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THRESHOLD LOGIC

The results presented in this paper constitute generalization of the
results published in [1]. In the logic considered in [1] the weights and
the thresholds were the elements of the group of integers. What is taken
into consideration in this paper, is the logic in which the weights and the
thresholds are the elements of an ordered group such that every subgroup
of the additive group of the real numbers’ ring is its particular case.

§1. The language of the threshold logic

Let G be the set of elements of non-zero commutative group (G,+, 0) with
the relation of linear ordering 6 fulfilling the following conditions:

(1g) if a < b and c 6 d, then a+ c < b+ d
(2g) if a < b, then �a > �b

for every a, b, c, d 2 G, where by definition

a < b i↵ ¬(a > b)

Since G is non-zero and by (2g) we have that there is an element g 2 G
such that g > 0. Let

(3g) 1 =

⇢
minimal element from the set {a 2 G : a > 0} if it exists
g otherwise.

By definition we have

(4g) 1 > 0.

By a formalized language L of the threshold logic we will understand
the pair hA,F i, where the set A of the symbols is defined as follows: A =
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V [G [ {( , ), 0 } where V = {x, x1, x2, x3, . . .} is the set of propositional
variables, {( , ), 0 } is the set of auxiliary signs, G – is the set of the above
defined group.

The set F of formulas of the language L is the least set satisfying the
following conditions:

(1F ) if x 2 V , then x 2 F
(2F ) if a1, . . . , am 2 F and n1, . . . , nm 2 G\{0} and t 2 G, then

(n1, . . . , nm, t)(a1, . . . , am) 2 F , where m = 1, 2, 3, . . ..

The elements n1, . . . , nm are called the weights of the formulas a1, . . . , am
respectively in the formula (n1, . . . , nm, t) (a1, . . . , am). An element t is
called its threshold.

Let v : V ! {0, 1} be a valuation of propositional variables in a two-
element algebra. The extention of a valuation v onto the whole set F of
formulas is defined as follows:

(1v) v((n1, . . . , nm, t)(a1, . . . , am)) =

8
>><

>>:

0 if
mP
i=1

fv(ni, ai) > t

1 if
mP
i=1

fv(ni, ai) < t

where fv : (G\{0})⇥ F ! G is the following function:

(2v) fv(n, a) =

⇢
n if v(a) = 1
0 if v(a) = 0

Note that if we treat the group G as an additive group of the ring
(R,+, ·) with a standard ordering relation in R, and if the elements of
algebra 0, 1 are treated as 0, 1 2 R respectively, then a mapping fv can be
interpreted as follows:

fv(n, a) = n · v(a)

A formula a 2 F is said to be a tautology of the language L if v(a) = 1
for every valuation v.

§2. The schemas of threshold logic

A formula a 2 F is said to be indecomposable if it is of the form x or
(1, 1)(x).
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Let the letter � (with indices, if necessary) denote a finite sequence

a1, . . . , am

of formulas in L. The empty sequence is also being examined.
A sequence � composed only of indecomposable formulas is said to be

indecomposable. A sequence � is said to be fundamental if it contains
simultaneously a formula a and (1, 1)(a).

Let us define the extension of the valuation v onto the set of all finite
sequences of formulas in the following way:

(3v) if � = a1, . . . , am, then v(�) =

⇢
0 if v(a1) = . . . = v(am) = 0
1 otherwise

(4v) if is empty, then v(�) = 0.

By a schema of a rule we mean the following expression:

�

�1; . . . ;�r
where r = 1, 2, 3, . . .

with the following condition

(1r) for every valuation v

v(�) = 1 i↵ v(�1) = . . . = v(�r) = 1

� is called the conclusion of the schema, �1, . . . ,�r are called its premises.
We will use the following schemas:

(R1)
�0, (n1, . . . , nm, t)(a1, . . . , am),�00

�0,�1,�00;�0,�2,�00 for m > 1 and nm < 0 where

�1 = am, (n1, . . . , nm�1, t)(a1, . . . , am�1)

�2 = (n1, . . . , nm�1, t� nm)(a1, . . . , am�1), (n1, . . . , nm�1, t)

(a1, . . . , am�1)

(R2)
�0, (n1, . . . , nm, t)(a1, . . . , am),�00

�0,�1,�00;�0,�2,�00 for m > 1 and nm > 0 where

�1 = (n1, . . . , nm�1, t� nm)(a1, . . . , am�1), (1, 1)(am)

�2 = (n1, . . . , nm�1, t� nm)(a1, . . . , am�1), (n1, . . . , nm�1, t)

(a1, . . . , am�1)

(R3)
�0, (n, t)(a),�00

�0, x, (1, 1)(x),�00 for n < t and t > 0 where x 2 V
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(R4)
�0, (n, t)(a),�00

�0, a,�00 for n < t and t 6 0

(R5)
�0, (n, t)(a),�00

�0,�00 for n > t and t 6 0

(R6)
�0, (n, t)(a),�00

�0, (1, 1)(a),�00 for n > t and t > 0 and ¬(n = t = 1)

(R7)
�0, (1, 1)((n1, . . . , nm, t)(a1, . . . , am)),�00

�0, (�n1, . . . ,�nm, "� t)(a1, . . . , am),�00 where " = min{1} [ S

S = {g 2 G : g > 0 and (9v-valuation) (g = t�
mP
i=1

fv(ni, xi)) where

x1, . . . , xm 2 V and xi 6= xj for i 6= j}

Theorem 1. The schemas (R1)� (R7) satisfy the condition (1r).

§3. Completeness theorem

The notion of a diagram of a formula and an end sequence of the diagram
are defined in the usual way. The reader can find their definitions in [2],
pp. 264–266.

Theorem 2. A formula a0 is a tautology if and only if all end sequences
in the diagram of a0 are fundamental.

The proof is taken from [1]. This proving method is also in [2], pp. 264–
269.

§4. Discussion of a schema (R7)

The schema (R7) is very inconvenient because of the numerical way of
defining the magnitude of ". Of course, another schema would be much
more helpful, in which all the group elements mentioned in the premises
would be obtained by simple rules of arithmetic. But generally, such a
result cannot be obtained. To prove this, we must introduce some notions.
Let B be the class of sets {(g1, g2)} where g1, g2 2 G, g1 < g2 and by
definition (g1, g2) = {g 2 G : g1 < g < g2}.
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Let ⌧ be a topology conformable with an ordering relation in the set G
given by the basis B.

An element g 2 G is said to be an accumulation point, if

(1s) (g1, g2)\{g} 6= ; for every (g1, g2) 3 g.

From this definition we have

(2s) g 2 G is an accumulation point i↵ {g} 62 ⌧ .

Note also that

(1f) U = {g 2 G : g < g0} 2 ⌧ for every g0 2 G.

Theorem 3. If the space (G, ⌧) contains an accumulation point g0, then
a schema as follows does not exist:

(1w)
�0, (1, 1)((n1, . . . , nm, t)(a1, . . . , am)),�00

�0,�1,�00, . . . ,�0,�r,�00 where

�i = bi,j , . . . , bi,si for i = 1, . . . , r

bi,j = (f i,j
1 (p), . . . , f i,j

m+1(p))(a1, . . . , am) for j = 1, . . . , si,

p = (n1, . . . , nm, t) 2 Gm+1

and all the mappings f i,j
k are continuous in the space (G, ⌧).

Sketch of Proof. It su�ces to examine the set U = {g 2 G :
v((1, 1)((g, g0(x))) = 1 and v((1, 1)((g0, g)(x))) = 1} where x 2 V and
v is a valuation such that v(x) = 1.

On the one hand U = {g0}. But then, if we assume that a schema (1w)
exists, then U will be an open set, i.e. we will obtain that {g0} 2 ⌧ , which
is contradictory to (2s).

Theorem 4. If G has an accumulation point, then there is no such a
schema in which the weights and the thresholds of the premises are obtained
from the threshold and the weights of the conclusion by the arithmetical
operations of G.

Theorem 5. For the group G there exists a schema (1w) i↵

(2w)
�0, (1, 1)((n1, . . . , nm, t)(a1, . . . , am)),�00

�0, (�n1, . . . ,�nm, 1� t)(a1, . . . , am),�00

is a schema.
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To prove this it su�ces to note that 1 = min{a 2 G : a > 0}. Hence
" = 1 and (2w) coincides with the schema (R7).

From Theorems 4 and 5 it follows that if we can talk about schema
described in Theorem 4, then (R7) takes the form of (2w), i.e. it is very
simple to use.
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