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1. Topological Spaces

1.1. Metric Spaces

Notation.
a := b mean that a equals b by definition.

N := {1, 2, . . . } is the set of positive integers.

Z is the set of integers.

R is the set of real numbers.

Q is the set of rational numbers

1.1.1. Convergence of sequences of real numbers.

A sequence of real numbers (an)
∞
n=1 converges to a real number a if, for every

positive real number ε, there exists k ∈ N such that |an − a| < ε whenever n ≥ k.

1.1.2. Continuity of real functions.

A function f : R → R is continuous at a ∈ R if for every ε > 0 there is δ > 0 such
that |f(x)− f(a)| < ε whenever |x− a| < δ.

1.1.3. Definition of a metric space.

A metric space is a set X together with a function d : X×X → R, called a metric
on X, that satisfies the following conditions:
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1. d(x, y) ≥ 0 with equality if and only if x = y;

2. d(x, y) = d(y, x); and

3. d(x, y) + d(y, z) ≥ d(x, z).

Condition 1. is called positivity, 2. is called symmetry and 3. is called triangle
inequality.

Remark.

Note that the function d : R×R → R defined by d(x, y) := |x− y| is a metric on
R.

1.1.4. Example (Euclidean spaces).

Let n ∈ N and X := Rn. For

x := (x1, x2, . . . , xn) ∈ X,

let

∥x∥ :=

√√√√ n∑
i=1

x2i

and for x, y ∈ X, let d(x, y) := ∥x− y∥ . Then d is a metric on X.

Proof. It is clear that d is positive and symmetric. We prove the triangle inequal-
ity. If 1 ≤ i < j ≤ n, then

(xiyj − xjyi)
2 ≥ 0

so
2xiyixjyj ≤ x2iy

2
j + x2jy

2
i .
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Thus (
n∑

i=1

xiyi

)2

=
n∑

i=1

x2iy
2
i +

∑
1≤i<j≤n

2xiyixjyj

≤
n∑

i=1

x2iy
2
i +

∑
1≤i<j≤n

(
x2iy

2
j + x2jy

2
i

)
=

∑
1≤i,j≤n

x2iy
2
j =

(
n∑

i=1

x2i

)(
n∑

i=1

y2i

)
.

Hence

∥x+ y∥2 =
n∑

n=1

(xi + yi)
2 =

n∑
i=1

x2i +
n∑

i=1

y2i + 2
n∑

i=1

xiyi

≤
n∑

i=1

x2i +
n∑

i=1

y2i + 2

√√√√ n∑
i=1

x2i

√√√√ n∑
i=1

y2i

= (∥x∥+ ∥y∥)2 ,

which implies that ∥x+ y∥ ≤ ∥x∥+ ∥y∥. Thus, for x, y, z ∈ X, we have

d(x, y) + d(y, z) = ∥x− y∥+ ∥y − z∥ ≥ ∥x− z∥ = ∥a∥ d(x, z),

so the triangle inequality holds.

1.1.5. Example (Hilbert space).

Let X := ℓ2 be the set of all infinite sequences (xi)
∞
i=1 of real numbers with

∞∑
i=1

x2i <∞.

For
x := (x1, x2, . . . ) ∈ X,

let

∥x∥ :=

√√√√ ∞∑
i=1

x2i

15



and for x, y ∈ X, let d(x, y) := ∥x− y∥ . Then d is a metric on X.

Proof. First, we verify that the values of d are finite. If x, y ∈ X, then

∥x− y∥ =

√√√√ ∞∑
i=1

(xi − yi)
2.

For each n ∈ N we have√√√√ n∑
i=1

(xi − yi)
2 ≤

√√√√ n∑
i=1

x2i +

√√√√ n∑
i=1

y2i ≤ ∥x∥+ ∥y∥ ,

so ∥x− y∥ ≤ ∥x∥+ ∥y∥ <∞.

It is clear that d is positive and symmetric. It satisfies the triangle inequality since

d(x, y) + d(y, z) = ∥x− y∥+ ∥y − z∥
= ∥x− y∥+ ∥z − y∥
≥ ∥(x− y)− (z − y)∥
= ∥x− z∥ = d(x, z).

1.1.6. Example (integration metric).

Let X := C (I) be the set of all continuous real-valued functions on the interval
I := [0, 1]. Given f ∈ X, let

∥f∥ :=

∫ 1

0

|f | dx

and for f, g ∈ X, let d(f, g) := ∥f − g∥. Then d is a metric on X.

16



1.1.7. Example (supremum metric).

Let Y be any set and let X := B(Y ) be the set of all real-valued bounded functions
on Y . Given f ∈ X, let

∥f∥ := sup {|f(y)| : y ∈ Y }

and for f, g ∈ X let d(f, g) := ∥f − g∥ . Then d is a metric on X. It is called the
supremum metric.

1.1.8. Definition of continuity.

Let (X, d) and (Y, d′) be metric spaces and f : X → Y . Then f is continuous at
x ∈ X provided for each ε > 0 there exists δ > 0 such that for every x′ ∈ X with
d(x, x′) < δ we have

d′(f(x), f(x′)) < ε.

The function f is continuous if it is continuous at each x ∈ X.

1.1.9. Definition of convergence of sequences.

Let (xn)
∞
n=1 be a sequence in a metric space (X, d). The sequence converges to

x ∈ X provided for each ε > 0 there exists k ∈ N such that d(xn, x) < ε whenever
n ≥ k.

Remark. We are going to describe continuity of functions and convergence of
sequences using the concept of an open set.

1.1.10. Open balls.

Let (X, d) be a metric space, x ∈ X and r > 0. An open ball with center x and
radius r is the set

B(x, r) := {y ∈ X : d(x, y) < r} .
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1.1.11. Open sets.

Let (X, d) be a metric space and U ⊆ X. We say that U is open if for each x ∈ U

there is r > 0 such that B(x, r) ⊆ U .

Remark.

Each open ball is an open set.

Proof. Let U := B(x, r) be an open ball in X and let y ∈ U . Then d(x, y) < r.
Let r′ := r − d(x, y). If z ∈ B(y, r′), then d(y, z) < r′ so

d(x, z) ≤ d(x, y) + d(y, z) < (r − r′) + r′ = r,

which implies that z ∈ U . Thus B(y, r′) ⊆ U .

1.1.12. Theorem (properties of metric spaces).

Let (X, d) be a metric space. The following conditions hold:
1. X is open and ∅ is open.
2. The union of any family of open sets is open.
3. The intersection of any nonempty finite family of open sets is open.

Proof. X is open since for any x ∈ X we have B(x, 1) ⊆ X. The empty set ∅ is
open since there are no x ∈ ∅.

Assume that A is any family of open sets. Let x ∈
⋃

A . Then there is U ∈ A

with x ∈ U so there is r > 0 with B(x, r) ⊆ U . Then B(x, r) ⊆
⋃

A . It follows
that

⋃
A is open.

Assume that A is a nonempty finite family of open sets. Let x ∈
⋂

A . Then
x ∈ U for every U ∈ A , so for every U ∈ A there is rU > 0 with B(x, rU) ⊆ U .
Since A is finite,

r := inf {rU : U ∈ A } = min {rU : U ∈ A } > 0.

Then B(x, r) ⊆ U for every U ∈ A so B(x, r) ⊆
⋂

A . Thus
⋂

A is open.
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1.1.13. Theorem (continuity for metric spaces).

Let (X, d) and (Y, d′) be metric space. A function f : X → Y is continuous if and
only if f−1[U ] is open in X whenever U is open in Y .

Proof. Assume that f is continuous. Let U ⊆ Y be open and x ∈ f−1[U ]. Then
f(x) ∈ U so there is ε > 0 such that B(f(x), ε) ⊆ U. Since f is continuous, there
exists δ > 0 such that

d′(f(x), f(x′)) < ε

whenever d(x, x′) < δ. If x′ ∈ B(x, δ), then d(x, x′) < δ so d′(f(x), f(x′)) < ε and

f(x′) ∈ B(f(x), ε) ⊆ U,

implying that x′ ∈ f−1[U ]. Thus B(x, δ) ⊆ f−1[U ] so f−1[U ] is open.
Now assume that f−1[U ] is open in X whenever U is open in Y . Let x ∈ X. We
will show that f is continuous at x. Let ε > 0 and U = B(f(x), ε). Then U is
open in Y so f−1[U ] is open in X. Since x ∈ f−1[U ], there is δ > 0 such that
B(x, δ) ⊆ f−1[U ]. If x′ ∈ X with d(x, x′) < δ, then x′ ∈ f−1[U ] so f(x′) ∈ U and
d′(f(x), f(x′)) < ε as required.

1.1.14. Homework 1 (due 1/14).

Problem 1.

Given a set X, define d(x, y) := 0 if x = y and d(x, y) := 1 if x ̸= y. Prove that d
is a metric.

Solution. We have d(x, y) ≥ 0 for each x, y ∈ X with equality only when x = y

so positivity holds. Since d(x, y) = d(y, x) for every x, y ∈ X, symmetry holds.
It remains to verify the triangle inequality. Suppose, for a contradiction, that the
triangle inequality fails so there are x, y, z ∈ X with

d(x, y) + d(y, z) < d(x, z).

Then d(x, z) = 1 and d(x, y) = d(y, z) = 0 so x = y and y = z. Thus x = z and
we have a contradiction.
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Problem 2.

Let (X, d) be a metric space. Define

d1(x, y) :=
d(x, y)

1 + d(x, y)

and
d2(x, y) := min (1, d(x, y)) .

Prove that d1 and d2 are metrics on X.

Solution. Since d(x, y) ≥ 0, it follows that d1(x, y) ≥ 0 for every x, y ∈ X. If
d1(x, y) = 0, then d(x, y) = 0 so d1 satisfies positivity. Since d satisfies symmetry,
it follows that d1 satisfies symmetry.

Now, we verify the triangle inequality for d1. Let x, y, z ∈ X. We have

d1(x, y) + d1(y, z) =
d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

= 2− 1

1 + d(x, y)
− 1

1 + d(y, z)
.

Moreover,

1

1 + d(x, y)
+

1

1 + d(y, z)
≤ 2 + d(x, y) + d(y, z)

1 + d(x, y) + d(y, z)

= 1 +
1

1 + d(x, y) + d(y, z)
.

Since d satisfies the triangle inequality, it follows that d(x, y) + d(y, z) ≥ d(x, z)

so
1

1 + d(x, y)
+

1

1 + d(y, z)
≤ 1 +

1

1 + d(x, z)
.

Thus

d1(x, y) + d1(y, z) ≥ 2−
(
1 +

1

1 + d(x, z)

)
= 1− 1

1 + d(x, z)
=

d(x, z)

1 + d(x, z)
= d1(x, z).
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Thus d1 is a metric.

Now, we verify that d2 is a metric. It is clear that d2 satisfies positivity and
symmetry. We prove that d2 satisfies the triangle inequality. Let x, y, z ∈ X.
Suppose, for a contradiction, that

d2(x, y) + d2(y, z) < d2(x, z).

Since d2(x, z) ≤ 1, it follows that

d2(x, y) + d2(y, z) < 1,

so d2(x, y) < 1, which implies that d2(x, y) = d(x, y). Similarly d2(y, z) = d(y, z).
Since d2(x, y) < d(x, y), we conclude that

d(x, y) + d(y, z) < d(x, z),

which is a contradiction.

Problem 3.

Prove that what we defined as the “supremum metric” in Example 1.1.7 is a
metric.

Solution. If f, g ∈ X

d(f, g) := sup {|f(y)− g(y)| : y ∈ Y } .

Since the absolute value is never negative, we have d(f, g) ≥ 0 for any f, g ∈ X.
If d(f, g) = 0, then |f(y)− g(y)| = 0 for every y ∈ Y so f = g. Thus positivity
holds. Since

|f(y)− g(y)| = |g(y)− f(y)| ,

the symmetry holds. It remains to verify the triangle inequality. Let f, g, h ∈ X.
Then

|f(z)− g(z)|+ |g(z)− h(z)| ≥ |f(z)− h(z)|
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for any z ∈ Y so

d(f, g) + d(g, h) = sup {|f(y)− g(y)| : y ∈ Y }
+ sup {|g(y)− h(y)| : y ∈ Y } ≥ |f(z)− h(z)|

for any z ∈ Y . Thus

d(f, g) + d(g, h) ≥ sup {|g(y)− h(y)| : y ∈ Y } = d(f, h).

Problem 4.

Let (X, d) be a metric space and (xn)
∞
n=1 be a sequence in X. Prove that the

sequence (xn)
∞
n=1 converges to x ∈ X if and only if for every open U ⊆ X with

x ∈ U there exists k ∈ N such that xn ∈ U for every n ≥ k.

Solution. Let x ∈ X. Assume that (xn)
∞
n=1 converges to x. Let U be open in X

with x ∈ U . There is ε > 0 such that B(x, ε) ⊆ U . Since (xn)
∞
n=1 converges to

x, there is k ∈ N such that d(xn, x) < ε for every n ≥ k. Then xn ∈ B(x, ε) so
xn ∈ U for every n ≥ k.

Now assume that for every open U ⊆ X with x ∈ U there exists k ∈ N such that
xn ∈ U for every n ≥ k. Let ε > 0 be arbitrary. Let U := B(x, ε). Then U is
open and x ∈ U so there is k ∈ N with xn ∈ U for every n ≥ k. Thus d(xn, x) < ε

for every n ≥ k, which implies that (xn)
∞
n=1 converges to x.

1.2. Topologies

1.2.1. Example of a convergence not induced by a metric.

Let X be the set of real-valued functions on the interval [0, 1]. Consider the
following question. Is there a metric d on X such that a sequence (fn)

∞
n=1 in X
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converges to f ∈ X in the metric space (X, d) if and only if (fn(x))∞n=1 converges
to f(x) for every x ∈ X?

The answer is no!

Proof. Nested Interval Property (Theorem 1.4.1. in Abbott’s book) says:

For each n ∈ N let In := [an, bn] be a closed interval such that

I1 ⊇ I2 ⊇ I3 ⊇ . . . .

Then
∞⋂
i=1

Ii ̸= ∅.

Suppose, for a contradiction, that such a metric d on X exists. For each n ∈ N,
let fn ∈ X be defined by

fn(x) :=

1 if x ∈
(
0, 1n
)

0 otherwise.

Then (fn)
∞
n=1 converges pointwise to the constant function f such that f(x) := 0

for each x ∈ [0, 1]. Then there is k1 ∈ N such that d(fk1, f) < 1. Let a1 := 0,
b1 :=

1

k1
and g1 := fk1.Analogous argument shows that there are a2, b2 with

a1 < a2 < b2 < b1 and d(g2, f) <
1

2
, where g2 ∈ X is defined by:

g2(x) :=

1 if x ∈ (a2, b2)

0 otherwise,

By induction, for each n ≥ 2, we get an, bn such that an−1 < an < bn < bn+1 and
d(gn, f) <

1

n
, where gn ∈ X is defined by:

gn(x) :=

1 if x ∈ (an, bn)

0 otherwise.
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Then (gn)
∞
n=1 converges to f in the metric space (X, d). However, the Nested

Interval Property implies that

C :=
∞⋂
n=1

[an, bn] ̸= ∅.

If c ∈ C, then c ∈ (an, bn) for each n ∈ N so gn(c) = 1 for each n ∈ N. Thus
(gn(c))

∞
n=1 does not converge to f(c) = 0, which is a contradiction.

1.2.2. Definition of topology.

A topological structure (or just topology) on a set X is a family T of subsets (called
open sets) of X such that the following conditions hold:

1. X is open and ∅ is open.

2. The union of any family of open sets is open.

3. The intersection of any nonempty finite family of open sets is open.

A topological space is a set X together with a topology on X.

Examples.

1. The discrete topology on X is the family of all subsets of X.

2. The trivial topology on X is the family {X,∅}.

3. The Sierpiński space is the set X = {1, 2} with the topology {X,∅, {1}}.

4. For any metric space X, the family of open sets is a topology on X.

5. Let X be an infinite set. The family of cofinite subsets of X (whose com-
plements are finite) is a topology on X. It is called the cofinite topology.

6. Let X be an uncountable set. The family of cocountable subsets of X (with
countable complements) is a topology on X. It is called the cocountable
topology on X.
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1.2.3. Comparing topologies on the same set.

Let T and T ′ be topologies on the same set X. If T ⊆ T ′, then we say that
T is coarser, smaller or weaker than T ′ and that T ′ is finer, larger or stronger
than T .

Remark.

Note that the trivial topology on a set X is smaller than any topology on X and
the discrete topology on X is larger than any topology on X.

1.2.4. Closed sets.

A subset C of a topological space X is closed if X ∖ C is open.

1.2.5. Proposition (properties of closed sets).

Let X be a topological space.

1. The sets X and ∅ are closed.

2. The intersection of any nonempty family of closed sets is closed.

3. The union of any finite family of closed sets is closed.

Proof. The set X is closed since ∅ is open and ∅ is closed since X is open.

Let C be a nonempty family of closed sets. Then

A := {X ∖ C : C ∈ C }

is a family of open sets so
⋃

A is open. Since⋂
C = X ∖

⋃
A ,

it follows that
⋂

C is closed.
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Let C be a finite family of closed sets. If C = ∅, then
⋃

C = ∅ is closed. If
C ̸= ∅, then

A = {X ∖ C : C ∈ C }

is a nonempty family of open sets so
⋂

A is open. Since⋃
C = X ∖

⋂
A ,

it follows that
⋃

C is closed.

Remark.

An infinite union of closed sets does not have to be closed.

Example.

The closed interval
[
1

n
, 2

]
is closed in R for each n ∈ N, but the union

∞⋃
n=1

[
1

n
, 2

]
= (0, 2]

is not closed.

Remark.

In a discrete space every set is both closed and open.

Example.

In Z with the cofinite topology finite sets are closed, but not open. Cofinite sets
are open, but not closed. Then set N is neither closed nor open.
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1.2.6. Homework 2 (due 1/21)

Problem 1.

Let X := {1, 2, 3} and T1 := {∅, X, {1} , {1, 2}} and T2 := {∅, X, {3} , {2, 3}} be
topologies on X.

• Prove that T1 ∪ T2 is not a topology on X.

• Find the smallest topology on X containing T1 ∪ T2.

• Find the largest topology on X contained in T1 ∩ T2.

Solution.

• T1∪T2 is not a topology on X since {1} , {3} ∈ T1∪T2 but {1, 3} /∈ T1∪T2.

• The smallest topology on X containing T1 ∪ T2 is the discrete topology.

• The largest topology on X contained in T1 ∩ T2 is the trivial topology.

Problem 2.

Let X be an infinite set and x0 ∈ X. Let

T := {G ⊆ X : X ∖G is finite or x0 /∈ G} .

• Prove that T is a topology on X.

• Let x ∈ X. Prove that {x} is both open and closed if and only if x ̸= x0.

Solution. We have ∅ ∈ T since x0 /∈ ∅ and X ∈ T since X ∖X is empty hence
finite.

Let A ⊆ T . If for every A ∈ A we have x0 /∈ A, then x0 /∈
⋃

A so
⋃

A ∈ T .
Otherwise, there is A0 ∈ A such that x0 ∈ A0. Then X ∖ A0 is finite. Since
X ∖

⋃
A ⊆ X ∖ A0, it follows that X ∖

⋃
A is finite so

⋃
A ∈ T .
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Let A ⊆ T be finite and nonempty. If there is A0 ∈ A such that x0 /∈ A0, then
x0 /∈

⋂
A so

⋂
A ∈ T . Otherwise, we have x0 ∈ A for every A ∈ A so X ∖ A

is finite for every A ∈ A . Then

X ∖
⋂

A =
⋃
A∈A

(X ∖ A)

is finite as a finite union of finite sets. Thus
⋂

A ∈ T .
We have proved that T is a topology on X.
Let x ∈ X. Assume that {x} is both open and closed. Since {x} is open, it follows
the either X∖{x} is finite or x0 /∈ {x}. Since X is infinite, it follows that X∖{x}
is infinite so x0 /∈ {x} and x ̸= x0.
Now assume that x ̸= x0. Then x0 /∈ {x} so {x} is open. Let A := X∖{x}. Then
X ∖ A = {x} is finite so A is open. It follows that {x} is closed.

Problem 3.

Let X := B([0, 1]) with the supremum metric (see Example 1.1.7). Show that

C := {f ∈ X : f is continuous}

is closed in X.

Solution. We will show that X ∖C is open in X. Let g ∈ X ∖C. We need r > 0

such that the ball B(g, r) ⊆ X ∖ C.
Since g is not continuous, there is x ∈ [0, 1] such that g is not continuous at x.
Thus there is ε > 0 such that for every δ > 0 there is y ∈ [0, 1] with |x− y| < δ

and |g(x)− g(y)| ≥ ε. Let r := ε/3. If f ∈ B(g, r), then |f(z)− g(z)| < ε/3 for
every z ∈ [0, 1]. We show that f ∈ X ∖ C by showing that f is not continuous
at x. Actually, we will show that for every δ > 0 there is y ∈ [0, 1] such that
|x− y| < δ and |f(x)− f(y)| > ε/3.
Let δ > 0. There is y ∈ [0, 1] with |x− y| < δ and |g(x)− g(y)| ≥ ε. Then

ε ≤ |g(x)− g(y)| ≤ |g(x)− f(x)|+ |f(x)− f(y)|+ |f(y)− g(y)|
< ε/3 + |f(x)− f(y)|+ ε/3 = 2ε/3 + |f(x)− f(y)| ,
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which implies that |f(x)− f(y)| > ε/3.

Problem 4.

Consider X := R2 with the standard Euclidean metric d. Give an example of
nonempty disjoint closed subsets A,B ⊆ X such that

inf {d(x, y) : x ∈ A, y ∈ B} = 0.

Solution. Let
A := {⟨a, b⟩ : a, b ∈ R with ab = 1}

and B := {⟨0, b⟩ : b ∈ R}. Then A and B are nonempty disjoint closed subsets
of X. For any ε > 0 we have x := ⟨ε, 1/ε⟩ ∈ A and b := ⟨0, 1/ε⟩ ∈ B with
d(x, y) = ε, which implies that

inf {d(x, y) : x ∈ A, y ∈ B} = 0.

1.2.7. Neighborhoods.

Let X be a topological space and x ∈ X. A set N ⊆ X is a neighborhood of x
(nbhd for short) if there exists an open set U such that x ∈ U ⊆ N .

Example.

The interval [0, 2) is a nbhd of 1 in R that is not open.

Remark.

If U is an open set, then it is a nbhd of each x ∈ U . In particular, X is a nbhd of
each x ∈ X.
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1.2.8. Proposition (properties of nbhds).

Let X be a topological space and, for each x ∈ X, let Nx be the family of all
nbhds of x. Then the following conditions hold for each x ∈ X:

1. Nx ̸= ∅;

2. x ∈ N for every N ∈ Nx;

3. if N1, N2 ∈ Nx, then N1 ∩N2 ∈ Nx;

4. if N ∈ Nx and N ⊆M ⊆ X, then M ∈ Nx;

5. if N ∈ Nx, then {y ∈ N : N ∈ Ny} ∈ Nx.

Proof. 1. holds since X ∈ Nx.

2. holds since if N ∈ Nx, then there is open U with x ∈ U ⊆ N , which implies
that x ∈ N .

3. holds since if N1, N2 ∈ Nx, then there are open U1, U2 with x ∈ U1 ⊆ N1 and
x ∈ U2 ⊆ N2. Let U := U1 ∩ U2. Then U is open and

x ∈ U ⊆ N1 ∩N2.

4. holds since if N,M are as assumed, then there is open U with x ∈ U ⊆ N .
Since N ⊆M , this implies that U ⊆M so M ∈ Nx.

5. holds since N ∈ Nx implies that there is open U with x ∈ U ⊆ N . Since
U ∈ Ny for every y ∈ U , we have N ∈ Ny for every y ∈ U . Thus

U ⊆ N̊ := {y ∈ N : N ∈ Ny} .

Since U ∈ Nx, it follows that N̊ ∈ Nx.

Example.

Let X := {1, 2, 3} with N1 := {{1, 2} , X} and N2 := N3 := {X}. Then con-
ditions 1.–4. of Proposition 1.2.8 hold, but 5. fails since N := {1, 2} ∈ N1, but
N̊ = {1} /∈ N1.
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If
T := {U ⊆ X : U ∈ Nx for every x ∈ U} ,

then T = {X,∅} is the trivial topology on X. Then N is not a nbhd of 1 relative
to T .

1.2.9. Proposition (topology from nbhds).

Let X be a set and for each x ∈ X let Nx be a family of subsets of X such that
the conditions 1.–4. of Proposition 1.2.8 hold. Then

T := {U ⊆ X : U ∈ Nx for every x ∈ U}

is a topology on X such that each nbhd of x ∈ X relative to T belongs to Nx. If
5. is also satisfied, then Nx is equal to the family of all nbhds of x relative to T

and T is the unique topology having that property.

Proof. It is clear that ∅ ∈ T . Now we show that X ∈ T . Given x ∈ X we have
Nx ̸= ∅ by 1. so there is N ∈ Nx which implies that X ∈ Nx by 4. Thus X ∈ Nx

for every x ∈ X, which implies that X ∈ T .

Let A be a family of members of T . To show that
⋃

A ∈ T we need to show
that

⋃
A ∈ Nx for every x ∈

⋃
A . Let x ∈

⋃
A . Then there is U ∈ A with

x ∈ U . Since U ∈ T , we have U ∈ Ny for each y ∈ U so, in particular, U ∈ Nx.
Then 4. implies that

⋃
A ∈ Nx.

Let A be a nonempty finite family of members of T . To show that
⋂

A ∈ T

we need to show that
⋂

A ∈ Nx for every x ∈
⋂

A . Let x ∈
⋂

A . Then x ∈ U

for every U ∈ A . Since A ⊆ T , we have U ∈ Nx for every U ∈ A . Since A is
finite, applying 3. and induction we conclude that

⋂
A ∈ Nx.

Let N be a nbhd of x ∈ X relative to T . Then there is U ∈ T with x ∈ U ⊆ N .
The definition of T implies that U ∈ Nx. Thus N ∈ Nx by 4.

Now assume 5. as well. Let x ∈ X and N ∈ Nx. To show that N is a nbhd of x
relative to T , it suffices to show that

N̊ := {y ∈ N : N ∈ Ny} ∈ T .
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If z ∈ N̊ , then 5. implies that N̊ ∈ Nz so N̊ ∈ Nz for every z ∈ N̊ and consequently
N̊ ∈ T as required.

Suppose that T ′ is any topology having the property that Nx is the family of
nbhds of x relative to T ′. To show that T ′ = T it suffices to show that U ∈ T ′

if and only if U ∈ Nx for every x ∈ U . Assume that U ∈ T ′. Then U is a nbhd
of every x ∈ U by the definition of a nbhd. Assume that U ∈ Nx for every x ∈ U .
Then for each x ∈ U , there is Vx ∈ T ′ such that x ∈ Vx ⊆ U . Since

U =
⋃
x∈U

Vx,

it follows that U ∈ T ′.

1.2.10. Homework 3 (due 1/28).

Problem 1.

In a metric space (X, d), for any real number r ≥ 0, the closed r-ball at x ∈ X

is the set {y ∈ X : d(x, y) ≤ r}. Show that a closed ball is always closed in the
metric topology.

Solution. Let r ≥ 0 and

C := {y ∈ X : d(x, y) ≤ r} .

We will show that X ∖ C is open in X. Let z ∈ X ∖ C. Then d(x, z) > r so
ε := d(x, z) − r > 0. To show that X ∖ C is open in X it suffices to show that
B(z, ε) ⊆ X ∖ C.

Let y ∈ B(z, ε). Then d(y, z) < ε so

r + ε = d(x, z) ≤ d(x, y) + d(y, z) < d(x, y) + ε,

which implies that d(x, y) > r so y ∈ X ∖ C as required.
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Problem 2.

What is the topology determined by the metric on X given by d(x, y) := 1 if x ̸= y

and d(x, y) = 0 if x = y?

Solution. The resulting topology is the discrete topology. For any x ∈ X, the
set {x} is open in X since B(x, 1) ⊆ {x}. Since any subset of X is a union of
singletons, any subset of X is open so the obtained topology is discrete.

Problem 3.

Let X be a set with at least two elements. Prove that there are no metric on X

that induces the trivial topology on X.

Solution. Let x, y ∈ X with x ̸= y. Suppose, for a contradiction, that d is a metric
on X that induces the trivial topology. Let d(x, y) = r > 0. Then U := B(x, r)

is open in X with x ∈ U and y /∈ U . Thus U ̸= ∅ and U ̸= X. This is a
contradiction since ∅ and X are the only open sets in the trivial topology.

Problem 4.

Let (X, d) be a metric space and C ⊆ X be closed. Prove that there is a sequence
(Un)n∈N of open subsets of X such that C =

⋂
n∈N Un.

Solution. For each n ∈ N, let

Un :=
⋃
x∈C

B

(
x,

1

n

)
.

Then Un is open in X as a union of a family of open sets. It remains to show that

C =
⋂
n∈N

Un.
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Since x ∈ Un for every x ∈ C and every n ∈ N, it follows that C ⊆ Un for every
n ∈ N so

C ⊆
⋂
n∈N

Un.

Now let y ∈
⋂

n∈N Un. We aim at showing that y ∈ C. Suppose, for a contradic-
tion, that y ∈ X∖C. Since X∖C is open there is ε > 0 such that B(y, ε) ⊆ X∖C.
Let n ∈ N be such that 1

n
< ε. Since y ∈ Un, there is x ∈ C with d(x, y) <

1

n
.

Then d(x, y) < ε so x ∈ B(y, ε), implying that B(y, ε) ∩ C ̸= ∅, which is a
contradiction.

1.3. Derived Concepts

1.3.1. Interior

Let X be a topological space and A ⊆ X. The interior of A is denoted by A◦ or
by int (A) and is defined by

A◦ :=
⋃

{U ⊆ A : U is open} .

If x ∈ A◦, then x is an interior point of A.

Remarks.

Note that A◦ is open and it is the largest open subset of A. Moreover, x is an
interior point of A if and only if A is a nbhd of x. It is also clear that A is open
if and only if A = A◦.

Examples.

In R we have Q◦ = ∅. If A is the closed interval [a, b], then A◦ is the open interval
(a, b).
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1.3.2. Proposition (properties of interior).

Let X be a topological space and A,B ⊆ X.

1. (A◦)◦ = A◦,

2. A ⊆ B implies that A◦ ⊆ B◦,

3. A◦ ∩B◦ = (A ∩B)◦,

4. A◦ ∪B◦ ⊆ (A ∪B)◦ .

Example.

If X := R, A := [0, 1] and B := [1, 2], then 1 /∈ A◦ ∪B◦, but 1 ∈ (A ∪B)◦.

1.3.3. Closure.

Let X be a topological space and A ⊆ X. The closure of A is denoted by cl (A)
or A. It is defined by

A :=
⋂

{A ⊆ C : C is closed} .

If x ∈ A, then x is an adherent point of A.

Remarks.

Note that A is the smallest closed set containing A and that A is closed if and
only if A = A.

Examples.

If X = R, then Q = R. If A is the open interval (a, b) with a < b, then A is the
closed interval [a, b].
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1.3.4. Proposition (properties of closure).

Let X be a topological space and A,B ⊆ X.

1. A = A,

2. A ⊆ B implies that A ⊆ B,

3. A ∪B = A ∪B,

4. A ∩B ⊇ A ∩B.

Example.

If X := R, A := (0, 1) and B := (1, 2), then 1 ∈ A ∩B, but 1 /∈ A ∪B.

1.3.5. Theorem (characterization of closure).

Let X be a topological space and A ⊆ X. Then x ∈ A if and only if U ∩ A ̸= ∅
for every open nbhd U of x.

Proof. Assume that x ∈ A. Let U be an open nbhd of x and suppose, for a
contradiction, that U ∩ A = ∅. Then A ⊆ X ∖ U and X ∖ U is closed. Thus
x ∈ A ⊆ X ∖ U , which contradicts x ∈ U .

Now assume that U ∩ A ̸= ∅ for every open nbhd U of x. Let C be closed with
A ⊆ C. Then X ∖ C is open and disjoint with A so x /∈ X ∖ C. Thus x ∈ C.
Since x belongs to every closed set containing A, it follows that x ∈ A.

1.3.6. Limit points.

Let X be a topological space and A ⊆ X. A point x ∈ X is a limit point (cluster
point) of A if every open nbhd U of x contains at least one point of A∖ {x}. The
set A′ of all limit points of A is called the derived set of A.
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Example.

In R if A := (0, 1) ∪ {2}, then A′ = [0, 1].

1.3.7. Theorem (closure and derived set).

Let X be a topological space and A ⊆ X. Then A = A ∪ A′.

Proof. If x ∈ A, then x ∈ A. If x ∈ A′, then every open nbhd U of x contains at
least one point of A∖ {x} so A ∩ U ̸= ∅, which implies that x ∈ A.

Now assume that x ∈ A∖A. We show that x ∈ A′. Let U be an open nbhd of x.
Since x ∈ A, we have U ∩ A ̸= ∅. Since A∖ {x} = A, we have

U ∩ (A∖ {x}) ̸= ∅

as required.

Corollary.

A set is closed if and only if it contains all its limit points.

Proof. A is closed if and only if A = A, which holds if and only if A = A ∪ A′,
which is equivalent to A′ ⊆ A.

1.3.8. Boundary.

Let X be a topological space and A ⊆ X. The boundary (also called the frontier)
of A is denoted by ∂A and is defined by

∂A := A ∩X ∖ A.

Example.

In R if A = [0, 1], then ∂A = {0, 1}.
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1.3.9. Theorem (closure and boundary).

Let X be a topological space and A ⊆ X. Then A = A ∪ ∂A.

Proof. We have A ⊆ A and the definition of ∂A implies that ∂A ⊆ A. Thus
A ⊇ A ∪ ∂A.

Now assume that x ∈ A∖ A. Then x ∈ X ∖ A so x ∈ X ∖ A. Thus x ∈ ∂A.

Corollary.

A set is closed if and only if it contains it’s boundary.

Proof. A is closed if and only if A = A, which is equivalent to A = A ∪ ∂A and
to ∂A ⊆ A.

1.3.10. Isolated points.

Let X be a topological space and A ⊆ X. If x ∈ A ∖ A′, then x is an isolated
point of A.

1.3.11. Perfect sets.

Let X be a topological space and A ⊆ X. We say that A is perfect if A is closed
and has no isolated points.

1.3.12. Example (the Cantor set).

Let
J1 =

(
1

3
,
2

3

)
J2 =

(
1

9
,
2

9

)
∪
(
7

9
,
8

9

)
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and, in general, for each n ∈ N, let

Jn =
3n−1−1⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
∖

n−1⋃
j=1

Jj.

The set
C := [0, 1]∖

∞⋃
n=1

Jn

is called the Cantor set. It consists of those x ∈ [0, 1] that have a triadic expansion
using only the digits 0 and 2.

The Cantor set is perfect since it is closed and has no isolated points. If x ∈ C has
a triadic expansion 0.a1a2 . . . , and U is any open interval containing x, then we
can choose n ∈ N large enough, so that changing the digit an to 2− an produces
a different point in U ∩ C.

1.3.13. Dense sets.

Let X be a topological space and A ⊆ X. We say that A is dense if A = X.

Examples.

Q is dense in R. If X is an infinite set with cofinite topology, then any infinite
subset of X is dense.

1.3.14. Homework 4 (due 2/4).

Problem 1.

Let X := {a, b, c} with the topology {∅, X, {a} , {a, b}}. Find the derived sets of
{a}, {b}, {c} and {a, c}.
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Solution.

{a}′ = {b, c}
{b}′ = {c}
{c}′ = ∅

{a, c}′ = {b, c}

Problem 2.

Let U be open in a topological space X. Prove that

U = int
(
U
)
.

Solution. U is open and U ⊆ U so U ⊆ int
(
U
)
, which implies that U ⊆ int

(
U
)
.

Since int
(
U
)
⊆ U and since U is closed, it follows that int

(
U
)
⊆ U . Thus

U = int
(
U
)
.

Problem 3.

Let X be a topological space and G ⊆ X. Prove that G is open if and only if

G ∩ A = G ∩ A

for every A ⊆ X.

Solution. Assume that G is open. Since A ⊆ A, it follows that G ∩ A ⊆ G ∩ A,
which implies that G ∩ A ⊆ G ∩ A.

Let x ∈ G ∩ A. If U is an open nbhd of x, then U ∩
(
G ∩ A

)
̸= ∅. Let y ∈

U ∩
(
G ∩ A

)
. Then U ∩ G is an open nbhd of y and y ∈ A so U ∩ G ∩ A ̸= ∅.

Since any open nbhd of x has a nonempty intersection with G∩A, it follows that
x ∈ G ∩ A. Thus G ∩ A ⊆ G ∩ A. Therefore G ∩ A = G ∩ A.
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Now assume that G ∩ A = G ∩ A for every A ⊆ X. We aim to show that G
is open. Suppose, for a contradiction, that G is not open. Then A := X ∖ G

is not closed, so A ∩ G ̸= ∅. Then G ∩ A = ∅, but G ∩ A ≠ ∅, which is a
contradiction.

Problem 4.

Let X be an infinite set with the cofinite topology. Prove that if A ⊆ X is infinite,
then every point in A is a limit point of A and that if A is finite, then it has no
limit points.

Solution. Assume that A ⊆ X is infinite. If x ∈ A and U is an open nbhd of
x, then X ∖ U is finite so U ∩ A is infinite and hence contains an element of A
distinct from x. Thus x is a limit point of A.

Assume that A is finite. If x ∈ X then U := (X ∖ A) ∪ {x} is an open nbhd of x
such that U ∩ A ⊆ {x}. Thus x is not a limit point of A.

1.4. Bases

1.4.1. Proposition (family of topologies).

Let X be a set and A be a nonempty family of topologies on X. Then
⋂
A is a

topology on X.

Proof. Both X and ∅ belong to T for every T ∈ A. Thus X,∅ ∈
⋂

A.

Assume that A ⊆
⋂

A. Then A ⊆ T for every T ∈ A so
⋃

A ∈ T for every
T ∈ A. Thus

⋃
A ∈

⋂
A.

Assume that A ⊆
⋂
A is nonempty and finite. Then A ∈ T for every T ∈ A so⋂

A ∈ T for every T ∈ A. Thus
⋂

A ∈
⋂

A.
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1.4.2. Subbases.

Let X be a set and S be any family of subsets of X. Define

T (S ) :=
⋂

A,

where A is the family of all topologies T on X such that S ⊆ T . The set S is
called the subbasis of the topological space (X,T (S )).

Remark.

Note that any family of subsets of X is a subbasis of a unique topology on X. For
a given topology on X there are usually many possible subbases.

1.4.3. Proposition (topology from subbasis).

Let X be a set and S be a family of subsets of X. The topology T (S ) consists
of X,∅ and all unions of all possible intersections of nonempty finite subfamilies
of S .

Proof. It is clear that X,∅ ∈ T (S ) since X,∅ belong to any topology on X.
Moreover, any topology on X containing S contains all unions of all possible
intersections of nonempty finite subfamilies of S .

To complete the proof, it suffices to show that the family T of all unions of all
possible intersections of nonempty finite subfamilies of S together with X and ∅
is a topology on X. It is clear that X,∅ ∈ T .

Let A ⊆ T . If X ∈ A , then
⋃

A = X ∈ T . Otherwise,
⋃

A =
⋃

A ′, where
A ′ = A ∖{∅}. Every member of A ′ is a union of intersection of nonempty finite
subfamilies of S , which implies that

⋃
A ′ is such a union. Thus

⋃
A ∈ T .

Let A ⊆ T be finite and nonempty. If ∅ ∈ A , then
⋂

A = ∅ ∈ T . Otherwise,
let A ′ = A ∖ {X}. If A ′ = ∅,then

⋂
A = X ∈ T . If A ′ ̸= ∅, then each
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member of A ′ is a union of intersections of nonempty finite subfamilies of S . Let
A ′ = {A1, A2, . . . , An} with

Ai =
⋃
j∈Ji

Ai,j,

where Ai,j is the intersection of some nonempty finite subfamily of S and Ji is
some set for each i = 1, 2, . . . , n. Then

⋂
A ′ =

⋃
j∈J1

A1,j

 ∩

⋃
j∈J2

A2,j

 ∩ · · · ∩

⋃
j∈Jn

An,j


=
⋃
f∈J

(
A1,f(1) ∩ A2,f(2) ∩ · · · ∩ An,f(n)

)
,

where J is the set of all functions f on {1, 2, . . . , n} with f(i) ∈ Ji for every i.
Thus

⋂
A is a union of intersections of nonempty finite subfamilies of S and so⋂

A ∈ T .

1.4.4. Linear order

Let X be a set and ≤ be a binary relation on X. We say that < is a linear order
on X if

1. ≤ is reflexive (x ≤ x for each x ∈ X).

2. ≤ is transitive (x ≤ y and y ≤ z implies that x ≤ z for each x, y, z ∈ X).

3. ≤ is antisymmetric (x ≤ y and y ≤ x implies that x = y for every x, y ∈ X).

4. ≤ is total (x ≤ y or y ≤ x for every x, y ∈ X).

Example.

The standard order on R is a linear order.
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1.4.5. Order topology

Let X be a set with a linear order ≤. For x ∈ X, let

(−∞, x) = {y ∈ X : y ≤ x and y ̸= x}

and
(x,∞) = {y ∈ X : x ≤ y and y ̸= x} .

The order topology on X induced by ≤ is the topology T (S ), where

S = {(−∞, x) : x ∈ X} ∪ {(x,∞) : x ∈ X} .

Example.

The standard topology on R is the order topology on R induced by the standard
order.

1.4.6. Homework 5 (due 2/11).

Problem 1.

Consider N with the standard order. Prove that the resulting order topology on
N is discrete.

Solution. Let n ∈ N. If n = 1, then {n} = (−∞, 2) is open in the order topology.
If n ≥ 2, then

{n} = (−∞, n+ 1) ∩ (n− 1,∞)

so {n} is open as well. Since every singleton {n} is open, the topology is discrete.
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Problem 2.

Consider the set X := {1, 2} × N with the dictionary order, that is such that
⟨a, b⟩ ≤ ⟨c, d⟩ when a < c or (a = c and b ≤ d). Prove that the resulting order
topology on X is not discrete.

Solution. We show that A := {⟨2, 1⟩} is not open. Suppose, for a contradiction,
that A is open. Then A =

⋃
K for some family K consisting of intersections of

finite nonempty subfamilies of the subbasis

S = {(−∞, x) : x ∈ X} ∪ {(x,∞) : x ∈ X} .

Let K ∈ K be such that A ⊆ K. Then K must contain ⟨2, 1⟩ so

K = (−∞, ⟨2, k1⟩) ∩ · · · ∩ (−∞, ⟨2, ks⟩)
∩ (⟨1, ks+1⟩ ,∞) ∩ · · · ∩ (⟨1, kt⟩ ,∞)

for some s, t ∈ N with 0 ≤ s ≤ t. Let ℓ := max {ks+1, . . . , kt}+1. Then ⟨1, ℓ⟩ ∈ K

so ⟨1, ℓ⟩ ∈ A, which is a contradiction.

Problem 3.

Describe the topology on the plane for which the family of all straight lines is a
subbasis.

Solution. The intersection of two lines that are not parallel is a singleton. Any
singleton on the plane can be represented as the intersection of two lines. Thus
each singleton is open and so the topology is discrete.

Problem 4.

For each q ∈ Q, let Aq := {x ∈ R : x > q} and Bq := {x ∈ R : x < q}. Prove that
the set

S := {Aq : q ∈ Q} ∪ {Bq : q ∈ Q}

is a subbasis for the standard topology on R.
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Solution. Let T := T (S ) and T ′ be the standard topology on R. Since S ⊆ T ′,
it follows that T ⊆ T ′. It remains to show that T ′ ⊆ T .

Let U ∈ T ′. For each x ∈ U there are rational p, q with p < x < q and
Jx := (p, q) ⊆ U . Then

U =
⋃
x∈U

Jx

and Jx = Ap ∩Bq ∈ T for every x ∈ U . Thus U ∈ T .

1.4.7. Well-ordered sets.

A set X is well-ordered by ≤ if ≤ is a linear order on X and for every nonempty
A ⊆ X there is a ∈ A such that a ≤ b for every b ∈ A.

1.4.8. Well-ordering principle.

The axioms of set theory imply that every set can be well-ordered.

1.4.9. The well-ordered set [0,Ω] as a topological space.

Let X be any uncountable set and ≤ be a well-ordering of X. If the set

A = {x ∈ X : {y ∈ X : y ≤ x} is uncountable}

is nonempty, let Ω be the smallest element of A and

[0,Ω] := {x ∈ X : x ≤ Ω} .

Otherwise, let
[0,Ω] := X ∪ {Ω}

with ≤ extended to [0,Ω] by declaring that x ≤ Ω for every x ∈ [0,Ω].

We will consider [0,Ω] as a topological space with the order topology.
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1.4.10. Theorem (the space [0,Ω]).

The set [0,Ω] is an uncountable well-ordered set such that for every x ∈ [0,Ω]

that is strictly smaller than Ω, the set

{y ∈ [0,Ω] : y ≤ x}

is countable. Moreover, if X is any well-ordered set with the largest element Ω′

such that for every x ∈ X that is strictly smaller than Ω′, the set

{y ∈ X : y ≤ x}

is countable, then there is a bijection φ : X → [0,Ω] such that for every x, y ∈ X

with x ≤ y, we have φ(x) ≤ φ(y).

Proof. The set [0,Ω] has the required properties directly from the definition. The
proof of the existence of the bijection φ is omitted.

1.4.11. Bases.

Let X be a topological space. A basis for the topology on X is a family B of
open subsets of X such that for every open set U and x ∈ U there is B ∈ B with
x ∈ B ⊆ U .

Remarks.

B is a basis for the topology T on X if and only if B ⊆ T and every open set
is a union of members of B. Any basis for the topology on X is also a subbasis.

Examples.

In a discrete space X the family of all singletons {x} is a basis. In a metric space
X the collection of all open balls B(x, r) for x ∈ X and r > 0 is a basis.
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Remark.

Let S be a subbasis of the topology on X. Then the family B consisting of X and
all intersections of finite nonempty subfamilies of S is a basis for the topology on
X.

Remark.

Let X be the topological space having the order topology induced by a linear
order ≤. If for a, b ∈ X we define

(a, b) := {x ∈ X ∖ {a, b} : a ≤ x ≤ b} ,

then

B := {(a, b) : a, b ∈ X} ∪ {(−∞, a) : a ∈ X} ∪ {, (a,∞) : a ∈ X}

is a basis for the topology on X.

Example.

Consider the topological space [0,Ω]. Let S be the set of all successor elements in
[0,Ω], that is let x ∈ S if the set

{y ∈ [0,Ω] : y < x}

has the largest element. Let S ′ := S ∪ {0}, where 0 is the smallest element of
[0,Ω] and L := [0,Ω]∖ S ′. Define

B := {{a} : a ∈ S ′} ∪ {(a, b] : a < b, b ∈ L} .

Then B is a basis for the topology on [0,Ω].
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1.4.12. Theorem (basis for a topology).

Let X be a set and B be a collection of subsets of X. Then B is a basis for some
topology on X if and only if the following conditions hold:

1.
⋃

B = X and

2. for every B1, B2 ∈ B and every x ∈ B1 ∩ B2 there is B ∈ B with x ∈ B ⊆
B1 ∩B2.

Proof. Assume that B is a basis for a topology T on X. Since X ∈ T , it follows
that 1. holds. To prove 2., assume that B1, B2 ∈ B and x ∈ B1 ∩ B2. Since
B1, B2 ∈ T , it follows that B1∩B2 ∈ T so there is B ∈ B with x ∈ B ⊆ B1∩B2.
Thus 2. holds.

Now assume that 1. and 2. hold. Let T be the family of all unions of subfamilies
of B. Then 1. implies that X ∈ T and ∅ is the union of the empty family so
∅ ∈ T . The family T is closed under taking unions since the union of unions of
subfamilies of B is also a union of subfamilies of B.

Let U, V ∈ T . We show that U ∩ V ∈ T . Assume

U =
⋃
α∈A

Bα

and
V =

⋃
α∈C

Dα,

where A,C are some sets and Bα, Dβ ∈ B for each α ∈ A and β ∈ C. We have

U ∩ V =
⋃

(α,β)∈A×C

Bα ∩Dβ.

For each (α, β) ∈ A× C and each x ∈ Bα ∩Dβ let Gα,β,x ∈ B be such that

x ∈ Gα,β,x ⊆ Bα ∩Dβ.

Then
U ∩ V =

⋃
(α,β)∈A×C

⋃
x∈Bα∩Dβ

Gα,β,x
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so U ∩ V ∈ T .

We have proved that T is a topology on X. Clearly, B ⊆ T . To show that B is
a basis for T , let U ∈ T and x ∈ U . There is B ∈ B with x ∈ B ⊆ U .

1.4.13. Homework 6 (due 2/18).

Problem 1.

Let A :=

{
1

n
: n ∈ N

}
. Let B1 be the collection of open intervals in R and B2

be the collection of all subsets of R that are of the form (a, b) ∖ A for a, b ∈ R
with a < b. Prove that B := B1 ∪B2 is a basis for a topology on R and that the
sequence

(
1

n

)
n∈N

does not converge to 0 in this topology.

Solution. For each x ∈ R we have x ∈ (x− 1, x+ 1) ∈ B1. Thus
⋃

B = R. Let
B1, B2 ∈ B with x ∈ B1 ∩ B2. We need to find B ∈ B with x ∈ B. There are
a1, a2, b1 and b2such that B1 = (a1, b1) or B1 = (a1, b1) ∖ A and B2 = (a2, b2) or
B2 = (a2, b2)∖ A. If x ∈ A, then B1 = (a1, b1) and B2 = (a2, b2) so B = B1 ∩ B2

satisfies the requirements. If x /∈ A, then

B = ((a1, b1) ∩ (a2, b2))∖ A

satisfies the requirements. Thus B is a basis for the topology on R.

Now we show that
(
1

n

)
n∈N

does not converge to 0 in this topology. Suppose, for

a contradiction, that it does converge to 0. Then for every nbhd U of 0 there is
k ∈ N with 1

n
∈ U for every n ≥ k. In particular, this holds when U = (−1, 1)∖A.

However, for such U we have 1

n
/∈ U for all n ∈ N so we have a contradiction.

Problem 2.

Let B := {(x,∞) : x ∈ R}. Prove that B is a basis of a topology on R and find

the closures of A :=

{
1

n
: n ∈ N

}
and B := N in this topology.
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solution. We have
⋂

B = R since for every x ∈ R we have x ∈ (x− 1,∞). If
B1, B2 ∈ B, then there are b1, b2 ∈ R such that B1 = (b1,∞) and B2 = (b2,∞) and
let x ∈ B1∩B2. Let b = max {b1, b2}. Then (b,∞) ∈ B and x ∈ (b,∞) ⊆ B1∩B2

as required. Thus B is a basis for a topology on R.

The closure of A is this topology is (−∞, 1] and the closure of B is R.

Problem 3.

Consider R with the topology generated by the basis B := {[a, b) : a, b ∈ Q}. Find
the boundary, closure and interior of the subsets

(
0,
√
2
)

and
(√

3, 4
)

of R.

Solution. The set
(
0,
√
2
)

is equal to it’s interior. It’s closure is
[
0,
√
2
]

and the
boundary is

{
0,
√
2
}

.

The set
(√

3, 4
)

is also equal to it’s interior. It’s closure is
[√

3, 4
)

and the bound-
ary is

{√
3
}

.

Problem 4.

Let B be a basis of the topological space X and A ⊆ X. Prove that x ∈ A if and
only if B ∩ A ̸= ∅ for every B ∈ B such that x ∈ B.

Solution. Assume that x ∈ A. Let B ∈ B with x ∈ B. Since B is an open nbhd
of x, it follows that B ∩ A ̸= ∅.

Now assume that B∩A ̸= ∅ for evey B ∈ B such that x ∈ B. Let U be any open
nbhd of x. Then there is B ∈ B with x ∈ B ⊆ U . Since B ∩ A ̸= ∅, it follows
that U ∩ A ̸= ∅. Thus x ∈ A.

1.4.14. Proposition (comparing topologies).

Let T and T ′ be topologies on the set X generated by bases B and B′, respec-
tively. Then T ′ is finer than T if and only if for every B ∈ B and every x ∈ B

there is B′ ∈ B′ with x ∈ B′ ⊆ B.
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Proof. Assume that T ⊆ T ′. If B ∈ B and x ∈ B, then B ∈ T so B ∈ T ′ and
there is B′ ∈ B′ with x ∈ B′ ⊆ B.

Assume that every B ∈ B and every x ∈ B there is B′ ∈ B′ with x ∈ B′ ⊆ B.
Let U ∈ T . For every x ∈ U , there is Bx ∈ B with x ∈ Bx ⊆ U . By assumption,
there is B′

x ⊆ Bx with x ∈ B′
x. Thus

U =
⋃
x∈U

B′
x ∈ T ′.

Therefore T ⊆ T ′.

1.4.15. Equivalent metrics.

Two metrics on the same set X are equivalent if they induce the same topology
on X.

1.4.16. Proposition (equivalent metrics).

The metrics d and d′ on a set X are equivalent if and only if for each x ∈ X and
each ε > 0 there are δ1, δ2 > 0 such that

Bd(x, δ1) ⊆ Bd′(x, ε)

and
Bd′(x, δ2) ⊆ Bd(x, ε).

Proof. Let T and T ′ be the topologies induced by d and d′, respectively. Assume
that d and d′ are equivalent. Then T = T ′. Let x ∈ X and ε > 0. Since
Bd′(x, ε) ∈ T ′, it follows that Bd′(x, ε) ∈ T so there is δ1 > 0 with

Bd(x, δ1) ⊆ Bd′(x, ε).

Similarly, there is δ2 > 0 with

Bd′(x, δ2) ⊆ Bd(x, ε).
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Now assume that for each x ∈ X and each ε > 0 there are δ1, δ2 > 0 such that

Bd(x, δ1) ⊆ Bd′(x, ε)

and
Bd′(x, δ2) ⊆ Bd(x, ε).

Let U ∈ T . For each x ∈ U there is εx > 0 with Bd(x, εx) ⊆ U . For each x ∈ U ,
let δx be such that

Bd′(x, δx) ⊆ Bd(x, ε).

Then
U =

⋃
x∈U

Bd′(x, δx) ∈ T ′.

Thus T ⊆ T ′. Similarly T ′ ⊆ T .

1.4.17. Corollary (bounded metric)

Let (X, d) be a metric space. For each λ > 0, there is a metric dλ that is equivalent
to d such that the diameter of X in dλ is at most λ.

Proof. Define
dλ(x, y) := min {λ, d(x, y)}

for every x, y ∈ X. Then dλ is a metric on X. Indeed, the positivity and symmetry
of dλ are clear and the triangle inequality holds since otherwise there are x, y, z ∈
X with

dλ(x, y) + dλ(y, z) < dλ(x, z)

and, since dλ(x, z) ≤ d(x, z), this implies that that

dλ(x, y) + dλ(y, z) < d(x, z)

so at least one of dλ(x, y), dλ(y, z) must be equal λ and consequently dλ(x, z) > λ,
which is a contradiction. The diameter of X in dλ, which is equal to

sup {dλ(x, y) : x, y ∈ X}
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is at most λ since dλ(x, y) ≤ λ for every x, y ∈ X.

It remains to show that the metrics d and dλ are equivalent. Let x ∈ X and ε > 0.
Taking δ1 := ε and δ2 = min {ε, λ}, we get

Bd(x, δ1) ⊆ Bdλ(x, ε),

since d(x, y) < δ1 = ε implies that dλ(x, y) < ε, and

Bdλ(x, δ2) ⊆ Bd(x, ε),

since dλ(x, y) < δ2 implies that dλ(x, y) < λ so dλ(x, y) = d(x, y) and so d(x, y) <
ε. It follows that d and dλ are equivalent.

1.4.18. Local basis.

Let X be a topological space and x ∈ X. A nbhd basis (local basis) at x is a
collection Bx of nbhds of x such that each nbhd of x contains a member of Bx.

Examples.

The family of all open nbhds of x is a nbhd basis at x. In a discrete space, the
family consisting of the singleton {x} is a nbhd basis at x. In a metrics space the
set {B(x, ε) : ε > 0} is a nbhd basis at x.

1.4.19. Proposition (properties of nbhd basis).

Let X be a topological space and, for each x ∈ X, let Bx be a nbhd basis at x.
Then the following conditions hold for every x ∈ X:

1. Bx ̸= ∅;

2. x ∈ B for every B ∈ Bx;

3. for every B1, B2 ∈ Bx there is B ∈ Bx with B ⊆ B1 ∩B2;
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4. for each B ∈ Bx there is B′ ∈ Bx such that B contains a member of By for
every y ∈ B′.

Proof. Conditions 1.–3. follow easily from conditions 1.–3. of Proposition 1.2.8.
We show that 4. holds. Let B ∈ Bx. Since B is a nbhd of x, condition 5. of
Proposition 1.2.8 implies that if

B̊ := {y ∈ B : B is a nbhd of y}

is a nbhd of x. By the definition of a nbhd basis, there is B′ ∈ Bx with B′ ⊆ B̊.
Then for every y ∈ B′, the set B is a nbhd of y so contains a member of By.

1.4.20. Theorem (topology from nbhd basis).

Let X be a set and, for each x ∈ X, let Bx be a family of subsets of X satisfying
conditions 1.–4. of Proposition 1.4.19. Then there exists a unique topology on X

such that Bx is a nbhd basis at x for every x ∈ X.

Proof. First note that if T is a topology on X such that for each x ∈ X, the
familyBx is a nbhd basis at x relative to T , then a subset U of X is in T if and
only if U contains a member of Bx for each x ∈ U . Thus such a topology T is
unique provided it exists.

Define

T := {U ⊆ X : for every x ∈ U there is B ∈ Bx with B ⊆ U} .

We verify that T is a topology on X. We have ∅ ∈ T since there are no x ∈ ∅.
We have X ∈ T since for every x ∈ X the set Bx is nonempty.

Let A ⊆ T be arbitrary. We show that
⋃

A ∈ T . Let x ∈
⋃

A . Then x ∈ U

for some U ∈ A so there is B ∈ Bx with B ⊆ U hence B ⊆
⋃

A .

Now let U, V ∈ T . We show that U ∩ V ∈ T . Let x ∈ U ∩ V . Then there
are B,D ∈ Bx with B ⊆ U and D ⊆ V . Let G ∈ Bx with G ⊆ B ∩ D. Then
G ⊆ U ∩ V .
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It remains to show that Bx is a nbhd basis at x for every x ∈ X relative to T .
Let x ∈ X. First we check that any B ∈ Bx is a nbhd of x.

Given B ∈ Bx, let

U := {y ∈ B : there is D ∈ By with D ⊆ B} .

Since x ∈ U , it suffices to verify that U ∈ T . If y ∈ U , and D ∈ By with D ⊆ B,
then 4. implies that there is D′ ∈ By such that D contains a member of Bz for
every z ∈ D′. Then B contains a member of Bz for every z ∈ D′, which implies
that D′ ⊆ U . Thus for every y ∈ U there is D′ ∈ By with D′ ⊆ U . Hence U ∈ T .

If N be a nbhd of x, then there is U ∈ T with x ∈ U ⊆ N so there is B ∈ Bx

with B ⊆ U . Thus B ⊆ N .

1.4.21. Homework 7 (due 2/25).

Problem 1.

Let S be a subbasis for the topology of a space X and D ⊆ X be such that
U ∩D ̸= ∅ for each U ∈ S . Does it follow that D is dense in X? Give a proof
or a counterexample.

Solution. No. Here is a counterexample. Let X := R,

S := {(−∞, a) : a ∈ R} ∪ {(a,∞) : a ∈ R}

and D := Z. Then S is a subbasis for the standard topology on X and U∩D ̸= ∅
for each U ∈ S . However, D is not dense in X.

Problem 2.

Let (X, d) be a metric space. Show that the metric d′, defined by

d′(x, y) :=
d(x, y)

1 + d(x, y)

is equivalent to d.
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Solution. Let x ∈ X and ε > 0. We find δ1, δ2 > 0 such that

Bd (x, δ1) ⊆ Bd′(x, ε) and Bd′ (x, δ2) ⊆ Bd (x, ε) .

Define δ1 := ε. If y ∈ Bd (x, δ1), then d(x, y) < δ1 = ε so d′ (x, y) ≤ d (x, y) < ε.
Thus y ∈ Bd′ (x, ε) as required.
Define δ2 :=

ε

1 + ε
. If y ∈ Bd′ (x, δ2), then d′(x, y) < δ2 so

d(x, y)

1 + d(x, y)
<

ε

1 + ε

(1 + ε) d(x, y) < ε (1 + d(x, y))

d(x, y) < ε

and y ∈ Bd (x, ε) as required.

Problem 3.

Let d and d′ be metrics defined on the set C (I) of all continuous function f :

[0, 1] → R defined by

d(f, g) :=

∫ 1

0

|f(t)− g(t)| dt

d′(f, g) := sup {|f(t)− g(t)| : t ∈ [0, 1]} .

Prove that d and d′ are not equivalent.

Solution. For each n ∈ N, let fn : [0, 1] → R be defined by

fn(x) :=


1− nx x ∈

[
0,

1

n

]
;

0 x ∈
[
1

n
, 1

]
;

and let A = {fn : n ∈ N} ⊆ C (I). Let f : [0, 1] → R be the constant function
with f(x) := 0 for every x ∈ [0, 1]. Then f is in the closure of A when C (I) has
the topology induced by the metric d, but f is not in the closure of A when C (I)

has the topology induced by the metric d′. Thus these two topologies are not the
same, which means that d and d′ are not equivalent.
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Problem 4.

Consider R with the standard topology. Prove that for each x ∈ R the collection

Bx := {(x− r, x+ r) : r ∈ Q, r > 0}

is a nbhd basis at x.

Solution. Each member of Bx is open and contains x so it is a nbhd of x. Let N
be any nbhd of x. There is open U with x ∈ U ⊆ N . There is an open interval
(a, b) ⊆ U with x ∈ (a, b). Let r ∈ Q be such that

0 < r < min {x− a, b− x} .

Then x ∈ (x− r, x+ r) ⊆ U and (x− r, x+ r) ∈ Bx. Therefore, Bx is a nbhd
basis at x.

1.5. Subspaces

1.5.1. Proposition (subspace topology).

Let (X,T ) be a topological space and Y ⊆ X. Let

T ′ := {U ∩ Y : U ∈ T } .

Then T ′ is a topology on Y .

Proof. Since ∅ ∈ T , we have

∅ = ∅ ∩ Y ∈ T ′.

Since X ∈ T and Y = X ∩ Y , it follows that Y ∈ T ′.

Let A ⊆ T ′. Then for each U ∈ A , there is VU ∈ T with U = Y ∩ VU . Since⋃
U∈A

VU ∈ T
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and ⋃
A =

⋃
U∈A

(Y ∩ VU) = Y ∩

( ⋃
U∈A

VU

)
,

it follows that
⋃

A ∈ T ′.

Let U, V ∈ T ′. There are U ′, V ′ ∈ T with U = Y ∩ U ′ and V = Y ∩ V ′. Then

U ∩ V = Y ∩ (U ′ ∩ V ′)

and U ′ ∩ V ′ ∈ T so U ∩ V ∈ T ′.

1.5.2. Relative topology.

Let (X,T ) be a topological space and Y ⊆ X. The topology

T ′ := {U ∩ Y : U ∈ T }

is called the relative topology (or subspace topology) on Y .

Remark.

Let (Y,T ′) be a subspace of a topological space (X,T ). If Z ⊆ Y then the
subspace topology on Z induced by T is the same as the subspace topology
induced by T ′.

1.5.3. Proposition (closed sets in subspaces).

Let X be a topological space and Y ⊆ X. Consider Y as a topological space with
the subspace topology. Then C ⊆ Y is closed in Y if and only if there is a closed
C ′ in X with C = C ′ ∩ Y .

Proof. Assume that C is closed in Y . Then Y ∖ C is open in Y so there is open
U in X with

Y ∖ C = U ∩ Y.
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Let C ′ := X ∖ U . Then C ′ is closed in X and C = C ′ ∩ Y .

Now assume that there is a closed C ′ in X with C = C ′∩Y . Then X∖C ′ is open
in X so

Y ∖ C = (X ∖ C ′) ∩ Y

is open in Y implying that C is closed in Y .

1.5.4. Proposition (relative metric induces relative topology).

Let (X, d) be a metric space and Y ⊆ X. Then the restriction d′ of d to Y × Y is
a metric that induces the relative topology on Y .

Proof. Let T be the topology on X induced by d, let T ′ be the corresponding
subspace topology on Y . We show that T ′ is induced by the metric d′. Let
U ∈ T ′ and x ∈ U . There is V ∈ T with U = V ∩Y . Since x ∈ V , there is ε > 0

with Bd(x, ε) ⊆ V . Then

Bd′(x, ε) = Bd(x, ε) ∩ Y ⊆ U,

implying that U is open in the metric space (Y, d′).

Now assume that U is open in the metric space (Y, d′). For each x ∈ U there is
εx > 0 with

Bd′(x, εx) ⊆ U.

Since
Bd′(x, εx) = Bd(x, εx) ∩ Y,

it is open in the subspace topology on Y . Thus

U =
⋃
x∈U

Bd′(x, εx) ∈ T ′

as required.
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1.5.5. Proposition (closed and open subspaces).

Let X be a topological space and Y ⊆ X be a subspace of X. If Y is open in X,
then for any A ⊆ Y , the set A is open in Y if and only if it is open in X. If Y is
closed in X, then any A ⊆ Y is closed in Y if and only if it is closed in X.

Proof. Assume that Y is open in X. Let A ⊆ Y . If A is open in X, then A = A∩Y
is open in Y . If A is open in Y , then A = U ∩ Y for some U ⊆ X that is open in
X. Then A is open in X.

If Y is closed in X, the proof is similar.

1.5.6. Proposition (relative subbasis, basis and nbhd basis).

Let X be a topological space and Y ⊆ X be a subspace.

1. If S is a subbasis of the topology on X then

S ′ := {S ∩ Y : S ∈ S }

is a subbasis for the topology on Y .

2. If B is a basis of the topology on X then

B′ := {B ∩ Y : B ∈ B}

is a basis for the topology on Y .

3. If Bx is a nbhd basis at x ∈ X in X and if x ∈ Y , then

B′
x := {B ∩ Y : B ∈ Bx}

is a nbhd basis at x in Y .

1.5.7. Proposition (relative closure and derived set).

Let X be a topological space and Y ⊆ X. For A ⊆ Y , let AX and A′
X denote the

closure and the derived set of A, respectively, relative to the topology on X and
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let AY and A′
Y denote the closure and the derived set of A, respectively, relative

to the topology on Y . Then
AY = AX ∩ Y

and
A′

Y = A′
X ∩ Y,

for every A ⊆ Y .

Proof. Let A ⊆ Y . Assume that x ∈ AY . Then x ∈ Y . To show that x ∈ AX , let
U be an open nbhd of x in X. Then U ′ := U ∩ Y is an open nbhd of x in Y so
U ′ ∩ A ̸= ∅. It follows that U ∩ A ̸= ∅ as required.

Assume that x ∈ AX ∩ Y . Let U be an open nbhd of x in Y . Then there is open
U ′ in X with U = U ′ ∩ Y . Since x ∈ AX , we have U ′ ∩ A ̸= ∅. Since A ⊆ Y , it
follows that U ∩ A ̸= ∅. Thus x ∈ AY .

The equality for derived sets is proved in a similar way.

1.5.8. Proposition (relative interior and boundary).

Let X be a topological space and Y ⊆ X. For A ⊆ Y , let A◦
X and ∂AX denote the

interior and the boundary of A, respectively, relative to the topology on X and
let A◦

Y and ∂AY denote the interior and the boundary of A, respectively, relative
to the topology on Y . Then

A◦
Y ⊇ A◦

X ∩ Y

and
∂AY ⊆ ∂AX ∩ Y,

for every A ⊆ Y .

Proof. Let A ⊆ Y . The inclusion A◦
Y ⊇ A◦

X ∩ Y holds since if x ∈ A◦
X ∩ Y , then

there is an open U in X with x ∈ U ⊆ A. Since U is open in Y , it follows that
x ∈ A◦

Y .
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Let x ∈ ∂AY . Then x ∈ AY and x ∈ Y . Since

Y ∖ AY = Y ∖ AX ∩ Y ⊆ X ∖ AX ∩ Y

and x ∈ X ∖ AX , it follows that x ∈ Y ∖ AY .

Example.

Let X = R and Y = {0} with A = {0}. Then

A◦
Y = {0} ̸= A◦

X ∩ Y = ∅

and
∂AY = ∅ ̸= ∂AX ∩ Y = {0} .

1.5.9. Proposition (relative linear order).

Let X be a topological space with an order topology induced by a linear order ≤
on X and let Y ⊆ X. Let T be the subspace topology on Y and T ′ be the order
topology on Y induced by the restriction ≤′ of ≤ to Y × Y . Then T ′ ⊆ T . If
moreover Y is an interval, then equality holds.

Proof. Let V ∈ T ′. If x ∈ V then there are a, b ∈ Y ∪ {−∞,∞} with

x ∈ Vx = (a, b)Y ⊆ V,

where
(a, b)Y := {y ∈ Y : a < y < b} .

Let
Ux := (a, b)X := {y ∈ X : a < y < b}

and U =
⋃

x∈V Ux. Then U is open in X. Since Vx = Ux ∩ Y for each x ∈ V , we
have

V =
⋃
x∈V

Vx =

(⋃
x∈V

Ux

)
∩ Y = U ∩ Y,
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so V ∈ T as required.

Assume that Y is an interval and V ∈ T . Let U be open in X with V = U ∩ Y .
If x ∈ V , then there are a, b ∈ X ∪{−∞,∞} with x ∈ (a, b)X ⊆ U . Define a′ := a

if a ∈ Y and a′ := −∞ otherwise. Let b′ := b if b ∈ Y and b := ∞ otherwise.
Since Y is an interval, it follows that

Vx := (a′, b′)Y = (a, b)X ∩ Y ⊆ V,

so
V =

⋃
x∈V

Vx ∈ T ′

as required.

Example.

Let
X := {0} ∪ (1, 2) ⊆ R.

Then {0} is open in subspace topology on X induced from the topology on R.
However, if X is equipped with the order topology induced by restricting the linear
order on R to X, then {0} is not open.

1.5.10. Homework 8 (due 3/3)

Problem 1.

A subset Y of a topological space is called discrete if the relative topology on Y

is discrete. Prove that every subset of a discrete space is discrete. Prove that the
subset {1/n : n ∈ N} of the real line R with the standard topology is discrete and
the subset {0} ∪ {1/n : n ∈ N} is not discrete.

Solution. Let X be a discrete topological space and Y ⊆ X. If A ⊆ Y , then A is
open in X and A = A ∩ Y so A is open in Y . Since every subset of Y is open in
Y , the relative topology on Y is discrete.
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Let A := {1/n : n ∈ N} ⊆ R. For each n ∈ N, let Un :=

(
1

n+ 1
,

1

n− 1

)
provided

n ≥ 2 and U1 :=

(
1

2
, 2

)
. For each n ∈ N the set Un is open in R and Un ∩ R ={

1

n

}
. Thus

{
1

n

}
is open in A for each n ∈ N, which implies that the relative

topology on A is discrete.
Let B := {0} ∪ {1/n : n ∈ N} ⊆ R. To prove that the relative topology on B is
not discrete, we show that the set {0} is not open in the relative topology on B.
Suppose, for a contradiction that {0} is open in B. Then there is open U in R
with U ∩ B = {0}. Since U is open in R, there are is an open interval (a, b) ⊆ R
with x ∈ (a, b) ⊆ U . Since b > 0, there is n ∈ N with 1

n
< b. Thus 1

n
∈ U ∩ B,

which is a contradiction.

Problem 2.

Let a, b ∈ R∖Q with a < b. Prove that [a, b] ∩Q is both open and closed in the
relative topology on Q.

Solution. Since a, b /∈ Q, we have [a, b]∩Q = (a, b)∩Q. Since (a, b) is open in R,
it follows that (a, b) ∩Q is open in the relative topology on Q. Thus [a, b] ∩Q is
open in the relative topology on Q.
Since [a, b] is closed in R, it follows that [a, b]∩Q is closed in the relative topology
on Q.

Problem 3.

Let X be a topological space such that every finite subspace of X has the trivial
relative topology. Prove that the topology on X is trivial.

Solution. Suppose, for a contradiction, that the topology of X is non-trivial. Let
U ⊆ X be open in X with U /∈ {∅, X}. Let x ∈ U and y ∈ X ∖ U . Then
{x} = U ∩ {x, y} so {x} is open in the relative topology on {x, y}, which means
that the relative topology on {x, y} is not trivial. This is a contradiction.
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Problem 4.

Let X be a topological space such that every finite subspace of X has the discrete
topology. Does it follow that X has the discrete topology? Give a proof or a
counterexample.

Solution. No. Here is a counterexample. Let X be R with the standard topology.
If A ⊆ R is finite, then the relative topology on A is discrete. However the
topology on R is not discrete.
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2. Continuity and the Product
Topology

2.1. Continuous Functions

2.1.1. Definition of a continuous function.

Let X and Y be topological spaces and f : X → Y . We say that f is continuous
if f−1[U ] is open in X for every open U ⊆ Y .

Examples.

If X is discrete, then any function with domain X into any topological space Y
is continuous.
If Y has the trivial topology then any function f : X → Y for any topological
space X is discrete.
If X and Y are any topological spaces and f : X → Y is constant, then it is
continuous.
If X is a topological space and f : X → X is the identity function (f(x) = x for
each x ∈ X), then f is continuous.

2.1.2. Theorem (characterization of continuity).

Let X and Y be topological spaces and f : X → Y . The following conditions are
equivalent:
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1. f is continuous.

2. f−1[C] is closed in X for any closed C ⊆ Y .

3. f
[
A
]
⊆ f [A] for any A ⊆ X.

4. f−1[B] ⊆ f−1
[
B
]

for any B ⊆ Y .

Proof. Assume 1. and let C ⊆ Y be closed. Then Y ∖C is open in Y so f−1[Y ∖ C]

is open in X. Since
f−1[C] = X ∖ f−1[Y ∖ C],

it follows that f−1[C] is closed in X. Thus 2. holds. Similarly, 2. implies 1.

Now we show that 1. implies 3. Let A ⊆ X and y ∈ f
[
A
]
. Then y = f(x) for

some x ∈ A. Let U be an open nbhd of y in Y . Then f−1[U ] is an open nbhd of
x so

f−1[U ] ∩ A ̸= ∅.

Thus there is z ∈ A with f(z) ∈ U so

f [A] ∩ U ̸= ∅.

It follows that y ∈ f [A] and so 3. holds.

Now we show that 3. implies 4. Let B ⊆ Y . With A := f−1[B], 3. implies that

f
[
f−1[B]

]
⊆ f [f−1[B]].

Since f
[
f−1[B]

]
⊆ B, it follows that f

[
f−1[B]

]
⊆ B, so

f−1[B] ⊆ f−1
[
B
]
.

It remains to show that 4. implies 2. Let C ⊆ Y be closed. Then 4. implies that

f−1[C] ⊆ f−1
[
C
]
= f−1[C].

Since f−1[C] ⊆ f−1[C], it follows that f−1[C] is closed. Thus 2. holds.
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2.1.3. Theorem (continuity and basis).

Let X and Y be topological spaces and f : X → Y . Let B be a basis and S be
a subbasis for the topology on Y . The following conditions are equivalent:

1. f is continuous.

2. f−1[B] is open in X for every B ∈ B.

3. f−1[S] is open in X for every S ∈ S .

Proof. Since every member of B and every member of S is open in Y , 1. implies
both 2. and 3. If 2. holds, and U is open in Y , then U =

⋃
A for some A ⊆ B.

Then
f−1[U ] =

⋃
B∈A

f−1[B]

is open in X so 1. holds.

Now assume 3. Let U be open in Y . If U = Y , then f−1[U ] = X is open in X. If
U = ∅, then f−1[U ] = ∅ is open in X. Otherwise, U =

⋃
A for some family A

consisting of intersections of finite nonempty subfamilies of S . Since

f−1[U ] =
⋃
A∈A

f−1[A],

it suffices to show that f−1[A] is open for every A ∈ A . If

A := S1 ∩ S2 ∩ · · · ∩ Sk,

then
f−1[A] = f−1[S1] ∩ f−1[S2] ∩ · · · ∩ f−1[Sk],

which is an intersection of finitely many open sets in X. Thus f−1[A] is open in
X.

2.1.4. Theorem (composition of continuous functions).

Let X,Y, Z be topological space and f : X → Y and g : Y → Z be continuous.
Then g ◦ f : X → Y is continuous.
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Proof. Let U be open in Z. Then

(g ◦ f)−1 [U ] = g−1
[
f−1[U ]

]
.

Since f is continuous, f−1[U ] is open in Y and since g is continuous, g−1
[
f−1[U ]

]
is open in X. Thus g ◦ f is continuous.

2.1.5. Theorem (characterization of subspace topology).

Let X be a topological space and Y be a subset of X. The subspace topology
on Y is the smallest topology on Y for which the embedding j : Y → X (with
j(y) := y for each y ∈ Y ) is continuous.

Proof. If U is open in X, then j−1[U ] = U ∩ Y is open in the subspace topology
on Y . Thus j is continuous. Assume that T is any topology on Y for which j is
continuous. Then

U ∩ Y = j−1[U ] ∈ T

for any open U ⊆ X so T is larger than the subspace topology on Y .

2.1.6. Localized continuity.

Let X and Y be topological spaces and f : X → Y . Then f is continuous at
x ∈ X provided f−1[U ] is a nbhd of x for any nbhd U of f(x).

2.1.7. Theorem (localized continuity).

Let X and Y be topological spaces. A function f : X → Y is continuous if and
only if f is continuous at each x ∈ X.

Proof. Assume that f is continuous and x ∈ X. If U is a nbhd of f(x), then there
is open U ′ in Y with f(x) ∈ U ′ ⊆ U . Since f is continuous, f−1[U ′] is open in X

and
x ∈ f−1[U ′] ⊆ f−1[U ].
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Thus f−1[U ] is a nbhd of x in X.

Now assume that f is continuous at each x ∈ X. Let U be open in Y . For each
x ∈ f−1[U ], the set U is a nbhd of f(x) so f−1[U ] is nbhd of x. Thus f−1[U ] is
open in X.

2.1.8. Theorem (Gluing Lemma).

Let X and Y be topological spaces with

X =
n⋃

i=1

Xi,

where each Xi is open in X. If fi : Xi → Y is continuous for each i = 1, 2, . . . , n

and
f :=

n⋃
i=1

fi

is a function, then f : X → Y is continuous. The same conclusion holds if we
assume that each Xi is closed in X.

Proof. Let U be open in Y . Then

f−1[U ] =
n⋃

i=1

f−1
i [U ]

and f−1
i [U ] is open in Xi for each i = 1, 2, . . . , n. Since Xi is open in X, it follows

that f−1
i [U ] is open in X for each i = 1, 2, . . . , n. Thus f−1[U ] is open in X.

Assuming that each Xi is closed in X, we use a similar argument starting with a
closed subset of Y .

Remark.

Let X and Y be topological spaces with X =
⋃

i∈AXi, where each Xi is open in
X. If fi : Xi → Y is continuous for each i ∈ A and f :=

⋃
i∈A fi is a function,

then f : X → Y is continuous.
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Example.

Let X := R with Xr := {r} for each r ∈ R. Then each Xr is closed in X. If
fr : Xr → R is defined by fr(r) := 1 for r ∈ Q and fr(r) := 0 for r ∈ R∖Q, then
fr is continuous for each r ∈ R, but the functions f :=

⋃
i∈A fi is not continuous.

2.1.9. Locally finite family.

Let X be a topological space and A be a family of subsets of X. We say that A

is locally finite when each x ∈ X has a nbhd U such that

{A ∈ A : A ∩ U ̸= ∅}

is finite.

2.1.10. Proposition (closure and locally finite family).

Let X be a topological space and A be a locally finite family of subsets of X.
Then

⋃
A∈A A is closed.

Proof. Let
x ∈

⋃
A∈A

A.

There is an open nbhd U of x such that

A ′ := {A ∈ A : A ∩ U ̸= ∅}

is finite. Then U ∩A = ∅ for any A ∈ A ∖A ′. Suppose, for a contradiction, that

x /∈
⋃
A∈A

A.

For each A ∈ A ′, let UA := X∖A. Then UA is an open nbhd of x with UA∩A = ∅.
If

V := U ∩
⋂

A∈A ′

UA,
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then V is a nbhd of x such that

V ∩
⋃
A∈A

A = ∅,

which is a contradiction.

Remark.

In particular, the union of a locally finite family of closed sets is closed.

2.1.11. Corollary (closure and locally finite family).

Let X and Y be topological spaces with X =
⋃

i∈AXi, where each Xi is closed in
X and {Xi : i ∈ A} is locally finite. If fi : Xi → Y is continuous for each i ∈ A

and f :=
⋃

i∈A fi is a function, then f : X → Y is continuous.

Proof. Let C be closed in Y . Then f−1
i [C] is closed in Xi for each i ∈ A so it is

closed in X. Since {Xi : i ∈ A} is locally finite, it follows that
{
f−1
i [C] : i ∈ A

}
is

locally finite. Since
f−1[C] =

⋃
i∈A

f−1
i [C],

it follows that f−1[C] is closed.

2.1.12. Homeomorphism.

LetX and Y be topological space. If f : X → Y is a bijection such that both f and
f−1 are continuous, then f is a homeomorphism. If there exists a homeomorphism
X → Y , then we say that X and Y are homeomorphic.
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Example.

The Euclidean space Rn is homeomorphic to the open ball B(0, 1) in Rn. The
map f : Rn → B(0, 1) defined by

f(x) :=
x

1 + ∥x∥

is a homeomorphism.

2.1.13. Open and closed functions.

Let X and Y be topological spaces and f : X → Y . We say that f is open if f [U ]
is open in Y for every open U in X. We say that f is closed if f [C] is closed in Y
for every closed C in X.

Examples.

The inclusion function f : (0, 1) → R is continuous and open, but not closed.

The inclusion function f : [0, 1] → R is continuous and closed, but not open.

The function f : [0, 2π) → R2 defined by f(x) = ⟨cosx, sinx⟩ is continuous, but
it is neither open nor closed.

2.1.14. Theorem (characterization of homeomorphisms).

Let X and Y be topological spaces and f : X → Y be a bijection. The following
conditions are equivalent:

1. f is a homeomorphism.

2. f is continuous and open.

3. f is continuous and closed.
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Proof. Let g := f−1. Assume 1. Then g : Y → X is continuous. If U is open
in X, then f [U ] = g−1[U ] is open in X. Thus 2. hold. Similarly, we show that
3. holds.

Now assume that 2. holds. If U is open in X, then g−1[U ] = f [U ] is open in Y so
1. holds. Similarly, we show that 3. implies 1.

2.1.15. Proposition (characterization of closed functions).

Let X and Y be topological spaces and f : X → Y . Then f is closed if and only
if f [A] ⊆ f

[
A
]

for every A ⊆ X.

Proof. Assume that f is closed. Let A ⊆ X. Since f
[
A
]

is closed and contains
f [A], it follows that f [A] ⊆ f

[
A
]
.

Now assume that f [A] ⊆ f
[
A
]

for every A ⊆ X. Let C be closed in X. Then

f [C] ⊆ f
[
C
]
= f [C].

Since f [C] ⊆ f [C], it follows that equality holds so f [C] is closed.

Corollary.

A function f : X → Y is continuous and closed if and only if f
[
A
]
= f [A] for any

A ⊆ X.

2.1.16. Theorem (characterization of open functions).

Let X and Y be topological spaces with B being a basis for the topology on X

and f : X → Y . Then f is open if and only if f [B] is open in Y for every B ∈ B.

Proof. Assume that f is open. Since the members of B are open, the image f [B]

is open in Y for every B ∈ B.
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Now assume that f [B] is open in Y for every B ∈ B. Let U be open in X. Then
U =

⋃
A for some A ⊆ B. Since

f [U ] =
⋃
A∈A

f [A]

and f [A] is open in Y for every A ∈ A , it follows that f [U ] is open in Y . Thus f
is open.

2.1.17. Topological embedding.

Let X and Y be topological spaces and f : X → Y . The function f is a topological
embedding if it is a homeomorphism onto f [X].

Remark.

f is a topological embedding provided it is injective, continuous and it’s inverse
as a function f [X] → X is continuous.

Example.

The function f : [0, 2π) → R2 defined by f(x) = ⟨cosx, sinx⟩ is injective and
continuous, but it is not a topological embedding.

2.1.18. Homework 9 (due 4/7)

Problem 1.

Let X be an uncountable set with the cofinite (or cocountable) topology. Show
that every continuous function X → R is constant.
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Problem 2.

Give an example of topological spaces X, Y a function f : X → Y and a subspace
A ⊆ X such that f↾A is continuous, although f is not continuous at any point of
A.

Problem 3.

Let X be a partially ordered set. Define a topology on X be declaring U ⊆ X to
be open if it satisfies the condition: if y ≤ x and x ∈ U , then y ∈ U . Show that a
function f : X → X is continuous if and only if it is order preserving (i.e., x ≤ x′

implies that f(x) ≤ f(x′)).

Problem 4.

Prove that the addition function R2 → R is open, but is not closed.

2.2. Product Spaces

2.2.1. Proposition (basis for product topology)

Let X and Y be topological spaces and

B := {U × V : U is open in X and V is open in Y } .

Then B is a basis for a topology on X × Y .

Proof. According to Theorem 1.4.12, need to verify that
⋃

B = X × Y and for
every B1, B2 ∈ B and every z ∈ B1 ∩ B2 there is B ∈ B with z ∈ B ⊆ B1 ∩ B2.
Since X × Y ∈ B, it follows that

⋃
B = X × Y .

Let B1, B2 ∈ B with B1 = U1 × V1 and B2 = U2 × V2. Then ⟨x, y⟩ ∈ B1 ∩ B2 if
and only if x ∈ U1 ∩ U2 and y ∈ V1 ∩ V2 so

B1 ∩B2 = (U1 ∩ U2)× (V1 ∩ V2) ∈ B.
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Thus we can take B = B1 ∩B2 for any z ∈ B1 ∩B2.

2.2.2. Product topology.

Let X and Y be topological spaces. The topology induced by the basis

B := {U × V : U is open in X and V is open in Y }

is called the product topology on X×Y and the obtained topological space is called
the product space.

The functions pX : X × Y → X and pY : X × Y → Y defined by pX(x, y) := x

and pY (x, y) := y are called projections.

2.2.3. Proposition (characterization of product topology).

Let X and Y be topological spaces and Z := X × Y be the product space. The
projections pX : Z → X and pY : Z → Y are continuous and open. Moreover, the
product topology on X × Y is the smallest topology for which both pX and pY

are continuous.

Proof. Let

B := {U × V : U is open in X and V is open in Y } .

Since p−1
X [U × V ] = U is open in X for every U × V ∈ B, it follows that pX is

continuous. Similarly, pY is continuous. Theorem 2.1.16 implies that both pX and
pY are open.

Assume that T is any topology on X×Y for which both pX and pY are continuous.
If U is open in X and V is open in Y , then

U × V = (U × Y ) ∩ (X × V ) = p−1
X [U ] ∩ p−1

Y [V ]

belongs to T . Thus B ⊆ T , which implies that T is finer than the product
topology on X × Y .
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Example.

Let X = Y := R and

C := {⟨x, y⟩ ∈ X × Y : xy = 1} .

Then C is closed in X × Y , but pX [C] = X ∖ {0} is not closed in X.

Remark.

If X and Y are topological spaces and

S :=
{
p−1
X [U ] : U is open in X

}
∪
{
p−1
Y [V ] : V is open in Y

}
,

then S is a subbasis for the product topology on X × Y .

2.2.4. Proposition (basis for product topology from bases).

Let B and D be bases for the topologies on X and Y , respectively. Then

E := {B ×D : B ∈ B, D ∈ D}

is a basis for the product topology on X × Y .

Proof. It is clear that the members of E are open in the product topology on
X ×Y . Let W be open in the product topology on X ×Y and ⟨x, y⟩ ∈ W . There
is an open U in X and an open V in Y with

⟨x, y⟩ ∈ U × V ⊆ W.

Then x ∈ B ⊆ U and y ∈ D ⊆ V for some B ∈ B and D ∈ D so

⟨x, y⟩ ∈ B ×D ⊆ U × V.

Thus B ×D ⊆ W as required.
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2.2.5. Proposition (product topology on R2).

The standard topology on R2 is the product topology on R× R.

Proof. Let
B := {B(⟨x, y⟩ , r) : ⟨x, y⟩ ∈ R× R, r > 0}

and
D := {(a, b)× (c, d) : a, b, c, d ∈ R, a < b, c < d} .

Then B is a basis of the standard topology on R2 and D is a basis for the product
topology on R × R. Let B ∈ B and ⟨x, y⟩ ∈ B. There are open intervals (a, b)

and (c, d) with
⟨x, y⟩ ∈ (a, b)× (c, d) ⊆ B.

Since (a, b)× (c, d) ∈ D , Proposition 1.4.14 implies that the product topology on
R × R is finer than the standard topology. Similarly, the standard topology is
finer than the product topology.

Remark.

If X,Y and Z are topological spaces then X × Y is homeomorphic with Y × X

and (X × Y )× Z is homeomorphic with X × (Y × Z).

2.2.6. Theorem (product and subspace topologies commute).

Let X and Y be topological spaces with A ⊆ X and B ⊆ Y . Let T be the
subspace topology on A× B inherited from the product topology on X × Y and
T ′ be the product topology on A×B, where A has the subspace topology inherited
from X and B has the subspace topology inherited from Y . Then T = T ′.

Proof. The family

B := {(A×B) ∩ (U × V ) : U open in X and V open in Y }
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is a basis for T and

B′ := {(A ∩ U)× (B ∩ V ) : U open in X and V open in Y }

is a basis for T ′. Since

(A×B) ∩ (U × V ) = (A ∩ U)× (B ∩ V )

for any U ⊆ X and V ⊆ Y , it follows that B = B′ so T = T ′.

2.2.7. Theorem (continuity into products).

Let X, Y and Z be topological spaces and f : Z → X × Y . Then f is continuous
if and only if both compositions pX ◦ f and pY ◦ f are continuous.

Proof. If f is continuous, then both pX ◦ f and pY ◦ f are continuous since com-
positions of continuous functions is continuous.

Assume that both pX ◦ f and pY ◦ f are continuous. To show that f is continuous
it suffices to prove that f−1[U × V ] is open in Z for any open U ⊆ X and any
open V ⊆ Y . Assume that U is open in X and V is open in Y . Note that
z ∈ f−1[U × V ] if and only if (pX ◦ f) (z) ∈ U and (pY ◦ f) (z) ∈ V so

f−1[U × V ] = (pX ◦ f)−1 [U ] ∩ (pY ◦ f)−1 [V ].

Since both (pX ◦ f)−1 [U ] and (pY ◦ f)−1 [V ] are open in Z, it follows that f−1[U × V ]

is open in Z, as required.

Corollary.

Let X, X ′, Y and Y ′ be topological spaces and f : X → X ′ and g : Y → Y ′ be
continuous. Let

f × g : X × Y → X ′ × Y ′

be defined by
(f × g) (x, y) := (f(x), g(y))

for any x ∈ X and y ∈ Y . Then f × g is continuous.
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Proof. It suffices to show that both pX ′ ◦ (f × g) and pY ′ ◦ (f × g) are continuous.
Since

pX ′ ◦ (f × g) = f ◦ pX ,

and since both f and pX are continuous, it follows that pX ′ ◦(f × g) is continuous.
Similarly, pY ′ ◦ (f × g) is continuous.

Corollary.

Let X, Y and Z be topological spaces and f : Z → X and g : Z → Y be
continuous. Let

(f, g) : Z → X × Y

be defined by
(f, g) (z) := (f(z), g(z))

for any z ∈ Z. Then (f, g) is continuous.

Proof. Since pX ◦ (f, g) = f and pY ◦ (f, g) = g are continuous, it follows that
(f, g) is continuous.

2.2.8. Infinite Cartesian products.

Let Xα be a set for any α ∈ A. The Cartesian product X :=
∏

α∈AXα is the set
of all functions f with domain A such that f(α) ∈ Xα for any α ∈ A. Such a
function f will be denoted by (xα)α∈A, where xα is the value of f at α.
For each α ∈ A, let pα : X → Xα be the projection defined by

pα

(
(xβ)β∈A

)
:= xα.

2.2.9. Box topology.

Let Xα be a topological space for each α ∈ A and X :=
∏

α∈AXα. The collection

B :=

{∏
α∈A

Uα : Uα open in Xα for every α ∈ A

}
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can be proved to be a basis for a topology on X. This topology is called the box
topology on X.

Example.

Let Xn := R for every n ∈ N and X :=
∏

n∈NXn with the box topology. Let
fn : R → Xn be the identity function and f : R → X be defined by

f(x) = (x, x, x, . . . ) .

Then fn = pn ◦ f is continuous for every n ∈ N. However, f is not continuous.

Proof. Let Un :=

(
−1

n
,
1

n

)
for each n ∈ N. Then U :=

∏
n∈N Un is open in the

box topology on X, but f−1[U ] = {0} is not open in R.

2.2.10. Product topology.

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. The product
topology (or Tychonoff topology) on X is induced by the subbasis

S :=
{
p−1
α [Uα] : Uα is open in Xα for each α ∈ A

}
.

2.2.11. Proposition (characterization of infinite products).

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. The
product topology on X is the smallest topology on X for which each projection
pα is continuous.

Proof. If X has the product topology, then each pα is continuous since each mem-
ber of the subbasis

S :=
{
p−1
α [Uα] : Uα is open in Xα for each α ∈ A

}
is open in the product topology on X.
Assume that T is a topology on X such that pα : X → Xα is continuous for each
α ∈ A. Then S ⊆ T so T is finer than the product topology on X.

83



Remark.

The box topology on X is finer than the product topology and when A is finite,
these topologies are identical.

2.2.12. Proposition (subbasis for infinite product).

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. If Sα is a
subbasis for the topology on Xα for every α ∈ A, then

S :=
{
p−1
α [Sα] : Sα ∈ Sα for every α ∈ A

}
is a subbasis for the product topology on X.

Proof. Let

S ′ :=
{
p−1
α [Uα] : Uα is open in Xα for each α ∈ A

}
,

with T being the topology induced by S and T ′ being the product topology
(induced by S ′). Since S ⊆ S ′, it follows that T ⊆ T ′. To show that T ′ ⊆ T ,
it suffices to show that S ′ ⊆ T .

Assume that S ∈ S ′. Then S = p−1
α (Uα) for some α ∈ A and Uα open in Xα. If

Uα = Xα, then S = X ∈ T . If Uα = ∅, then S = ∅ ∈ T . Otherwise, Uα is a
union of a family A of nonempty finite intersections of members of Sα so

S = p−1
α

[⋃
A
]
=
⋃
A∈A

p−1
α [A].

For A ∈ A , if
A = S1 ∩ S2 ∩ · · · ∩ Sn,

where S1, . . . , Sn ∈ S , then

p−1
α [A] = p−1

α [S1] ∩ p−1
α [S2] ∩ · · · ∩ p−1

α [Sn] ∈ T .

Since p−1
α [A] ∈ T for every A ∈ A , it follows that S ∈ T , as required.
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2.2.13. Proposition (basis for infinite product).

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. Assume
that Bα is a subbasis for the topology on Xα for every α ∈ A, and let B consist
of products

∏
α∈ABα such that there is a finite A′ ⊆ A with Bα ∈ Bα for α ∈ A′

and Bα = Xα for α ∈ A∖ A′. Then B is a basis for the product topology on X.

Proof. Since Bα is a subbasis for the topology on Xα for every α ∈ A, Proposition
2.2.12 implies that the family

S :=
{
p−1
α [Bα] : Bα ∈ Bα for every α ∈ A

}
is a subbasis for the product topology on X. Since B consists of X and all
intersections of finite nonempty subfamilies of S , it follows that B is a basis for
the topology on X.

2.2.14. Proposition (infinite products and subspaces
commute).

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. For each
α ∈ A let Yα be a subspace of Xα and let Y :=

∏
α∈A Yα. Then the product

topology on Y coincides with the subspace topology inherited from X.

Proof. Let T be the product topology on Y and T ′ be the subspace topology.
Let Sα be a subbasis for the topology on Xα for all α ∈ A. Then

S :=
{
p−1
α [Sα] : Sα ∈ Bα for every α ∈ A

}
is a subbasis for the product topology on X so

S ′ :=
{
p−1
α [Sα] ∩ Y : Sα ∈ Bα for every α ∈ A

}
is a subbasis for T . Since

p−1
α [Sα] ∩ Y = (pα↾Y )−1 [Sα ∩ Yα]
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and since
S ′

α := {Sα ∩ Yα : α ∈ A}

is a subbasis for the topology on Xα for each α ∈ A, it follows the S ′ is a subbasis
for T ′.

2.2.15. Theorem (infinite products and continuity).

Let Xα be a topological space for each α ∈ A and let X :=
∏

α∈AXα. Let
f : Y → X for some topological space Y . Then f is continuous if and only if
pα◦f : Y → Xα is continuous is continuous for each α ∈ A. Moreover, the product
topology on X is the unique topology with such a property.

Proof. If f is continuous, then it is clear that pα ◦ f is continuous for each α ∈ A.
Assume that pα ◦ f is continuous for each α ∈ A. Since

S :=
{
p−1
α [Uα] : Uα is open in Xα for each α ∈ A

}
is a subbasis for the product topology on X, and since

f−1
[
p−1
α [Uα]

]
= (pα ◦ f)−1 [Uα]

is open in Y for each α ∈ A, it follows that f is continuous.

Suppose that T is any topology on X such that for any topological space Y

and any f : Y → X, the continuity of pα ◦ f for each α ∈ A is equivalent to
the continuity of f . Taking Y := X with the same topology T and f to be
the identity function (which is continuous), we conclude that pα is continuous for
each α ∈ A. This implies that T is finer than the product topology on X by
Proposition 2.2.11.

Taking Y := X with the product topology (and X with topology T ) and f :

Y → X to be the identity function, we have pα ◦ f continuous for each α ∈ A so
f is continuous. It follows that any member of T is open in Y , thus T is coarser
than the product topology on X.
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2.2.16. Theorem (countable products are metrizable).

Let (Xn, dn) be a metric space for each n ∈ N and let X :=
∏

n∈NXn. Consider
Xn to be the topological space with the topology induced by dn. Then there exists
a metric d on X that induces the product topology on X.

Proof. For each n ∈ N, let λn > 0 with limn→∞ λn = 0 and let d′n be a metric on
Xn such that the diameter of Xn in d′n is at most λn. Such a metric d′n exists by
Corollary 1.4.17. For x := (xn)n∈N and y := (yn)n∈N in X, define

d(x, y) = sup {d′n(xn, yn) : n ∈ N} .

It is clear that d is positive and symmetric. We verify the triangle inequality. Let
x := (xn)n∈N , y := (yn)n∈N and z := (zn)n∈N be in X. Then

d′n(xn, yn) + d′n(yn, zn) ≥ d′n(xn, zn)

for each n ∈ N so
d(x, y) + d(y, z) ≥ d′n(xn, zn)

for each n ∈ N. Thus
d(x, y) + d(y, z) ≥ d(x, z),

as required. Thus d is a metric on X.

Now we show that d induces the product topology on X. Let n ∈ N and Un be
open in Xn. For each

x = (xk)k∈N ∈ p−1
n [Un]

there is rx > 0 such that
x ∈ Bd′n(xn, rx) ⊆ Un.

If
y = (yk)k∈N ∈ Bd(x, rx),

then d(x, y) < rx so d(xk, yk) < rx for each k ∈ N and, in particular, d(xn, yn) < rx

so yn ∈ Un and consequently y ∈ p−1
n [Un]. Thus

Bd(x, rx) ⊆ p−1
n [Un],
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which implies that p−1
n [Un] is open in the topology induced by d. Since

S :=
{
p−1
n [Un] : Un is open in Xn for each n ∈ N

}
is a subbasis for the product topology on X, it follows that the topology induced
by d is finer than the product topology.

Let U be open in the topology induced by d. We will show that U is open in the
product topology. Let x := (xk)k∈N ∈ U . There is r > 0 such that Bd(x, r) ⊆ U .
Let n ∈ N be such that λk < r/2 for each k > n. For each k = 1, 2, . . . , n let

Uk := Bd′k
(xk, r)

and for k > n, let Uk := Xk. Then

U ′ :=
∞∏
k=1

Uk

is open in the product topology and

x ∈ U ′ ⊆ Bd(x, r) ⊆ U,

which implies that U is open in the product topology.

2.2.17. Metrizable spaces.

A topological space X is metrizable if there exists a metric d on X that induces
the given topology.

Remark.

We have proved that the product of countably many metrizable spaces is metriz-
able.
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Example.

Let A be an uncountable set and Xα := R for each α ∈ A. Then X :=
∏

α∈AXα

is not metrizable.

Proof. Suppose, for a contradiction, that d is a metric on X that induces the
product topology. For each n ∈ N let Bn be the open ball Bd(0, 1/n), where
0 ∈ X is the constant function with value 0, and let An ⊆ A be finite such that

0 ∈ Un :=
∏
α∈A

Un,α ⊆ Bn,

where Un,α is an open interval in R for all α ∈ An and Un,α = R for all α ∈ A∖An.
Since

⋃
n∈NAn is countable and A is not, there is

β ∈ A∖
⋃
n∈N

An.

Let
x := (xα)α∈A ∈ X,

with xβ := 1 and xα := 0 for α ∈ A ∖ {β}. Then x ∈ Un for each n ∈ N. Since
x ̸= 0 and since ⋂

n∈N

Un ⊆
⋂
n∈N

Bn = {0} ,

we have a contradiction.

2.2.18. Exercises.
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3. Connectedness

3.1. Connected Spaces

3.1.1. Separation.

Let X be a topological space. A separation of X is a pair {A,B} of nonempty
disjoint open subsets of X with A ∪B = X.

Remark.

If {A,B} is a separation of X, then both A and B are closed.

3.1.2. Definition of connected spaces.

A topological space X is connected if it has no separation, otherwise is it is dis-
connected.

Examples.

The Sierpiński space is connected. The infinite space with cofinite topology is
connected. Any trivial space is connected. A discrete space with more than one
point is disconnected.
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3.1.3. Theorem (connectedness and functions into discrete).

A topological space X is connected if and only if any continuous function from X

to a discrete space is constant.

Proof. Assume that X is connected and Y is a discrete space. Suppose, for a
contradiction, that f : X → Y is continuous and not constant. Then there are
x, x′ ∈ X with f(x) ̸= f(x′). Since Y is discrete, the sets U := {f(x)} and
V := Y ∖ {f(x)} are open. Then

{
f−1[U ], f−1[V ]

}
is a separation of X and we

get a contradiction.

Now assume that any continuous function from X to a discrete space is constant.
Suppose, for a contradiction, that {A,B} is a separation of X. Let Y := {0, 1}
have the discrete topology. Define f(x) := 0 for x ∈ A and f(x) := 1 for x ∈ B.
Then f is continuous, but not constant, which is a contradiction.

3.1.4. Connected subsets.

A subset Y of a topological space X is connected if it is connected as a topological
space with the subspace topology.

Remark.

A subset Y of a topological space X is connected if and only if there are no open
subsets A,B ⊆ X such that

1. Y ⊆ A ∪B,

2. A ∩ Y ̸= ∅ ̸= B ∩ Y, and

3. A ∩B ∩ Y = ∅.

3.1.5. Theorem (connected subsets of R).

A subset Y of R is connected if and only if Y is an interval.
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Proof. Assume that Y is not an interval. Then there are a, b ∈ Y and c ∈ (a, b)∖Y .
With A := (−∞, c) and B := (c,∞), the pair {A ∩ Y,B ∩ Y } is a separation of
Y so Y is disconnected.

Now assume that Y is disconnected. Let A,B be open in R and such that
{A ∩ Y,B ∩ Y } is a separation of Y . Let a ∈ A ∩ Y and b ∈ B ∩ Y . With-
out loss of generality, we can assume that a < b. Let

c := sup {x ∈ A : x < b} .

Since B is open in R and since b ∈ B, it follows that c /∈ B. Since A is open, it
follows that c /∈ A. Thus c /∈ Y and since a, b ∈ Y and a < c < b, it follows that
Y is not an interval.

3.1.6. Separated subsets.

Let X be a topological space and A,B ⊆ X. We say that A and B are separated
if A ∩B = ∅ and A ∩B = ∅.

3.1.7. Proposition (connectedness and separated subsets).

Let X be a topological space and Y ⊆ X. Then Y is connected if and only if Y
is not a union of two nonempty separated subsets of X.

Proof. Assume that Y is connected. Suppose, for a contradiction, that Y = A∪B,
where A,B are nonempty and separated subsets of X. Let U := X ∖ B and
V := X ∖A. Then {U ∩ Y, V ∩ Y } is a separation of Y , which is a contradiction.

Assume that Y is disconnected. Let U, V be open in X and such that {A,B} is
a separation of Y , where A := U ∩ Y and B := V ∩ Y . Proposition 1.5.7 implies
that the closure of A in Y is equal to A ∩ Y . Since A is closed in Y , it follows
that A ∩ Y = A so A ∩ B = ∅. Similarly, A ∩ B = ∅ so A and B are separated
in X. Thus Y is a union of two nonempty separated subsets A and B of X.
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3.1.8. Theorem (continuous preserve connectedness).

Let X and Y be topological spaces and f : X → Y . If X is connected, then Y is
connected.

Proof. If Y is disconnected, then there is a separation {A,B} of Y . If follows that{
f−1[A], f−1[B]

}
is a separation of X.

3.1.9. Corollary (Generalized Intermediate Value Theorem).

Let X be a connected topological space, f : X → R be continuous and a < b < c

be such that a and c are values of f . Then b is also a value of f .

Proof. Since f [X] is a connected subset of R, it is an interval.

Corollary.

If f : [0, 1] → [0, 1], then f(t) = t for some t ∈ [0, 1].

Proof. Suppose, for a contradiction, that such t does not exist. Then f(0) > 0

and f(1) < 1. Define g : [0, 1] → R be g(x) := f(x) − x. Then g is continuous,
g(0) > 0 and g(1) < 0 so there is t ∈ (0, 1) with g(t) = 0. Then f(t) = t, which is
a contradiction.

3.1.10. Theorem (union of connected sets).

Let X be a topological space and A be a family of connected subsets of X such
that A ∩ A′ ̸= ∅ for any A,A′ ∈ A . Then

⋃
A is a connected subset of X.

Proof. Suppose, for a contradiction, that
⋃

A is disconnected. Let {U, V } be a
separation of

⋃
A . Then there are A,A′ ∈ A with U ∩ A ̸= ∅ and V ∩ A′ ̸= ∅.

Let x ∈ A ∩ A′. If x ∈ V , then {U ∩ A, V ∩ A} is a separation of A, which is a
contradiction. Similarly, we get a contradiction when x ∈ U .
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Remark.

Let X be a topological space such that for any x, y ∈ X there is a connected
A ⊆ X with x, y ∈ A. Then X is connected.

Proof. Suppose, for a contradiction, that X is disconnected. Let {A,B} be a
separation of X. Let a ∈ A and b ∈ B. If C is a connected subset of X with
a, b ∈ C, then {A ∩ C,B ∩ C} is a separation of C, which is a contradiction.

Remark.

Let X be a topological space, C be a connected subset of X and A be a family
of connected subsets of X such that C ∩ Y ̸= ∅ for any Y ∈ A . Then C ∪

⋃
A

is connected.

Proof. Suppose, for a contradiction, that C∪
⋃

A is disconnected. Let {A,B} be
a separation of C ∪

⋃
A . Since C is connected, either A ∩C = ∅ or B ∩C = ∅.

Assume A ∩ C = ∅. Let a ∈ A and Y ∈ A be such that a ∈ Y . Since C ⊆ B

and C ∩ Y ̸= ∅, it follows that B ∩ Y ̸= ∅ so {A ∩ Y,B ∩ Y } is a separation of
Y , which is a contradiction.

3.1.11. Lemma (connectedness of closure).

Let X be a topological space and A ⊆ X be connected. If A ⊆ B ⊆ A, then B is
connected.

Proof. Let D be a discrete space and f : B → D be continuous. Then f↾A is
constant. Let d be the value of f on A. Since B is the closure of A in B, it follows
that

f [B] ⊆ f [A] = {d} = {d} ,

so f is constant. Thus B is connected.
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3.1.12. Theorem (product of connected spaces).

Let Xα be a topological space for every α ∈ A. Then X :=
∏

α∈AXα is connected
if and only if Xα is connected for each α ∈ A.

Proof. If X is connected, then each Xα is connected since pα : X → Xα is contin-
uous for each α ∈ A.

Assume that Xα is connected for each α ∈ A. Let y = (yα)α∈A ∈ X be fixed and
let A be the family of all connected subsets of X containing y. Then

⋃
A is

connected so
⋃

A is connected. We will show that
⋃

A = X. Let x = (xα)α∈A ∈
X. To show that x ∈

⋃
A we will take any basic open nbhd B of x and prove

that there is Y ∈ A such that B ∩ Y ̸= ∅, that is, that there is a connected
subset Y of X with y ∈ Y and Y ∩B ̸= ∅.

Let A′ ⊆ A be finite and
B :=

∏
α∈A

Bα,

where Bα is an open nbhd of xα for α ∈ A′ and Bα = Xα for α ∈ A∖A′. Assume
that

A′ := {α1, α2, . . . , αn} .

Let
Y1 :=

{
(zα)α∈A : zα = yα for every α ∈ A∖ {α1}

}
.

Then Y1 is homeomorphic to Xα1
and y ∈ Y1. Let

Y2 :=
{
(zα)α∈A : zα1

= xα1
, zα = yα for every α ∈ A∖ {α1, α2}

}
.

Then Y2 is homeomorphic to Xα2
and Y1∩Y2 ̸= ∅. Thus Y1∪Y2 is connected. By

induction, for k ∈ {2, 3, . . . , n} let

Yk :=
{
(zα)α∈A : zαi

= xαi
for i = 1, . . . , k − 1

and zα = yα for α ∈ A∖ {α1, . . . , αk}} .

Then Yk is homeomorphic to Xαk
and Yk−1 ∩ Yk ̸= ∅. Thus

(Y1 ∪ · · · ∪ Yk−1) ∩ Yk ̸= ∅
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so Y1 ∪ · · · ∪ Yk is connected. In particular,

Y := Y1 ∪ Y2 ∪ · · · ∪ Yn

is connected and y ∈ Y since y ∈ Y1. Moreover, Y ∩B ̸= ∅ since x ∈ Yn.

3.1.13. Exercises.

3.2. Connected Components

3.2.1. Definition of components.

Let X be a topological space and x ∈ X. The component of x in X, denoted C(x)
is the union of all connected subsets of X that contain x.

Remark.

The components of X are connected subsets.

3.2.2. Proposition (properties of components).

Let X be a topological space.

1. The set of components of X is a partition of X.

2. Each component is closed.

3. Each connected subset of X is contained in a component of X.

Proof. To prove 1. we show that if x, y ∈ X, then either C(x) = C(y) or C(x) ∩
C(y) = ∅. Let x, y ∈ X. Suppose that C(x) ∩ C(y) ̸= ∅ then C(x) ∪ C(y) is
connected and contains x so

C(x) ∪ C(y) ⊆ C(x)
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and consequently
C(x) ∪ C(y) = C(x).

Similarly,
C(x) ∪ C(y) = C(y).

Thus C(x) = C(y) as required.

Let x ∈ X. Since C(x) is connected, it follows that C(x) is connected. Thus
C(x) ⊆ C(x) so C(x) = C(x) and C(x) is closed.

If A is a connected subset of X and A ̸= ∅, then A ⊆ C(x), where x ∈ A.

Example.

Let Q have the subspace topology. Then no subset of Q with at least two points
is connected (Q contains no nontrivial intervals). Thus singletons are the compo-
nents of Q. They are not open in Q.

Example.

Let C be the Cantor set. The components of C are singletons, since C contains
no nontrivial interval.

3.2.3. Totally disconnected space.

A topological spaceX is totally disconnected if the components ofX are singletons.

Examples.

The set of rational numbers Q, the Cantor set C or the set R∖Q of irrational num-
bers are all totally disconnected as topological spaces with the subspace topology
inherited from R.
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3.2.4. Quasi-components.

Let X be a topological space and K ⊆ X. We say that K is a quasi-component
of X if:

1. for each separation {A,B} of X, either K ⊆ A or K ⊆ B, and

2. for any L ⊆ X with K ⫋ L there is a separation {A,B} of X with L∩A ̸= ∅
and L ∩B ̸= ∅.

Example.

Let
J :=

{
1

n
: n ∈ N

}
× [0, 1] ∪ {0} ×

(
[0, 1]∖

{
1

2

})
with the subspace topology inherited from R2. Then

J1 = {0} ×
[
0,

1

2

)
and J2 := {0} ×

(
1

2
, 1

]
are components of J , but they are not quasi-components. J1 ∪ J2 is a quasi-
component.

3.2.5. Proposition (properties of quasi-components).

Let X be a space.

1. Each point belongs to a unique quasi-component of X.

2. The quasi-component containing a point x is the intersection of all clopen
subsets of X that contain x.

3. Each component of X is contained in a quasi-component of X.

Proof. 1. For x ∈ X, let K(x) be the set of all y ∈ X such that there are no
separation {A,B} of X with x ∈ A and y ∈ B. Then K(x) is a quasi-component
of X containing x. Suppose that K and K ′ are quasi-components of X with
x ∈ K ∩K ′. If {A,B} is a separation of X, then either x ∈ A or x ∈ B. If x ∈ A,
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then K ⊆ A and K ′ ⊆ A so K ∪ K ′ ⊆ A. If x ∈ B, then K ∪ K ′ ⊆ B. Thus
K ∪K ′ can’t be a proper superset of neither K nor K ′. It follows that

K = K ∪K ′ = K ′.

2. Let K be a quasi-component of X with x ∈ K. If A ⊆ X is clopen with x ∈ A,
then either A = X or {A,X ∖ A} is a separation of X. In either case, K ⊆ A.
Thus if A is the family of all clopen subsets of X that contain x, then K ⊆

⋂
A .

Let {A,B} be any separation of X. If x ∈ A, then A ∈ A so
⋂

A ⊆ A. If x ∈ B,
then

⋂
A ⊆ B. Thus K =

⋂
A .

3. Let C be a component of X. Let x ∈ C and K be the quasi-component of X
with x ∈ K. Suppose, for a contradiction, that there is y ∈ C∖K. Then there is a
separation {A,B} of X with x ∈ A and y ∈ B. This implies that {C ∩ A,C ∩B}
is a separation of C, which is a contradiction.

Remark.

Any component of X that is clopen is a quasi-component. In particular, if there
are only finitely many components, they are clopen so they are quasi-components.

3.2.6. Exercises.

3.3. Path-connected Spaces

3.3.1. Paths.

Let X be a topological space. A path in X is a continuous function f : [0, 1] → X,
where [0, 1] is the closed interval with the subspace topology inherited from R. If
f is a path in X with x := f(0) and y := f(1), then we say that f is a path from
x to y.
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3.3.2. Definition of path-connectivity.

A topological space X is path-connected if for every x, y ∈ X there is a path in X
from x to y.

Examples.

The trivial space is path-connected. The Sierpiński space is path-connected. The
Euclidean space Rn is path connected for each n ∈ N.

3.3.3. Lemma.

Let X be a topological space and x ∈ X. Then X is path-connected if and only
if for every y ∈ X there is a path in X from x to y.

Proof. If X is path-connected, then for every y ∈ X there is a path in X from x

to y. Assume that for every y ∈ X there is a path in X from x to y. Let y, z ∈ X.
We show that there is a path in X from y to z. Let f be a path in X from x to
y and g be a path in X from x to z. Define h : [0, 1] → X by

h(x) :=

f(2x) if 0 ≤ x ≤ 1
2 ;

g
(
2
(
1
2 − x

))
if 1

2 ≤ x ≤ 1.

Then h is a path in X from y to z.

Corollary.

The union of path-connected subspaces of X containing a given point x is path-
connected.

Proof. If y belongs to such a union Y , then y belongs to a subspace Z of X that
is path-connected and contains x. Consequently, there is a path f in Z from x to
y. Then f is a path in Y from x to y.
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3.3.4. Theorem (path-connected are connected)

Every path-connected space is connected.

Proof. Let X be path-connected and suppose, for a contradiction, that {A,B} is
a separation of X. Let x ∈ A and y ∈ B and f be a path in X from x to y. Then{
f−1[A], f−1[B]

}
is a separation of [0, 1], which is a contradiction since [0, 1] is

connected.

Remark.

Every connected subspace of R is an interval so it is path-connected.

3.3.5. Example (topologist’s sine curve).

Let
X :=

{
⟨x, y⟩ ∈ R2 : x ∈ (0, 1] , y = sin 1

x

}
∪ ({0} × [−1, 1])

with the subspace topology inherited from R2. Then X is connected, but it is not
path-connected.

Proof. Since
X ′ :=

{
⟨x, y⟩ ∈ R2 : x ∈ (0, 1] , y = sin 1

x

}
is the image of continuous function on a connected space (0, 1], it follows that X ′

is connected. Since X is the closure of X ′ in R, it is connected.

Suppose, for a contradiction, that X is path-connected. Let f be a path in X

from ⟨0, 0⟩ to ⟨1/π, 0⟩. Let

t := sup {s ∈ [0, 1] : (f1) (s) = 0} ,

where f1 is the composition of f with the projection on the first coordinate. We
get a contradiction by showing that f2 is not continuous at t, wheref2 is the
composition of f with the projection on the second coordinate.
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Since f1 is continuous, it follows that f1(t) = 0 so t < 1. By the intermediate
value property of the function f1 there are sequences (cn)n∈N and (dn)n∈N in (t, 1]

both converging to t such that f2(cn) = 1 and f2(dn) = −1 for each n ∈ N. This
proves the discontinuity of f2 and provides the required contradiction.

3.3.6. Theorem (path-connectedness and continuity).

If f : X → Y is continuous and X is path-connected, then f [X] is path-connected.

Proof. Let x, y ∈ X and g be a path in X from x to y. Then f ◦ g is a path in Y
from f(x) to f(y).

3.3.7. Theorem (path-connectedness and products).

The product of a family of path-connected spaces is path-connected.

Proof. Let Xα be path-connected for each α ∈ A and X :=
∏

α∈AXα. Let x :=

(xα)α∈A and y := (yα)α∈A be point in X. For each α ∈ A there is a path fα in Xα

from xα to yα. Then
f :=

∏
α∈A

fα,

defined by
f(t) := (fα(t))α∈A ,

for each t ∈ [0, 1], is a path in X from x to y.

3.3.8. Path components.

Let X be a topological space and x ∈ X. The path component of x in X is the
union of all path-connected subsets of X that contain x.

Example.

Let X be be the topologist’s sine curve. Then X has two path components.
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3.3.9. Theorem (Space-Filling curve).

There exists a continuous surjection f : [0, 1] → [0, 1]2.

Sketch of proof. Let Xn := {0, 1} with the discrete topology and X :=
∏

n∈NXn.
There is a continuous surjection g : X → [0, 1] defined by

g
(
(xn)n∈N

)
:=
∑
n∈N

xn
2n
.

Then g × g : X2 → [0, 1]2 is a continuous surjection. There is a homeomorphism
h : X → X2 defined by

h
(
(xn)n∈N

)
:=
〈
(x2n)n∈N , (x2n+1)n∈N

〉
.

and there is a homeomorphism φ : X → C, where C ⊆ [0, 1] is the Cantor set,
defined by

φ
(
(xn)n∈N

)
=
∑
n∈N

2xn
3n

.

Then φ−1 : C → X can be extended to a continuous function ψ : [0, 1] → X by
defining ψ to be linear on each open interval removed during the construction of
C. Then

f := (g × g) ◦ h ◦ ψ

is a continuous surjection [0, 1] → [0, 1]2 as required.

Remark.

Every connected subspace of [0, 1] is path-connected, but there exists a connected
subspace of [0, 1]2 that is not path-connected. If follows that [0, 1] and [0, 1]2 are
not homeomorphic. We will show later that any continuous surjection [0, 1] →
[0, 1]2 would be a homeomorphism, which implies that there are no such continuous
surjection.
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3.3.10. Exercises.

3.4. Local Connectivity

3.4.1. Locally connected spaces.

A topological space X is locally connected at x ∈ X if for every nbhd U of x there
is a connected nbhd V of x with V ⊆ U . We say that X is locally connected if it
is locally connected at each x ∈ X.

Examples.

A trivial space is locally connected. A discrete space is locally connected. An
Euclidean space Rn is locally connected. The topologist’s sine curve is not locally
connected.

3.4.2. Theorem (criterion for local connectedness).

A topological space X is locally connected if and only if the components of every
open subset of X are open in X.

Proof. Assume that X is locally connected and U is open in X. If C is a compo-
nent of U and x ∈ C, then U is a nbhd of x in X so there is a connected nbhd V
of x in X with x ∈ V ⊆ U . Then V ⊆ C so C is a nbhd of x in X. Since C is a
nbhd of each x ∈ C, it follows that C is open in X.
Now assume that the components of every open subset of X are open in X. Let
x ∈ X and U be a nbhd of x. Let U ′ be an open nbhd of x with U ′ ⊆ U and V be
the component of U ′ containing x. Then V is a connected nbhd of x with V ⊆ U .
Thus X is locally connected.

Remark.

Every open subspace of a locally connected topological space is locally connected.
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3.4.3. Theorem (continuity and local connectedness).

Let f : X → Y be a continuous closed surjection. If X is locally connected, then
Y is locally connected.

Proof. Let U be open in Y and C be a component of U . We will show that f−1[C]

is open in X. Since f is a closed surjection, we have

f
[
X ∖ f−1[C]

]
= Y ∖ C,

so it will follow then that Y ∖C is closed in Y and consequently that is C is open.
Let x ∈ f−1[C]. Then x ∈ f−1[U ], which is open in X. Let V be the component
of f−1[U ] that contains x. Then f(x) ∈ f [V ] and f [V ] is connected so f [V ] ⊆ C

and hence V ⊆ f−1[C]. Since V is open, f−1[C] is a nbhd of x. Since f−1[C] is a
nbhd of each x ∈ f−1[C], it follows that f−1[C] is open, as required.

Remark.

The above result also holds when f is a continuous open surjection.

Example.

Let X := {0} ∪ N with discrete topology and

Y := {0} ∪
{
1

n
: n ∈ N

}
with the topology inherited from R. If f : X → Y is defined by f(0) := 0 and
f(n) := 1/n for each n ∈ N, then f is a continuous surjection. The space X is
locally connected, but Y is not.

3.4.4. Theorem (local connectedness and products).

Let Xα be a topological space for each α ∈ A and X :=
∏

α∈AXα. Then X is
locally connected if and only if Xα is locally connected for each α ∈ A and all but
finitely many Xα are connected.
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Proof. Assume that X is locally connected. Let β ∈ A and x ∈ Xβ. We show that
Xβ is locally connected at x. Let Uβ be an open nbhd of x in Xβ. Then p−1

β [Uβ]

is open in X. Let ξ = (ξα)α ∈ p−1
β [Uβ] with ξα = x. There is a connected nbhd V

of ξ in X with V ⊆ p−1
β [Uβ]. Then

x ∈ pβ[V ] ⊆ Uβ

and pβ[V ] is a connected nbhd of x since pβ is continuous and open. Thus Xβ is
locally connected at x.
Now we show that all but finitely many of Xα are connected. Let C be a compo-
nent of X. Then C is open so there is finite A′ ⊆ A and open Uα ∈ Xα for every
α ∈ A such that

∅ ̸= B :=
⋂
α∈A′

p−1
α [Uα] ⊆ C.

If α ∈ A∖A′, then pα[B] = Xα so pα[C] = Xα, which implies that Xα is connected.
Now assume that Xα is locally connected for each α ∈ A and A′ ⊆ A is finite and
such that Xα is connected for every α ∈ A ∖ A′. Let ξ = (ξα)α∈A ∈ X. To show
that X is locally connected at ξ, it suffices to show that for every finite B ⊆ A

and an open nbhd Uα of ξα for every α ∈ B, the set

V :=
⋂
α∈B

p−1
α [Uα]

contains a connected nbhd of ξ. Given a set V as described above, let Vα be a
connected nbhd of ξ with Vα ⊆ Uα for every α ∈ B and let Vα be any connected
nbhd of ξα for each α ∈ A′ ∖B. Let

C :=
⋂

α∈A′∪B

p−1
α [Vα] =

∏
α∈A

Vα,

where Vα = Xα for α ∈ A∖ (A′ ∪B). Then C is a nbhd of ξ contained in V and
C is connected by Theorem 3.1.12, since Vα is connected for each α ∈ A.

3.4.5. Local path-connectedness.

A topological space X is locally path-connected at x ∈ X if for each nbhd U of x
there exists a path-connected nbhd V of x with V ⊆ U . We say that X is locally
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path-connected if it is locally path-connected at each x ∈ X.

3.4.6. Proposition (criterion for local path-connectedness).

A topological space X is locally path-connected if and only if the path-components
of every open subspace of X are open.

Proof. Assume that the path-components of every open subspace of X are open.
If x ∈ X and U is an open nbhd of x in X, then the component of U that contains
x is the required path-connected nbhd of x that is contained in U . Thus X is
locally path-connected.

Assume that X is locally path-connected. Let U be open in X and P be a path-
component of U . If x ∈ P , there is a path-connected nbhd V of x with V ⊆ U .
Then P ∪ V is path-connected so P ∪ V = P and so P is a nbhd of x. Since P is
a nbhd of each x ∈ P , it is open.

Remark.

A topological space X is locally path-connected if and only if it has a basis con-
sisting of path-connected sets.

3.4.7. Proposition (components of locally path-connected
space)

Let X be a locally-path connected space. Then each path-component of X is
clopen and is a component of X.

Proof. Let P be a path component of X. Then P is open. Since each other path
component is also open, it follows that P is closed. Since P is clopen, no proper
superset of P can be connected. Since P is connected, it is a component.
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Example.

The topologist’s sine curve is connected, but it is not locally path-connected. It’s
path components are neither closed nor open.

Remark.

A connected locally-path connected space is path-connected.

3.4.8. Theorem (continuity and local path-connectedness).

Let f : X → Y be a continuous surjection that is open or closed. If X is locally
path-connected, then Y is also locally path-connected.

3.4.9. Theorem (local path-connectedness and products).

Let Xα be a topological space for each α ∈ A and X :=
∏

α∈AXα. Then X is
locally path-connected if and only if Xα is locally path-connected for each α ∈ A

and all but finitely many Xα are path-connected.

3.4.10. Exercises.
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4. Convergence

4.1. Sequences

4.1.1. Convergence of sequences.

Let X be a topological and (xn)n∈N be a sequence in X. Then (xn)n∈N converges
to x ∈ X provided for each nbhd U of x there is k ∈ N such that xn ∈ U for each
n ≥ k.

4.1.2. Cluster points of sequences.

Let X be a topological and (xn)n∈N be a sequence in X. Then x ∈ X is a cluster
point of (xn)n∈N provided for each nbhd U of x and each k ∈ N there is n ≥ k

such that xn ∈ U .

Remark.

The point x is a cluster point of (xn)n∈N if and only if for each nbhd U of x the
set

{n ∈ N : xn ∈ U}

is infinite.
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4.1.3. Proposition (sequences and closure in metric spaces).

Let X be a metric space and A ⊆ X. Then x ∈ A if and only if there is a sequence
(xn)n∈N in A that converges to x.

Proof. Assume that there is a sequence (xn)n∈N in A that converges to x and U

be a nbhd of x. Then there is k ∈ N with xn ∈ U for every n ≥ k. In particular,
xk ∈ U so A ∩ U ̸= ∅. If follows that x ∈ A.
Now assume that x ∈ A. Let Un := B(x, 1/n) be an open ball for each n ∈ N.
Then Un is a nbhd of x for each n ∈ N so there is xn ∈ A ∩ Un. If U is any nbhd
of x, then there is k ∈ N with Uk ⊆ U . Then xk ∈ U for every k ≥ n so (xn)n∈N
converges to x.

4.1.4. Proposition (continuity and sequences in metric spaces).

Let X and Y be metric spaces and f : X → Y . Then f is continuous if and only if
for every sequence (xn)n∈N in X that converges to x ∈ X, the sequence (f(xn))n∈N
converges to f(x).

Proof. Assume that f is continuous and (xn)n∈N converges to x ∈ X. Let U be a
nbhd of f(x) in Y . Then f−1[U ] is a nbhd of x in X so there is k ∈ N such that
xn ∈ f−1[U ] for every n ≥ k. Then f(xn) ∈ U for every n ≥ k, implying that
(f(xn))n∈N converges to f(x).
Assume that for every sequence (xn)n∈N in X that converges to x ∈ X, the se-
quence (f(xn))n∈N converges to f(x). Let A ⊆ X and x ∈ A. Then there is
a sequence (xn)n∈N in A that converges to x in X. Since (f(xn))n∈N converges
to f(x), it follows that f(x) ∈ f [A]. Since f

[
A
]
⊆ f [A], it follows that f is

continuous.

4.1.5. Subsequences.

If (xn)n∈N is a sequence in a set X and (kn)n∈N is a sequence in N with k1 < k2 <

. . . , then (yn)n∈N is a subsequence of (xn)n∈N, where yn := xkn for each n ∈ N.
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Remark.

For any topological space and A ⊆ X. If a sequence (xn)n∈N in A converges to x,
then x ∈ A.

4.1.6. Proposition (subsequences and cluster points).

Let X be metric space and (xn)n∈N be a sequence in X. Then x ∈ X is a cluster
point of (xn)n∈N if and only if there is a subsequence (yn)n∈N of (xn)n∈N that
converges to x.

Proof. Assume that x is a cluster point of (xn)n∈N. For each n ∈ N, let Un :=

B(x, 1/n). Let k1 ∈ N be such that xk1 ∈ U1 and for each n ∈ N, let kn+1 > kn be
such that xkn+1

∈ Un+1. If yn := xknfor each n ∈ N, then (yn)n∈N is a subsequence
of (xn)n∈N that converges to x.

Assume that there is a subsequence (yn)n∈N of (xn)n∈N that converges to x. If U
is a nbhd of x, then there is k ∈ N such that yn ∈ U for every n ≥ k. Thus the
set {n ∈ N : xn ∈ U} is infinite, so x is a cluster point of (xn)n∈N.

Example.

Let X := R be the set of real numbers with the cocountable topology and A :=

R∖Q. Then no sequence (xn)n∈N in A converges to 0 since

U := R∖ {xn : n ∈ N}

is open and 0 ∈ U . However 0 ∈ A as any nbhd U of 0 is cocountable so U∩A ̸= ∅.

Example.

Let
X := {⟨0, 0⟩} ∪ N× N

111



with a topology such that {⟨m,n⟩} is open for every m,n ∈ N and U containing
⟨0, 0⟩ is open when there is m0 ∈ N such that {⟨m,n⟩ /∈ U : n ∈ N} is finite for
every m ≥ m0. If (xn)n∈N is a bijective sequence in N×N, then ⟨0, 0⟩ is a cluster
point of (xn)n∈N, but no sequence in N × N converges to ⟨0, 0⟩ so, in particular,
no subsequence of (xn)n∈N converges to ⟨0, 0⟩.

4.1.7. Exercises.

4.2. Nets

4.2.1. Directed set.

A directed set is a set A with a binary relation ≤ that is reflexive and transitive
and for every α, β ∈ A there is γ ∈ A with α ≤ γ and β ≤ γ.

Examples.

The set N with standard linear order is a directed set. The family of finite subsets
of a set X is directed by inclusion. The family of nbhds of x ∈ X for a topological
space X is directed by inverted inclusion.

4.2.2. Definition of a net.

A net in a set X is a function (xα)α∈A from a directed set A to X.

4.2.3. Convergence of nets in topological spaces.

Let (xα)α∈A be a net in a topological space X. If Y ⊆ X, then (xα)α∈A is eventually
in Y provided there is β ∈ A such that xα ∈ Y for every α ≥ β.

A net (xα)α∈A in X converges to x ∈ X provided for every nbhd U of x the net
(xα)α∈A is eventually in U .
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Example.

Let X be a trivial space. Then any net in X converges to any point of X.

4.2.4. Hausdorff spaces.

A topological space X is Hausdorff if for every distinct x, y ∈ X there are disjoint
open sets U, V with x ∈ U and y ∈ V .

Example.

The Sierpiński space is not Hausdorff. Any discrete space is Hausdorff. Any metric
space is Hausdorff. Any ordered space is Hausdorff.

4.2.5. Theorem (uniqueness of limits in Hausdorff spaces).

A topological space X is Hausdorff if and only if every net in X converges to at
most one point in X.

Proof. Assume that X is Hausdorff. Suppose, for a contradiction, that x, y ∈ X

are distinct and (xα)α∈A is a net in X that converges to both x and y. Let U and
V be disjoint and open in X with x ∈ U and y ∈ V . There are β, γ ∈ A with
xα ∈ U for α ≥ β and xα ∈ V for α ≥ γ. Let δ ∈ A be such that α ≤ δ and β ≤ δ.
Then xδ ∈ U ∩ V , which is a contradiction.

Assume that every net in X converges to at most one point in X. Let x, y ∈ X

be distinct and suppose, for a contradiction, that U ∩ V ̸= ∅ for any open U, V

in X with x ∈ U and y ∈ V . Let

A := {⟨U, V ⟩ : U, V are open nbhds of x and y, respectively} .

Define ≤ on A by
⟨U, V ⟩ ≤ ⟨U ′, V ′⟩
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if U ′ ⊆ U and V ′ ⊆ V . Then A becomes a directed set. Let xα ∈ U ∩ V for every
α := ⟨U, V ⟩ ∈ A. Then (xα)α∈A converges to x since for any open nbhd U of x
we have xα ∈ U for α ≥ ⟨U,X⟩. Similarly, (xα)α∈A converges to y, which is a
contradiction.

4.2.6. Theorem (nets and closure).

Let X be a topological space and A ⊆ X. Then x ∈ A if and only if there is a
net (xα)α∈A in A that converges to x.

Proof. Assume that there is a net (xα)α∈A in A that converges to x. Let U be a
nbhd of x. Then there is β ∈ A such that xα ∈ U for every α ≥ β. In particular,
xβ ∈ U so U ∩ A ̸= ∅. Thus x ∈ A.

Now assume that x ∈ A. Let D be the set of all nbhds of x directed by inverted
inclusion. For each α ∈ D there is xα ∈ α ∩A. Then (xα)α∈A converges to x.

4.2.7. Theorem (nets and continuity).

Let X and Y be topological spaces and f : X → Y . Then f is continuous if and
only if for every net (xα)α∈A in X that converges to x ∈ X, the net (f(xα))α∈A
converges to f(x).

Proof. Assume that f is continuous and (xα)α∈A is a net in X that converges to
x ∈ X. Let U be a nbhd of f(x) in Y . Then f−1[U ] is a nbhd of x in X so there
is β ∈ A such that xα ∈ f−1[U ] for every α ≥ β. Thus f(xα) ∈ U for every α ≥ β

so (f(xα))α∈A converges to f(x).

Now assume that for every net (xα)α∈A in X that converges to x ∈ X, the net
(f(xα))α∈A converges to f(x). If B ⊆ X, and x ∈ B, then there is a net (xα)α∈A
in X that converges to x. Since (f(xα))α∈A converges to f(x), it follows that
f(x) ∈ f [A]. Since f

[
A
]
⊆ f [A] for any A ⊆ X, it follows that f is continuous.
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4.2.8. Theorem (convergence of nets in product spaces).

Let Xα be a topological space for each α ∈ A and X :=
∏

α∈AXα. A net (xβ)β∈B
in X converges to x ∈ X if and only of the net (pα(xβ))β∈B converges to pα(x) for
every α ∈ A.

Proof. Assume that (xβ)β∈B converges to x. Since pα is continuous, it follows that
(pα(xβ))β∈B converges to pα(x) for every α ∈ A.

Assume that (pα(xβ))β∈B converges to pα(x) for every α ∈ A. Let U be a nbhd of
x. There is a finite A′ ⊆ A and open Uα in Xα for every α ∈ A′ such that∏

α∈A

Uα ⊆ U,

where Uα := Xα for every α ∈ A∖ A′. Let

A′ := {α1, α2, . . . , αn} .

For each α ∈ A′ there is βα ∈ B such that pα(xβ) ∈ Uα for every β ≥ βα. Since
A′ is finite, there is γ ∈ B such that βα ≤ γ for every α ∈ A′. If β ≥ γ, then
pα(xβ) ∈ Uα for every α ∈ A so (xβ)β∈B converges to x.

4.2.9. Cluster points of nets.

Let (xα)α∈A be a net in a set X and Y ⊆ X. We say that (xα)α∈A is frequently
in Y if for every β ∈ A there is α ≥ β with xα ∈ Y . If X is a topological space,
(xα)α∈A is a net in X and Y ⊆ X, then x ∈ X is a cluster point of (xα)α∈A if for
every nbhd U of x the net (xα)α∈A is frequently in U .

4.2.10. Subnet.

Let (xα)α∈A be a net in a set X. A subnet of (xα)α∈A is a net (yβ)β∈B such that
there is a function φ : B → A which satisfies:

1. for every α ∈ A there is β ∈ B with α ≤ φ(β′) for β′ ≥ β, and
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2. yβ = xφ(β) for every β ∈ B.
We will say that φ defines the subnet.

4.2.11. Theorem (cluster points and subnets).

Let (xα)α∈A be a net in a topological space X. Then x ∈ X is a cluster point of
(xα)α∈A if and only if there exists a subnet (yβ)β∈B of (xα)α∈A that converges to
x.

Proof. Assume that there exists a subnet (yβ)β∈B of (xα)α∈A that converges to x.
Let U be a nbhd of x in X. There is β0 ∈ B such that yβ ∈ U for every β ≥ β0.
Let φ : B → A define the subnet. Let α ∈ A. There is β1 ∈ B such that φ(β) ≥ α

for every β ≥ β1. Let β ∈ B be such that β ≥ β0 and β ≥ β1. then

xφ(β) = yβ ∈ U

and φ(β) ≥ α. Thus (xα)α∈A is frequently in U , which implies that x is a cluster
point of (xα)α∈A.
Now assume that x is a cluster point of (xα)α∈A. Let B be the family of all pairs
⟨α, U⟩ with α ∈ A and U being a nbhd of x with xα ∈ U . Define a direction ≤ on
B by

⟨α, U⟩ ≤ ⟨α′, U ′⟩

if α ≤ α′ and U ′ ⊆ U . Then φ : B → A given by φ(α,U) := α defines a subnet
(yβ)β∈B of (xα)α∈A. We show that (yβ)β∈B converges to x. Let U be a nbhd of x.
There is α ∈ A with xα ∈ U . Let β0 := ⟨α, U⟩. If β := ⟨α′, U ′⟩ ≥ β0, then

yβ = xφ(β) = xα′ ∈ U ′ ⊆ U,

as required.

4.2.12. Universal net (ultranet).

A net (xα)α∈A in a set X is a universal net (also called ultranet) if for every Y ⊆ X

the net (xα)α∈A is eventually in Y or in X ∖ Y .
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Remark.

Let (xα)α∈A be a net in a set X such that there is β ∈ A and y ∈ X with xα = y

for every α ≥ β. Then (xα)α∈A is an ultranet in X.

A net (xα)α∈A in a set X is frequently in some Y ⊆ X if and only if (xα)α∈A is
not eventually in X ∖ Y , hence a universal net in a topological space converges
to any of it’s cluster points.

4.2.13. Exercises.

4.3. Filters

4.3.1. Definition of a filter.

Let X be a set. A filter on X is a family F of subsets of X such that:

1. F ̸= ∅ and ∅ /∈ F ;

2. if F ∈ F and F ⊆ F ′ ⊆ X, then F ′ ∈ F ;

3. if F1, F2 ∈ F , then F1 ∩ F2 ∈ F .

Examples.

If X is any nonempty set and F := {X}, then F is a filter on X.

Let X be an infinite set and F consist of all cofinite sets. Then F is a filter on
X.

4.3.2. Filter generated by a net.

Let (xα)α∈A be a net in a set X and F consist of those F ⊆ F for which there
exist β ∈ A such that xα ∈ F for every α ≥ β, that is F ∈ F provided the net is
eventually in F . Then F is a filter on X.
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4.3.3. Nbhd filter.

Let X be a topological space, x ∈ X and F consist of all nbhds of x. Then F is
a filter. It is called the nbhd filter at x.

4.3.4. Comparing filters.

Let F and F ′ be filters on a set X. Then F is finer than F ′ when F ′ ⊆ F .

4.3.5. Convergence of filters.

Let F be a filter in a topological space X. Then F converges to x ∈ X provided
F is finer than the nbhd filter at x.

4.3.6. Theorem.

Let X be a topological space, (xα)α∈A be a net in X and F be the filter generated
by (xα)α∈A. Then, for every x ∈ X, the net (xα)α∈A converges to x if and only if
F converges to x .

Proof. (to be written)

4.3.7. Ultrafilters.

A filter F on a set X is an ultrafilter provided every filter on X that is finer than
F must be equal F .

4.3.8. Theorem.

A filter F on a set X is an ultrafilter if and only if for every Y ⊆ X either Y ∈ F

or X ∖ Y ∈ F .

Proof. (to be written)
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4.3.9. Theorem.

Let (xα)α∈A be a net in a set X and F be the filter generated by (xα)α∈A. Then
F is an ultrafilter if and only if (xα)α∈A is an ultranet.

Proof. (to be written)

4.3.10. Zorn’s Lemma.

If X is a partially ordered set and each chain in X has an upper bound, then there
exists a maximal element in X.

4.3.11. Theorem.

Let X be a set and F be a filter on X. Then there exists an ultrafilter on X that
is finer than F .

Proof. (to be written)

4.3.12. Theorem.

Let X be a set and (xα)α∈A be a net in X. Then there exists a subnet (yβ)β∈B of
(xα)α∈A that is an ultranet.

Proof. Let F be the filter on X that is generated by (xα)α∈A and U be an
ultrafilter on X that is finer than F . Define

B := {⟨α, U⟩ : α ∈ A, U ∈ F , xα ∈ U}

and let B be directed by
⟨α, U⟩ ≤ ⟨α′, U ′⟩

if α ≤ α′ and U ′ ⊆ U . If φ : B → A is given by φ(α, U) := α, then φ defines a
subnet (yβ)β∈B of (xα)α∈A. We show that (yβ)β∈B is an ultranet.
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Let Y ⊆ X. Then either Y or X ∖ Y belongs to U . If Y ∈ U , then X ∖ Y /∈ U ,
which implies that X ∖ Y /∈ F . Thus the net (xα)α∈A is not eventually in X ∖ Y

and hence (xα)α∈A is frequently in Y . Let α0 ∈ A be such that xα0
∈ Y . Then

β0 := ⟨α0, Y ⟩ ∈ B.

If β := ⟨α, U⟩ ≥ β0, then xα ∈ U ⊆ Y so yβ = xα ∈ Y . Thus (yβ)β∈B is eventually
in Y . If X ∖ Y ∈ U , then a similar argument shows that (yβ)β∈B is eventually in
X ∖ Y .

4.4. Hausdorff Spaces

4.4.1. Proposition.

Let X be a topological space. The following conditions are equivalent:

1. X is Hausdorff.

2. For each x ∈ X the intersection of all closed nbhds of x is {x}.

3. The diagonal ∆ := {⟨x, x⟩ ∈ X} is closed in X ×X.

Proof. Assume 1. We show that 2. holds. Let x ∈ X and let C be the intersection
of all closed nbhds of x. Suppose, for a contradiction, that C ̸= {x}. Then there
is y ∈ C∖{x}. Let U, V be disjoint open sets with x ∈ U and y ∈ V . Then X∖V
is a closed nbhd of x so C ⊆ X ∖ V . Since y ∈ C ∩ V , we have a contradiction.

Assume 2. We show that 3. holds. Let

⟨x, y⟩ ∈ (X ×X)∖∆.

Then x ̸= y so there is a closed nbhd N of x with y /∈ N . Let U be open with
x ∈ U ⊆ N and V := X ∖N . Then U × V is open in X ×X with ⟨x, y⟩ ∈ U × V

and
(U × V ) ∩∆ = ∅.

Thus (X ×X)∖∆ is open in X ×X, which implies that ∆ is closed in X ×X.
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Assume 3. We show that 1. holds. Let x, y ∈ X be distinct. Then ⟨x, y⟩ ∈
(X ×X)∖∆ so there are open U and V in X with

⟨x, y⟩ ∈ U × V ⊆ (X ×X)∖∆.

Thus U and V are disjoint with x ∈ U and y ∈ V .

4.4.2. Corollary.

Assume that Y is a Hausdorff space.

1. If f : X → Y is continuous for some topological space X, then the graph of
f is closed in X × Y .

2. If f, g : X → Y are continuous for some topological space X, then

{x ∈ X : f(x) = g(x)}

is closed in X.

Proof. Assume that f : X → Y is continuous for some topological space Y . The
graph of f is the set

G := {⟨x, f(x)⟩ : x ∈ X} .

Let 1Y : Y → Y be the identity function and ∆ := {⟨y, y⟩ ∈ Y }. Since the
function

f × 1Y : X × Y → Y × Y

is continuous, ∆ is closed and G = (f × 1Y )
−1 [∆], it follows that G is closed.

Now assume that f, g : X → Y are continuous for some topological space X and

G := {x ∈ X : f(x) = g(x)} .

Let h : X → X × Y be defined by h(x) := ⟨f(x), g(x)⟩. Since h is continuous and
G = h−1[∆], it follows that G is closed.
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Remark.

Any subspace of a Hausdorff space is Hausdorff.

4.4.3. Theorem (product of Hausdorff spaces).

If Xα is a Hausdorff space for every α ∈ A and X :=
∏

α∈AXα, then X is
Hausdorff.

Proof. Let (xα)α∈A and (yα)α∈A be distinct elements of X. There is β ∈ A with
xβ ̸= yβ. Since Xβ is Hausdorff, there are disjoint open Uβ and Vβ in Xβ with
xβ ∈ Uβ and yβ ∈ Vβ. Let Uα := Vα := Xα for every α ∈ A∖ {β} and

U :=
∏
α∈A

Uα and V :=
∏
α∈A

Vα.

Then U and V are disjoint open sets in X with x ∈ U and y ∈ V .

4.4.4. T0 spaces and T1 spaces.

A T0 space is a topological space such that for any distinct x, y ∈ X there is an
open set U with x ∈ U , but y /∈ U . A T0 space is a topological space such that
for any distinct x, y ∈ X there is an open set U with {x, y} ∩ U having exactly
one element.

Remark.

Any Hausdorff space is T1 and any T1 space is T0.

Examples.

The Sierpiński space is T0 but not T1. The space of natural numbers with the
cofinite topology is T1 but is not Hausdorff.
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4.4.5. Proposition (characterization of T1 spaces).

Let X be a topological space. The following conditions are equivalent:

1. X is T1;

2. {x} is closed for every x ∈ X;

3. the intersection of all nbhds of x is equal {x} for every x ∈ X.

Proof. Assume X is T1. Let x ∈ X. For every y ∈ X ∖ {x} there is open Uy with
y ∈ Uy and x /∈ Uy. Then

U :=
⋃

y∈X∖{x}

Uy = X ∖ {x}

is open, so {x} is closed.

Assume that {x} is closed for every x ∈ X. To prove 3. suppose for a contradiction
that there is y ∈ X ∖ {x} such that y belongs to every nbhd of x. Since {y} is
closed X ∖ {y} is open and contains x, which is a contradiction.

Now assume that 3. holds. If x, y ∈ X are distinct, then there is a nbhd U of x
with so X is T1.
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5. Compactness

5.1. Compact Spaces

5.2. Countable Compact Spaces

5.3. Compact Metric Spaces

5.4. Locally Compact Spaces

5.5. Proper Maps
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