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a b s t r a c t

Fuzzy connectedness (FC) constitutes an important class of image segmentation schemas. Although affin-
ity functions represent the core aspect (main variability parameter) of FC algorithms, they have not been
studied systematically in the literature. In this paper, we began filling this gap by introducing and study-
ing the notion of equivalent affinities: if any two equivalent affinities are used in the same FC schema to
produce two versions of the algorithm, then these algorithms are equivalent in the sense that they lead to
identical segmentations. We give a complete and elegant characterization of the affinity equivalence. We
also demonstrate that any segmentation obtained via a relative fuzzy connectedness (RFC) algorithm can
be viewed as segmentation obtained via absolute fuzzy connectedness (AFC) algorithm with an automatic
and adaptive threshold detection. Since the main goal of the paper is to identify, by formal mathematical
arguments, the affinity functions that are equivalent, extensive experimental confirmations are not
needed — they show completely identical segmentations — and as such, only relevant examples of the
theoretical results are provided.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation — the process of partitioning the image do-
main into meaningful object regions — is perhaps the most chal-
lenging and critical problem in image processing and analysis.
Research in this area will probably continue indefinitely long be-
cause the solution space is infinite dimensional, and since any sin-
gle solution framework is unlikely to produce an optimal solution
(in the sense of the best possible precision, accuracy, and effi-
ciency) for all possible application domains. It is important to dis-
tinguish between two types of activities in segmentation research
— the first relating to the development of application domain-inde-
pendent general solution frameworks, and the second pertaining to
the construction of domain-specific solutions starting from a
known general solution framework. The latter is not a trivial task
most of the time. Both these activities are crucial, the former for
advancing the theoretical aspects of, and shedding new light on,
segmentation research, and the latter for bringing the theoretical
advances to actual practice. The topic of this paper touches both
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Mathematics, West Virginia
tes.
ski).
elski).
of these activities, but has more pertinence to the former than
the latter.

General segmentation frameworks [1–12] may be broadly clas-
sified into three groups: boundary-based [1–5], region-based [6–
10], and hybrid [11,12]. As the nomenclature indicates, in the first
two groups, the focus is on recognizing and delineating the bound-
ary or the region occupied by the object in the image. In the third
group, the focus is on exploiting the complementary strengths of
each of boundary-based and region-based strategies to overcome
their individual shortcomings. The segmentation framework dis-
cussed in the present paper belongs to the region-based group
and constitutes an extension of the fuzzy connectedness (abbrevi-
ated from now on as FC) methodology [8].

In the FC framework [8], a fuzzy topological construct, called
fuzzy connectedness, characterizes how the spatial elements
(abbreviated as spels) of an image hang together to form an object.
This construct is arrived at roughly as follows. A function called
affinity is defined on the set C � C of all pairs of spels from the im-
age domain C; the strength of affinity between any two spels de-
pends on how close the spels are spatially and how similar their
intensity-based properties are in the image. Affinity is intended
to be a local relation. A global fuzzy relation called fuzzy connected-
ness is induced on the image domain by affinity as follows. For any
two spels c and d in the image domain, all possible paths connect-
ing c and d are considered. Each path is assigned a strength of con-
nectedness which is simply the minimum of the affinities of
consecutive spels along the path. The level of fuzzy connectedness
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between c and d is considered to be the maximum of the strengths
of all paths between c and d. For segmentation purposes, FC is uti-
lized in several ways as described below. (Compare also Section
2.3.) See [13] for a review of the different FC definitions and how
they are employed in segmentation and applications.

In absolute FC (abbreviated AFC) [8], the support of a segmented
object is considered to be the maximal set of spels, containing one
or more seed spels, within which the level of FC is at or above a
specific threshold. To obviate the need for a threshold, relative FC
(or RFC) [14] was developed by letting all objects in the image to
compete simultaneously via FC to claim membership of spels in
their sets. Each co-object is identified by one or more seed spels.
Any spel c in the image domain is claimed by that co-object with
respect to whose seed spels c has the largest level of FC compared
to the level of FC with the seed sets of all other objects.

To avoid treating the core aspects of an object (that are very
strongly connected to its seeds) and the peripheral subtle aspects
(that may be less strongly connected to the seeds) in the same foot-
ing, an iterative refinement strategy is devised in iterative RFC (or
IRFC) [15–18]. This has been shown to lead to better object defini-
tion than RFC with a theoretical construct similar to that of RFC.
The proper design of affinity is crucial to the effectiveness of the
segmentations that ensue, no matter what type of FC is used. In
scale-based [29] and vectorial FC [19], which are applicable to all
of AFC, RFC, and IRFC, affinity definition is not based just on the
scalar properties of the two spels under question but also on the
vectorial properties of all spels in the local scale region around
the two spels. The FC family of methods developed to date [13–
24] consists of various combinations of absolute, relative, and iter-
ative FC with scale-based and vectorial versions.

The fundamental construct and core in any FC method is the
affinity function. Its choice determines the effectiveness of the par-
ticular FC method. In the published literature on FC, affinity func-
tions have not been studied in depth, leaving open several
fundamental questions relating to their form, parameters, and
effectiveness. A side effect and a manifestation of this gap is that,
sometimes, certain modifications of affinities and their parameters
are construed to result in improved FC segmentations, while, in
reality, they lead to theoretically equivalent segmentations. These
cannot be identified as such empirically.

In the present paper, we make a fundamental contribution to-
ward a solution to this problem by creating theoretical tools to ad-
dress these issues. More precisely, we define the notion of
equivalent affinities (Section 2.2), and prove that if any two equiv-
alent affinities are used in the same FC schema to produce two ver-
sions of the algorithm, then these algorithms are equivalent in the
sense that they lead to identical segmentations when applied to
any digital image initialized with the same seeds (Section 2.3).
The resulting characterization of equivalent affinities is used in
the second part of this paper [25] to analyze two main affinity
types, homogeneity based and object feature based, to study the
way they can be combined, and to determine which of these com-
binations lead to truly distinct segmentations.

We also show (in Section 3) that the RFC segmentation can be
viewed to some extent as an AFC segmentation with an automatic
threshold selection.

The notion of equivalence of algorithms, that stands behind the
notion of equivalent affinities, is at the foundation of our more gen-
eral study of the equivalences among segmentation algorithms, the
theory of which we initiated in [26].
2. Affinities equivalent in the FC sense

The main purpose of this section is to uncover the essence of the
relationship between the local measure of connectedness of pairs
of spels, the affinity function, and the resulting segmentations ob-
tained via FC algorithms. In particular, we will introduce the notion
of the equivalence (in the sense of FC) of the affinities and show that
equivalent affinities are indistinguishable from the point of view of
FC segmentations, no matter what the empirical results indicate.

To make this work complete and useful, our definition of the
affinity function will be more general than the one commonly used
in the literature. However, we will show that each class of equiva-
lent affinities contains at least one standard (meaning commonly
used) affinity.

2.1. Preliminary definitions

2.1.1. Fuzzy sets and relations
We will use the following interpretation of the notions of (hard)

functions and relations, which is standard in set theory (see e.g.
[27,28]) and is used in many calculus books. A binary relation R from
a set X to a set Y is identified with its graph; that is, the relation R
equals fhx; yi 2 X � Y : xRy holdsg. Since a function f : X ! Y is a
(special) binary relation from X to Y, in particular we have
f ¼ fhx; f ðxÞi : x 2 Xg. With this interpretation, fuzzy sets and fuzzy
relations have the following representations. Let Z be a fuzzy subset
of a hard set X with a membership function lZ : X ! ½0;1�. For each
x 2 X we interpret lZðxÞ as the degree to which x belongs to Z. Usu-
ally such a fuzzy set Z is defined as fhx;lZðxÞi : x 2 Xg, which is the
graph of lZ. Thus, according to our interpretation,Z actually equals
lZ. Note that this interpretation agrees quite well with the situation
when Z is a hard subset Z of X, as then Z ¼ lZ is equal to the char-
acteristic function vZ of Z (defined as vZðxÞ ¼ 1 for x 2 Z and vZðxÞ ¼ 0
for x 2 X n Z), and the identification of Z with vZ is quite common in
analysis and set theory. Notice also that a fuzzy binary relation q
from X to Y is just a fuzzy subset of X � Y , so it is equal to its mem-
bership function lq : X � Y ! ½0;1�.

2.1.2. Adjacency and digital space
Let n P 2 and let Zn stand for the set of all n-tuples of integer

numbers. A binary fuzzy relation a on Zn is said to be a fuzzy adja-
cency if a is symmetric (i.e., aðc; dÞ ¼ aðd; cÞ) and reflexive (i.e.,
aðc; cÞ ¼ 1). The value of aðc; dÞ depends only on the relative spatial
position of c and d. Usually aðc; dÞ is decreasing with respect to the
distance function kc � dk. In most applications, a is just a hard case
relation like 4-adjacency relation for n ¼ 2 or 6-adjacency in the
three-dimensional case, defined as aðc; dÞ ¼ 1 for kc � dk 6 1 and
aðc; dÞ ¼ 0 for kc � dk > 1. By an n-dimensional fuzzy digital space
we will understand a pair hZn;ai. The elements of the digital space
are called spels. (For n ¼ 2 also called pixels, while for
n ¼ 3 � voxels.)

2.1.3. Digital scene
Let k P 1. A scene over a fuzzy digital space hZn;ai is a pair

C ¼ hC; f i, where C ¼
Qn

j¼1½�bj; bj� � Zn, each bj > 0 being an inte-
ger, and f : C ! Rk is a scene intensity function. The value of f repre-
sents either the original acquired image intensity or an estimate of
certain image properties (such as gradients and texture measures)
obtained from the given image.

2.1.4. Standard affinity functions
An affinity function for a scene C, defined in its general form in

the next subsection, is usually denoted by j and it assigns to any
pair hc; di 2 C � C of spels the strength jðc; dÞ of their local hanging
togetherness in C. Within this class, a special role is played by stan-
dard affinities, that is, mappings j : C � C ! ½0;1� which, treated as
fuzzy binary relations, are symmetric and reflexive. In all practical
applications, the value of jðc; dÞ depends on the adjacency strength
aðc; dÞ of c and d (i.e., on the spatial relative position of c and d) as
well as on the intensity function f. So far, only standard affinities
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have been used in applications in the literature.3 Of those, the most
prominent are [29]: (1) the homogeneity based affinity

wrðc;dÞ ¼ aðc; dÞ e�kf ðcÞ�f ðdÞk2=r2
; where r > 0; c;d 2 C ð1Þ

with its value being close to 1 (meaning that c and d are well con-
nected) when the spels are spatially close and have very similar
intensity values; (2) the object feature based affinity (single object
case, with an expected intensity m for the object)

/rðc;dÞ ¼ aðc; dÞ e�maxfkf ðcÞ�mk;kf ðdÞ�mkg2=r2
;

where r > 0; c;d 2 C ð2Þ

with its value being close to 1 when the spels are spatially close and
both have intensity values close to m. The weighted averages of
these two forms of standard affinity — either additive or multiplica-
tive — have also been used.

It has been demonstrated [14] that, in the standard FC algo-
rithms of AFC and RFC (defined below), to fulfill certain desirable
properties of segmentations (such as robustness with respect to
seed points), affinities must be symmetric. In this paper, therefore,
we will restrict ourselves to symmetric affinities. However, we will
go quite afar from previous publications otherwise in considering
affinity in its very general form.

2.1.5. Affinity as an operator
The affinity function is usually associated with each scene C

according to some specific rule, such as in the examples (1) and
(2). In such case, we can treat the rule of such association as an
operator hC; pi#K j ¼KðC; pÞ, where p represents all additional
parameters like a prior knowledge (e.g. m in (2)) or other parame-
ters (e.g. r).

2.2. Equivalent affinities

In this subsection, we define the notion of the affinity function
in its general form, without just confining to the basis of standard
affinities as in (1) and (2), and introduce the concept of equivalent
affinities. The motivation for developing equivalent affinities
comes from our desire to recognize those differences among affin-
ities that are inessential, and, therefore, lead to the same FC seg-
mentations, from those that are essential and may give rise to
different segmentations.

We refrain from formally defining equivalent affinities as ‘‘lead-
ing to the same FC segmentations in all FC schemas” since the term
‘‘all FC schemas” may change in time, leading to a confusion. Nev-
ertheless, Theorem 5 and Remark 6 show that this intuitive defini-
tion fully agrees with our formal definition given below.

Let � be a linear order relation [27] on a set L and let C be an
arbitrary finite non-empty set. We say that a function
j : C � C ! L is an affinity function (from C into hL;�i) provided j
is symmetric (i.e., jða; bÞ ¼ jðb; aÞ for every a; b 2 C) and
jða; bÞ � jðc; cÞ for every a; b; c 2 C. Clearly, any standard affinity,
as defined above, is an affinity function with hL;�i ¼ h½0;1�;6i.
Note that jðd; dÞ � jðc; cÞ for every c; d 2 C. So, there exists an ele-
ment in L, which we will denote by a symbol 1j, such that
jðc; cÞ ¼ 1j for every c 2 C. Notice that 1j is the largest element
of Lj ¼ fjða; bÞ : a; b 2 Cg, although it does not need to be the larg-
est element of L. In what follows, the strict inequality related to �
will be denoted by�, that is, a � b if and only if a � b and a–b. Cer-
tainly, in image processing, C will be always the domain of the
scene intensity function. In all specific cases examined so far (com-
pare [25]), we take hL;�i as either the standard range h½0;1�;6i or
h½0;1�;Pi.
3 The exceptions are [17,23] wherein an asymmetric affinity was employed.
We say that the affinities j1 : C � C ! hL1;�1i and j2 : C � C !
hL2;�2i are equivalent (in the FC sense) provided, for every
a; b; c; d 2 C

j1ða; bÞ�1j1ðc; dÞ if and only if j2ða; bÞ�2j2ðc; dÞ

or, equivalently,

j1ða; bÞ�1j1ðc; dÞ if and only if j2ða; bÞ�2j2ðc; dÞ:

For example, it can be easily seen that for any constants r; s > 0 the
homogeneity based affinities wr and ws, see (1), are equivalent,
since for any pairs ha; bi and hc; di of adjacent spels,

wrða; bÞ < wrðc;dÞ () kf ðaÞ � f ðbÞk > kf ðcÞ � f ðdÞk
() wsða; bÞ < wsðc; dÞ: ð3Þ

(Symbol () means ‘‘if and only if.”)
We say that the affinity operators K1 and K2 are equivalent

provided the associated affinities j1 ¼K1ðC; pÞ and
j2 ¼K2ðC; pÞ are equivalent for all scenes C and appropriate
parameters p.

Equivalent affinities can be characterized as follows, where �
stands for the composition of functions, that is, ðg � j1Þða; bÞ ¼
gðj1ða; bÞÞ.

Proposition 1. Affinities j1 : C � C ! hL1;�1i and j2 : C � C !
hL2;�2i are equivalent if and only if there exists a strictly increasing
function g from hLj1 ;�1i onto hLj2 ;�2i such that j2 ¼ g � j1.

Proof. If j1 and j2 are equivalent, define g by putting
gðj1ða; bÞÞ ¼ j2ða; bÞ for every a; b 2 C. Note that g is well defined,
since j1ða; bÞ ¼ j1ðc; dÞ implies that j2ða; bÞ ¼ j2ðc; dÞ. Also,
inequality j1ða; bÞ�1j1ðc; dÞ implies that j2ða; bÞ�2j2ðc; dÞ, so g is
a strictly increasing map from Lj1 onto Lj2 . Conversely, if
j2 ¼ g � j1, where g is strictly increasing, then j1 is equivalent to
j2 since for every a; b; c; d 2 C we have:

j2ða; bÞ�2j2ðc; dÞ () gðj1ða; bÞÞ�2gðj1ðc;dÞÞ
() j1ða; bÞ�1j1ðc; dÞ: �

Notice that when two affinity operators K1 and K2 are equiv-
alent, then, for all appropriate pairs hC; pi, the affinities K1ðC; pÞ
and K2ðC; pÞ are equivalent and, by Proposition 1, there exists an
increasing function gC;p for which K2ðC; pÞ ¼ gC;p �K1ðC; pÞ. How-
ever, in general, there is no single increasing function g, indepen-
dent of hC; pi, for which

K2ðC;pÞ ¼ g �K1ðC;pÞ for all appropriate pairs hC;pi: ð4Þ

(An example can be constructed from the affinity operator obtained
by combining two affinities via lexicographical order, see [25,
Example 5].) Nevertheless, an increasing function g, independent
of hC;pi and satisfying (4), can often be found for equivalent affinity
operators K1 and K2, as seen in Example 4 and in [25].

One of the specific conclusions from Proposition 1 is the follow-
ing fact.

Corollary 2. If j : C � C ! h½0;1�;Pi is an affinity, then, for every
strictly decreasing function g from ½0;1� onto [0,1], a map g � j :

C � C ! h½0;1�;6i is an affinity equivalent to j.

Our interest in equivalent affinities comes from the fact (see
Theorem 5) that any FC segmentation of a scene C remains un-
changed if an affinity on C used to get the segmentation is replaced
by an equivalent affinity. Keeping this in mind, it makes sense to
find for each affinity function an equivalent affinity in a nice form:

Theorem 3. Every affinity function is equivalent (in the FC sense) to a
standard affinity.
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Proof. Let j : C � C ! hL;�i be an arbitrary affinity. Note that
there is a strictly increasing function g : Lj ! ½0;1� with
gð1jÞ ¼ 1. (If Lj ¼ fl1; . . . ; lmgwith l1 ¼ 1j, then such a g can be con-
structed by an easy induction on m.) Let j2ðc; dÞ ¼ gðjðc; dÞÞ for
every c; d 2 C. Then, by Proposition 1, j is equivalent to the stan-
dard affinity j2 : C � C ! h½0;1�;6i. h

Once we agree that equivalent affinities lead to the same seg-
mentations, Theorem 3 says that we can restrict our attention to
standard affinities without losing any generality of our method.
Then, one may wonder why study other affinities at all. The answer
to this question is simple — in most cases, it is more natural to de-
fine an affinity function with a more abstract range, and any trans-
lation of such affinity to the standard one is a redundant step
adding only unnecessary computational burden, although some
researchers may believe, that it helps intuitive understanding.
Moreover, in some of these cases there is no simple (i.e., continu-
ous) translation of the natural affinity to the standard one. (See
[25, Example 5].) On the other hand, Theorems 3 and 5 tell us that
all the theoretical results that are true for the standard affinities
hold also for the affinities as we defined them. Thus, there is no
particular reason to restrict our attention to the affinities in the
standard form.

The following constitutes an example of two equivalent forms
of the homogeneity based affinity (1), each form treated as an
affinity operator. (See [25] for more examples.)

Example 4. For a scene C ¼ hC; f i, a natural form of the homoge-
neity based affinity is a function w : C � C ! h½0;1�;Pi given by
wðc; dÞ ¼ kf ðcÞ � f ðdÞk for adjacent spels c; d 2 C and wðc; dÞ ¼ 1
Fig. 1. Illustration of equivalent affinities. (a) A 2D scene — a CT slice of a human knee. (b
respectively, and the same seed spel (indicated by + in (a)) specified in a soft tissue region
and (c), respectively.
otherwise. (See also [25].) The more commonly used version of the
homogeneity based affinity is the standard affinity wrðc; dÞ ¼
e�wðc;dÞ2=r2

, which is the composition of w with the Gaussian
function grðxÞ ¼ e�x2=r2 . Note that, by Corollary 2, w and wr are
equivalent, independently of the value of the parameter r, since gr
is strictly decreasing from ½0;1� onto [0,1]. (Compare also with (3),
which constitutes a direct argument.)

In particular, the parameter r in the definition of wr is totally
non-essential from the FC segmentation point of view (see Theo-
rem 5), as varying r results in a different (non-linear) scaling of
the strength of connectedness. Therefore, for example, the same
segmentation of a given image is obtained by using AFC algorithm
with (a) affinity w and threshold h; (b) affinity wr and threshold
grðhÞ, independently of the value of r. This phenomenon is illus-
trated in Fig. 1 on a 2D scene — a CT slice of a human knee,
Fig. 1(a). In Fig. 1(d) and (e) segmented binary scenes are shown,
resulting from the use of wr with r ¼ 1 and r ¼ 10:8, respectively,
and the corresponding thresholds grðhÞ. The results are identical.
Fig. 1(b) and (c) show the corresponding connectivity scenes, in
which the intensity of each spel c represents the wr-connectivity
strength between the seed and c (i.e., the strength of the strongest
path joining the seed and c).

2.3. FC segmentations for equivalent affinities

Fix an affinity j : C � C ! hL;�i. To define fuzzy connectedness
segmentation of C, we need first to translate the local measure of
connectedness given by j into the global strength of connected-
and c) Connectivity scenes corresponding to affinities wr with r ¼ 1 and r ¼ 10:8,
of the scene in (a). (d) and (e) Identical AFC objects obtained from the scenes in (b)
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ness. For this, we will need the notions of a path and its strength. A
path in A # C is any sequence4 p ¼ hc1; . . . ; cli, where l > 1 and ci 2 A
for every i ¼ 1; . . . ; l. (Notice that there is no assumption on any
adjacency of the consecutive spels in a path.) The family of all paths
in A is denoted by PA. If c;d 2 A, then the family of all paths
hc1; . . . ; cli in A from c to d (i.e., such that c1 ¼ c and cl ¼ d) is denoted
by PA

cd.
The strength ljðpÞ of a path p ¼ hc1; . . . ; cli 2 PC is defined as the

strength of its j-weakest link; that is, ljðpÞ ¼
def minfjðci�1; ciÞ :

1 < i 6 lg. (Note that, if one follows the common practice of defin-
ing jðc; dÞ to be the minimal element of Lj for any non-adjacent c
and d, then only paths with adjacent consecutive spels can have
non-minimal strength.) For c; d 2 A # C, the (global) j-connected-
ness strength in A between c and d is defined as the strength of a
strongest path in A between c and d; that is,

lA
jðc;dÞ ¼

def max ljðpÞ : p 2 PA
cd

� �
: ð5Þ

Notice that lA
jðc; cÞ ¼ ljðhc; ciÞ ¼ 1j. We will often refer to the func-

tion lA
j : C � C ! L as a connectivity measure (on A) induced by j.

For c 2 A � C and a non-empty D � A, we also define lA
jðc;DÞ ¼

def

maxd2DlA
jðc;dÞ. We will write l for lj and lA for lA

j when j is clear
from the context. The issue of why lA

j should be defined from j by
the procedure described above is discussed in detail in [30]. Note
that if j is a hard binary relation (i.e., when L ¼ f0;1g), then lC

j is
a relation (or, more precisely, its characteristic function) known as
a transitive closure of j, which is defined as the set of all pairs
hc; di 2 C � C for which there exists a sequence c ¼ c0; c1; . . . ;

cm ¼ d such that jðci; ciþ1Þ ¼ 1 for every i < m.
To define fuzzy objects delineated by FC segmentations, we

start with a family S of non-empty pairwise disjoint subsets of C,
where each S 2 S represents a set of spels, known as seeds, which
will belong to the object generated by it. Also, fix a threshold
h 2 L; h 6 1j. For every S 2 S, put W ¼

S
ðS n fSgÞ and, similarly

as in [18] (see also [31]), define

	 Pj
Sh ¼ fc 2 C : h � lC

jðc; SÞg;
	 Pj

SS ¼ fc 2 C : lC
jðc;WÞ � lC

jðc; SÞg;
	 PIj

SS ¼
S1

i¼0Pi;j
SS , where sets Pi;j

SS are defined inductively by

P0;j
SS ¼ ; and Piþ1;j

SS ¼ Pi;j
SS [ fc 2 C n Pi;j

SS : lCnPi;j
SS

j ðc;WÞ � lC
jðc; SÞg.

Then AFC, RFC, and IRFC segmentations of C are defined,
respectively, as Ph

jðSÞ ¼ fP
j
Sh : S 2 Sg;PjðSÞ ¼ fPj

SS : S 2 Sg, and
PI

jðSÞ ¼ fP
Ij
SS : S 2 Sg. Notice that an AFC object Pj

Sh consists of
all spels connected with at least one seed s in S with the j-con-
nectivity strength at least h. An RFC object is created via compe-
tition of seeds for each spel: a spel c belongs to Pj

SS provided
there is a seed s in S for which the j-connectivity between c
and s exceeds the j-connectivity between c and any other seed
indicating another object. Finally, IRFC objects are obtained by
refining the RFC competition: a spel c is unassigned to any RFC
object provided there is a tie between two seeds s and t from
different objects, e.g., lC

jðc;wÞ � lC
jðc; sÞ ¼ lC

jðc; tÞ for any seed
w. However, such a tie can be resolved if the strongest paths jus-
tifying lC

jðc; sÞ and lC
jðc; tÞ cannot pass through the spels already

assigned to another object. Upon such resolution, the spel under
question is assigned to the winning object in the next iteration
of IRFC.

Now we can formalize our (previous) main claim, and a central
result of this paper, that the fuzzy connectedness segmentations
(i.e., those obtained via AFC, RFC, and IRFC algorithms) are un-
changed if an affinity function is replaced by an equivalent one.
4 Notice that the paths must have length greater than 1. We make this requirement
to ease some technical difficulties, while it creates no real restriction as, in whatever
we do, a ‘‘path” hci can be always replaced by a path hc; ci.
Theorem 5. Let j1 : C � C ! hL1;�1i and j2 : C � C ! hL2;�2i be
equivalent affinity functions and let S be a family of non-empty
pairwise disjoint subsets of C. Then for every h1�11j1 in L1, there exists
a h2�21j2 in L2 such that, for every S 2 S and i 2 f0;1;2; . . .g, we
have Pj1

Sh1
¼ Pj2

Sh2
; Pj1

SS ¼ Pj2
SS, and Pi;j1

SS ¼ Pi;j2
SS . In particular, Ph1

j1
ðSÞ ¼

Ph2
j2
ðSÞ;Pj1 ðSÞ ¼ Pj2 ðSÞ, and PI

j1
ðSÞ ¼ PI

j2
ðSÞ.

Moreover, if g : C ! C is a strictly monotone function such that
j2 ¼ g � j1 (which exists by Proposition 1), then we can take
h2 ¼ gðh1Þ.

Proof. First note that, for any paths p ¼ hc1; . . . ; cli and q ¼ hd1; . . . ;

dmi from PC , we have5

lj1
ðpÞ�1lj1

ðqÞ()ð8 1< j6mÞ ð91< i6 lÞ j1ðci�1;ciÞ�1j1ðdj�1;djÞ
()ð8 1< j6mÞ ð91< i6 lÞ j2ðci�1;ciÞ�2j2ðdj�1;djÞ
()lj2

ðpÞ�2lj2
ðqÞ:

Similarly, for every a; c 2 A # C and b;d 2 B # C, we have

lA
j1
ða; cÞ�1lB

j1
ðb;dÞ () ð8 p 2 PA

acÞ ð9q 2 PB
bdÞ lj1

ðpÞ�1lj1
ðqÞ

() ð8 p 2 PA
acÞ ð9q 2 PB

bdÞ lj2
ðpÞ�2lj2

ðqÞ
() lA

j2
ða; cÞ�2lB

j2
ðb; dÞ:

If, in addition, ;–W # A and S # B, then also

lA
j1
ða;WÞ�1lB

j1
ðb; SÞ () ð8 c 2WÞ ð9d 2 SÞ lA

j1
ða; cÞ�1lB

j1
ðb;dÞ

() ð8 c 2WÞ ð9d 2 SÞ lA
j2
ða; cÞ�2lB

j2
ðb;dÞ

() lA
j2
ða;WÞ�2lB

j2
ðb; SÞ: ð6Þ

Let a; b 2 C be such that j1ða; bÞ ¼minfj1ðx; yÞ : x; y 2 C and h1�1

j1ðx; yÞg and put h2 ¼ j2ða; bÞ. Note that h2 ¼ gðh1Þ whenever
j2 ¼ g � j1. Then

Pj1
Sh1
¼ c 2 C : h1�1lC

j1
ðc; SÞ

n o
¼ c 2 C : j1ða; bÞ�1lC

j1
ðc; SÞ

n o

¼ c 2 C : j2ða; bÞ�2lC
j2
ðc; SÞ

n o
¼ Pj2

Sh2
:

Similarly, we have

Pj1
SS ¼ c 2 C : lC

j1
ðc;WÞ�1lC

j1
ðc; SÞ

n o

¼ c 2 C : lC
j2
ðc;WÞ�2lC

j2
ðc; SÞ

n o
¼ Pj2

SS:

The final equation we need to prove is Pi;j1
SS ¼ Pi;j2

SS . This will be
proved by induction on i P 0. For i ¼ 0 this is true, since by defini-
tion both sets are empty. So assume that for some i we have
Pi;j1

SS ¼ Pi;j2
SS . Then

Piþ1;j1
SS ¼ Pi;j1

SS [ c 2 C n Pi;j1
SS : lCnPi;j1

SS
j1

ðc;WÞ�1lC
j1
ðc; SÞ

� �

¼ Pi;j2
SS [ c 2 C n Pi;j2

SS : lCnPi;j2
SS

j1
ðc;WÞ�1lC

j1
ðc; SÞ

� �

¼ Pi;j2
SS [ c 2 C n Pi;j2

SS : lCnPi;j2
SS

j2
ðc;WÞ�2lC

j2
ðc; SÞ

� �
¼ Piþ1;j2

SS ;

where the second equation follows from the inductive assumptions
and the third one is implied by (6). The equality of the segmenta-
tions associated with j1 and j2 follows directly from the definitions
of Ph

jðSÞ;PjðSÞ, and PI
jðSÞ. h
2.4. Remarks on and consequences of Theorems 3 and 5

In summary, Theorem 3 says that for every affinity function
there is a standard affinity equivalent to it, while Theorem 5
says that for any two equivalent affinities we get the same FC
5 Quantifiers 8 and 9 stands for ‘‘for all” and ‘‘there exists,” respectively.
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segmentations in each of AFC, RFC, and IRFC. To further illustrate
this, we examine the previous example in Fig. 1 for AFC by using
two affinities wr, with r ¼ 1 and r ¼ 10:8. Fig. 1(b) and (c) display
the connectivity scenes Cj ¼ hC; fki for the 2D scene of Fig. 1(a),
where for any c 2 C and the same fixed spel s 2 C; fjðcÞ ¼ lC

jðc; sÞ,
where j is either w1 or w10:8. The resulting identical AFC objects
are displayed in (d) and (e) as binary scenes. Of course, different
thresholds were used in producing scenes (d) and (e) from those
in (b) and (c), respectively, which precisely makes our point that
segmented object information in Fig. 1(b) and (c) is identical.

Remark 6. It can be proved, under some natural assumptions on
affinity operators K1 and K2 satisfied by all currently used
affinities, that the equivalence of j1 ¼K1ðC0; pÞ and j2 ¼
K2ðC0; pÞ is not only sufficient, but also necessary for the
conclusion of Theorem 5. More specifically, for such affinities, if
j1 and j2 are not equivalent and C0 ¼ hC; f0i, then there exist a
scene C ¼ hC; f i, a non-empty set of seeds S � C, and h1�11j1 such
that Pj1

Sh1
–Pj2

Sh2
for every h2�21j2 .
Note also that, in general, conclusion of Theorem 5 may hold
also for the affinities that are not equivalent. Indeed, it is easy to
find a standard affinity j1 on a scene C ¼ hC; f i for which: (a) be-
tween any two spels there is a path of maximal strength 1, while
(b) there are many pairs ha; bi of adjacent spels in C with
j1ða; bÞ < 1. Now, if j2 is obtained from j1 by changing only its
values on adjacent pairs ha; bi with j1ða; bÞ < 1, then the conclu-
sion of Theorem 5 will still hold, while we can insure that j1 and
j2 are not equivalent.

2.4.1. Practical considerations
The equivalence theorems say that, if a function g is strictly

monotone, then the affinities j and g � j are equivalent and they
lead to identical segmentations. However, the segmentations are in-
sured to be identical only when there are no rounding errors. In ac-
tual implementations, it is feasible that for distinct numbers x and y
in the range of j, the actual values gðxÞ and gðyÞ are so close that the
implemented algorithm identifies gðxÞwith gðyÞ. In such implemen-
tations some information is lost when passing from j to g � j, which
may lead to different segmentations. This problem must be consid-
ered, when performing any experimental comparisons. Note also
that, even when there is no rounding error in the algorithm that
influences our theoretical results, a human operator may have an
impression that some information is lost when passing from j to
g � j, due to the limited resolution perception of the human eye. This
phenomenon can be noticed in Fig. 1(b) and (c): it is easier for human
eyes to identify the object in Fig. 1(c) than it is in Fig. 1(b).

Notice, that all the results presented in this section are applica-
ble to the vectorial images (compare [19]), since we allow the im-
age intensity value to be vectors from Rk. In addition, with minor
modifications to the definition of general affinities, the scale-based
version of standard affinity [29] can also be covered under Theo-
rems 3 and 5. (Any scale-based affinity is essentially equal to a
non-scale-based affinity applied to an appropriately filtered ver-
sion of the intensity function.) This implies that those results are
applicable to all currently known FC schemas involving different
combinations of scale-based and/or vectorial AFC, RFC, and IRFC.

Theorems 3 and 5 also imply that any result proved for the FC
segmentations in the context of standard affinities remains valid
for the affinities in our general setting, that is, the FC algorithms
used with our general affinities have all nice properties that the
FC algorithms have when used with the standard affinities. For
example, the properties listed in Corollary 7 below are the transla-
tion of some of the results from [18]. Property from (a) is technical,
and will be used in the proof of one of the following results. The
robustness property (b) says, that the output of the AFC algorithm
remains unchanged when some seeds are replaced by other seeds
within the same object. This is of considerable practical impor-
tance, since seeds, whether chosen by a human operator or auto-
matically by an algorithm, are likely to be different in different
instances of running the algorithm. Nevertheless, according to
the robustness property, the segmentation results remain identi-
cal, as long as the indicated seeds will be chosen within the respec-
tive objects. The last property (c) insures that the distinct objects
delineated by IRFC and RFC are disjoint.

In what follows, if affinity j is clear from the context, we will
drop the symbol j from the object symbols Pj

Sh; P
j
SS, and PIj

SS.

Corollary 7. Let j : C � C ! hL;�i be an arbitrary affinity function.
(a) For any a; b; c 2 A # C, if lAðb; cÞ � lAða; bÞ, then lAða; cÞ ¼

lAðb; cÞ.
(b) (Robustness) Let S ¼ fS1; . . . ; Smg be a family of singletons, and

for every i 2 f1; . . . ;mg, let Ti � PSiS
be a singleton. If

T ¼ fT1; . . . ; Tmg, then PTiT ¼ PSiS
for every i 2 f1; . . . ;mg.

(c) For any family S of pairwise disjoint non-empty subsets of C, we
have PI

SS \ PI
US ¼ ; for every distinct S;U 2 S.
Proof. This follows directly from our remark above and, respec-
tively, from [18, Proposition 2.1, Proposition 2.2, Theorem 2.4]. h
3. Relative fuzzy connectedness segmentation as absolute fuzzy
connectedness segmentation

In AFC, to obtain the FC object Pj
Sh, a threshold h for the strength

of connectedness must be specified. This threshold is obviated in
defining RFC objects Pj

SS (see definition above) simply by determin-
ing the membership of a spel c in an object by its largest strength of
connectedness with respect to the seed sets assigned to the differ-
ent objects. In this section, we will show that the RFC segmentation
can be viewed to some extent as an AFC segmentation wherein the
required threshold is determined automatically.

Theorem 8. Let j : C � C ! hL;�i be an arbitrary affinity function
and S be a non-empty family of pairwise disjoint, non-empty sets of
seeds in C. Fix an S 2 S and let W ¼

S
ðS n fSgÞ. For every s 2 S let

hs ¼ lC
jðs;WÞ. Then PSS ¼

S
s2S
S

hs�hPfsgh.

Proof. Note that, by Corollary 7(a), for every c; s;w 2 C,

lC
jðc;wÞ � lC

jðc; sÞ if and only if lC
jðs;wÞ � lC

jðc; sÞ:

Thus

PSS ¼ fc 2 C : lC
jðc;WÞ � lC

jðc; SÞg
¼ fc 2 C : ð9s 2 SÞ ð8 w 2WÞ lC

jðc;wÞ � lC
jðc; sÞg

¼ fc 2 C : ð9s 2 SÞ ð8 w 2WÞ lC
jðs;wÞ � lC

jðc; sÞg
¼ fc 2 C : ð9s 2 SÞ lC

jðs;WÞ � lC
jðc; sÞg

¼
[
s2S

fc 2 C : hs � lC
jðc; sÞg

¼
[
s2S

[
hs�h

fc 2 C : h � lC
jðc; sÞ ¼

[
s2S

[
hs�h

Pfsgh: �

þ
For an affinity j : C � C ! hL;�i and h < 1j, let h be the smallest
element of Lj ¼ fjða; bÞ : a; b 2 Cg greater than h; that is,
hþ ¼def minfq 2 Lj : h � qg.

Theorem 8 has the nicest form when each object is initiated by
just one single seed spel.

Corollary 9. Let hC;j;�i be an arbitrary affinity structure and S be a
non-empty family of singletons in C such that lC

jðs; tÞ–1j for every
distinct S ¼ fsg and T ¼ ftg from S. For S ¼ fsg 2 S, define hS ¼
lC

jðs;
S
ðS n fSgÞÞ. Then PSS ¼ PShþS

for every S 2 S. In particular,
PjðSÞ ¼ fPShþS

: S 2 Sg.
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Proof. Let S ¼ fsg 2 S. Then hS ¼ hs and, by Theorem 8, we have
PSS ¼

S
hS�hPSh ¼ fc 2 C : hS � lC

jðc; SÞg ¼ fc 2 C : hþS � lC
jðc; SÞg ¼

PShþS
. h

Notice that if for a family S containing only singletons there ex-
ist distinct S; T 2 S such that lC

jðS; TÞ ¼
def maxs2SlC

jðs; TÞ ¼ 1j, then
PSS ¼ PTS ¼ ;. That is, in this case, S and T are in the same object,
and therefore, the sets that contain S and T and that separate them
in the FC sense are obviously empty. In all practical cases we are
interested only in the families S of seeds for which lC

jðS; TÞ–1j

for any distinct S; T 2 S. In fact, if S and T are in different object re-
gions in a scene, then we expect the strength of connectedness
lC

jðS; TÞ between them to be low. Thus, this assumption in Corol-
lary 9 does not really restrict its usefulness, but actually warrants
it from practical requirements.

If S from Corollary 9 has just two elements, say S ¼ ffsg; ftgg,
then hfsg ¼ hftg and for h ¼ hþfsg we have PjðSÞ ¼ fPSh : S 2 Sg ¼
Ph

jðSÞ. Thus, in this case, the RFC segmentation PjðSÞ is just an
Fig. 2. (a) A schematic scene with a uniform background and four distinct areas denoted
areas is uniform in intensity and the connectivity strength within each of these areas has
is 6.2, while the connectivity between the adjacent regions is as indicated in the figure:
indicated by seeds s, t, and u, respectively. (c) Three AFC objects indicated by the seeds
Pt;fs;t;ug ¼ Pt;ð:6Þþ , object Pu;ð:6Þþ is smaller than RFC indicated Pu;fs;t;ug . (d) Same as in (c) but w
lead to an object bigger than Ps;fs;t;ug and Pt;fs;t;ug .
AFC segmentation Ph
jðSÞ, where h was automatically set by the

RFC procedure. However, when there are more than two objects in-
volved in RFC and S contains three or more singletons, the thresh-
olds hþS ; S 2 S, need not be equal. In this case, each PSS from PjðSÞ
is an AFC object PShþS

, where the different thresholds are automati-
cally tailored to the different objects under consideration. In other
words, in general, it is not possible to derive RFC objects via AFC
segmentation Ph

jðSÞ. That is the beauty of RFC compared to AFC.
We illustrate this property of RFC versus AFC in a schematic

(Fig. 2), as well as in an actual medical image (Fig. 3). In both fig-
ures, we consider three objects, indicated by seeds s, t, and u. In
Fig. 2, region W is more strongly connected to seed u than to either
s or t. As such, RFC correctly assigns it to the region Pu;fs;t;ug indi-
cated by u, as shown in Fig. 2(b). However, there is no single
threshold that could lead to an AFC segmentation coinciding with
the RFC segmentation: a threshold h below ð:6Þþ causes objects Ps;h

and Pt;h to be equal and too big, as shown in Fig. 2(d), while
h P ð:6Þþ cuts region W from Pu;h, see Fig. 2(c). Nevertheless, every
by S, T, U, W, and indicated by seeds marked by �. It is assumed that each of these
the maximal value of 1, the connectivity between the background and any other spel
lðs; tÞ ¼ :6;lðs; uÞ ¼ :5, and lðu;wÞ ¼ :6. (b) The RFC segmentation of three objects

s; t;u and delineated with threshold h ¼ ð:6Þþ . Notice that while Ps;fs;t;ug ¼ Ps;ð:6Þþ and
ith h ¼ ð:5Þþ. Note that while Pu;fs;t;ug ¼ Pu;ð:5Þþ , objects Ps;ð:5Þþ and Pt;ð:5Þþ coincide and



Fig. 3. (a) A 2D scene, same as in Fig. 1(a), with three indicated seeds. (b) and (c) Connectivity scenes corresponding to the two AFC objects indicated by s and t. (d) The RFC
segmentation for the three indicated objects. (e) The AFC objects initiated with seeds s and t obtained with the threshold hfsg < hftg determined automatically by RFC.
Although the result is a binary image, the two objects are shown at two gray levels. The object indicated by seed s agrees with its counterpart in (d). The smaller threshold
caused the t-indicated object to be slightly smaller than in (d). (f) Same as (e) but with threshold hftg . The object indicated by seed t agrees with its counterpart in (d).
However, the larger threshold caused the s-indicated object (gray) to leak to a big part of the scene.
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RFC delineated object is also equal to appropriate AFC object:
Ps;fs;t;ug ¼ Ps;ð:6Þþ ; Pt;fs;t;ug ¼ Pt;ð:6Þþ , and Pu;fs;t;ug ¼ Pu;ð:5Þþ .

In Fig. 3, we concentrate on the objects indicated by seeds s and
t, corresponding to soft tissue regions. The third object is the rest of
the background and is denoted by seed u. The 2D scene is the one
employed in Fig. 1. Identical seed spels denoted by +’s in Fig. 3(a)
were specified for AFC and RFC. The two connectivity scenes corre-
sponding to the two AFC objects are displayed in Fig. 3(b) and (c),
and the resulting AFC objects obtained with two different thresh-
olds hþS from the scenes in (b) and (c) are shown in Fig. 3(e) and
(f). The RFC objects obtained appear in Fig. 3(d), wherein the two
objects of interest are identical to the AFC objects in (e) and (f) ob-
tained via different thresholds.

Note also that the main reason we could represent RFC ob-
jects in terms of AFC objects was that two appearances of c in
the inequality lC

jðc;wÞ � lC
jðc; sÞ could be reduced to one:

lC
jðs;wÞ � lC

jðc; sÞ, as both these inequalities are equivalent. In
the case of IRFC, the defining inequality is lA

jðc;wÞ � lC
jðc; sÞ

for an appropriate A � C, and there is no equivalent form of this
inequality with just one appearance of c. Thus, no natural AFC
representation of IRFC object seems possible. Although increas-
ing sophistication from AFC to RFC to IRFC has been previously
demonstrated via segmentation experiments [14,16,18], in this
section we have now given a mathematical justification of that
behavior.
4. Concluding remarks

The presented analysis shows that, from the perspective of FC
methodology, the only essential attribute of an affinity function
is its order. In particular, many transformations (like Gaussian) of
the natural affinity definitions (like derivative-driven homogeneity
based affinity) are of esthetic value only and do not influence the
FC segmentation outcomes.

The analysis forms also the foundation of the investigation of
the second part of this paper [25], which discusses homogeneity
and object-feature based affinities, as well as their combinations.
In particular, we show there that many of the parameters in these
definitions are of no consequence.

We did not undertake any empirical evaluation studies in this pa-
per. A theoretical study preceding such an evaluation becomes essen-
tial to understand what affinity forms are distinct, what are
redundant, and what parameters are essential/redundant. This paper
constitutes a first such step. Analysis similar to the one conducted in
this paper for FC can also be carried out for other frameworks, such as
level sets [9], watersheds [7], and graph cuts [10].
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