . ;Mkðf ;~pÞi of
delineation models Mi.

As before, we will sometimes list a part of the general parame-
ter vector ~p explicitly, that is, replacing ~p with either hg;~pi or
hg; e;~pi, leading to the notationMðF;g;~pÞ andMðF;g; e;~pÞ in place
of MðF;~pÞ.

Notice that in our definition of a delineation model M we do
not require it to be effective (in a sense, that M does not need to
come with an explicit procedure for finding MðF;~pÞ), despite the
fact that this might be considered as a departure from a terminol-
ogy used in many mathematical modeling papers. To justify our
choice of this terminology, we note that modeling papers (includ-
ing segmentation modeling) frequently start with a non-effectively
defined mapM, often as an optimizer (minimizer or maximizer) of
some functional, and then proceed to finding an effectively defined
procedure cM, often via a solution of a differential equation and/or
using variational methods, which, as a function, is equal toM. We
will refer to such cM as a solution to a model M. (In the literature,
often the procedure cM itself is designated as the ‘‘model.’’) Since,
treated as functions, M¼ cM, our definition can be applied to cM
as well as to M. If one plans to use the effective version cM of
the model to find an algorithm A that approximatesM¼ cM, thencM is at the center of the investigation and it makes sense to des-
ignate cM as ‘‘the model’’ of the process. We think of this modeling
schema as a two stage process: M! cM!A. In a large class of
delineation methods (including the model discussed in Section 4.2,
as well as many optimization models), the value of cM is found via
time dependent front propagation, usually approximated numeri-
8 Resolution in the intuitive sense, which for some sets X may slightly differ from
the notion of X-resolution defined above.
cally with fast marching level set algorithms. (See e.g. [38,39].) In
many modeling tasks other than segmentation, like modeling of
the wave propagation or flame burning, the time sequence of the
consecutive approximations is at least as important as the final po-
sition of the front, making the front propagation approach the most
desirable. However, in segmentation tasks, we are usually not
interested in the intermediate stages of object approximation,
and we treat the final position of the front as the only output of
the model and the algorithm. Thus, in the investigation of the
essential aspects of a delineation task, it is more productive to fol-
low directly fromM to A, that is, forgoing the effective version cM
of the model and follow the schema M!A. This is the central
idea behind our investigation presented in Section 4.

The following definition is the most fundamental in this paper.
It formally relates the segmentation model of an idealized image
with the associated segmentation algorithm.

Definition 8. IfM is a delineation model for a class F of idealized
images from X into R‘ and C is a family of sequences hCni1n¼1 of
finite subsets of X that converge to X, then we say that a
delineation algorithm A represents modelM (in terms of sequences
from C and for the class F of images) provided for every hCnin 2 C,
F 2 F , and parameter ~p appropriate for F, sequence AðF�Cn;~pÞ
converges to MðF;~pÞ.

Similarly, a segmentation algorithm A ¼ hA1; . . . ;Aki represents a
segmentation model M¼ hM1; . . . ;Mki provided each Ai appro-
priately represents Mi.

Two delineation, or segmentation, algorithms A and A0 are
asymptotically equivalent (in terms of sequences from C and for the
class F of images) provided they represent the same model M.

The property ‘‘AðF�Cn;~pÞ converges to MðF;~pÞ’’ will be some-
times expressed as in form limn!1AðF�Cn;~pÞ ¼ MðF;~pÞ, which we
will understand as ‘‘the set limn!1AðF�Cn;~pÞ is dense in MðF;~pÞ.’’

It should be stressed here that asymptotically equivalent algo-
rithms behave identically only in the limit at the infinitely best res-
olution. So, their outputs may still be slightly different for given
digital images. This may be contrasted with strongly-equivalent
algorithms (defined and studied in [17,18]), which have identical
outputs. Note also that equivalent algorithms (in the sense of any
of these definitions) may still have very different computational
times and/or memory requirements. Thus, equivalent algorithms
should still be compared at some more subtle level: by analyzing
their computational requirements, by estimating computational
errors, and by running comparative simulations. Nevertheless,
the equivalence of two segmentation algorithms is a strong theo-
retical evidence that they perform quite similarly.

3. Some application-driven variations of the general definitions

The convergence of hAðF�Cn;~pÞin to MðF;~pÞ is very closely re-
lated to the continuity of functionMð�;~pÞ. In fact, only under small
additional assumptions,9 this convergence implies the continuity of
function Mð�;~pÞ at F. Unfortunately, even in some most basic situa-
tions the models tend to be discontinuous—there always tend to be a
very nice F and parameters~p such that arbitrary small changes from
F to similarly nice F0 cause a major leak fromMðF;~pÞ to a consider-
ably bigger setMðF0;~pÞ. (See also comment preceding Example 16.)
This seems to be a serious obstacle to the schema described in the
previous section: we cannot expect that the property (�) holds in a
vicinity of such F and it is very difficult to describe the pairs hF;~pi
where the difficulty occurs.
9 E.g. the similar convergence for every F0 in some neighborhood of F, which
implies the local uniform convergence of Mð�;~pÞ near F.
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In what follows we have chosen to go around this problem. In-
stead of using the limits described in the previous section, we will
use their generalizations, which constitute an analog of one sided
limits for the real functions. The benefit of this approach is that,
for the class of functions we will consider, these generalized limits
will always exist and converge to the appropriate set MðF;~pÞ,
while in the case whenMð�;~pÞ is continuous at hF;~pi, these gener-
alized limits actually coincide with the limits from the previous
section. Thus, in the remainder of this section we will define the
necessary generalized limits, similar in spirit to the notion of C-
convergence [10], and prove some useful facts about them.

We will use two generalized limit notions, lim� and lim� both of
which fall into the general schema of limits converging with re-
spect to a filter in the index space. (See e.g. [42, p. 169]. For exam-
ple, for lim� defined below, the convergence is with respect to a
filter defined on the set ð0;1Þ �N, where N ¼ f1;2;3; . . .g is the
set of natural numbers, consisting of all subsets of ð0;1Þ�N con-
taining a set of the form

S1
s¼s0
½2�s�1;2�sÞ � fjs; js þ 1; . . .g, where

numbers s0; js 2 N are arbitrary.) The evaluation of both of these
limits will require calculation of several limits in a hierarchical
manner. The main limit notion that we will use for this purpose
is defined for the families of sets fAiðgÞ : g 2 R & i ¼ 1;2;3; . . .g
by a formula

lim
i;h

�AiðhÞ ¼
def lim

g!0þ
lim sup

i!1
Aiðh� gÞ

� �
¼ lim

g!0þ

\1
j¼1

[
iPj

Aiðh� gÞ
 !

; ð2Þ

where we define B ¼ limg!0þBðgÞ if and only if vB ¼ limg!0þvBðgÞ.
However, in Section 4.2, the family of sets Ai will have two real
parameters, that is, we will deal with sets fAiðg; eÞ : g; e 2
R & i ¼ 1;2;3; . . .g. This will require a modification of lim� to lim�

defined as:

lim
i;g;e

yAiðg; eÞ ¼ lim
e!0þ

lim
i;g

�Aiðg; eÞ
� �

:

Notice that if Ai(g) does not depend on e, then the two limit notions
coincide, that is,

lim
i;g;e

yAiðgÞ ¼ lim
i;g

�AiðgÞ: ð3Þ

The limit notion from (2) will be applied to the segmentation algo-
rithms as follows. We will assume that the algorithm uses one
scalar parameter h 2 R and some other parameters~p. Thus, the out-
put of the algorithm can be expressed as Aðf ; h;~pÞ. Then, for a fixed
parameter ~p and fixed sequence hF( Ciii of the digital approxima-
tions of an idealized image F : X! R‘, we will define AiðgÞ ¼
AðF�Ci; h� g;~pÞ and, to prove that A representsM, we will require
that the limit lim�

i;gAiðgÞ exists and is dense in MðF; h;~pÞ. For the
algorithms which we consider in this paper, these sets Ai(g) will sat-
isfy the assumptions of the following fact.

Proposition 9. Let fAiðgÞ : g 2 R & i ¼ 1;2;3; . . .g be a family of sets
such that Ai(g0) # Ai(g) for every i 2 {1,2,3, . . .} and g0 > g. Then

lim�i;gAiðgÞ exists and equals
S

g>0
T1

j¼1
S

iPjAiðgÞ
� �

.

10 More formally we should use here the term 	-strength, where 	 denotes the
reverse standard inequality (i.e., P), since the path strength usually denotes its
weakest link. However, we will not use the prefix 	 in this context, despite the fact
that this leads to some language awkwardness. (Compare also (5) and the following
comment.) The theory of affinity functions defined in terms of abstract linear order
relations is described in [17,18].
Proof. Let BðgÞ ¼
T1

j¼1

S
iPjAiðgÞ. Then, B(g0) # B(g) for every g0 > g.

So, the limit limg!0þBðgÞ exists and is equal to
S

g>0B(g). h

The limit notion lim� will be used when the algorithm Aeðf ; h;~pÞ
depends, in addition, on a parameter e > 0, in which case we will
use it for Aiðg; eÞ ¼ AeðF�Ci; h� g;~pÞ.

To prove that A ¼ lime!0þAe representsM, we will require that
the limit limy

i;g;eAiðg; eÞ ¼ limi;g;eyAeðF�Ci; h� g;~pÞ exists and is
dense in MðF; h;~pÞ, see page 13.
4. Gradient based edge-threshold delineation model M

In this section, we will analyze a gradient based thresholding
model MO and give a detailed proof that it is represented by the
absolute fuzzy connectedness algorithm of Udupa and Samarase-
kera [51] used with a gradient (homogeneity) based affinity. We
will also present an argument that the front propagation level
set algorithm of Malladi et al. [31] represents MO as well, thus
establishing an asymptotic equivalence between these two
algorithms.

In the modelMO, the edge (i.e., boundary) of the object P �X of
interest is identified as the set of points x at which the image inten-
sity, given by F, changes rapidly. Mathematically, this means that
at the edge points the gradient magnitude jOF(x)j of F is large. Of
course, this has a meaning only when the function jOF(x)j is well
defined, that is, when F is differentiable. (A possible meaning of
jOFj for non-differentiable F, and its implication to the presented
discussion, is outlined in Section 5.) Thus, for this model, we will
assume that F is of the class C1, that is, that F has continuous first
order partial derivatives. Also, ‘‘large gradient’’ will be interpreted
here ‘‘as greater than or equal to some threshold number h.’’ Thus,
the object of interest will be a connected component of the set
X(h) = {x 2X:jOF(x)j < h}. The component will be indicated by
some connected set S �X(h) of seeds, usually a single point or a
simple closed curve. This component is the result of applying the
model MO and parameters hh,Si to F, that is, it is equal to
MOðF; h; SÞ. Note that the continuity of the gradient implies that
this set is open. We will usually denote MOðF; h; SÞ as PF

Sh or just
PSh when F is clear from the context.

Next, we describe a characterization of PSh that can be naturally
translated into a numerical algorithm of its approximation. For
this, we need the following definitions. A path p in X is any contin-
uous injection from an interval [a,b] into X. We say that a path p is
from S # X to x 2X provided p(a) 2 S and p(b) = x. In this model, a
strength10 l(p) of a path p:[a,b] ? X, which depends on F, is defined
as

lðpÞ ¼ sup
t2½a;b�

jOFðpðtÞÞj:

Notice that the compactness of [a,b] and the continuity of OF(x) im-
plies that l(p) = jOF(p(t0))j for some t0 2 [a,b].

Theorem 10. For every C1 image F : X! R‘, h 2 R, and a connected
set S �X(h), the object PSh is equal to the set of all x 2X for which
there exists a path p from S to x with l(p) < h.
Proof. Let x 2 PSh. To find an appropriate path, notice that PSh is
path connected, since it is a connected open subset of Rn. Thus,
for every s 2 S there exists a path p:[0,1] ? PSh from s to x. So, for
every t0 2 [0,1] we have jOF(p(t0))j < h, since p(t0) 2 PSh # X(h). In
particular, l(p) < h.

Conversely, let p:[a,b] ? X be a path from S to x with l(p) < h.
We need to show that x 2 PSh. Indeed, the range range(p) of p
(defined as range(p) = {p(t):t 2 [a,b]}) is connected (as a continuous
image of a connected set) and it intersects S. So, S [ range(p) �
X(h) is connected, and it must be a subset of PSh, since PSh

is the largest connected subset of X(h) containing S. So, x 2
range(p) � PSh. h
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The next, robustness, theorem tells us that the form of the ob-
ject PSh essentially does not depend on the choice of the seed set
S. This can be viewed as an invariance property of the model MO,
that is, a property that the model’s outcome remains unchanged
under some changes of the input. Interestingly, this is also a gen-
eral property of the fuzzy connectedness segmentation algorithms,
as shown in [40] (compare also [16, cor 2.7]), and its analog holds
true also for the algorithm AO described below.

Theorem 11. For every C1 image F : X! R‘, h 2 R, and non-empty
connected sets S, T �X(h),

PSh = PTh – ; if and only if there is a path p from S to T with
l(p) < h.

In particular, if T � PSh, then PSh = PTh.
Proof. ‘‘)’’ Let x 2 PSh = PTh. Then there are paths p1:[a,b] ? X
from S to x and p2:[b,c] ? X from x to T with l(pi) < h for i = 1,2.
Then p = p1 [ p2 is as desired.

‘‘�’’ The set ;– S [ range(p) [ T �X(h) is connected, and PSh

and PTh intersect it. Therefore, since each of these sets is a
component of X(h), we must have PSh = PTh � S [ range(p) [ T. h

Another invariance property ofMO, stated precisely in the next
theorem, says that the output ofMO does not depend on the origin
and the orientation of the coordinate system imposed on X. This is
a desirable property, since, in most cases, this is what we would
expect from the model, while in the practical processes of acquisi-
tion of digital approximations of the real images/objects, we usu-
ally cannot insure precise and consistent alignment of the objects
with the acquisition equipment.

Theorem 12. Model MO is invariant on the distance preserving
transformations of the image domain in the sense that, for every
distance preserving transformation (isometry) i of Rn, differentiable
image F : X! R‘, h 2 R, and a seed set S �X,

MOðF 
 i; h; i½S�Þ ¼ i½MOðF; h; SÞ�;

where F 
 i is a composition of i restricted to i�1(X) and F. In particular,
MO is invariant to translation and rotation of the image.
Proof. This follows easily from the fact that the gradient magni-
tude remains unchanged under isometrical transformation of the
function domain: jOFj(i(x)) = jO(F 
 i)j(x). h
11 For n = 2 we get 8-adjacency for any a 2 ½
ffiffiffi
2
p

h;2hÞ (so, also for a ¼
ffiffiffi
3
p

h), while for
n = 3 the 26-adjacency results for any a 2 ½

ffiffiffi
3
p

h;2hÞ.
4.1. First algorithm representing model MO: gradient based Udupa-
Samarasekera AFC algorithm AO

We start here by describing a general form of the absolute fuzzy
connectedness, AFC, algorithm of [51]. It is used to delineate the
images identified with the intensity functions f from the finite sub-
set C of Rn into R‘. The elements of C are referred to as spels.

We will think of f as a restriction of some idealized image
F : X! R‘ to a subset C of X. In most practical applications, C is
a subset of a rectangular grid ðhZÞn ¼ fhk : k 2 Zgn which, in terms
of the idealized image, can be defined as C ¼ Xh ¼ X \ ðhZÞn. (In
fact, for algorithmic implementation, it is usually assumed that
h = 1, that is, that C � Zn. This does not change the essence of the
algorithm, since ðhZÞn and Zn can be naturally identified. Neverthe-
less, to describe the relation of the algorithm with the model, we
need to adhere to the assumption that C �X.) The special case
C = Xh is also easier to handle in the analysis that follows, so we
will give it special attention. We should also stress that, in the algo-
rithm that follows, we will never use the fact that f is a restriction
of an F. This fact will be used only to help our intuition and to ex-
press the convergence theorem. However, we will use X as a
parameter of the algorithm, unless C = Xh, in which case this
parameter will be dropped.

4.1.1. Adjacency relation
The domain C of the digital image f, for which X � C is fixed,

comes with an adjacency relation telling us which pairs c,d 2 C of
spels are adjacent, that is, close enough to be considered spatially
connected to each other. In this paper, we will assume that the
adjacency relation is expressed in terms of the Euclidean distance
in Rn as follows: for some constant a > 0, the spels c and d are said
to be adjacent provided kc � dk 6 a. We will assume that for every
h 2 (0,1]

a 2 ½h;n2h� if C ¼ Xh and h 6 rXðCÞ
ð2rXðCÞ;n2rXðCÞ� otherwise;

(
ð4Þ

where rX(C) is defined as in (1). Thus, in general, the choice of a de-
pends on the domain C of f and the set X. However, if C = Xh and h is
small enough (for example, if X contains a ball of radius nh), then
h 6 rX(C) and a 2 [h,n2h]. In particular, a does not depend on X in
this fundamental case. This is important, since the algorithm we
will construct depends on f and a. Thus, in the case when C = Xh

and h is reasonably small (in terms of size of X), we can assume that
the algorithm depends only on f. In the general case, however, X
will be also a parameter of the algorithm.

If C = Xh and a = h, then we deal with 4-adjacency for n = 2, and
with 6-adjacency for n = 3. If C = Xh and a ¼

ffiffiffi
3
p

h, then we deal
with 8-adjacency for n = 2, and with 26-adjacency for n = 3.11 The
idea behind the adjacency relation is to capture the blurring effect
of the ‘‘point spread function’’ of imaging devices; that is, that the
neighborhood size a should relate to the width of the point spread
function.

4.1.2. A path in a digital scene
The choice of a as in (4) ensures the following important prop-

erty, where B½T; e� ¼ fx 2 Rn : distðT; xÞ 6 eg is a generalized closed
ball in Rn centered at T � Rn and with radius e > 0. Recall that a
path p in C is any sequence hc1, . . . ,cki of spels in C, where consecu-
tive ci and ci+1 are adjacent; p is from c 2 C to d 2 C if c1 = c and
ck = d; it is from S � C to T � C if c1 2 S and ck 2 T.

Lemma 13. For every path p̂ : ½a; b� ! X from s 2 C to d 2 C and
e P 2na, if B½rangeðp̂Þ; e� � X, then there exists a path p = h c1, . . . , cki
in C from s to d which is contained in B½rangeðp̂Þ; e�.
Proof. First, assume that a 2 (2rX(C),n2rX(C)]. Let ê > rXðCÞ be
such that 2rXðCÞ < 2ê < a. Then, by the definition of number
rX(C), rangeðp̂Þ � X �

S
c2CBðc; êÞ. Define C0 ¼ fc 2 C : Bðc; êÞ\

rangeðp̂Þ–;g and let B ¼ fBðc; êÞ : c 2 C0g. Then
S
B is connected,

since it is a union of connected sets, each intersecting a connected
set rangeðp̂Þ �

S
B. Also

S
B � B½ rangeðp̂Þ; e� since each Bðc; êÞ 2 B

intersects rangeðp̂Þ and has diameter 2ê < a 6 e. Let D be the col-
lection of all balls Bðc; êÞ 2 B such that there exists a sequence
hc1, . . . ,cki in C0 from s to c for which kciþ1 � cik < 2ê for every
i = 1,2, . . . ,k � 1. Notice that D ¼ B.

Indeed, assume by way of contradiction that E ¼ B n D–;. Then
the sets

S
D and

S
E are non-empty and open. They cannot be

disjoint, since this would constitute a partition of a connected setS
B. So, there are balls Bðc; êÞ 2 D and Bðĉ; êÞ 2 E intersecting each

other. But this means that Bðĉ; êÞ 2 D, since this is justified by a
path hc1; . . . ; ck; ĉi, where hc1, . . . ,cki justifies that Bðc; êÞ 2 D. So,
E ¼ ; and indeed D ¼ B.
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Now, since Bðd; êÞ 2 B ¼ D, we conclude that there exists a
sequence p = hc1, . . . ,cki in C0 from s to d for which kciþ1 � cik <
2ê < a for every i = 1,2, . . . ,k � 1. This is our desired path.

Next assume that C ¼ Xh ¼ X \ ðhZÞn for an h 2 (0, rX(C)]. Put
ê ¼ h and let q be a max metric on Rn, that is,
q(x,y) = maxi=1,. . .,njxi � yij. Let C0 be the set of all c 2 C for which
the q-open ball Bqðc; êÞ ¼ fx 2 Rn : qðc; xÞ < êg intersects rangeðp̂Þ
and let bB be the family of all such balls. Notice that rangeðp̂Þ �

S bB
since for every x 2 Rn there exists a c 2 ðhZÞn such that q(c,x) < h
and if x 2 rangeðp̂Þ, then such a c belongs to C, since in such a case
we have c 2 B½ rangeðp̂Þ; e� \ ðhZÞn � X \ ðhZÞn ¼ C. So, as above,S bB is connected. Moreover,

S bB � B½rangeðp̂Þ; e� since each
Bqðc; êÞ 2 bB intersects rangeðp̂Þ and has diameter 2

ffiffiffi
n
p

ê < 2na 6 e.
Let D̂ be the collection of all q-balls Bqðc; êÞ 2 bB such that there
exists a sequence hd1, . . . ,dmi in C0 from s to c such that
qðdiþ1; diÞ < 2ê for every i = 1, 2, . . ., m � 1. The argument as above
shows that D̂ ¼ bB.

Now, since Bðd; êÞ 2 bB ¼ D̂, there exists a sequence hd1, . . . ,dmi
in C0 from s to d such that qðdiþ1; diÞ < 2ê for every i = 1, 2, . . .,
m � 1. Fix an i = 1, 2, . . ., m � 1 and note that q(di+1,di) 6 h. Since
the closed q-ball Bq½di;h� ¼ fx 2 Rn : qðdi; xÞ 6 hg is contained in
B½rangeðp̂Þ; e� and it contains di+1, there exists a path pi in
B½rangeðp̂Þ; e� \ ðhZÞn from di to di+1 where consecutive spels are
of distance h 6 a. Then the path p formed as a consecutive
sequence of all paths p1, . . ., pm�1 is as desired. h
4.1.3. Affinity function
Recall that any FC algorithm starts with an affinity function—a

symmetric function j defined on C � C for which the value j(c,d)
represents a strength of local connectedness of the spels c, d 2 C.
We will use here an approach similar to that from the paper
[17,18] and consider for affinity any symmetric function j from
C � C into any linearly ordered set hL,	i; however, in general, we
will not assume that j is reflexive (which, in [17,18], is expressed
as a property that j(a,b) 	 j(c,c) for every a,b,c 2 C). We drop
the assumption of reflexivity of j since only in this setting we
can find an FC-type of algorithm representing AO. Although this
change will restrict our ability to cite any prior results concerning
the FC theory results, this will be of no consequence to us, since we
will not use any such result. In this particular subsection we will
assume that hL,	i = h[0,1],Pi. Thus, the strongest connectedness
(in the sense of 	) will be given by the value 0, and the weakest
connectedness by 1. Note that in the literature usually only stan-
dard affinities are considered, that is, those with the range
hL,	i = h[0,1],6i and such that j(c,c) = 1 for every c 2 C. However,
any reflexive affinity j as above can be translated into a standard
affinity by a formula jr(c,d) = (gr
j)(c,d) = gr(j(c,d)), where
grðxÞ ¼ e�x2=r2 is a Gaussian function for some r > 0. In this situa-
tion affinities j and jr are naturally equivalent (lead to strongly-
equivalent algorithms) in a sense defined precisely in [17,18].

4.1.4. Digital path strength and AFC object
The affinity function j represents the main parameter of the FC

algorithms and can be defined differently for different applications.
In the algorithm AO, the definition of j will be based on the gradi-
ent approximation of f. In general, any AFC algorithm, includingAO,
depends on the definition of j as follows. The strength of a path
p = hc1, . . . ,cki in C is defined as the 	-weakest link in p, that is,

lðpÞ ¼ max
i¼1;...;k�1

jðci; ciþ1Þ: ð5Þ

For h 2 R and a seed s 2 C, we define the AFC object Psh as

fc 2 C : there is a path p in C from s to c with lðpÞ < hg:

In other words, if we denote our algorithm by a symbol AO, then
AOðf ; h; sÞ ¼ Psh. Our goal is to show that, for an appropriately de-
fined function j, this algorithm represents a segmentation model
MO. Notice that if l̂ðpÞ equals mini=1, . . ., k�1 jr(ci,ci+1) and we put
ĥ ¼ grðhÞ, then we have Psh ¼ fc 2 C : there is a path pfrom s
to c with l̂ðpÞ > ĥg. This is essentially the usual definition of an
AFC object defined with the use of the standard affinity jr, except
that we use here the strict inequality > rather than the more com-
mon P. This change is essential for the proof of our convergence
theorem.

4.1.5. Gradient based path strength
Our definition of j will be based on the formula jOf(c)j for the

approximation of the magnitude of the gradient of F at c. It will
have a property that, under appropriate assumptions on F, the limit
limrXðCÞ!0jOðF�CÞðcÞj converges uniformly to jOF(c)j in a sense that:
for every e > 0 and compact set B �X, there is a d > 0 such that for
every finite C �X with rX(C) < d and every c 2 C

kOFðcÞj � jOðF�CÞðcÞk < e when jOðF�CÞðcÞj 2 R ð6Þ

and

jOðF�CÞðcÞj 2 R when c 2 B \ C: ð7Þ

It is relatively easy to find such a formula for functions f defined on
the sets C = Xh. However, the general case is a bit technical, so we
will postpone the actual definition of jO f(c)j till Appendix A. In
the mean time, we will assume that jOf(c)j is already defined and
that it satisfies (6) and (7). From this, we define gradient based
affinity by a formula

jðc;dÞ ¼
maxfjOf ðcÞj; jOf ðdÞjg for adjacent c;d

1 otherwise:

�
ð8Þ

In particular, for the affinity defined this way, formula (5) for the
strength of a path p = hc1, . . . ,cki reduces to

lðpÞ ¼ max
i¼1;...;k

jOf ðciÞj: ð9Þ

The following theorem shows that the algorithm AO indeed repre-
sents the segmentation modelMO. Note that the assumption of uni-
form continuity of jOFj is satisfied if F is a restriction of a C1 function
defined on the closure cl(X) of X.

Theorem 14. Let F : X! R‘ be an idealized C1 image, where X is a
convex bounded open subset of Rn. Assume that jOFj is uniformly
continuous on X. Then for every h > h0 > 0, finite set C �X, and s 2 C,
there exists a d > 0 such that for every finite set D �X containing C for
which rX(D) < d, we have

C \ PF
sh0 #AOðF�D; h

0; sÞ# PF
sh:

In particular, if hCi � X : i 2 Ni 2 C0, then we have
lim�

i;gA
g
O
ðF�Ci; h; sÞ ¼ PF

sh \
S

iCi for every s 2 C1, where Ag
O
ðf ; h; sÞ ¼

AOðf ; h� g; sÞ.
Proof. Note that it is enough to find separately d0 > 0 and d00 > 0 for
which, respectively, the first and the second inclusions hold, since
then, the number d = min{d0,d00} guarantees both inclusions.

We will begin with the proof of the first inclusion. So, take a
c 2 C \ PF

sh0 . We will show that there is a dc > 0 such that, for all
finite D �X,

c 2 AOðF�D; h0; sÞ prov ided C # D and rXðDÞ < dc:

This will do, since then d0 ¼ minfdc : c 2 C \ PF
sh0 g is as desired.

By Theorem 10, there is a path p̂ : ½a; b� ! X from s to c with
lðp̂Þ < h0. Then the range rangeðp̂Þ of p̂ is contained in the set PF

sh0 .
Since rangeðp̂Þ is a compact subset of an open set PF

sh0 , there exists
an e > 0 such that the closed ball B ¼ B½rangeðp̂Þ; e� ¼
fx 2 Rn : distðrangeðp̂Þ; xÞ 6 eg is a subset of PF

sh0 . Since jOF(x)j < h0

for every x 2 PF
sh0 , the compactness of B½rangeðp̂Þ; e� insures that



12 In the plane, it is a smooth simple closed curve.
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there exists an ê > 0 such that jOFðxÞj < h0 � ê for every
x 2 B½rangeðp̂Þ; e�. By (6) and (7), there exists a dc 2 (0,e/2n3) such
that, for every finite D �X with rX(D) < dc,

jOFðxÞj � jOðF�DÞðxÞjj j < ê for every x 2 B \ D:

To see that dc is as desired, take a finite subset D of X containing C
with rX(D) < dc < e/2n3. Then e > 2n3 rX(D) P 2na since, by (4),
a 6 n2 rX(D). So, by Lemma 13, there exists a path p = hc1, . . . ,cki in
D from s to c contained in B ¼ B½rangeðp̂Þ; e�. To see that c belongs
to AOðF�D; h0; sÞ, it is enough to show that l(p) = maxi=1, . . ., k

jO(F(D)(ci)j < h0. But jOðF�DÞðciÞj 6 OðF�DÞðciÞj � jOFðciÞjj jþ
jOFðciÞj < êþ ðh0 � êÞ ¼ h0 for every i = 1, . . ., k. This finishes the
proof of the first inclusion.

For the second inclusion, put e = (h � h0)/2. Since jO F(x)j is
uniformly continuous on X, there is a d1 > 0 such that jjOF(c)j � jO
F(x)jj < e for every c, x 2X with kx � ck 6 d1. Use (6) to find a
d00 2 (0,d1/n2) such that for every finite D �X with rX(D) < d00 and
every c 2 D

jOFðcÞj � jOðF�DÞðcÞjj j < e provided jOðF�DÞðcÞj 2 R:

To see that for such chosen d00 the second inclusion holds, take set D as
above, choose a c 2 AOðF�D; h0; sÞ, and let p = hc1, . . . ,cki be a path in D
from s to c such that l(p) = maxi=1,. . .,k jO(F(D)(ci)j < h0. Let
p̂ : ½0;1� ! Rn be a path from c1 = s to ck = c which is a linear segment
between any two consecutive spels in p. Then rangeðp̂Þ � X, sinceX is
convex and contains all spels ci. We will show that
lðp̂Þ ¼ supt2½0;1�jOFðp̂ðtÞÞj < h, which will prove that c 2 PF

sh. Thus, let
x = p(t) be on the segment joining ci and ci+1. Notice that kx � cik 6
kci+1 � cik 6 a 6 n2rX(D) < n2 d00 < d1, so jjO F(ci)j � jOF(x)jj < e. But
jOF(ci)j 6 jjO F(ci)j � jO(F( D)(ci)jj + jO(F( D)(ci)j < e + h0, since
jO(F(D)(ci)j 6 l(p) < h0. Therefore, as kx � cik < d1,

jOFðxÞj 6 jOFðxÞj � jOFðciÞjj j þ jOFðciÞj < eþ ðeþ h0Þ ¼ h;

which finishes the proof of the second inclusion.
Let C =

S
iCi. To show that lim�i;gAOðF�Ci; h� g; sÞ ¼ PF

sh \ C for
appropriate Ci’s and s, notice that, by what we have proved, for
every g > 0 and i, there exists an i0 > i such that, for every j > i0, we
have

Ci \ PF
s;h�g #AOðF�Cj; h� g; sÞ# PF

sh \ C:

So, Ci \ PF
s;h�g #

T1
j¼1

S
kPjAOðF�Ck; h� g; sÞ# PF

sh \ C for every g > 0
and i. Hence PF

s;h�g \ C #
T1

j¼1

S
kPjAOðF�Ck; h� g; sÞ# PF

sh \ C. Thus,

PF
s;h \ C ¼

[
g>0

PF
s;h�g \ C #

[
g>0

\1
j¼1

[
kPj

AOðF�Ck; h� g; sÞ# PF
sh \ C:

So, equation lim�
i;gAOðF�Ci;h�g;sÞ¼

S
g>0

T1
j¼1

S
kPjAOðF�Ck;h�g;sÞ¼

PF
sh\C holds by Proposition 9. h

Theorem 14 together with the construction presented in Appen-
dix A leads to the following corollary.

Corollary 15. The gradient based AFC algorithm AO represents the
segmentation model MO in terms of sequences from C0 and for the
class of all functions F from convex bounded open subsets of X of Rn

into R‘ which can be extended to a C1 function defined on an open set
X containing cl(X).

The algorithm AO is robust in the sense of Theorem 11. On the
other hand, AO is not invariant on either translation or rotation, in
the sense of Theorem 12: if i is an isometry of Rn and f̂ is a compo-
sition of i restricted to bC ¼ i�1ðCÞ with the digital image f : C ! R‘,
then AOðf̂ ; h; i½S�Þ need not be equal to i½AOðf ; h; SÞ�. However, if
f = F(C for an idealized image as in Corollary 15, then the outputs
of the algorithm applied to a transformed image, AOðf̂ ; h; i½S�Þ, and
the transformed output of the algorithm applied to the original
image, i½AOðf ; h; SÞ�, converge to the same object, as the resolution
of the image improves (i.e., when rX(C) ? 0). This is obviously
important and a very desirable property.

4.1.6. Why complicated limit lim�?
In Theorem 14, we proved that algorithm AO represents model

MO with respect to the limit notion lim�. Does this representation
result hold for a simple limit? The following example shows that
the answer to this question is negative. More precisely, we describe
an image F for which the limit L ¼ limiAOðF�X2�i ; h; sÞ exists but its
closure is considerably larger thanMOðF; h; sÞ. It is also possible to
construct a C1 function F for which the limit L does not exist. How-
ever, such an example must be more complicated than the one pro-
vided below.

Example 16. Let X = (�1,1)2, F(x,y) = x � x3, s = h.5,0i, and h = 1.
Then MOðF; h; sÞ ¼ ð0;1Þ � ð�1;1Þ, while L ¼ limiAOðF�X2�i ; h; sÞ
exists and is dense in the entire X.
Proof. Note that jOF(x,y)j = 1 � 3x2 on X. It has a maximum value
1 attained on a line x = 0. Then indeedMOðF; h; sÞ ¼ ð0;1Þ � ð�1;1Þ.
Moreover, for every i P 1;AOðF�X2�i ; h; sÞ ¼ X2�i , since jOF�X2�i jðcÞ
is always less than the maximum value h = 1 of jOFj on X. (This
follows from (A.1), (A.2), and the Mean Value Theorem, as

jOF�X2�i jðcÞ ¼ j Fðx1 ;0Þ�Fðx2 ;0Þ
x1�x2

j ¼ j1� x3
1�x3

2
x1�x2

j < 1 for some hx1;0i;
hx2;0i 2 X2�i .) Thus, L ¼

S
iX2�i exists and is dense in X. h
4.2. Second algorithm representing model MO: Malladi–Sethian–
Vemuri level set algorithm ALS

In this subsection, we will argue that the level set algorithm ALS,
which is essentially the fast marching algorithm described by Mal-
ladi et al. [31] (compare with [44, Chapter 17]), represents the seg-
mentation model MO in terms of sequences from CR and for the
appropriate class of C1 functions F : X! R‘. (The representation
is only in terms of rectangular scenes forming CR, since the algo-
rithm of [31] is described only for the rectangular grids.) Thus, both
algorithms AO and ALS are asymptotically equivalent in terms of
sequences from CR. We use in the above the term ‘‘argue’’ rather
than ‘‘proof,’’ since some parts of the argument are left as conjec-
tures, that is, without a full proof.

The level set delineation model MLS of the idealized image is
described in terms different from the model MO. Thus, we will
start with its description. The modelMLS is applied to an ideal im-
age F : X! R, where X is an open convex bounded subset of Rn.
Basically, to use MLS we pick a smooth simple closed surface C0

(diffeomorphic with the ðn� 1Þ-dimensional sphere)12 inside the
region that is to be delineated—it plays the role of a seed—and then
we let C0 propagate outward until it reaches the boundary of the re-
gion we seek. The propagation is controlled by the speed function v
which indicates at every point z on the front (i.e., on the current po-
sition of the propagated surface) the speed v(z) at which this point
propagates in the direction normal to the front. The set of points
in X that are eventually inside the propagating front represents
the output of MLS. More precisely, if Rt represents the set of points
of X that are strictly inside the front Ct at a time t P 0, then MLS

equals
S

tP0Rt. The front Ct at time t P 0 is represented as the zero
level set {z 2X: W(z, t) = 0} for some function W : X� ½0;1Þ ! R. To
make region Rt inside the front easier to identify, it is also assumed
that W is negative inside Ct and non-negative outside Ct. In other
words, Rt = {z 2X: W(z, t) < 0}. In [31], the authors define W at time
t = 0 as a signed distance from C0, that is, W(z,0) = dist(z,C0) for z
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outside C0, and W(z,0) = �dist(z,C0) for z inside C0. Then, they find
W : X� ½0;1Þ ! R extending w(�,0) as a solution of a PDE described
below.

The boundary of the object is defined as the set of points where
the image intensity changes rapidly, that is, when the magnitude of
the gradient jOFj is ‘‘large.’’ To force the front propagation ‘‘. . . to
stop in the vicinity of the desired objects’ boundaries. . . ’’ the prop-
agation speed v is defined in such a way that v goes to zero precisely
when jOFj approaches the ‘‘large’’ threshold value h 2 (0,1].13

Neither ‘‘large value’’ h nor formula for v is uniquely defined in
[31]. Formulas (13) and (16) from [31] suggest that the speed should
be reduced to zero at the points z 2X when jOFj(z) is equal to the
maximum M of jOFj on X, which means that h = M. (The authors of
[31] do not explain why such maximum should exist.) Alternatively,
formulas (14), (15), and (17) from [31] suggest that the speed should
be a product of a positive factor independent of F and a number of the
form (1 + jOFj)�1; that is, the propagation speed should go to zero
only as jOFj goes to 1, meaning that h =1. The first from these op-
tions suggests that MLSðF;C0Þ is equal to MOðF;M;C0Þ. The second
makes MLSðF;C0Þ equal MOðF;1;C0Þ which, for C1 function F, is
equal to the entire X. To stop the algorithm associated with
MLSðF;C0Þ ¼ MOðF;1;C0Þ, the authors introduce the maximum
number of algorithm iterations (see [31, page 164]). In the work
presented below, we reconcile both of these approaches by making
the value of MLS dependent on h and by reducing the propagation
speed v to 0, when jO Fj reaches h. As an example, we take
v(x) = (jO Fj(x) � h)2. Then, we define MLSðF; h;C0Þ as the set of all
points of X that are eventually inside the propagating curve, that
is,MLSðF; h;C0Þ ¼

S
tP0Rt .

This general setup allows us to relate models MO and MLS as
follows.

Lemma 17. MLSðF; h;C0Þ � MOðF; h;C0Þ for every C1 image
F : X! R‘, h 2 R, and smooth simple closed surface C0 such that
C0 [ R0 �MOðF; h;C0Þ.

The assumption C0 [ R0 �MOðF; h;C0Þ ensures that every point
z of the initiation set C0 [ R0 satisfies the thresholding condition
jOF(z)j < h.

Proof. For h 6 0, the assumption C0 �MOðF; h;C0Þ is false and
there is nothing to prove. So, assume that h > 0. ThenMLSðF; h;C0Þ
is connected, since it is a union of connected sets C0 [ R0 and the
trajectories of points z 2 C0. Thus, it is enough to prove that
MLSðF; h;C0Þ is a subset of X(h) = {x 2X:jOF(x)j < h}, asMOðF; h;C0Þ
is the largest connected subset of X(h) containing C0. To see that
MLSðF; h;C0Þ is contained in X(h), first note that

vðzÞ–0 for every z 2MLSðF; h;C0Þ: ð10Þ

Indeed, take a z 2X with v(z) = 0. Then, by our assumption, z R R0.
Let t̂ ¼ supft P 0 : z R Rtg. If t̂ ¼ 1, then z RMLSðF; h;C0Þ as desired.
If t̂ <1, then z belongs to Ct for every t P t̂, since the speed of
propagation of front at z is 0. Then, once again, z RMLSðF; h;C0Þ, fin-
ishing the proof of (10).

Now, property (10) implies that jOF(z)j– h for every
z 2MLSðF; h;C0Þ. If there was a point z 2MLSðF; h;C0Þ with
jOF(z)jP h, then the open sets fz 2 MLSðF; h;C0Þ : jOFðzÞj < hg
and fz 2MLSðF; h;C0Þ : jOFðzÞj > hg would be non-empty and
they would form a partition of MLSðF; h;C0Þ, contradicting its
connectedness. Therefore, MLSðF; h;C0Þ � XðhÞ and MLSðF; h;C0Þ
� MOðF; h;C0Þ. h
13 The quote comes from the first paragraph of [31, Section III]. A similar statement
can be also found in [44, p. 220].
The above proof is topological in nature. The other inclusion is
also true, but its proof depends on some missing details concerning
the definition ofMLS. In particular, we need to clarify the meaning
of front propagation, as described in [31]. For every point z 2 C0, let
Tz:[0,1) ? X be a trajectory of z propagated according to the rules
described above. Then W(Tz(t),t) = 0 for every z and t. So, its deriv-
ative d

dt WðTzðtÞ; tÞ ¼ 0 is also equal to 0. By using chain rule, it is
easy to transform this last equation (see [31] or [44]) to
@W
@t ðTzðtÞ; tÞ þ vðTzðtÞÞ � jOWjðTzðtÞ; tÞ ¼ 0, where the gradient OW
concerns only spatial variables. In particular, any solution of the
PDE

@W
@t
ðx; tÞ þ vðxÞ � OWj jðx; tÞ ¼ 0; x 2 X; t P 0 ð11Þ

with the initial condition W(�, 0) = W0 leads to the unique front
propagation and the model MLS.

Finding a solution to (11) is not a simple matter since, even in
very simple cases, it does not need to have a smooth solution.
(See e.g. [44].) However, it always has a weak solution, that is,
one that satisfies (11) at all points at which it is differentiable.
Although, a weak solution does not need to be unique, the viscosity
solution, introduced by Crandall and Lions [23], is unique and this is
the solution of (11) chosen in [31].

The viscosity solution of (11) is defined in [31] as a limit
W ¼ lime!0þWe, where We is a solution of

@W
@t
þ ð1� eKÞv � jOWj ¼ 0; Wð�;0Þ ¼ W0; ð12Þ

where K ¼ O � OW
jOWj, the divergence of the unit normal vector OW

jOWj to
the front, is the curvature of the level surface. The theoretical value
of this approach is based on the results summarized in the following
proposition, which can be found in [26].

Proposition 18. The PDE (12) has a global smooth solution for
smooth C0. Moreover, the solutions We of (12) converge, as e goes to 0,
to the viscosity solution W for (11).

Using Proposition 18 we can prove the equality between models
MO and MLS.

Theorem 19. MLSðF; h;C0Þ ¼ MOðF; h;C0Þ for every C1 image
F : X! R‘, h 2 R, and smooth simple closed surface C0 such that
C0 [ R0 �MOðF; h;C0Þ.
Proof. Inclusion MLSðF; h;C0Þ � MOðF; h;C0Þ was proved in
Lemma 17. To prove the other inclusion, let W be the viscosity
solution of (11). Its existence is guaranteed by Proposition 18. Take
a z 2 MOðF; h;C0Þ. We need to show that z 2MLSðF; h;C0Þ, that is,
that there exists a t P 0 for which W(z, t) < 0.

Let X0 be an open region containing {z} [ C0 [ R0 with its
closure cl(X) contained in X. (For example, if P is a path in X from z
to C0, and d > 0 is a distance from P [C0 [ R0 to the complement
Rn nX of X, then X0 can be defined as the set of all x 2X with the
distance from P [ C0 [ R0 being <d/2.) Let v0 = inf{v(x):x 2 cl(X)}.
Since cl(X) is a compact subset of X and v is positive on X, we have
v0 > 0.

Let U : Rn � ½0;1Þ ! R be the viscosity solution of the bound-
ary value problem @U

@t ðx; tÞ þ v0 � jOUjðx; tÞ ¼ 0 with the boundary
condition U(�,0) being the signed distance from C0. (So, U(�,0)
coincides with W(�,0) on X.) This equation represents a constant
speed front propagation. The existence of U is, in particular,
guaranteed by Proposition 18.

Notice that U satisfies jOUj(x, t) = 1 in the viscosity sense (so, for
almost all (x, t)). The explicit proof of this fact can be found in [11,
section 3], where the author notices that this result is implicitly
contained in [30, theorem 4.2]. Hence, from the PDE, we conclude
that @U

@t ðx; tÞ ¼ �v0, again in the viscosity sense. From here we
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obtain (compare [11, lemma 4.4]) the equation U(x, t) =
U(x,0) � v0t for all (x, t). In particular, for every x there is a tx > 0
with U(x, tx) < 0.

Now, since W is a viscosity of (11), it is also a viscosity of (11)
when restricted to X0, since the definition of a viscosity is local in
its nature. (See [26].) Similarly, U restricted to X0 is a viscosity of
@U
@t ðx; tÞ þ v0 � jOUjðx; tÞ ¼ 0 with the same boundary condition.
Moreover, since v(x) P v0 on X0, U is a supersolution of (11) on
X0. (Compare [11, lemma 3.1].) Therefore, W 6U on X0 � [0,1).

Finally, since z 2X0, we conclude that W(z, tz) 6U(z, tz) < 0, that
is, that indeed z 2 MOðF; h;C0Þ. h

The delineation algorithm ALS described in [31] depends on
e > 0 and finds its value from a numerical approximation for We.
In order to prove formally that ALS representsMLS, we should first
show that,

(�) Ae
LS representsMe

LS in terms of sequences from CR and for the
class F of C1 images with uniformly continuous gradient

in a sense that for every appropriate F : X! R‘, C0, and the param-
eters h, e, h > 0 the limit lim�

i;gA
e
LSðF�Xh=2i ; h� g;C0Þ exists and is a

dense subset of the modelMe
LSðF; h;C0Þ defined as {z 2X:we(z, t) < 0

for some t P 0}. This seems to follow from the general theory of
solving PDE’s by finite approximations. (We mean here the fact that
the numerical approximations, calculated by Ae

LS, convergence to
We. This, in general, may not immediately translate to a conver-
gence of the segmented objects, as indicated by Example 16. But,
the general setup of our limit structure actually ensures that this
will not be the issue in this case.) However, since we cannot point
out to any specific theorem that implies (�), we leave it here as a
conjecture and state the final corollary as a conditional statement,
that depends on (�).

Notice that Proposition 18 and Theorem 19 imply that
lime!0þMe

LS ¼MLS. Therefore, if we define Ae;g
LS ðf ; h;C0Þ ¼

Ae
LSðf ; h� g;C0Þ, then, for appropriate F, C0, and h, we have

limy
i;g;eA

e;g
LS ðF�Xh=2i ; h;C0Þ ¼ lime!0þMe

LSðF; h;C0Þ ¼ MLSðF; h;C0Þ. In
particular,

if ð�Þ holds true; then ALS represents MLS:

This can be rephrased as follows.

Corollary 20. Assume that (�) holds true. Then the algorithmsAO and
ALS are asymptotically equivalent in terms of sequences from CR and in
the class F of all C1 images F : X! R‘ having uniformly continuous
gradient and such that X � Rn is bounded, open, and convex. In this
class, both these algorithms represent model MO ¼MLS.
5. Experiments, discussion, and conclusions

5.1. Experiments

Having proved their model equivalence, we wanted to examine
how this equivalence is manifested in actual image segmentation
by using AO and ALS. So, we compared algorithms AO and ALS at
the experimental level. The goal in this paper is not really a formal
empirical evaluation of the segmentations in a comprehensive
manner. Therefore, we provide practical qualitative examples illus-
trating the stronger theoretical results. Figs. 1 and 2 demonstrate
the results from two experiments made on 2D images from two
medical applications.

In the first experiment, we applied the algorithms to a 2D T2-
weighted brain MR image (data obtained from the BrainWeb
repository [20]), Fig. 1a, to delineate the white matter object. The
image had 20% background non-uniformity and 3% noise [20].
The level set results, displayed in Fig. 1c, were obtained with a
version of the algorithm ALS implemented in the open source soft-
ware ITK [54]. This algorithm has four steps: (i) it applies a Gauss-
ian filter to the original image; (ii) it calculates the gradient
magnitude of the filtered image; and (iii) it applies to this image
f a non-linear filter and transforming it to f̂ by a formula
f̂ ðcÞ ¼ ðMax�MinÞ � ð1þ e�ðf ðcÞ�bÞ=aÞ þMin, where Min and Max are
the minimum and the maximum of the input image f, respectively,
and the parameter values that we used were a = �0.3 and b = 2. To
this modified image f̂ the curve propagation step is applied. The re-
sults of the application of the fuzzy connectedness algorithm AO to
the same image f̂ are presented in Fig. 1b. To make the comparison
fair, we calculated the path connectivity strength from the filtered
gradient image f̂ from step (iii) described above, rather than from
the original gradient magnitude image f. The subtle differences
seen in the delineated objects are due to different approximations
involved in the otherwise equivalent algorithms.

In the second experiment, depicted in Fig. 2, we applied the
same procedure as in the first experiment, and used algorithms
AO and ALS on a 2D chest CT image shown in Fig. 2a to segment
the liver. To make algorithm outputs easier to interpret, we include
in Fig. 2d the ‘‘true’’ segmentation of the liver from Fig. 2a, which
was manually drawn by an expert. Fig. 2b and c show the liver
delineated with algorithms AO and ALS, respectively. Most of the
holes which appear as black spots in the segmentation results of
Fig. 2b and c actually represent blood vessels inside the liver. Since
the manual segmentation did not exclude these regions (which is
really difficult and laborious to accomplish), we filled all topologi-
cal holes in the results of Fig. 2b and c. The results are displayed in
Fig. 2e and f. A behavior similar to that observed in Fig. 1 can be
seen in the results of the second experiment as well. The differ-
ences are due only to the different approximations involved in
the otherwise equivalent algorithms.

5.2. Differentiability issue

In models from the previous section, we assumed that the im-
age intensity function F is differentiable, so that the thresholding
function G(x) = jOFj(x) is well defined. However, the function
�GðxÞ ¼ lim supz!x

kFðzÞ�FðxÞk
kz�xk is always well defined and agrees with

G(x) whenever G(x) is well defined. Thus, in principle, we can de-
fine the model MO for arbitrary image intensity functions. How-
ever, in order to prove that AO represents MO, some version of
property (6) must be satisfied. Similarly, there is no chance for a
good behavior of ALS and MLS in a general setting. Nevertheless,
the representation theorem remains true if we require the limit
in �GðxÞ to exist, but allow it to be infinite. Moreover, the proof of
the representation results can be repeated under weaker assump-
tions than full continuity of �G.

5.3. General segmentation theory

The general theoretical framework formulated in Sections 2 and
3 sets up the stage for theoretical analyses and comparisons of dif-
ferent delineation and segmentation algorithms, independent of
the framework in which they were originally described. The com-
parison in Section 4 is just the first such example. We are currently
working on similar analysis concerning other segmentation meth-
ods: different forms of level set related algorithms, different ver-
sions of fuzzy connectedness algorithms, as well as algorithms
that use graph cut and watershed frameworks.

Our future work in this direction will also include the investiga-
tion of noisy digital images. Actually, allowing the random noise
component will hardly change the theory, if one treats digital
images as modeled via the formula from Remark 4, used with a
fixed Gaussian kernel K. However, for the arguments to work in
such a setting, it is necessary to assume that the noise level



Fig. 1. The white matter (the region with darker intensities) in a 2D T2-weighted brain MR image (left) delineated with AO (center) and ALS (right) algorithms.

Fig. 2. (a) A 2D chest CT image. (b) The liver in (a) delineated with algorithm AO . (c) Same as (b), but using algorithm ALS . (d) The ‘‘true’’ segmentation of the liver in (a)
delineated manually by an expert. (e)–(f) The same objects as in (b)–(c) from which we removed the 2D holes depicting blood vessels inside the liver.
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remains unchanged even when the resolution of digital image
acquisition increases. The most commonly occurring non-random
components of the image artifacts, viz., blur and background inten-
sity non-uniformity (a slow-varying image intensity component
that modulates the observed image intensity), can be modeled as

f ðcÞ ¼
R

Rn
bðxÞ½FðxÞ�Kðx�cÞ�R

Rn
KðxÞ

þ cðxÞ, where b and c model the background

variation component in a general manner. (In MR imaging, for
example, it is known that this component is multiplicative, so that
c(x) = 0.) We will use this representation of digital images in our
future extension of the framework presented in this paper.
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Appendix A. Gradient magnitude jfj

Let C ¼ Xh ¼ X \ ðhZÞn for some h > 0 and X � Rn, and let
f : C ! R‘ be a digital image. For i = 1, . . ., n let ei be the unit vector
in the direction of the ith variable. For c 2 C we define an approxi-
mate partial derivative Dif(c) with respect to the ith variable as1 if
none of the spels c ± h ei belongs to C and by a formula

Dif ðcÞ ¼max
f ðcÞ � f ðdÞ

h

���� ���� : d ¼ c � hei 2 C
� 	

; ðA:1Þ

otherwise. Then the approximation of the gradient magnitude is de-
fined as

jOf ðcÞj ¼ jhD1f ðcÞ; . . . ;Dnf ðcÞij ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

jDif ðcÞj2
vuut : ðA:2Þ
Lemma 21. Let F be a function from an open set X � Rn into R‘ and
assume that F can be extended to a C1 function bF defined on an open
set bX containing the closure cl(X) of X.

The formula given by (A.2) and (A.1) satisfies property (6): for
every e > 0 there is a d > 0 such that for every finite C �X with
rX(C) < d and every c 2 C

jOFðcÞj � jOðF�CÞðcÞjj j < e provided jOðF�CÞðcÞj 2 R;

and property (7). Moreover, the appropriate formula can be also found
in the general case.
Proof. For every index i = 1, . . ., n define a function qi from the set
Ui = {hx,yi 2 cl(X) � cl(X):xj = yj for all j – i} into R‘ by a formula

qiðx; yÞ ¼
bF ðxÞ�bF ðyÞ

xi�yi
if xi–yi;

Di
bF ðxÞ otherwise:

8<:
The existence and continuity of the partial derivative Di

bF implies
that qi is continuous on Ui. (The continuity at points hx,xi follows
from the Mean Value theorem.) In particular, since Ui is compact, jqij
is uniformly continuous. So, for every ê > 0 there is a di > 0 such that
for every c 2X

FðcÞ � Fðc þ h0eiÞ
h0

���� ����� jDiFðcÞj
���� ���� < ê ðA:3Þ

for every real number h0 with 0 < jh0j < di for which c + h0ei 2X.
Let Mi be the largest value between the numbers {jqi(x,y)j:

hx,yi 2 Ui}. It is finite, since Ui is compact. Let M = maxi=1, . . ., nMi.

Since function gðx1; . . . ; xnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ � � � þ x2
n

q
is uniformly continu-

ous on [0,M]n, there is an ê > 0 such that jg(x) � g(y)j < e for every
x,y 2 [0,M]n for which maxijxi � yij < ê. Let di be as above for this
particular ê and let d = mini di. Then this d satisfies (6). To insure (7)
it is enough to take d less than the distance between B and the
complement of X, since then h 6 rX(C) < d and for every c 2 B \ C
the numbers c ± hei are in C.

The idea behind the definition of jOf(c)j in the general case, as
well as the argument required to prove (6) and (7), are similar.
However, we need to use the directional derivatives in place of
partial derivatives. So, assume that for some c 2 C and for every
i = 1, . . ., n we have chosen ci 2 C such that the vectors ci � c are
linearly independent. Let ui ¼ ci�c

jci�cj be the unit vector in the
direction of ci � c. Then the directional derivative of F at c in the
direction of vector ui is equal to Dui FðcÞ ¼ ui � OFðcÞ. Let A be an n �
n matrix whose rows are formed by the coordinates of ui’s. Then
½Du1 FðcÞ; . . . ;Dun FðcÞ�T ¼ A � OFðcÞ, where OF(c) is considered as a
vertical matrix and T stands for matrix transposition operation.
Notice that A�1 exists, since vectors ui’s are linearly independent.
Thus, OF(c) = A�1�DuF(c), where DuFðcÞ ¼ ½Du1 FðcÞ; . . . ;Dun FðcÞ�T . Let
Dui f ðcÞ ¼

f ðciÞ�f ðcÞ
jci�cj , put Duf ðcÞ ¼ ½Du1 f ðcÞ; . . . ;Dun f ðcÞ�T , and define

Of ðcÞ ¼ A�1 � Duf ðcÞ:

Then jjOF(c)j � jOf(c)jj 6 jOF(c) � Of(c)j = jA�1�(DuF(c) � Duf(c))j.
Next, we will show that under some assumption on the choice of
vectors ui, there is a constant K such that

jA�1 �wj 6 Kjwj ðA:4Þ

for every vector w 2 Rn. So jjO F(c)j � jOf(c)jj 6 KjDuF(c) � Duf(c)j. By
the version of (A.3) for arbitrary directional derivative, there exists a
d0 > 0 such that jDuF(c) � Duf(c)j < e/K whenever jci � cj < d0. Thus, to
finish the proof, we need to describe the choice of ci’s that insures
(A.4) and the inequality jci � cj < d0 whenever rX(C) < d.

So, let r = rX(C). For every c 2 C and i = 1, . . ., n, we will chose
ci 2 C in a ball B(c + 2nrei,r) if it exists. Otherwise we will put
Duf(c) =1. Note that, by the definition of rX(C), such ci exists when
c + 2nrei 2X and that this happens for every c 2 B provided the
distance q from B to the complement of X exceeds 2n rX(C). Thus,
to insure (7) it is enough to choose d < q/2n. Now, this choice of ci

insures that for ui ¼ ci�c
jci�cj ¼ hu1

i ; . . . ;un
i i we have ui

i

�� ��=n > uj
i

��� ��� for all

j – i. It is not very difficult to see that this condition implies (A.4).

Indeed, first note that for A defined with such ui’s we have

jA � vjP 1
2n2 jv j:

To see this, let i be such that jvijP jvjj for all j. For simplicity of nota-
tion, we assume that i = 1. Then, since ju1

1j > 1=2 and jvj 6
ffiffiffi
n
p
jv1j,

jA � v j ¼
X

j

uj
1v j; . . . ;

X
j

uj
nv j

* +�����
�����

P
X

j

uj
1v j

�����
�����

P u1
1v1

�� ��� u2
1v2

�� ��þ � � � þ un
1vn

�� ��
 �
P u1

1v1

�� ��� ðn� 1Þ u1
1

�� ��=n

 �

jv1j
¼ u1

1

�� ��jv1j=n > jv1j=2n

P
1

2n2 jvj:

Now, putting v = A�1�w in the above inequality we get
jwj 6 1

2n2 jA�1 �wj, that is, (A.4) holds for K = 2n2. h
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