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a b s t r a c t

Affinity functions — the measure of how strongly pairs of adjacent spels in the image hang together —
represent the core aspect (main variability parameter) of the fuzzy connectedness (FC) algorithms, an
important class of image segmentation schemas. In this paper, we present the first ever theoretical anal-
ysis of the two standard affinities, homogeneity and object-feature, the way they can be combined, and
which combined versions are truly distinct from each other. The analysis is based on the notion of equiv-
alent affinities, the theory of which comes from a companion Part I of this paper (Ciesielski and Udupa, in
this issue) [11]. We demonstrate that the homogeneity based and object feature based affinities are
equivalent, respectively, to the difference quotient of the intensity function and Rosenfeld’s degree of
connectivity. We also show that many parameters used in the definitions of these two affinities are
redundant in the sense that changing their values lead to equivalent affinities. We finish with an analysis
of possible ways of combining different component affinities that result in non-equivalent affinities. In
particular, we investigate which of these methods, when applied to homogeneity based and object-fea-
ture based components lead to truly novel (non-equivalent) affinities, and how this is affected by differ-
ent choices of parameters. Since the main goal of the paper is to identify, by formal mathematical
arguments, the affinity functions that are equivalent, extensive experimental confirmations are not
needed — they show completely identical FC segmentations — and as such, only relevant examples of
the theoretical results are provided. Instead, we focus mainly on theoretical results within a perspective
of the fuzzy connectedness segmentation literature.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction and preliminaries we will understand a pair hZn;ai, where a is an adjacency relation.
The subject of this article is to study the notion of affinity, the
main variability parameter of the image segmentation method
known as Fuzzy Connectedness (FC), see [38,36,13]. Since this pa-
per is a second part of the study, we refer the reader to its first part
[11] for an overview of the segmentation literature and the role
that FC plays within. Similarly, we will present below only the
minimum preliminaries needed to follow this paper, referring to
[11] for more detailed discussion.

1.1. Fuzzy connectedness framework

Digital space: Let n P 2 and let Zn stand for the set of all n-tu-
ples of integer numbers. By an n-dimensional fuzzy digital space
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We will assume in what follows that the adjacency relation a is de-
fined as aðc; dÞ ¼ v½0;1�ðkc � dkÞ; that is, aðc; dÞ ¼ 1 when kc � dk 6 1
and aðc; dÞ ¼ 0 for kc � dk > 1, where kc � dk represents the Euclid-
ean distance between c and d. a represents 4-adjacency in two-
dimensional space and 6-adjacency in three-dimensional space.
The elements of the digital space are called spels. (For n ¼ 2 also
called pixels, while for n = 3 � voxels.)

Digital scene: A scene over a fuzzy digital space hZn;ai is a pair
C ¼ hC; f i, where C ¼

Qn
j¼1½�bj; bj� � Zn, each bj > 0 being an inte-

ger, and f : C ! R is a scene intensity function.3 The value of f repre-
sents either the original acquired image intensity or an estimate of
certain image properties (such as gradients and texture measures)
obtained from the given image.

Affinity: The notion most important for this paper is that of an
affinity function. Let � be a linear order relation [10] on a set L
and let C be an arbitrary finite non-empty set, representing a do-
main of a scene intensity function. We say that a function
j : C � C ! L is an affinity function (from C into hL;�i) provided j
3 For simplicity, we will restrict our attention to scalar valued images. However, all
presented results can be generalized to the vectorial images.

http://dx.doi.org/10.1016/j.cviu.2009.09.005
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is symmetric (i.e., jða; bÞ ¼ jðb; aÞ for every a; b 2 C) and
jða; bÞ � jðc; cÞ for every a; b; c 2 C. Since jðd; dÞ � jðc; cÞ for every
c; d 2 C, there exists an element in L, which we will denote by a
symbol 1j, such that jðc; cÞ ¼ 1j for every c 2 C. Notice that 1j is
the largest element of Lj ¼ fjða; bÞ : a; b 2 Cg, although it does
not need to be the largest element of L. In what follows, the strict
inequality related to � will be denoted by �, that is, a � b if and
only if a � b and a–b.

We say that j is a standard affinity provided hL;�i ¼ h½0;1�;6i
and 1j ¼ 1. We will also use extensively order
hL;�i ¼ h½0;1�;Pi, in which case the order relation � is the re-
versed standard order relation P. In such a setting, ‘‘�-stronger”
means ‘‘less than” in terms of the standard order6. Also, the mean-
ings of the terms min and max are switched: ‘‘min in terms of �”
means ‘‘max in terms of 6,” and ‘‘max in terms of �” becomes
‘‘min in terms of 6.” For example, the �-minimum of a set
S = {.1, .5, .7} is equal to .7 (since :7 � :5 and :7 � :1), while .7 is
the maximum of S in the standard order 6. We will use symbol 1
for denoting the � largest number of these sets, that is, 1 = 1 for
h½0;1�;6i and 1 = 0 for h½0;1�;Pi.

Affinity as an operator: The affinity function is usually associated
with each scene C according to some specific rule, such as
jðc; dÞ ¼ e�kf ðcÞ�f ðdÞk2

for all adjacent c; d 2 C. (See Section 2.) In such
a case, we can treat the rule of such association as an operator
hC; pi#K j ¼KðC; pÞ, where p represents all parameters of the
affinity function like the expected scene intensity for the object.

Paths and connectivity measure: Fix an affinity j : C � C ! hL;�i.
To define fuzzy connectedness segmentation of C, we need first to
translate the local measure of connectedness given by j into the
global strength of connectedness. For this, we will need the notions
of a path and its strength.

A path in A # C is any sequence4 p ¼ hc1; . . . ; cli, where l > 1 and
ci 2 A for every i ¼ 1; . . . ; l. (Notice that there is no assumption on
any adjacency of the consecutive spels in a path.) The family of all
paths in A is denoted by PA. If c;d 2 A, then the family of all paths
hc1; . . . ; cli in A from c to d (i.e., such that c1 ¼ c and cl ¼ d) is denoted
by PA

cd. The strength ljðpÞ of a path p ¼ hc1; . . . ; cli 2 PC is defined as
the strength of its j-weakest link; that is,
ljðpÞ ¼

def minfjðci�1; ciÞ : 1 < i 6 lg. (Note that, if one follows the com-
mon practice of definingjðc;dÞ to be the minimal element of Lj for any
non-adjacent c and d, then only paths with adjacent consecutive spels
can have non-minimal strength.)

For c; d 2 A # C, the (global) j-connectedness strength in A be-
tween c and d is defined as the strength of a strongest path in A be-
tween c and d; that is,

lA
jðc;dÞ ¼

def maxfljðpÞ : p 2 PA
cdg: ð1Þ

Notice that lA
jðc; cÞ ¼ ljðhc; ciÞ ¼ 1j. We refer to lA

j : C � C ! L as a
connectivity measure (on A) induced by j. For c 2 A � C and a non-
empty D � A, we also define lA

jðc;DÞ ¼
def maxd2DlA

jðc; dÞ. We will
write l for lj and lA for lA

j when j is clear from the context.
The issue of why lA

j should be defined from j by the procedure de-
scribed above is discussed in detail in [30].

FC segmentations: To define fuzzy objects delineated by FC seg-
mentations, we start with a family S of non-empty pairwise dis-
joint subsets of C, where each S 2 S represents a set of spels,
known as seeds, which will belong to the object generated by it.
Also, fix a threshold h 2 L; h 6 1j. For every S 2 S, put
W ¼

S
ðS n fSgÞ and, similarly as in [13] (see also [37]), define

� Pj
Sh ¼ fc 2 C : h � lC

jðc; SÞg;
4 Notice that the paths must have length greater than 1. We make this requirement
to ease some technical difficulties, while it creates no real restriction as, in whatever
we do, a ‘‘path” hci can be always replaced by a path hc; ci.
� Pj
SS ¼ fc 2 C : lC

jðc;WÞ � lC
jðc; SÞg;

� PIj
SS ¼

S1
i¼0Pi;j

SS , where sets Pi;j
SS are defined inductively by P0;j

SS ¼ ;
and Piþ1;j

SS ¼ Pi;j
SS [ fc 2 C n Pi;j

SS : lCnPi;j
SS

j ðc;WÞ � lC
jðc; SÞg.

Then absolute fuzzy connectedness AFC, relative fuzzy connect-
edness RFC, and iterative relative fuzzy connectedness IRFC seg-
mentations of C are defined, respectively, as Ph

jðSÞ ¼
fPj

Sh : S 2 Sg;PjðSÞ ¼ fPj
SS : S 2 Sg, and PI

jðSÞ ¼ fP
Ij
SS : S 2 Sg.

Notice that an AFC object Pj
Sh consists of all spels connected with

at least one seed s in S with the j-connectivity strength at least h. An
RFC object is created via competition of seeds for each spel: a spel c
belongs to Pj

SS provided there is a seed s in S for which the j-connec-
tivity between c and s exceeds the j-connectivity between c and
any other seed indicating another object. Finally, IRFC objects are
obtained by refining the RFC competition in an iterative manner.

1.2. Affinity equivalence: definition and results

We say that the affinities j1 : C � C ! hL1;�1i and
j2 : C � C ! hL2;�2i are equivalent (in the FC sense) provided, for
every a; b; c; d 2 C

j1ða; bÞ�1j1ðc; dÞ if and only if j2ða; bÞ�2j2ðc; dÞ:

The affinity operators K1 and K2 are equivalent provided the asso-
ciated affinities j1 ¼K1ðC; pÞ and j2 ¼K2ðC; pÞ are equivalent for
all scenes C and appropriate parameters p.

In the following characterization of equivalent affinities 	
stands for the composition of functions, that is,
ðg 	 j1Þða; bÞ ¼ gðj1ða; bÞÞ.

Proposition 1 [11, Prop. 1 and Cor. 2]. Affinity functions
j1 : C � C ! hL1;�1i and j2 : C � C ! hL2;�2i are equivalent if and
only if there exists a strictly increasing function g from hLj1 ;�1i onto
hLj2 ;�2i such that j2 ¼ g 	 j1.

In particular, if j : C � C ! h½0;1�;Pi is an affinity, then, for
every strictly decreasing function g from ½0;1� onto [0,1], a map
g 	 j : C � C ! h½0;1�;6i is an affinity equivalent to j.

The following results show that equivalent affinities are indis-
tinguishable in the FC segmentation framework: if any two equiv-
alent affinities are used in the same FC schema to produce two
versions of the algorithm, then these algorithms lead to identical
segmentations.

Theorem 2 [11, Thm. 5]. Let j1 : C � C ! hL1;�1i and
j2 : C � C ! hL2;�2i be equivalent affinity functions and let S be a
family of non-empty pairwise disjoint subsets of C. Then for every
h1�11j1 in L1, there exists a h2�21j2 in L2 such that, for every S 2 S

and i 2 f0;1;2; . . .g, we have Pj1
Sh1
¼ Pj2

Sh2
; Pj1

SS
¼ Pj2

SS
, and Pi;j1

SS
¼ Pi;j2

SS
.

In particular, Ph1
j1
ðSÞ ¼ Ph2

j2
ðSÞ;Pj1 ðSÞ ¼ Pj2 ðSÞ, and PI

j1
ðSÞ ¼

PI
j2
ðSÞ. Moreover, by Proposition 1, we can find a strictly monotone

function g : C ! C and then h2 ¼ gðh1Þ.
2. Two commonly used affinities and their natural definitions

In this section, we will study the two main classes of affinities
that have been employed in the FC literature, namely, homogeneity
based and object-feature based, and examine the connectivity
measures they induce. We will consider them with range
hL;�i ¼ h½0;1�;Pi.

We will work here with a fixed digital space hZn;ai and a scene
C ¼ hC; f i. We will also assume that the scene intensity function
has scalar values only, f : C ! R. To make our presentation more
transparent, we will assume that f represents not necessarily the
original scene intensity function, but rather a result of any filtering
that could have been done on such acquired scene. In particular,
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we will not use any scale based approach to the affinity definitions
(see [33]), since any scale-based affinity is essentially equal to a
non-scale-based affinity applied to an appropriately filtered ver-
sion of the intensity function. (This is precisely true for the object
feature based affinities used in the literature. In the case of homo-
geneity based affinities, the affinity obtained by what we suggest
above is slightly different from that defined in [33]; however, these
two versions are very close to each other.)

2.1. Homogeneity based affinity

Intuitively, this function, denoted wðc; dÞ, is defined as the max-
imum of jf 0ðxÞj, with x on the segment joining c and d (where f 0 is
the derivative of f): the higher the magnitude of the slope of f be-
tween c and d is, the weaker is the affinity (connectivity) between c
and d. Of course, there is more than one way to interpret the sym-
bol jf 0ðxÞj. In this section we will interpret this as a magnitude of
the directional derivative D

cd
! f ðxÞ in the direction of the vector

cd
�!

. This agrees with the standard FC approach used in the research
conducted so far. (See e.g. [38,20,18,25,17].) Alternatively, it is pos-
sible to treat jf 0ðxÞj as a gradient magnitude. True gradient induced
homogeneity based affinity will be incorporated in our future
work. (See e.g. [12].)

The value jf 0ðxÞj ¼ jD
cd
! f ðxÞj is best approximated by a difference

quotient w0ðc; dÞ ¼ j f ðcÞ�f ðdÞ
kc�dk j. Although this expression has no sense

for c ¼ d, it should be clear that we should define w0ðc; cÞ as equal
to 0, the ‘‘highest” possible connectivity in this setting. (Recall that
‘‘highest” in terms of� defined as P translates into ‘‘least” in terms
of the standard order 6. That is, the greater w0 is, the weaker is the
affinity between c and d.) Is the definition w0ðc; dÞ ¼ j f ðcÞ�f ðdÞ

kc�dk j what
we are looking for?

Certainly this is not a local measurement of connectedness
when jjc � djj is large. In this case, the difference quotient is a poor
approximation of the definition of the derivative. We also have a
better way of estimating the highest slope on the road from c to
d: crawl from c to d along a path with steps of length 1, estimating
the slope of each step separately. Because of this, it makes sense to
consider the number w0ðc; dÞ as a good value for wðc; dÞ only when
kc � dk 6 1, in all other cases we should assign to it the worst pos-
sible value; that is, 1. This leads to the definition
wðc; dÞ ¼ w0ðc; dÞ=aðc; dÞ; that is,

wðc;dÞ ¼
jf ðcÞ � f ðdÞj for jjc � djj 6 1

1 otherwise:

�
ð2Þ

It is easy to see that w satisfies our definition of affinity function. It
should be stressed here that such a function approximates only
the magnitude of the directional derivative of f in the direction
cd
�!

, and gives no information on the slope of f in a direction perpen-
dicular to cd

!
.

If one likes to express this affinity by an equivalent standard
affinity, our definition of w can be replaced by g1ðwðc; dÞÞ, where
gr is a Gaussian function grðxÞ ¼ e�x2=r2 . Notice that if aðc; dÞ ¼
v½0;1�ðkc � dkÞ, as we defined earlier, then g1ðwðc; dÞÞ ¼ aðc; dÞ

g1ðjf ðcÞ � f ðdÞjÞ, the formula defining purely homogeneity based
affinity in [33, pp. 149–150]. (We use the weights w1 ¼ 0 and
w2 ¼ 1.) However, if a is an arbitrary fuzzy adjacency relation, then
the formula aðc; dÞ 
 g1ðjf ðcÞ � f ðdÞjÞ disagrees with the derivative
intuition. For example, if aðc; dÞ ¼g1ðkc � dkÞ, then aðc; dÞ


g1ðjf ðcÞ � f ðdÞjÞ ¼ e�ðjf ðcÞ�f ðdÞj2þkc�dk2Þ ¼g1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðcÞ � f ðdÞj2 þ kc � dk2

q
Þ,

rather than the more appropriate g1
jf ðcÞ�f ðdÞj
kc�dk

� �
(possibly multiplied

by number aðc; dÞ).
In what follows, we will use the homogeneity based affinity

wðc; dÞ as defined in (2), rather than g1ðwðc; dÞÞ, as it is more intui-
tive, and, by Proposition 1, these two affinities are equivalent. We
refer the reader to [11, Fig. 1] for an illustration demonstrating the
equivalence of wðc; dÞ and grðwðc; dÞÞ. Thus, the parameter r in the
homogeneity based affinity wr ¼ gr 	 w is of no consequence for
the FC algorithms. However, in all FC literature, this r has been
considered as a parameter of the method in the description of
the methods and their evaluation, and different settings have been
claimed to give different segmentation accuracies, which has no
theoretical basis in view of Theorem 2.

The homogeneity based connectivity measure, lw ¼ lC
w, can be

elegantly interpreted if our scene C ¼ hC; f i is considered as a topo-
graphical map in which f ðcÞ represents an elevation at the location
c 2 C. Then, lwðc; dÞ is the highest possible step (a slope of f) that
one must make in order to get from c to d with each step on a location
(spel) from C and of unit length. In particular, the object
Pw

sh ¼ fc 2 C : h P lwðs; cÞg represents those spels c 2 C which can
be reached from s without ever making a step higher than h. Note
that all we measure in this setting is the actual change of the altitude
while making the step. Thus, this value can be small, even if the step
is made on a very steep slope, as long as the path approximately fol-
lows the altitude contour lines — this is why on steep hills the roads
zigzag, allowing for a small incline of the motion. On the other hand,
the measure of the same step would be large, if measured with some
form of gradient induced homogeneity based affinity!

2.2. Object feature based affinity

There are two principal differences between the object feature
based and the homogeneity based affinities. (1) The definition of
the object feature based affinity requires some prior knowledge
on the intensities of the objects we like to uncover, while the def-
inition of the homogeneity based affinity is completely indepen-
dent of such knowledge. (2) The homogeneity based affinity is
represented in terms of (the approximation of) the derivative f 0

of the intensity function f, while the object feature based affinity
is defined directly from the intensity function f. In the rest of this
subsection, we will consider object feature based affinity for the
cases of single and multiple objects separately.

2.2.1. Object feature based affinity: single object case
We will start with the definition of the object feature based

affinity, denoted /ðc; dÞ, in terms of only a single object O. To define
/, we need to start with an approximate expected (average) inten-
sity value m for the spels in the object. We will also assume that we
have a standard deviation r > 0 of the distribution of intensity for
this object. Then, the intuition behind / can be expressed with a
pseudo-affinity formula �u0ðcÞ ¼ jf ðcÞ �mj — the smaller the value
of �u0ðcÞ is, the closer is c’s intensity to the object intensity, and the
better c is connected to object O. (Since the range of / is
hL;�i ¼ h½0;1�;Pi, the notion of ‘‘�-stronger” translates into
‘‘smaller in the 6sense.”) It is also convenient, for facilitating a def-
inition of the object feature based affinity for multiple objects, to
rescale this formula to �uðcÞ ¼ jf ðcÞ �mj=r. (This is related to the
Mahalanobis distance [16].)

Now, one may attempt to define the strength of a path
p ¼ hc1; . . . ; cli as

l�uðpÞ ¼ max
i¼1;...;l

�uðciÞ ð3Þ

and the connectivity measure as l �uðc;dÞ ¼minp2PC
cd
l�uðpÞ. (Once

again, the use of inverse inequality P as � makes the 6-largest va-
lue to be the �-smallest value.) However, since in this definition we
do not assume that the consecutive spels in a path are adjacent,
there is nothing local in this definition. In particular, if
f ðcÞ ¼ f ðdÞ ¼ m, then l�uðhc; diÞ ¼ 0 is not a good connectivity mea-
sure: the best possible connectivity in l�u-sense, l�uðhc;diÞ ¼ 0,
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means only that the intensities at both spels equal m, and it may
still happen that such spels are spatially separated by spels with
very different intensities; on the other hand, if distinct c and d are
adjacent (next to each other), then the fact that f ðcÞ ¼ f ðdÞ ¼ m is
very informative — such spels are indeed perfectly connected.

The situation can be rescued if one considers only the paths
from the family �Pcd of all paths from c to d in which the consecu-
tive spels are distinct and adjacent. Then, for c–d, the formula

l�uðc; dÞ ¼ min
p2 �Pcd

l�uðpÞ ð4Þ

agrees with our intuition and with the formula for l/ defined be-
low. (See (7).) So, why can we not use formula (4) as a definition
of l/? Although we could, there are two inconveniences connected
with this approach: first we would need to replace PC

cd with �Pcd;
second, the value of l�uðpÞ is not defined by using any affinity func-
tion (the pseudo-affinity �uðciÞ used in (3) cannot be treated as affin-
ity, since it is a function of one variable), so the general results on
the FC theory could not be applied to a connectivity measure so de-
fined. Moreover, connectivity formula (4) carries some other dan-
gers, which we will mention below.

Thus, we will define / properly, as a function on the pairs hc; di
of spels. We like to define / in such a way that, for every p 2 �Pcd,
the strength l/ðpÞ of p equals l�uðpÞ. To ensure this, for distinct
adjacent c and d, /ðc; dÞ must be defined as maxf �uðcÞ; �uðdÞg ¼
maxfjf ðcÞ �mj; jf ðdÞ �mjg=r. Thus, in general, we define
/ðc; dÞ ¼maxf �uðcÞ; �uðdÞg=aðc; dÞ; that is,

/ðc;dÞ ¼
0 for c ¼ d

maxfjf ðcÞ �mj; jf ðdÞ �mjg=r for kc � dk ¼ 1
1 otherwise:

8><
>: ð5Þ

Clearly function / is an affinity function in the sense of general
affinity function defined in Section 1. Moreover,

l/ðpÞ ¼ max
i¼1;...;l

�uðciÞ for every p ¼ hc1; . . . ; cli 2 �Pcd; ð6Þ

since l/ðpÞ ¼maxi maxf�uðciÞ; �uðciþ1Þg ¼maxi �uðciÞ. In particular,
by (3), l/ðpÞ ¼ l�uðpÞ for every p 2 �Pcd.

Notice also that for every c–d function l/ agrees with l �u:

l/ðc; dÞ ¼ l�uðc;dÞ; ð7Þ

since l/ðc;dÞ ¼minp2PC
cd
l/ðpÞ ¼minp2 �Pcd

l/ðpÞ ¼minp2 �Pcd
l�uðpÞ ¼

l�uðc;dÞ. Here the first and the last equations come from (1) and
(4), respectively. The third equation follows from the above argu-
ment, while the second one is justified by the fact that for every
q 2 Pcd either l/ðqÞ ¼ 1 (when q contains non-adjacent consecu-
Fig. 1. (a) A schematic scene with each rectangular cell representing a single spel. A num
s ¼ c1, assuming that its average intensity is m ¼ 40. We also assume r ¼ 1. In (b) the sha
(5). The region correctly excludes spel c3, since the difference between its intensity and m
jðc; dÞ ¼ j f ðcÞþf ðdÞ

2 �mj. Not only it incorrectly leaks all the way to spel c5, but it also abru
tive spels) or l/ðqÞ ¼ l/ðpÞ for p 2 �Pcd obtained from q by collaps-
ing all constant consecutive subsequences of q to a single
occurrence of the repeated value.

Note that, in reference [33], for distinct adjacent spels c and d

the authors define /ðc; dÞ as j f ðcÞþf ðdÞ
2 �mj in place of

maxf�uðcÞ; �uðdÞg. Although this carries similar intuitions, the aver-
aging of the values of f ðcÞ and f ðdÞ loses information on how far the
intensity of each spel is from m. For example, if f ðcÞ ¼ mþ r and

f ðdÞ ¼ m� r for some r > 0, then j f ðcÞþf ðdÞ
2 �mj ¼ 0 and l/ðhc; diÞ

associated with such affinity equals 0, which does not satisfy (6)
and is counterintuitive for large values of r. Another difficulty with
affinity defined as jðc; dÞ ¼ j f ðcÞþf ðdÞ

2 �mj is shown in Fig. 1. Object
Pj

s;6 delineated with j and s ¼ c1 includes spels c2; c3; c4; c5, but
no other spels adjacent to c5. (The intensity averages of the consec-
utive spels in the path hc1; c2; c3; c4; c5i are, respectively, 37.5, 42.5,
40, 45, that is, closer to m ¼ 40 than h ¼ 6. It does not include any

other spel c adjacent to c5, since for such c the average f ðcÞþf ðc5Þ
2 ¼ 60

is 20 > h units from m.) Both including the spels c3; c4; c5 in the ob-
ject as well as, after including c5, excluding other spels adjacent to
c5 defies intuitions behind the object feature based affinity. Notice
also that, the object P/

s;6 delineated with / does not include c3, since
/ðc2; c3Þ ¼maxfj35� 40j; j50� 40jg ¼ 10 > 6 ¼ h.

Once again, we can replace /ðc; dÞ with grð/ðc; dÞÞ for some
Gaussian-like function to get an equivalent affinity in the standard

form. In particular, for grðxÞ ¼ e�x2=r2 this leads to �uðcÞ ¼ e�
ðf ðcÞ�mÞ2

r2 ,
one of the formulas used in [33]. (See also [38,29,32,45].)

The difference between / and j that was illustrated in Fig. 1
above is also demonstrated on the 2D CT slice of a human knee
in the following Fig. 2. Fig. 2(b) and (c) show, respectively, the con-
nectivity image and AFC object corresponding to the affinity gr 	 /
which, for distinct adjacent c and d, is equal to

grð/ðc; dÞÞ ¼minfe�
ðf ðcÞ�mÞ2

r2 ; e�
ðf ðcÞ�mÞ2

r2 g. Fig. 2(d) and (e) are similar
images obtained for the affinity ĵ defined, for distinct adjacent c

and d, as gr
f ðcÞþf ðdÞ

2 �m
� �

. The object shown in (f), generated with

affinity ĵ, is slightly bigger than that for gr 	 /, shown in (c).
Fig. 2(f) shows the symmetric difference between these two seg-
mentation results.

The object feature based connectivity measure of one object has
also a nice topographical map interpretation. For understanding
this, consider a modified scene �C ¼ hC; jf ð
Þ �mji (called member-
ship scene in [38]) as a topographical map. Then the number
l/ðc; dÞ represents the lowest possible elevation (in �C) which one
must reach (a mountain pass) in order to get from c to d, where
each step is on a location from C and is of unit length. Notice that
ber in each spel indicates its intensity. We delineate an object indicated by a seed
ded area depicts object P/

s;6 (i.e., with h ¼ 6) delineated with the affinity / defined in
exceeds threshold value h ¼ 6. The shaded region in (c) represents object Pj

s;6, where
ptly stops there, after reaching an area of uniform intensity.



Fig. 2. (a) A 2D scene — a CT slice of a human knee, with an indicated seed. (b) and (c) Connectivity scene and an AFC object corresponding to the indicated seed and affinity
gr 	 /. (d) and (e) Same as in (b) and (c) but for the affinity defined as gr

f ðcÞþf ðdÞ
2 �m

� �
. (f) The symmetric difference between images (c) and (e).
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l/ðc; dÞ is precisely the degree of connectivity as defined by Rosen-
feld [26–28]. (Compare also with [24], where it is used under the
name pass value.) By the above analysis, we brought Rosenfeld’s
connectivity also into the affinity framework introduced by [38],
particularly as another object feature component of affinity.

2.2.2. Object feature based affinity: case of multiple objects
The single object connectivity measure l/ can be useful in ob-

ject definition only if we define it by using absolute connectedness
definition, AFC. To find an object via RFC or IRFC methods, we need
to have l/ defined for at least two objects. So, suppose that the
scene consists of n > 1 objects with expected average intensities
m1; . . . ;mn and standard deviations r1; . . . ;rn, respectively. Then
we have n different object feature based affinities /̂iðc; dÞ, defined
for c–d as maxf �uiðcÞ; �uiðdÞg=aðc; dÞ, where �uiðcÞ ¼ jf ðcÞ�mi j

ri
, and

their respective connectivity measures l/̂i
. We like to combine

affinities /̂i to get the cumulative object feature based affinity /.
(Obtaining a single affinity at the end becomes essential in order
to fulfill the theoretical requirements of fuzzy connectedness. See
[29,32].) But how to define such a /? We will build our intuition
for such a / by assuming that each object Oi is generated by a sin-
gle seed si with f ðsiÞ ¼ mi. Although this situation is not general,
any discussion of this subject must include this important case.
Therefore, we will decide on the form of a definition of / in this sit-
uation first, and then argue that the notion we come up with has
the desired properties without requiring any extra assumptions.

First note that ri’s help us to compare different /̂i’s. Specifically,
each number �uiðcÞ measures the distance jf ðcÞ �mij of the image
intensity f ðcÞ from the average intensity mi of the ith object. How-
ever, if we like to compare the numbers �uiðcÞ for different i’s, we
need to fix a reasonable measuring unit. The most natural measur-
ing unit for �ui is the associated standard deviation ri: with our def-
inition �uiðcÞ ¼ jf ðcÞ�mi j

ri
, the equation �uiðcÞ ¼ K means that the

intensity f ðcÞ at c is K standard deviations apart from mi (like the
Mahalanobis distance [16]). Then, equation �u1ðcÞ ¼ �u2ðcÞ caries
the correct intuition: f ðcÞ is the same number of ri’s apart from
mi for i ¼ 1 and i ¼ 2.
Now, by Eq. (6), if p ¼ hc1; . . . ; cli 2 �Psic and si–c, then the
strength of the ith object connectivity between si and c on this path
p is given by l/̂i

ðpÞ ¼maxt¼1;...;l �uiðctÞ. Similarly, the strength of the
jth object connectivity between sj and c–sj on a path
q ¼ hd1; . . . ; d‘i 2 �Psjc is equal to l/̂j

ðqÞ ¼maxt¼1;...;‘ �ujðdtÞ. There-
fore, by the analysis given in the above paragraph, the ith object
connectivity strength l/̂i

ðpÞ of p exceeds (in the � sense) the jth
object connectivity strength l/̂j

ðqÞ of q provided
l/̂i
ðpÞ ¼maxt¼1;...;l �uiðctÞ < maxt¼1;...;‘ �ujðdtÞ ¼ l/̂j

ðqÞ. So, by (4), c is
better /̂i-connected to si than it is /̂j-connected to sj precisely
when l/̂i

ðsi; cÞ < l/̂j
ðsj; cÞ.

The key results of FC theory (see [29,32,13,30]) insure that the
FC objects have the following nice and highly desirable properties.

� Robustness: If an FC delineated object P is indicated by a seed s
and a spel t belongs to P (or its core, in case of IRFC), then the
algorithm returns the same object when seed s is replaced by t.

� Path Connectedness: If an FC delineated object P is indicated by a
seed s, spel t belongs to P, and a path p from s to t insures that t is
in P (has the best strength), then every spel from p belongs to P.

To guarantee these properties, we need to arrive at one affinity
defined over the whole scene. We shall examine this issue at the
higher level in Section 3. In this section, our goal is to focus on a
lower level, that is, to study how to combine the affinities /̂i into
a single object feature based affinity / so that it preserves the
information given by all affinities /̂i to the fullest possible extent.
(The reason why we cannot confidently use two different affinities
and define an object via inequality l/̂i

ðsi; cÞ < l/̂j
ðsj; cÞ is explained

below.) In particular, since for every i, the value of l/ðsi; cÞ should
approximate, as much as possible, the ith object connectivity
strength between si and c, it would be most desirable if we could
have insured that l/ðsi; cÞ ¼ l/̂i

ðsi; cÞ. In particular, we would like
to insure that l/ðsi; cÞ < l/ðsj; cÞ if and only if l/̂i

ðsi; cÞ < l/̂j
ðsj; cÞ.

Unfortunately, we will see below that there is no way to have such
a strong property, since in the process of combining /̂i’s we always
lose some information. Nevertheless, at the very least, we should



Fig. 3. The graphs of three functions �ui with
m1 ¼ 0;m2 ¼ 7;m3 ¼ 10;r1 ¼ 0:5;r2 ¼ 1, and r3 ¼ 2. We have d3

1 ¼ 2 < d2
1, leading

to I1 ¼ ð�2;2Þ. Also, �2 ¼ d3
2 ¼ 1, so I2 ¼ ð6;8Þ and �3 ¼ d2

3 ¼ 2 leading to I3 ¼ ð8;12Þ.
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insure that inequality l/ðsi; cÞ < l/ðsj; cÞ never happens when
l/̂i
ðsi; cÞP l/̂j

ðsj; cÞ. This can be expressed as

l/ðsi; cÞ < l/ðsj; cÞ implies l/̂i
ðsi; cÞ < l/̂j

ðsj; cÞ: ð8Þ

This implication represents the most fundamental property that we
will impose on the definition of /. In particular, in what follows we
will define the object based affinity / which satisfies (8) under
some simple assumptions connecting each sk with mk. We will also
argue (see Example 7 in Appendix) that other seemingly natural
definitions of /, like the one used in [29] (compare also [33]), do
not satisfy this property.

Another way to look at property (8) is that, when n ¼ 2, it in-
sures that the RFC object P/

sifsjg is contained in a set Oij ¼
fc 2 C : l/̂i

ðsi; cÞ < l/̂j
ðsj; cÞg. One may wonder whether we should

consider sets Oij (or their intersections Oi ¼
T

j–iOij, if n > 2) as our
objects. The argument against this consideration can be given at
two levels. The simple one is that there is a very nice theory for
the objects defined with a single connectivity measure and this
theory does not extend, in general, to sets defined as in Oij. (Of
course, IRFC sets are also defined in this form, but the different
connectivity measures used there have a very specific form.)

A slightly deeper argument is that the sets Oij do not have nice
properties. For example, it was proved in [29] that, unlike P/

sifsjg, the
object Oij has neither robustness nor path connectedness property.
In fact, the failure of path property for O1;2 can also be seen in a
scene in which the spels s1; s2; c are on a consecutive path (with
s1 and c not adjacent), have respective intensities 0;10;18, they
are surrounded by spels with intensities equal to 300, and we have
m1 ¼ 0, m2 ¼ 10, r1 ¼ 3, r2 ¼ 1 — we have c 2 O1;2 and
l/̂1
ðs1; cÞ ¼ 6 < 8 ¼ l/̂2

ðs2; cÞ, while the unique /̂1-strongest path
from s1 to c goes through s2 R O1;2. Note also that the segmentation
of this scene becomes the undesirable pair fO1;2;O2;1g if the algo-
rithm from paper [9] is applied to it.

The idea behind the formula for / is to define /ðc; dÞ as the best
among all numbers /̂iðc; dÞ. One possible choice for /ðc; dÞ is
mini¼1;...;n/̂iðc; dÞ. The problem with this choice is that we never know
which value of /̂iðc; dÞwas used to determine /ðc; dÞ. Since the val-
ues of /̂iðc; dÞ ¼maxf �uiðcÞ; �uiðdÞg=ri are the most valuable when
this number is small and because difficulties occur when
/̂iðc; dÞ ¼ /̂jðc; dÞ for i–j, we will eliminate the information in �uiðcÞ
when this value exceeds �ujðcÞ for some j. This is made formal below.

For distinct i; j 2 f1; . . . ;ng, let dj
i P 0 be the largest number

with the property that jx�mi j
ri

<
jx�mj j

rj
for every x 2 ðmi � dj

i;mi þ dj
iÞ.

(If ri ¼ rj, then dj
i is just half of the distance between mi and mj.)

Thus, if xj
i 2 fmi � dj

i;mi þ dj
ig is between mi and mj, then for each

c 2 C

�uiðcÞ <
jxj

i �mij
ri

¼ dj
i

ri
¼ jx

j
i �mjj
rj

< �ujðcÞ ð9Þ

provided jf ðcÞ �mij < dj
i. Let �i ¼minj–id

j
i and Ii ¼ ðmi � �i;mi þ �iÞ.

Then intervals Ii; i 2 f1; . . . ;ng, are pairwise disjoint. Function ui is
defined as a truncation of �ui to the interval Ii, that is, by a formula

uiðcÞ ¼ uIi
i ðcÞ ¼

�uiðcÞ for f ðcÞ 2 Ii

1 otherwise:

�

Then uiðcÞ <1 implies f ðcÞ 2 Ii ¼ ðmi � �i;mi þ �iÞ. Fig. 3 gives an
example of the graphical representation for numbers dj

i and inter-
vals Ii. For c–d put /iðc;dÞ ¼maxfuiðcÞ;uiðdÞg=aðc;dÞ; that is,
/iðc;dÞ ¼ 0 when c ¼ d, /iðc;dÞ ¼maxfuiðcÞ;uiðdÞg for
jjc � djj ¼ 1, and /iðc;dÞ ¼ 1 otherwise, and let

/ðc; dÞ ¼ min
i¼1;...;n

/iðc;dÞ: ð10Þ

We define l/ðpÞ for a path p and a connectivity measure lA
/ accord-

ing to our general method. The following theorem shows that / so
defined satisfies (8) we promised. The proof of this theorem and the
associated machinery are provided in Section A of Appendix.

Theorem 3. Fix i 2 f1; . . . ;ng and c; si; sj 2 C such that f ðsiÞ R
S

k–iIk.
If l/ðsi; cÞ < l/ðsj; cÞ, then l/̂i

ðsi; cÞ < l/̂k
ðsj; cÞ for every

k 2 f1; . . . ;ng.

The role of a seed si is not only to indicate an approximate posi-
tion of an object but also to indicate its approximate average inten-
sity mi. This is the only way to insure that si indicates the correct
object. Thus, if one allows the situation in which si 2 Ij for some
j–i, then si would really represent j’s object and l/ðsi; cÞ would be
represented by l/̂j

ðsi; cÞ rather than by l/̂i
ðsi; cÞ. Not surprisingly,

in such a situation, the conclusion of the theorem cannot be ex-
pected. This explains our assumption f ðsiÞ R

S
k–iIk. In fact, we could

as well assume f ðsiÞ 2 Ii, as otherwise (i.e., when f ðsiÞ belongs to no
Ik) l/ðsi; cÞ ¼ 1 for every c, so l/ðsi; cÞ caries no valuable informa-
tion, and the conclusion of the theorem is satisfied in void.

Clearly, truncating each �ui to ui ¼ uIi
i is causing the loss of

some information. In fact, the most common definition of / used
in the literature till now, see e.g. [29], coincides with ours if one
drops the matter of truncation: define �/ðc; dÞ ¼mini¼1;...;n

�/iðc; dÞ,
where �/iðc; dÞ ¼maxf�uiðcÞ; �uiðdÞg=aðc; dÞ for c–d. Then l�/ is de-
fined as usual. Clearly, at the first glance it seems that affinity �/
is superior to its truncated version / defined above and that the
information truncation makes the ability to distinguish among ob-
jects weaker. Although, to some extent, this is a legitimate concern,
it should be noted that the objects obtained with the use of �/ may
be bigger than those obtained with the use of /. However, since �/
is not required to satisfy (8), it is possible that a spel c is assigned to
object P

�/
sih

while it truly belongs to another object. (See Example 7.)
Thus, under the circumstances, we believe that it is better to leave
c unassigned to any object, rather than to run into the risk of
assigning it to an incorrect object. (Nevertheless, in practical appli-
cations there is always some noise in the image and the errors
should be expected. Therefore, for noisy images the benefit of
removing some incorrect assignments by using truncated u’s
may be of only small practical benefit.)

Another possible way for defining object feature based connec-
tivity, l�u, is to put �uðcÞ ¼mini¼1;...;n �uiðcÞ and define it as in (3) and
(4). Although l �u is equal to l�/ when n ¼ 1, in general this is not
the case. This is best seen in Example 6 in Appendix, which fully
discredits l�u as a valid definition of an object feature based con-
nectivity measure. Example 7 shows that the motivational implica-
tion (8) fails for l�/.

In summary, the proper choice of the object feature based affin-
ity is a delicate mater. The natural requirement of the path con-
nectedness property of delineated objects dictates the use of a
single affinity function. If it is also desirable to completely ensure
property (8) (to guarantee that the RFC object P/

sifsjg is contained
in a set Oij ¼ fc 2 C : l/̂i

ðsi; cÞ < l/̂j
ðsj; cÞg), then the truncated ver-
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sion of / (or its Gaussian modification) must be used. Nevertheless,
in practical image segmentation tasks, perfection is an unachiev-
able goal, due to different imperfections at image acquisition. This
means that, in practice, the irregularity that the truncation is the-
oretically preventing, may appear any way. Therefore, in some
applications, the use of untruncated version �/ of the object feature
based affinity may be beneficial, especially taking into consider-
ation that the examples as presented in Example 6 are not likely
to be found in real life images and that �/ is easier to implement.

2.3. Homogeneity versus object feature based affinity

First note that the homogeneity based connectivity measure lw

and the object feature based connectivity measure l/, although re-
lated (as function f is related to its derivative f 0), behave quite dif-
ferently. For example, lw, unlike l/, is not very sensitive to the
slow background intensity variation often found in medical images
as an artifact. To see this, imagine that the image consists of a long
straight tube (say an artery) with the intensity of each spel in a
tube around 10, and the intensity of each spel outside the tube
around 20. Now, assume that a slow (spatially) changing artifact
is applied to the image. This artifact is often multiplicative in nat-
ure. For simplicity, assume that it is additive and that it changes
along the length of the tube from 0 to 20. Then, the beginning of
the tube will have intensity around 10, while its end will have a va-
lue around 30. Now, the artifact we added changes little the value
of lw, so the entire tube can still be easily obtained as Osh or Ost if
one uses lw as a connectivity measure. On the other hand, if s is a
seed located at the beginning of the tube and
Osh ¼ fc 2 C : l/f ðsÞ

ðs; cÞ 6 hg contains a spel t from the end of the
tube, then h P l/f ðsÞ

ðs; tÞ � 20. Therefore, Osh must contain also
many spels outside the tube, since for any spel c outside the tube
close to the beginning, we have f ðcÞ � 20, so l/f ðsÞ

ðs; cÞ � 10 < h.
On the other hand, if a scene C contains seeds s and t with

jf ðsÞ � f ðtÞj being large, it still may happen that there is a long path
p from s to t along which the intensity changes very slowly. Then
lwðs; tÞ 6 lwðpÞ is very small, which makes it nearly impossible to
distinguish s and t by means of homogeneity based connectivity mea-
sure alone. However, since l/ðs; tÞ is large, we can easily distinguish s
and t with the help of object feature based connectivity measure.

As pointed out in [33], these two concepts — one related to
homogeneity (a derivative f 0ðcÞ concept) and another related to
the intensity f ðcÞ — are fundamental to any segmentation methods
that are based purely on information derived from the given image.
In FC in particular, as illustrated above, both components are
needed for effective segmentation. This is one of the reasons why
we dealt with the theory relating to the two components sepa-
rately. This naturally leads us to the next section which will study
how these components may be utilized in the same FC segmenta-
tion algorithm.
3. How to combine different affinities?

In this section, we will discuss the issue of how to combine two
or more different affinities of the sort described in the previous
section into one affinity. We will also examine which parameters
in the definitions of the combined affinity are redundant, in the
sense that their change leads to an equivalent affinity.

3.1. Affinity combining methods

Assume that for some k P 2 we have affinity functions
ji : C � C ! hLi;�ii for i ¼ 1; . . . ; k. For example, we can have
k ¼ 2, j1 ¼ w, and j2 ¼ /. The most flexible way of combining all
these affinities into a single one is to put
jðc; dÞ ¼ hj1ðc; dÞ; . . . ;jkðc; dÞi and define an appropriate linear or-
der � on L ¼ L1 � 
 
 
 � Lk. To understand this formalism better, we
will start with the following examples, which also constitute our
practical approach to the affinity combining problem.

Example 4 (Weighted averages). Assume that all linear orderings
Li are equal to the same ordering hL0;�0iwhich is either h½0;1�;Pi
or h½0;1�;6i and fix a vector w ¼ hw1; . . . ;wki of numbers from
[0,1] (weights) such that w1 þ 
 
 
 þwk ¼ 1; we allow a weight wi

to be equal to 0 (meaning ‘‘ignore influence of ji”) assuming that
0 
 1 ¼ 0 and 00 ¼ 10 ¼ 1.

Additive average: Let hadd
w ðaÞ ¼ w1a1 þ 
 
 
 þwkak for a ¼

ha1; . . . ; aki 2 ðL0Þk. If a6add
w b() hadd

w ðaÞ�0hadd
w ðbÞ, then affinity

j : C � C ! hL;6add
w i is equivalent to ja

w : C � C ! hL0;�0i defined

as ja
wðc; dÞ ¼ hadd

w ðj1ðc; dÞ; . . . ;jkðc; dÞÞ. Note that, for k ¼ 2, the
affinity ja

w ¼ w1j1 þw2j2 has been already considered in [33].
Multiplicative average: Let hmul

w ðaÞ ¼ aw1
1 
 
 
 a

wk
k for a ¼

ha1; . . . ; aki 2 ðL0Þk. If a6mul
w b() hmul

w ðaÞ�0hmul
w ðbÞ, then

j : C � C ! hL;6mul
w i is equivalent to jm

w : C � C ! hL0;�0i defined
as jm

wðc; dÞ ¼ hmul
w ðj1ðc; dÞ; . . . ;jkðc; dÞÞ. For k ¼ 2, the affinity

jm
w ¼ jw1

1 jw2
2 has been already considered in [33].

Recall that the lexicographical order 6lex on L ¼ L1 � 
 
 
 � Lk is
defined for distinct a ¼ ha1; . . . ; aki;b ¼ hb1; . . . ; bki 2 L as

a<lexb() ai�ibi; where i ¼minfj : aj–bjg:

Example 5 (Lexicographical order). Affinity function
affinity jlex : C � C ! hL;6lexi establishes the strongest possible
hierarchy between the coordinate affinities ji: in establishing
whether jlexða; bÞ6lexjlexðc; dÞ, the values jiða; bÞ and jiðc; dÞ are
completely irrelevant, unless jjða; bÞ ¼ jjðc; dÞ for all j < i, in which
case jiða; bÞ�ijiðc; dÞ implies jlexða; bÞ<lexjlexðc; dÞ.

Notice that jlex cannot be expressed in the form of hðj1; . . . ;jkÞ
for any continuous function on ½0;1�k or on ½0;1�k. In what follows,
we will restrict our attention to the situation when k ¼ 2. In this
case the lexicographical order is defined as ha1; a2i<lexhb1; b2i pro-
vided either a1�1b1 or a1 ¼ b1 and a2�2b2.

The lexicographical order approach is quite appealing in case
when j1 ¼ w and j2 ¼ / as the decision whether
ljðc; sÞ6lexljðc; tÞ becomes hierarchical in nature: if
lwðc; sÞ < lwðc; tÞ, then ljðc; sÞ6lexljðc; tÞ independent of the val-
ues of l/ðc; sÞ and l/ðc; tÞ; only when the homogeneity based con-
nectivity measure cannot decide the matter, that is, when
lwðc; sÞ ¼ lwðc; tÞ, we decide on the direction of 6lex between
ljðc; sÞ and ljðc; tÞ based on the direction of �2 between l/ðc; sÞ
and l/ðc; tÞ. Thus, we treat the homogeneity based connectivity
measure as dominant over object feature based connectivity mea-
sure. (Note that this will become reversed if j1 ¼ / and j2 ¼ w.)
However, there is more to it. If lwðc; sÞ ¼ lwðc; tÞ, then we decide
about ljðc; sÞ6lexljðc; tÞ only along the paths p 2 Pcs and q 2 Pct

with lwðpÞ ¼ lwðqÞ ¼ lwðc; sÞ. Only to these paths we apply l/

measure. Thus, we use the object based feature measure in this
schema in a considerably more sophisticated way than what is
suggested by the threshold-like interpretation described in Section
2. It should be also clear that, if we agree that we should give pri-
ority to homogeneity based connectivity measure in the RFC ap-
proach, this is precisely the way we should proceed.

Next, consider the coordinate order preserving property of the
combined affinity jðc; dÞ ¼ hj0ðc; dÞ;j1ðc; dÞi:

(C) for every i ¼ 0;1 and c; d; c0; d0, if jiðc; dÞ ¼ jiðc0; d0Þ, then
jðc; dÞ � jðc0; d0Þ () j1�iðc; dÞ�1�ij1�iðc0; d0Þ.

Property (C) says that if one of the coordinate affinities does not
distinguish between two pairs of spels, then the combined affinity
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decides on this pair according to the other coordinate
affinity. This seems to be a very natural and desirable property. It
is easy to see that, by design, the jlex affinity has this property.
However, in general, (C) is not satisfied for the multiplicative aver-
age jm

w: if jiðc; dÞ ¼ jiðc0; d0Þ ¼ 0, then jm
wðc; dÞ ¼ jm

wðc0; d
0Þ ¼ 0

independently of the value of j1�i on these pairs. A similar problem
arises for jiðc; dÞ ¼ jiðc0; d0Þ ¼ 1, although for
jiðc; dÞ ¼ jiðc0; d0Þ 2 ð0;1Þ the equivalence from (C) is satisfied.
This creates a problem especially with the truncated version of
the object-feature based affinity, since, in this case, affinity is equal
to 1 for many adjacent pairs of spels. Condition (C) also fails
for jadd

w when jadd
w ðc; dÞ ¼ jadd

w ðc0; d
0Þ ¼ 1, although for

jadd
w ðc; dÞ ¼ jadd

w ðc0; d
0Þ<1 the equivalence is satisfied. In particu-

lar, (C) holds for jadd
w formed with the coordinate affinities with

range h½0;1�;6i.
Notice that the property (C) fails only if we allow values 0 or

1 in the range of j’s. Therefore, if we like to insure (C), we
can always replace ji’s with their equivalent forms with the
range in ð0;1Þ (e.g. by replacing 1 with some large but finite
number), which will insure (C) in the above described combining
methods.

3.2. Counting essential parameters

Next, let us turn our attention to the determination of the num-
ber of parameters essential in defining the affinities presented in
the previous section. We will consider here only the parameters
explicitly mentioned there, since any implicit parameters (like
the parameters for getting intensity function from the actual acqui-
sition data) could not be handled by the methods we will employ.
This exercise is useful in tuning the FC segmentation methods to
different applications. It is also useful in comparing these methods
with others. Recall that for a r 2 ð0;1Þ we defined
gr : ½0;1� ! ½0;1� by grðxÞ ¼ e�x2=r2 .

Homogeneity based affinity, w, is defined as wðc; dÞ ¼ jf ðcÞ � f ðdÞj
for kc � dk 6 1 and wðc; dÞ ¼ 1 otherwise. As such, there are no
parameters in this definition. In its standard form, gr 	 w, the
parameter r is redundant, since, by Proposition 1, gr 	 w is equiv-
alent to w. This beautiful characteristic says that FC partitioning
of a scene utilizing homogeneity based affinity is an inherent prop-
erty of the scene and is independent of any parameters, beside a
threshold in case of AFC.

Object feature based affinity for one object, /, is defined by a for-
mula /ðc; dÞ ¼maxfjf ðcÞ �m1j; jf ðdÞ �m1jg=r1 for kc � dk ¼ 1,
/ðc; dÞ ¼ 0 for c ¼ d, and /ðc; dÞ ¼ 1 otherwise. From the two
parameters, m1 and r1, present in this definition, only m1 is essen-
tial. Parameter r1 is redundant, since function r1 
 / is indepen-
dent of its value and r1 
 / is equivalent to /, as r1 
 / ¼ h 	 / for
an increasing function hðxÞ ¼ r1x. As before, the standard form
gr 	 / of / is equivalent to it, so the only essential parameter in
the definition of gr 	 / is the number m1.

Object feature based affinity for multiple objects. Suppose
that the affinity is defined for n > 1 different objects for which
�m ¼ hm1; . . . ;mni and �r ¼ hr1; . . . ;rni represent their average
intensities and standard deviations, respectively. Let / �m;�r represent
the object feature affinity in its main truncated form and let �/ �m;�r

stand for its untruncated version. (See Section 2.2.2.) Then
r1 
 / �m;�r ¼ / �m;�d and r1 
 �/ �m;�r ¼ �/ �m;�d, where �d ¼ h1; d2; . . . ; dni and
di ¼ ri=r1. Since r1 
 / �m;�r is equivalent to / �m;�r, affinity / �m;�r de-
pends essentially only on 2n� 1 parameters m1; . . . ;mn; d2; . . . ; dn.
The same is true for its standard form gr 	 / �m;�r as well as for their
untruncated counterparts �/ �m;�r and gr 	 �/ �m;�r.

In what follows, we will assume that w;r; s 2 ð0;1Þ and that /
is equal to either / �m;�d or to �/ �m;�d, so it has 2n� 1 essential parame-
ters. Then we have the following methods of combining, denoted
m1–m5, for homogeneity and object feature based affinities.
m1 The additive average j ¼ ð1�wÞwþw/ of w and / has 2n
parameters. It is equivalent to wþ x/, where
x ¼ w

1�w 2 ð0;1Þ. Note that if / is replaced by an equivalent
affinity r1/, then the resulting average affinity
ð1�wÞwþwr1/ is also equivalent to wþ x/ with
x 2 ð0;1Þ. Note also that j does not satisfy property (C),
unless we insure that w and / admit no 1 value.

m2 The additive average j ¼ ð1�wÞgr 	 wþwgs 	 / of gr 	 w
and gs 	 / has 2nþ 2 essential parameters. Since
j ¼ elnð1�wÞ�w2=r2 þ eln w�/2=s2 , this operation strangely mixes
additive and multiplicative modifications of w and /. The
additional two parameters, r and s, are of importance in this
mix. This affinity does satisfy property (C).

m3 The multiplicative average j ¼ wð1�wÞ/w of w and / has 2n
parameters and it is equivalent to w/x, where
x ¼ w

1�w 2 ð0;1Þ, as j ¼ ðw/xÞ1�w. If / is replaced by an
equivalent affinity r1/, then the resulting average
ðwrx

1/
xÞ1�w is also equivalent to w/x with x 2 ð0;1Þ, since

function hðtÞ ¼ ðrx
1tÞ1�w is increasing as a composition of

two increasing functions. This j does not satisfy property
(C), unless we insure that w and / admit no 0 and1 values.

m4 The multiplicative average j ¼ ðgr 	 wÞð1�wÞðgs 	 /Þw of gr 	 w
and gs 	 / has 2nþ 2 parameters, but only 2n of them are
essential. This is so since j ¼ ðe�w2=s2 Þ1�wðe�/2=r2 Þw ¼
ðe�w2�x/2 Þð1�wÞ=s2

, where x ¼ s2

r2
w

1�w 2 ð0;1Þ, is equivalent to
w2 þ x/2. The same is true if / is replaced by r1/. This j does
not satisfy property (C), unless we insure that w and / admit
no 1 value.

m5 There are only two essential possibilities for lexicographical
order of w and /: hw;/i and h/;wi, even if we allow replace-
ment of each of the coordinate affinities by any of their
equivalent forms, including but not restricted to gr 	 w and
r1/, gs 	 /, or gs 	 ðr1/Þ. This follows from Proposition 1,
since for any pair hw�;/�i such that w� is equivalent to w
and /� is equivalent to /, there are strictly monotone func-
tions g and h such that w� ¼ g 	 w and /� ¼ h 	 /, and then
hw�;/�i ¼ hg;hi 	 hw;/i, so hg;hi establishes the equivalence
of hw;/i and hw�;/�i.
4. Affinity functions used in the literature

In this section, we present a short review of the literature per-
tinent to the above discussion. In particular, we will emphasize dif-
ferent affinity functions used in the published papers as well as any
generalizations of the FC algorithms.

Papers coming from our group (e.g. [38,29,33]) utilized the
affinities described in (m2) and (m4), although the object feature
based affinity component used in [33] was defined in format dis-
cussed in Section 2.2.2, which is slightly different from our recom-
mended format. In addition, the affinity components used in
Section 2.2.2 were scale-based, which is essentially (but not pre-
cisely) equal to a non-scale-based affinity applied to an appropri-
ately filtered version of the intensity function.

Paper [44] interestingly utilizes the atlas based prior knowledge
on the image to influence the FC image segmentation. To achieve
this, the object feature and homogeneity feature affinity compo-
nents are modified with the probability distribution Pk and the dif-
ference probability distribution DPk functors, respectively. The
resulting components were combined into final affinity via the
(m3) method with weight w ¼ 1=2. Prior knowledge is also incor-
porated to FC segmentations as presented in [19].

In [25] the authors use the AFC algorithm with the following
modification of j defined according to the (m2) schema. First, for
every principal direction ~r of the scene the authors choose some
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modification coefficient mð~rÞ and they modify the standard homo-
geneity based affinity wðc; dÞ according to the coefficient mð~cdÞ.
Although the precise modification is not specified in [25], it seems
that they use w�ðc; dÞ ¼ mð~cdÞ 
 wðc; dÞ as a modified homogeneity
based affinity. Note that w� is not equivalent to w, unless all coeffi-
cients mð~rÞ are equal. This may be a good approach for images with
constant slow varying intensity change in one direction. Further
on, they apply the weighted average to gr1

	 w� and gr2
	u with

weights w1 and w2 varying, depending on the intensity values at
the spels c and d. Once again, the obtained modification is, in gen-
eral, significant. However, the justification for the specific formula
for wi’s is not provided in the paper.

In paper [1], the fuzzy connectedness approach, used with the
affinity defined via (m2) format, is combined with the artificial
neural network approach.

In paper [18] (see p. 465), the authors employ different affinity
for each object to be delineated — a modified version of the single
object feature based affinity, in its Gaussian modified form. These
affinities are not combined into a single affinity and the resulting
segmentations do have the path connectedness property discussed
in Section 2.2. If used with the same affinity for all objects, the re-
sult of the algorithm from [18] is identical with that from the IRFC
algorithm [31,32,13] (after reassignment of not-uniquely-assigned
spels to non-assigned status). The same approach and affinity func-
tions (see p. 67) are used in [9], see p. 67. (Note, that the compar-
ison with RFC and IRFC presented in [9, section 6] is incorrect, since
the paper uses incorrect definition of RFC objects: the inequality in
formula (17) should have been strict!) Paper [8] uses affinity de-
fined by formula (m2) with w ¼ 1=2.

Paper [35] uses the following affinities: (1) In the background, a
shifted version of homogeneity based affinity. The shift is redun-
dant, according to our theory. (2) In the foreground, a directional
version of the object-feature-based affinity, which is only a small
adjustment of the standard affinity as we use. The authors write
about affinities: ‘‘The exact values turned out to be not very critical
— the segmentation result is nearly identical over a relatively wide
range of l0 and r,” which, in case of r is clear, as it is a redundant
parameter according to our results. Interestingly, the paper does
not explain as to how to decide the areas in which to use fore-
ground affinity and background affinity.

Paper [4] proves that, in a general setting, the watershed and FC
segmentation algorithms are equivalent. They do not restrict affin-
ity functions to any specific format. A discussion of FC methods,
used with affinity defined via (m2), and its practical comparison
with watershed method is also present in [15].

Other applications of fuzzy connectedness can be found in: [17]
(no specification of affinity), [5] (a combination of w and / is used,
the details are missing), [43] (used with standard (m2) defined affin-
ity), [41,40,22] (use multiple affinities for each segmentation), [42]
(uses (m4)-defined affinity), [21,2] (the homogeneity based affinity
component is shifted by its mean value), [3] (uses vectorial affinity).
5. Concluding remarks

Theorem 2 and Proposition 1 imply that, from the perspective of
FC methodology, the only essential attribute of an affinity function is
its order. In particular, many transformations (like Gaussian) of the
natural affinity definitions (like derivative-driven homogeneity
based affinity) are of esthetic value only and do not influence the
FC segmentation outcomes. Nevertheless, such transformations
may play a role in combining different affinities, as can be seen in
methods m1 and m2, since only one of them has the property (C).

The investigation presented in Section 3 shows which parame-
ters in the definitions of homogeneity and object-feature based
affinities, as well as their combinations, are of importance. In partic-
ular, we uncovered that many of the parameters in these definitions
are of no consequence. Thus, for the tasks of application-driven
optimization of the parameters, the number of parameters to be
optimized is reduced. This aspect of setting values of parameters
for segmentation methods is ridden with confusion. There are no
scientific and systematic solutions for this problem. We indicated
a solution in [39] which consisted of simultaneously minimizing
false positive and false negative regions as a function of the param-
eter values. It makes sense, therefore, to first identify what the
essential parameters of a segmentation method are, since such an
attempt does not seem to have been made in the literature. This
especially is relevant if we choose optimal parameter settings as
mentioned by an optimization process.

In Section 2, we discussed two commonly used affinities, homo-
geneity and object-feature based, and interpreted them, respec-
tively, as approximations of the directional derivatives and the
distance from the object’s average intensities. We also pointed
out some theoretical deficiencies with the standard format of the
object-feature based affinity in the case of multiple objects and
proposed a truncated version of such affinity, which avoids theo-
retical difficulties, but loses some information along the way.

In Section 3, combining the results from the previous sections,
we discussed five distinct ways of constructing full affinity func-
tions (m1–m5). Our analysis of FC literature in Section 4 shows
that, while forms denoted m1–m4 or their slight variations have
been used in segmentation, form m5 is a novel strategy which re-
mains to be evaluated.

We did not undertake any empirical evaluation studies in this pa-
per. A theoretical study preceding such an evaluation becomes
essential to understand what affinity forms are distinct, what are
redundant, and what parameters are essential/redundant. This paper
constitutes a first such step. Analysis similar to the one conducted in
this paper for FC can be carried out for other frameworks, such as le-
vel sets [34], watersheds [6], and graph cuts [7].

Other possible ways of defining affinities. Note that in the def-
inition of the ‘‘object feature based affinity,” described in Section 2,
the only prior knowledge of the object we used was the image
intensity distribution of the object. More elaborate object feature
affinity can use some other prior knowledge on the object(s) to
be delineated. For example, the general shape of the object(s) can
constitute such prior knowledge. If shape for the family of the ob-
ject under consideration is modeled in a statistical manner [14],
then we can consider a model based component of affinity bðc; dÞ
between c and d to be higher only if c and d are inside or close to
the boundary of the mean shape, and smaller otherwise. A simple
strategy based on the distance from mean shape boundary has
been employed in [23] in an attempt to bring in prior shape infor-
mation into FC. This discussion of how to properly define b and
how to combine this with w and /, however, requires fundamental
investigation along the lines of this paper.

Also, as mentioned in Section 2.1, in the definition of the homo-
geneity based affinity it makes sense to use the notion of the gra-
dient as a base for its definition, instead of the notion of the
directional derivative. The discussion of the gradient induced
homogeneity based affinity is a part of our forthcoming paper.
Appendix A

The following example fully discredits l �u as a valid definition of
an object feature based connectivity measure, while Example 7
shows that the motivational implication (8) fails for l�/.

Example 6. Let C be a binary scene with two intensities
m2 > m1 ¼ 0 and r1 ¼ r2 ¼ 1. We will consider C as a two object
scene: for i ¼ 1;2 object Oi consists of all spels with the intensity
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mi. Then for every c; d 2 C we have l �uðc; dÞ ¼ 0, while
l�/ðc; dÞ ¼ m2 > 0 provided f ðcÞ–f ðdÞ.
Example 7. Let p ¼ hs1; a; c; b; s2i be a sequence of spels in scene C

in which only consecutive spels are adjacent and assume that
h0;8;14;20
 13;20i represents their intensities, respectively. We
also assume that any other spel in C adjacent to one listed in p
has the intensity at least 80. Consider s1 and s2 as the seeds of
objects O1 and O2 with averages m1 ¼ f ðs1Þ ¼ 0 and
m2 ¼ f ðs2Þ ¼ 20 and standard deviations r1 ¼ r2 ¼ 1, respectively.
Then l�/ðs1; cÞ ¼ 12 < 13 ¼ l�/ðs2; cÞ. However, l/̂1

ðs1; cÞ ¼ 14 >
13 ¼ l/̂2

ðs2; cÞ.

Proof. For adjacent s and t we have
�/ðs; tÞ ¼minfmaxfjf ðsÞj; jf ðtÞjg;maxfj20� f ðsÞj; j20� f ðtÞjgg. So,

�/ðs1; aÞ ¼minf8;20g ¼ 8, �/ða; cÞ ¼minf14;12g ¼ 12, and
l�/ðs1; cÞ ¼l�/ðhs1; a; ciÞ ¼maxf8;12g ¼ 12. Similarly �/ðs2; bÞ ¼
minfmaxf20;20
 13g;maxf0; j 
 13jgg ¼ 13 and �/ðb; cÞ ¼
minfmaxf20
 13;14g;maxfj 
 13j;6gg ¼ 13, which leads to
l�/ðs2; cÞ ¼ l�/ðhs2; b; ciÞ ¼maxf13;13g ¼ 13. On the other hand, by
property (6), we have l/̂1

ðs1; cÞ ¼ l/̂1
ðhs1; a; ciÞ ¼ maxf0;8;14g ¼

14, while l/̂2
ðs2; cÞ ¼ l/̂2

ðhs2; b; ciÞ ¼maxf0;13;6g ¼ 13. h

To understand this example better, let x2
1 be as in (9); that is,

such that jx
2
1�m1 j
r1
¼ jx

2
1�m2 j
r2

. So, in the setting of Example 7, we have
d1 ¼ d2 ¼ x2

1 ¼ 10. The key characteristics of this example, that al-
lows us to negate property (8), is that the intensities present in
the path q ¼ hs2; b; ci (i.e., ff ðs2Þ; f ðbÞ; f ðcÞg) are not in
I2 ¼ ðm2 � �2;m2 þ �2Þ, despite the fact that f ðs2Þ; f ðcÞ 2 I2. Indeed,
if the equation l/̂2

ðs2; cÞ ¼ l/̂2
ðqÞ was satisfied with the intensities

of all spels in q belonging to J2, then (by Lemmas 8 and 9) we would
have had l/ðs2; cÞ ¼ l/̂2

ðs2; cÞ < l/ðs1; cÞ and l/ðs2; cÞ ¼
l/̂2
ðs2; cÞ < l/̂1

ðs1; cÞ, which is in agreement with (8).
In case when f ðbÞ ¼ 20� 13 ¼ 7, all the intensities under ques-

tion are between m1 and m2. Moreover, f ðbÞ is just barely below the
threshold m2 � d2. (A slight modification of the example can make
it arbitrarily close to m2 � d2.) The case when f ðbÞ ¼ 20þ 13 ¼ 33
shows that it is not enough to stay within the interval
I ¼ ðm2 � d2;1Þ, for which we have jx�m1 j

r1
> jx�m2 j

r2
for every x 2 I.

Thus, the symmetry of Ii’s around mi’s is essential in proving (8).
In other words, the above discussion shows that, if / is defined
via the truncation technique, then the intervals Ii are the largest
with which we can still prove property (8).

For the rest of the discussion, we will assume that f ðsiÞ 2 Ii for
every i. What is the format of the objects generated with l/ under
such assumption? First notice that in the case of the absolute con-
nectedness definition we get

P/
sih
¼

fc 2 C : h P l/i
ðsi; cÞg for h < �i

ri
;

c 2 C : �i
ri
> l/i

ðsi; cÞ
n o

for �i
ri
6 h:

8<
:

In other words, P/
sih

can be expressed in terms of the objects defined

via AFC with respect to the affinity /i: P/i
sih
¼ fc 2 C : h P l/i

ðsi; cÞg.
It is also easy to see that the ith object defined via RFC is the largest
among the above objects:

T
j–iP

/i
sifsjg ¼ fc 2 C : �i

ri
> l/i

ðsi; cÞg

¼
S

h<
�i
ri

P/i
sih

. The same remains true for the IRFC case.

Since the above reduces RFC and IRFC objects defined with re-
spect to / to the unions of absolute connectedness objects P/i

sih
with

respect to /i, one might wonder whether there is any sense at all in
defining object feature based affinity /. However, the full defini-
tion of / is necessary in order to amalgamate / with any other
affinity, as discussed in Section 3.

The remainder of this paper is devoted to the proof of Theorem 3.
Lemma 8. Let p ¼ hc1; . . . ; cli 2 �Pcs and i 2 f1; . . . ;ng. If f ðckÞ 2 Ii for
every k 2 f1; . . . ; lg, then l/ðpÞ ¼ l/̂i

ðpÞ < �i
ri

.

Proof. Notice that for every distinct i; j 2 f1; . . . ;ng and for every
index k 2 f1; . . . ; l� 1g we have /jðck; ckþ1Þ ¼
maxfujðckÞ;ujðckþ1ÞgP ujðckÞ ¼ 1, since f ðckÞ R Ij. So, /ðck; ckþ1Þ ¼
minj¼1;...;n/jðck; ckþ1Þ ¼ /iðck; ckþ1Þ ¼maxfuiðckÞ; uiðckþ1Þg ¼ max
f�uiðckÞ; �uiðckþ1Þg ¼ /̂iðck; ckþ1Þ and thus l/ðpÞ ¼ maxk¼1;...;l�1/
ðck; ckþ1Þ ¼maxk¼1;...;l�1/̂iðck; ckþ1Þ ¼ l/̂i

ðpÞ. In addition, by (6), we
have l/̂i

ðpÞ ¼maxk¼1;...;l �uiðckÞ. So, there is a k 2 f1; . . . ; lg for which
l/̂i
ðpÞ ¼ �uiðckÞ ¼ jf ðckÞ�mi j

ri
< �i

ri
, since f ðckÞ 2 Ii ¼ ðmi � �i;mi þ �iÞ. h

Lemma 9. Let p ¼ hc1; . . . ; cli 2 �Pcs be such that l/ðpÞ <1. Then, for
every i 2 f1; . . . ;ng, the following conditions are equivalent.

(a) f ðcÞ 2 Ii.
(b) f ðckÞ 2 Ii for every k 2 f1; . . . ; lg.
(c) l/ðpÞ ¼ l/̂i

ðpÞ < �i
ri
< �ujðcÞ for every j–i.

(d) l/ðpÞ ¼ l/̂i
ðpÞ.

Moreover, there is an i 2 f1; . . . ;ng for which each of these conditions
holds.
Proof. Note that aðck; ckþ1Þ ¼ 1 for every k ¼ 1; . . . ; l� 1, since p 2
�Pcs. To see that l/ðpÞ <1 implies that f ðcÞ 2 Ii for some i, note
that 1>l/ðpÞ¼maxk¼1;...;l�1/ðck;ckþ1ÞP/ðc1;c2Þ¼mini¼1;...;n/iðc1;c2Þ.

So, there exists an i2f1;...;ngwith1>/iðc1;c2Þ¼maxfuiðc1Þ;uiðc2Þg
aðc1 ;c2Þ . Thus,

1>uiðc1Þ and f ðcÞ¼ f ðc1Þ2 Ii.
‘‘(a))(b)” Let Z ¼ fk 2 f1; . . . ; lg : f ðckÞ 2 Iig. Then (a) says that

1 2 Z. We need to prove that Z ¼ f1; . . . ; lg. By way of contradiction,
assume that this is not the case and let m 2 f1; . . . ; lg be the
smallest such that m R Z. Then m > 1, as 1 2 Z, so k ¼ m� 1 2 Z. In
particular, f ðckÞ 2 Ii, so, for j 2 f1; . . . ;ng,

ujðckÞ <1() j ¼ i:

Since1 > l/ðpÞP /ðck; ckþ1Þ ¼minj¼1;...;n/jðck; ckþ1Þ, there exists a j
with 1>/ðck;ckþ1Þ¼/jðck;ckþ1Þ¼maxfujðckÞ;ujðckþ1Þg=aðck;ckþ1Þ.
In particular, 1 > ujðckÞ and 1 > ujðckþ1Þ. Hence, from the first of
these inequalities, we get j ¼ i. Therefore, the second inequality
becomes 1 > uiðckþ1Þ ¼ uiðcmÞ, implying that m 2 Z, contrary to
our assumption. Thus, Z ¼ f1; . . . ; lg and (b) holds.

‘‘(b))(c)” By Lemma 8, we have l/ðpÞ ¼ l/̂i
ðpÞ < �i

ri
. Also, since

f ðcÞ 2 Ii ¼ ðmi � �i;mi þ �iÞ# ðmi � dj
i;mi þ dj

iÞ, condition (9)

implies that �i
ri
6

dj
i

ri
< �ujðcÞ.

Implication ‘‘(c))(d)” is obvious.
‘‘(d))(a)” Condition (d) implies that l/ðpÞ <1. So, by the first

remark, f ðcÞ 2 Ij for some j. If j ¼ i, we are done. So, by way
of contradiction, assume that j–i. Then, using the implica-

tion ‘‘(a))(c), ” we have l/ðpÞ ¼ l/̂j
ðpÞ < jxk

j �mj j
rj

< �ukðcÞ for every

k–j. In particular, for k ¼ i we get l/ðpÞ < �uiðcÞ 6
maxk¼1;...;l �uiðckÞ ¼ l/̂i

ðpÞ ¼ l/ðpÞ, a contradiction. h

Lemma 10. Let p; q 2 �Pcs and i 2 f1; . . . ;ng. If
l/̂i
ðqÞ 6 l/̂i

ðpÞ ¼ l/ðpÞ, then l/ðqÞ ¼ l/̂i
ðqÞ. In particular, if

l/̂i
ðpÞ ¼ l/ðpÞ ¼ l/ðs; cÞ, then also l/̂i

ðs; cÞ ¼ l/̂i
ðpÞ ¼ l/ðs; cÞ.

Proof. Let us choose two paths, p ¼ hc1; . . . ; cli and q ¼ hd1; . . . ; dmi.
Since we have l/ðpÞ ¼ l/̂i

ðpÞ <1 (remember that /̂i is a non-
truncated version of the object feature base affinity for the ith
object) we can apply Lemma 9. Since Lemma 9(d) holds, so must
also Lemma 9(c). Hence, by (6), for every index k 2 f1; . . . ;mg we
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have jf ðdkÞ�mi j
ri

¼ �uiðdkÞ 6 maxj¼1;...;l �uiðdjÞ ¼l/̂i
ðqÞ 6 l/ðpÞ ¼ l/̂i

ðpÞ
< �i

ri
. Thus, f ðdkÞ 2 Ii for every k 2 f1; . . . ;mg. So, again by Lemma

9, we have l/ðqÞ ¼ l/̂i
ðqÞ.

The additional part is obvious when s ¼ c, since then
l/̂i
ðpÞ ¼ l/ðs; cÞ ¼ 0 ¼ l/̂i

ðs; cÞ. So, assume that s–c and that

l/̂i
ðpÞ ¼ l/ðpÞ ¼ l/ðs; cÞ. Then, by (7), there exists a path q 2 �Pcs

with l/̂i
ðs; cÞ ¼ l/̂i

ðqÞ. Then l/̂i
ðqÞ ¼ l/̂i

ðs; cÞ 6 l/̂i
ðpÞ ¼ l/ðpÞ. So,

by the first part, l/ðqÞ ¼ l/̂i
ðqÞ ¼ l/̂i

ðs; cÞ 6 l/̂i
ðpÞ ¼ l/ðs; cÞ

6 l/ðqÞ, proving that l/̂i
ðs; cÞ ¼ l/̂i

ðpÞ. h
A.1. Proof of Theorem 3

Assume that c; si; sj 2 C are as in the theorem, that is, such that
f ðsiÞ R

S
k–iIk and l/ðsi; cÞ < l/ðsj; cÞ. Fix a k 2 f1; . . . ;ng. We need to

show that l/̂i
ðsi; cÞ < l/̂k

ðsj; cÞ.
Note that sj–c, since otherwise l/ðsi; cÞ < l/ðsj; cÞ ¼ 0, which is

impossible. Thus, by (7), there exists a q ¼ hd1; . . . ; dmi 2 �Pcsj
such

that l/̂k
ðsj; cÞ ¼ l/̂k

ðqÞ. Also, if si ¼ c then, by the definition (10)
of l/, we have l/̂i

ðsi; cÞ ¼ 0 ¼ l/ðsi; cÞ < l/ðsj; cÞ 6 l/̂k
ðsj; cÞ. Thus,

we can assume that si–c. In particular, using the argument utilized
in the proof of (7), we can show that there exists a
p ¼ hc1; . . . ; cli 2 �Pcsi

such that l/ðpÞ ¼ l/ðc; siÞ.
We have l/ðpÞ ¼ l/ðsi; cÞ < l/ðsj; cÞ, so l/ðpÞ <1. Thus,

by Lemma 9, there exists an i0 for which f ðsiÞ ¼ f ðclÞ 2 Ii0 . There-
fore i0 ¼ i, since f ðsiÞ R

S
k–iIk. So, by Lemma 9(c), l/ðsi; cÞ ¼

l/ðpÞ ¼ l/̂i
ðpÞ < �i

di
< �ujðcÞ for every j–i. Also, by Lemma 10, we

have l/̂i
ðsi; cÞ ¼ l/ðsi; cÞ.

Now, if k–i, then, by (9) and the above,
l/̂i
ðsi; cÞ 6 l/̂i

ðpÞ < �ukðcÞ 6 maxr¼1;...;m �ukðdrÞ ¼ l/̂k
ðqÞ ¼ l/̂k

ðsj; cÞ.
So, assume that k ¼ i. If there is an r 2 f1; . . . ;mg for which f ðdrÞ R Ii,

then, by Lemma 9(c), l/̂i
ðsi; cÞ 6 l/̂i

ðpÞ < �i
ri
< jf ðdr Þ�mi j

ri
¼ �uiðdrÞ, so we

have l/̂i
ðsi; cÞ < �uiðdrÞ ¼ �ukðdrÞ 6 maxr¼1;...;m �ukðdrÞ ¼

l/̂k
ðqÞ ¼ l/̂k

ðsj; cÞ. So, assume that f ðdrÞ 2 Ii for every
r 2 f1; . . . ;mg. Then, by Lemma 8, l/̂i

ðqÞ ¼ l/ðqÞ. So,
l/̂i
ðsi; cÞ ¼l/ðsi; cÞ < l/ðsj; cÞ 6 l/ðqÞ ¼ l/̂i

ðqÞ ¼ l/̂k
ðqÞ ¼ l/̂k

ðsj; cÞ
finishing the proof. h
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