Math 581: Topology 1

Jerzy Wojciechowski

April 1, 2024

Contents

1.	Торо	ological	Spaces	13
	1.1.	Metric	Spaces	13
		1.1.1.	Convergence of sequences of real numbers	13
		1.1.2.	Continuity of real functions	13
		1.1.3.	Definition of a metric space	13
			Remark	14
		1.1.4.	Example (Euclidean spaces).	14
		1.1.5.	Example (Hilbert space)	15
		1.1.6.	Example (integration metric)	16
		1.1.7.	Example (supremum metric)	17
		1.1.8.	Definition of continuity.	17
		1.1.9.	Definition of convergence of sequences	17
		1.1.10.	Open balls	17
		1.1.11.	Open sets	18
			Remark	18
		1.1.12.	Theorem (properties of metric spaces)	18
		1.1.13.	Theorem (continuity for metric spaces)	19
		1.1.14.	Homework 1 (due $1/14$)	19
			Problem 1	19
			Problem 2	20
			Problem 3	21
			Problem 4	22
	1.2.	Topolo	gies	22
		1.2.1.	Example of a convergence not induced by a metric	22

Examples.	
Remark. . </td <td>24</td>	24
1.2.4. Closed sets. .	25
1.2.5. Proposition (properties of closed sets)	25
Remark	25
	25
Example.	26
1	26
Remark	26
Example.	26
1.2.6. Homework 2 (due $1/21$)	27
Problem 1	27
Problem 2	27
Problem 3	28
Problem 4	29
1.2.7. Neighborhoods	29
Example.	29
Remark	29
1.2.8. Proposition (properties of nbhds)	30
Example.	30
1.2.9. Proposition (topology from nbhds).	31
1.2.10. Homework 3 (due $1/28$)	32
Problem 1	32
Problem 2	33
Problem 3	33
Problem 4	33
1.3. Derived Concepts	34
1.3.1. Interior \ldots	34
Remarks.	34
Examples.	34
1.3.2. Proposition (properties of interior).	35
Example.	35

	1.3.3.	Closure	ō
		Remarks	5
		Examples	5
	1.3.4.	Proposition (properties of closure)	ô
		Example	ô
	1.3.5.	Theorem (characterization of closure)	ô
	1.3.6.	Limit points	ô
		Example	7
	1.3.7.	Theorem (closure and derived set). $\ldots \ldots \ldots \ldots 3$	7
		Corollary. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 3'$	7
	1.3.8.	Boundary	7
		Example	7
	1.3.9.	Theorem (closure and boundary)	3
		Corollary	3
	1.3.10.	Isolated points	3
	1.3.11.	Perfect sets	3
	1.3.12.	Example (the Cantor set)	3
	1.3.13.	Dense sets	9
		Examples. \ldots \ldots 39	9
	1.3.14.	Homework 4 (due $2/4$). \ldots \ldots \ldots 39	9
		Problem 1	9
		Problem 2)
		Problem 3	C
		Problem 4	1
1.4.	Bases		1
	1.4.1.	Proposition (family of topologies)	1
	1.4.2.	Subbases. $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 42$	2
		Remark	2
	1.4.3.	Proposition (topology from subbasis)	2
	1.4.4.	Linear order	3
		Example	3

1.4.5.	Order topology
	Example
1.4.6.	Homework 5 (due $2/11$)
	Problem 1
	Problem 2
	Problem 3
	Problem 4
1.4.7.	Well-ordered sets
1.4.8.	Well-ordering principle
1.4.9.	The well-ordered set $[0, \Omega]$ as a topological space 46
1.4.10.	Theorem (the space $[0, \Omega]$). $\ldots \ldots \ldots \ldots \ldots \ldots 47$
	Bases
	Remarks
	Examples
	Remark
	Remark
	Example
1.4.12.	Theorem (basis for a topology)
1.4.13.	Homework 6 (due $2/18$)
	Problem 1
	Problem 2
	Problem 3
	Problem 4
1.4.14.	Proposition (comparing topologies)
	Equivalent metrics. $\ldots \ldots 52$
1.4.16.	Proposition (equivalent metrics)
1.4.17.	Corollary (bounded metric)
1.4.18.	Local basis
	Examples
1.4.19.	Proposition (properties of nbhd basis)
1.4.20.	Theorem (topology from nbhd basis)

Problem 1. Problem 2. Problem 3. Problem 4. 1.5. Subspaces 1.5.1. Proposition (subspace topology). 1.5.2. Relative topology. 1.5.3. Proposition (closed sets in subspaces). 1.5.4. Proposition (relative metric induces relative topology).	 56 57 58 58 59 59 59 59
Problem 3.	57 58 58 58 59 59
Problem 4.	58 58 58 59 59
1.5. Subspaces	58 58 59 59
 1.5.1. Proposition (subspace topology). 1.5.2. Relative topology. Remark. Remark. Remark. Reposition (closed sets in subspaces). 	58 59 59
 1.5.2. Relative topology	59 59
Remark. . </th <th>59</th>	59
1.5.3. Proposition (closed sets in subspaces). \ldots \ldots \ldots	
	59
154 Proposition (relative metric induces relative topology)	
1.5.4. Troposition (relative metric induces relative topology).	60
1.5.5. Proposition (closed and open subspaces)	61
1.5.6. Proposition (relative subbasis, basis and nbhd basis)	61
1.5.7. Proposition (relative closure and derived set).	61
1.5.8. Proposition (relative interior and boundary)	62
Example.	63
1.5.9. Proposition (relative linear order).	63
Example.	64
1.5.10. Homework 8 (due $3/3$)	64
Problem 1	64
Problem 2. \ldots	65
Problem 3	65
Problem 4	66
2. Continuity and the Product Topology	67
2.1. Continuous Functions	67
2.1.1. Definition of a continuous function.	67
Examples.	67
2.1.2. Theorem (characterization of continuity).	67
2.1.3. Theorem (continuity and basis)	69
2.1.4. Theorem (composition of continuous functions).	69
2.1.5. Theorem (characterization of subspace topology)	70

	2.1.6.	Localized continuity.	70
	2.1.7.	Theorem (localized continuity)	70
	2.1.8.	Theorem (Gluing Lemma).	71
		Remark	71
		Example.	72
	2.1.9.	Locally finite family	72
	2.1.10.	Proposition (closure and locally finite family)	72
		Remark	73
	2.1.11.	Corollary (closure and locally finite family)	73
	2.1.12.	Homeomorphism	73
		Example	74
	2.1.13.	Open and closed functions	74
		Examples	74
	2.1.14.	Theorem (characterization of homeomorphisms)	74
	2.1.15.	Proposition (characterization of closed functions)	75
		Corollary	75
	2.1.16.	Theorem (characterization of open functions)	75
	2.1.17.	Topological embedding	76
		Remark	76
		Example	76
	2.1.18.	Homework 9 (due $4/7$)	76
		Problem 1	76
		Problem 2	77
		Problem 3	77
		Problem 4	77
2.2.	Produc	et Spaces	77
	2.2.1.	Proposition (basis for product topology)	77
	2.2.2.	Product topology.	78
	2.2.3.	Proposition (characterization of product topology)	78
		Example.	79
		Remark	79
	2.2.4.	Proposition (basis for product topology from bases)	79

		2.2.5.	Proposition (product topology on \mathbb{R}^2)
			Remark
		2.2.6.	Theorem (product and subspace topologies commute) 80
		2.2.7.	Theorem (continuity into products)
			Corollary
			Corollary
		2.2.8.	Infinite Cartesian products
		2.2.9.	Box topology
			Example
		2.2.10.	Product topology
		2.2.11.	Proposition (characterization of infinite products) 83
			Remark
		2.2.12.	Proposition (subbasis for infinite product)
		2.2.13.	Proposition (basis for infinite product)
		2.2.14.	Proposition (infinite products and subspaces commute) 85
		2.2.15.	Theorem (infinite products and continuity)
		2.2.16.	Theorem (countable products are metrizable)
		2.2.17.	Metrizable spaces
			Remark
			Example
		2.2.18.	Exercises
3.		nectedr	
	3.1.	Connee	$eted Spaces \dots \dots$
		3.1.1.	Separation. $\dots \dots \dots$
			Remark
		3.1.2.	Definition of connected spaces
			Examples. $\dots \dots \dots$
		3.1.3.	Theorem (connectedness and functions into discrete) 91
		3.1.4.	Connected subsets
			Remark
		3.1.5.	Theorem (connected subsets of \mathbb{R})

	3.1.6.	Separated subsets.	92
	3.1.7.	Proposition (connectedness and separated subsets)	92
	3.1.8.	Theorem (continuous preserve connectedness)	93
	3.1.9.	Corollary (Generalized Intermediate Value Theorem)	93
		Corollary	93
	3.1.10.	Theorem (union of connected sets)	93
		Remark	94
		Remark	94
	3.1.11.	Lemma (connectedness of closure)	94
	3.1.12.	Theorem (product of connected spaces)	95
	3.1.13.	Exercises	96
3.2.	Connee	cted Components	96
	3.2.1.	Definition of components	96
		Remark	96
	3.2.2.	Proposition (properties of components)	96
		Example	97
		Example	97
	3.2.3.	Totally disconnected space	97
		Examples	97
	3.2.4.	Quasi-components.	98
		Example	98
	3.2.5.	Proposition (properties of quasi-components)	98
		Remark	99
	3.2.6.	Exercises	99
3.3.	Path-c	onnected Spaces	99
	3.3.1.	Paths	99
	3.3.2.	Definition of path-connectivity	100
		Examples	100
	3.3.3.	Lemma	100
		Corollary.	100
	3.3.4.	Theorem (path-connected are connected)	101
		Remark	101

		3.3.5.	Example (topologist's sine curve)	101
		3.3.6.	Theorem (path-connectedness and continuity)	102
		3.3.7.	Theorem (path-connectedness and products)	102
		3.3.8.	Path components.	102
			Example.	102
		3.3.9.	Theorem (Space-Filling curve).	103
			Remark	103
		3.3.10.	Exercises	104
	3.4.	Local	Connectivity	104
		3.4.1.	Locally connected spaces.	104
			Examples	104
		3.4.2.	Theorem (criterion for local connectedness)	104
			Remark.	104
		3.4.3.	Theorem (continuity and local connectedness)	105
			Remark	105
			Example.	105
		3.4.4.	Theorem (local connectedness and products).	105
		3.4.5.	Local path-connectedness.	106
		3.4.6.	Proposition (criterion for local path-connectedness)	107
			Remark.	107
		3.4.7.	Proposition (components of locally path-connected space)	107
			Example.	108
			Remark	108
		3.4.8.	Theorem (continuity and local path-connectedness)	108
		3.4.9.	Theorem (local path-connectedness and products)	108
			Exercises	108
4.	Con	vergend		109
	4.1.	Sequer	nces	109
		4.1.1.	Convergence of sequences	109
		4.1.2.	Cluster points of sequences	109
			Remark	109

	4.1.3.	Proposition (sequences and closure in metric spaces)	110
	4.1.4.	Proposition (continuity and sequences in metric spaces).	110
	4.1.5.	Subsequences	110
		Remark	111
	4.1.6.	Proposition (subsequences and cluster points)	111
		Example.	111
		Example.	111
	4.1.7.	Exercises	112
4.2.	Nets .		112
	4.2.1.	Directed set.	112
		Examples	112
	4.2.2.	Definition of a net	112
	4.2.3.	Convergence of nets in topological spaces	112
		Example.	113
	4.2.4.	Hausdorff spaces	113
		Example	113
	4.2.5.	Theorem (uniqueness of limits in Hausdorff spaces)	113
	4.2.6.	Theorem (nets and closure)	114
	4.2.7.	Theorem (nets and continuity)	114
	4.2.8.	Theorem (convergence of nets in product spaces)	115
	4.2.9.	Cluster points of nets.	115
	4.2.10.	Subnet	115
	4.2.11.	Theorem (cluster points and subnets)	116
	4.2.12.	Universal net (ultranet)	116
		Remark	117
	4.2.13.	Exercises	117
4.3.	Filters		117
	4.3.1.	Definition of a filter	117
		Examples	117
	4.3.2.	Filter generated by a net	117
	4.3.3.	Nbhd filter	118
	4.3.4.	Comparing filters.	118

		4.3.5.	Convergence of filters
		4.3.6.	Theorem
		4.3.7.	Ultrafilters
		4.3.8.	Theorem
		4.3.9.	Theorem
		4.3.10.	Zorn's Lemma
		4.3.11.	Theorem
		4.3.12.	Theorem
	4.4.	Hausdo	orff Spaces $\ldots \ldots 120$
		4.4.1.	Proposition
		4.4.2.	Corollary
			Remark
		4.4.3.	Theorem (product of Hausdorff spaces)
		4.4.4.	T_0 spaces and T_1 spaces. \ldots \ldots \ldots \ldots 122
			Remark
			Examples
		4.4.5.	Proposition (characterization of T_1 spaces)
5.	Com	pactne	ss 124
	5.1.	Compa	Let Spaces $\ldots \ldots 124$
	5.2.	Counta	able Compact Spaces $\dots \dots \dots$
	5.3.	Compa	Let Metric Spaces $\dots \dots \dots$
	5.4.	Locally	$ Compact Spaces \ldots 124 $
	5.5.	Proper	Maps

1. Topological Spaces

1.1. Metric Spaces

Notation.

a := b mean that a equals b by definition.
ℕ := {1, 2, ...} is the set of positive integers.
ℤ is the set of integers.
ℝ is the set of real numbers.
ℚ is the set of rational numbers

1.1.1. Convergence of sequences of real numbers.

A sequence of real numbers $(a_n)_{n=1}^{\infty}$ converges to a real number a if, for every positive real number ε , there exists $k \in \mathbb{N}$ such that $|a_n - a| < \varepsilon$ whenever $n \ge k$.

 \square

1.1.2. Continuity of real functions.

A function $f : \mathbb{R} \to \mathbb{R}$ is *continuous* at $a \in \mathbb{R}$ if for every $\varepsilon > 0$ there is $\delta > 0$ such that $|f(x) - f(a)| < \varepsilon$ whenever $|x - a| < \delta$.

1.1.3. Definition of a metric space.

A metric space is a set X together with a function $d: X \times X \to \mathbb{R}$, called a metric on X, that satisfies the following conditions:

- 1. $d(x, y) \ge 0$ with equality if and only if x = y;
- 2. d(x, y) = d(y, x); and
- 3. $d(x, y) + d(y, z) \ge d(x, z)$.

Condition 1. is called *positivity*, 2. is called *symmetry* and 3. is called *triangle inequality*.

Remark.

Note that the function $d : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ defined by d(x, y) := |x - y| is a metric on \mathbb{R} .

1.1.4. Example (Euclidean spaces).

Let $n \in \mathbb{N}$ and $X := \mathbb{R}^n$. For

$$x := (x_1, x_2, \dots, x_n) \in X,$$

let

$$\|x\| := \sqrt{\sum_{i=1}^{n} x_i^2}$$

and for $x, y \in X$, let d(x, y) := ||x - y||. Then d is a metric on X.

Proof. It is clear that d is positive and symmetric. We prove the triangle inequality. If $1 \le i < j \le n$, then

$$(x_i y_j - x_j y_i)^2 \ge 0$$

 \mathbf{SO}

$$2x_i y_i x_j y_j \le x_i^2 y_j^2 + x_j^2 y_j^2 + x_j^2 y_j^2$$

Thus

$$\left(\sum_{i=1}^{n} x_i y_i\right)^2 = \sum_{i=1}^{n} x_i^2 y_i^2 + \sum_{1 \le i < j \le n} 2x_i y_i x_j y_j$$
$$\leq \sum_{i=1}^{n} x_i^2 y_i^2 + \sum_{1 \le i < j \le n} \left(x_i^2 y_j^2 + x_j^2 y_i^2\right)$$
$$= \sum_{1 \le i, j \le n} x_i^2 y_j^2 = \left(\sum_{i=1}^{n} x_i^2\right) \left(\sum_{i=1}^{n} y_i^2\right).$$

Hence

$$|x+y||^{2} = \sum_{n=1}^{n} (x_{i}+y_{i})^{2} = \sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} y_{i}^{2} + 2\sum_{i=1}^{n} x_{i}y_{i}$$
$$\leq \sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} y_{i}^{2} + 2\sqrt{\sum_{i=1}^{n} x_{i}^{2}}\sqrt{\sum_{i=1}^{n} y_{i}^{2}}$$
$$= (||x|| + ||y||)^{2},$$

which implies that $||x + y|| \le ||x|| + ||y||$. Thus, for $x, y, z \in X$, we have

$$d(x,y) + d(y,z) = ||x - y|| + ||y - z|| \ge ||x - z|| = ||a|| d(x,z),$$

so the triangle inequality holds.

1.1.5. Example (Hilbert space).

Let $X := \ell_2$ be the set of all infinite sequences $(x_i)_{i=1}^{\infty}$ of real numbers with

$$\sum_{i=1}^{\infty} x_i^2 < \infty.$$

For

$$x := (x_1, x_2, \dots) \in X,$$

let

$$\|x\| := \sqrt{\sum_{i=1}^{\infty} x_i^2}$$

and for $x, y \in X$, let d(x, y) := ||x - y||. Then d is a metric on X.

Proof. First, we verify that the values of d are finite. If $x, y \in X$, then

$$||x - y|| = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$$

For each $n \in \mathbb{N}$ we have

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} \le \sqrt{\sum_{i=1}^{n} x_i^2} + \sqrt{\sum_{i=1}^{n} y_i^2} \le ||x|| + ||y||,$$

so $||x - y|| \le ||x|| + ||y|| < \infty$.

It is clear that d is positive and symmetric. It satisfies the triangle inequality since

$$d(x, y) + d(y, z) = ||x - y|| + ||y - z||$$

= $||x - y|| + ||z - y||$
 $\ge ||(x - y) - (z - y)||$
= $||x - z|| = d(x, z).$

1.1.6. Example (integration metric).

Let $X := \mathscr{C}(I)$ be the set of all continuous real-valued functions on the interval I := [0, 1]. Given $f \in X$, let

$$||f|| := \int_0^1 |f| \, dx$$

and for $f, g \in X$, let d(f, g) := ||f - g||. Then d is a metric on X.

1.1.7. Example (supremum metric).

Let Y be any set and let $X := \mathscr{B}(Y)$ be the set of all real-valued bounded functions on Y. Given $f \in X$, let

 $||f|| := \sup \{ |f(y)| : y \in Y \}$

and for $f, g \in X$ let d(f, g) := ||f - g||. Then d is a metric on X. It is called the *supremum* metric.

1.1.8. Definition of continuity.

Let (X, d) and (Y, d') be metric spaces and $f : X \to Y$. Then f is continuous at $x \in X$ provided for each $\varepsilon > 0$ there exists $\delta > 0$ such that for every $x' \in X$ with $d(x, x') < \delta$ we have

$$d'(f(x), f(x')) < \varepsilon.$$

The function f is *continuous* if it is continuous at each $x \in X$.

1.1.9. Definition of convergence of sequences.

Let $(x_n)_{n=1}^{\infty}$ be a sequence in a metric space (X, d). The sequence *converges* to $x \in X$ provided for each $\varepsilon > 0$ there exists $k \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ whenever $n \geq k$.

Remark. We are going to describe continuity of functions and convergence of sequences using the concept of an open set. \Box

1.1.10. Open balls.

Let (X, d) be a metric space, $x \in X$ and r > 0. An open ball with center x and radius r is the set

$$B(x,r) := \{ y \in X : d(x,y) < r \}.$$

1.1.11. Open sets.

Let (X, d) be a metric space and $U \subseteq X$. We say that U is *open* if for each $x \in U$ there is r > 0 such that $B(x, r) \subseteq U$.

Remark.

Each open ball is an open set.

Proof. Let U := B(x, r) be an open ball in X and let $y \in U$. Then d(x, y) < r. Let r' := r - d(x, y). If $z \in B(y, r')$, then d(y, z) < r' so

$$d(x, z) \le d(x, y) + d(y, z) < (r - r') + r' = r,$$

which implies that $z \in U$. Thus $B(y, r') \subseteq U$.

1.1.12. Theorem (properties of metric spaces).

Let (X, d) be a metric space. The following conditions hold:

- 1. X is open and \emptyset is open.
- 2. The union of any family of open sets is open.
- 3. The intersection of any nonempty finite family of open sets is open.

Proof. X is open since for any $x \in X$ we have $B(x, 1) \subseteq X$. The empty set \emptyset is open since there are no $x \in \emptyset$.

Assume that \mathscr{A} is any family of open sets. Let $x \in \bigcup \mathscr{A}$. Then there is $U \in \mathscr{A}$ with $x \in U$ so there is r > 0 with $B(x, r) \subseteq U$. Then $B(x, r) \subseteq \bigcup \mathscr{A}$. It follows that $\bigcup \mathscr{A}$ is open.

Assume that \mathscr{A} is a nonempty finite family of open sets. Let $x \in \bigcap \mathscr{A}$. Then $x \in U$ for every $U \in \mathscr{A}$, so for every $U \in \mathscr{A}$ there is $r_U > 0$ with $B(x, r_U) \subseteq U$. Since \mathscr{A} is finite,

$$r := \inf \{ r_U : U \in \mathscr{A} \} = \min \{ r_U : U \in \mathscr{A} \} > 0.$$

Then $B(x,r) \subseteq U$ for every $U \in \mathscr{A}$ so $B(x,r) \subseteq \bigcap \mathscr{A}$. Thus $\bigcap \mathscr{A}$ is open. \Box

1.1.13. Theorem (continuity for metric spaces).

Let (X, d) and (Y, d') be metric space. A function $f : X \to Y$ is continuous if and only if $f^{-1}[U]$ is open in X whenever U is open in Y.

Proof. Assume that f is continuous. Let $U \subseteq Y$ be open and $x \in f^{-1}[U]$. Then $f(x) \in U$ so there is $\varepsilon > 0$ such that $B(f(x), \varepsilon) \subseteq U$. Since f is continuous, there exists $\delta > 0$ such that

 $d'(f(x), f(x')) < \varepsilon$

whenever $d(x, x') < \delta$. If $x' \in B(x, \delta)$, then $d(x, x') < \delta$ so $d'(f(x), f(x')) < \varepsilon$ and

$$f(x') \in B(f(x), \varepsilon) \subseteq U,$$

implying that $x' \in f^{-1}[U]$. Thus $B(x, \delta) \subseteq f^{-1}[U]$ so $f^{-1}[U]$ is open.

Now assume that $f^{-1}[U]$ is open in X whenever U is open in Y. Let $x \in X$. We will show that f is continuous at x. Let $\varepsilon > 0$ and $U = B(f(x), \varepsilon)$. Then U is open in Y so $f^{-1}[U]$ is open in X. Since $x \in f^{-1}[U]$, there is $\delta > 0$ such that $B(x, \delta) \subseteq f^{-1}[U]$. If $x' \in X$ with $d(x, x') < \delta$, then $x' \in f^{-1}[U]$ so $f(x') \in U$ and $d'(f(x), f(x')) < \varepsilon$ as required.

1.1.14. Homework 1 (due 1/14).

Problem 1.

Given a set X, define d(x, y) := 0 if x = y and d(x, y) := 1 if $x \neq y$. Prove that d is a metric.

Solution. We have $d(x, y) \ge 0$ for each $x, y \in X$ with equality only when x = y so positivity holds. Since d(x, y) = d(y, x) for every $x, y \in X$, symmetry holds. It remains to verify the triangle inequality. Suppose, for a contradiction, that the triangle inequality fails so there are $x, y, z \in X$ with

$$d(x, y) + d(y, z) < d(x, z).$$

Then d(x, z) = 1 and d(x, y) = d(y, z) = 0 so x = y and y = z. Thus x = z and we have a contradiction.

Problem 2.

Let (X, d) be a metric space. Define

$$d_1(x,y) := \frac{d(x,y)}{1+d(x,y)}$$

and

$$d_2(x, y) := \min(1, d(x, y))$$

Prove that d_1 and d_2 are metrics on X.

Solution. Since $d(x, y) \ge 0$, it follows that $d_1(x, y) \ge 0$ for every $x, y \in X$. If $d_1(x, y) = 0$, then d(x, y) = 0 so d_1 satisfies positivity. Since d satisfies symmetry, it follows that d_1 satisfies symmetry.

Now, we verify the triangle inequality for d_1 . Let $x, y, z \in X$. We have

$$d_1(x,y) + d_1(y,z) = \frac{d(x,y)}{1+d(x,y)} + \frac{d(y,z)}{1+d(y,z)}$$
$$= 2 - \frac{1}{1+d(x,y)} - \frac{1}{1+d(y,z)}.$$

Moreover,

$$\frac{1}{1+d(x,y)} + \frac{1}{1+d(y,z)} \le \frac{2+d(x,y)+d(y,z)}{1+d(x,y)+d(y,z)}$$
$$= 1 + \frac{1}{1+d(x,y)+d(y,z)}.$$

Since d satisfies the triangle inequality, it follows that $d(x, y) + d(y, z) \ge d(x, z)$ so

$$\frac{1}{1+d(x,y)} + \frac{1}{1+d(y,z)} \le 1 + \frac{1}{1+d(x,z)}.$$

Thus

$$d_1(x,y) + d_1(y,z) \ge 2 - \left(1 + \frac{1}{1+d(x,z)}\right)$$
$$= 1 - \frac{1}{1+d(x,z)} = \frac{d(x,z)}{1+d(x,z)} = d_1(x,z).$$

Thus d_1 is a metric.

Now, we verify that d_2 is a metric. It is clear that d_2 satisfies positivity and symmetry. We prove that d_2 satisfies the triangle inequality. Let $x, y, z \in X$. Suppose, for a contradiction, that

$$d_2(x,y) + d_2(y,z) < d_2(x,z).$$

Since $d_2(x, z) \leq 1$, it follows that

$$d_2(x, y) + d_2(y, z) < 1,$$

so $d_2(x, y) < 1$, which implies that $d_2(x, y) = d(x, y)$. Similarly $d_2(y, z) = d(y, z)$. Since $d_2(x, y) < d(x, y)$, we conclude that

$$d(x,y) + d(y,z) < d(x,z),$$

which is a contradiction.

Problem 3.

Prove that what we defined as the "supremum metric" in Example 1.1.7 is a metric.

Solution. If $f, g \in X$

$$d(f,g) := \sup \{ |f(y) - g(y)| : y \in Y \}.$$

Since the absolute value is never negative, we have $d(f,g) \ge 0$ for any $f,g \in X$. If d(f,g) = 0, then |f(y) - g(y)| = 0 for every $y \in Y$ so f = g. Thus positivity holds. Since

$$|f(y) - g(y)| = |g(y) - f(y)|$$

the symmetry holds. It remains to verify the triangle inequality. Let $f, g, h \in X$. Then

$$|f(z) - g(z)| + |g(z) - h(z)| \ge |f(z) - h(z)|$$

for any $z \in Y$ so

$$d(f,g) + d(g,h) = \sup \{ |f(y) - g(y)| : y \in Y \}$$

+ sup $\{ |g(y) - h(y)| : y \in Y \} \ge |f(z) - h(z)|$

for any $z \in Y$. Thus

$$d(f,g) + d(g,h) \ge \sup \{ |g(y) - h(y)| : y \in Y \} = d(f,h).$$

Problem 4.

Let (X, d) be a metric space and $(x_n)_{n=1}^{\infty}$ be a sequence in X. Prove that the sequence $(x_n)_{n=1}^{\infty}$ converges to $x \in X$ if and only if for every open $U \subseteq X$ with $x \in U$ there exists $k \in \mathbb{N}$ such that $x_n \in U$ for every $n \geq k$.

Solution. Let $x \in X$. Assume that $(x_n)_{n=1}^{\infty}$ converges to x. Let U be open in X with $x \in U$. There is $\varepsilon > 0$ such that $B(x,\varepsilon) \subseteq U$. Since $(x_n)_{n=1}^{\infty}$ converges to x, there is $k \in \mathbb{N}$ such that $d(x_n, x) < \varepsilon$ for every $n \ge k$. Then $x_n \in B(x,\varepsilon)$ so $x_n \in U$ for every $n \ge k$.

Now assume that for every open $U \subseteq X$ with $x \in U$ there exists $k \in \mathbb{N}$ such that $x_n \in U$ for every $n \geq k$. Let $\varepsilon > 0$ be arbitrary. Let $U := B(x, \varepsilon)$. Then U is open and $x \in U$ so there is $k \in \mathbb{N}$ with $x_n \in U$ for every $n \geq k$. Thus $d(x_n, x) < \varepsilon$ for every $n \geq k$, which implies that $(x_n)_{n=1}^{\infty}$ converges to x.

1.2. Topologies

1.2.1. Example of a convergence not induced by a metric.

Let X be the set of real-valued functions on the interval [0, 1]. Consider the following question. Is there a metric d on X such that a sequence $(f_n)_{n=1}^{\infty}$ in X

converges to $f \in X$ in the metric space (X, d) if and only if $(f_n(x))_{n=1}^{\infty}$ converges to f(x) for every $x \in X$?

The answer is no!

Proof. Nested Interval Property (Theorem 1.4.1. in Abbott's book) says:

For each $n \in \mathbb{N}$ let $I_n := [a_n, b_n]$ be a closed interval such that

$$I_1 \supseteq I_2 \supseteq I_3 \supseteq \ldots$$

Then

$$\bigcap_{i=1}^{\infty} I_i \neq \emptyset.$$

Suppose, for a contradiction, that such a metric d on X exists. For each $n \in \mathbb{N}$, let $f_n \in X$ be defined by

$$f_n(x) := \begin{cases} 1 & \text{if } x \in \left(0, \frac{1}{n}\right) \\ 0 & \text{otherwise.} \end{cases}$$

Then $(f_n)_{n=1}^{\infty}$ converges pointwise to the constant function f such that f(x) := 0for each $x \in [0,1]$. Then there is $k_1 \in \mathbb{N}$ such that $d(f_{k_1}, f) < 1$. Let $a_1 := 0$, $b_1 := \frac{1}{k_1}$ and $g_1 := f_{k_1}$. Analogous argument shows that there are a_2, b_2 with $a_1 < a_2 < b_2 < b_1$ and $d(g_2, f) < \frac{1}{2}$, where $g_2 \in X$ is defined by: $\begin{pmatrix} 1 & \text{if } x \in (a_2, b_2) \end{pmatrix}$

$$g_2(x) := \begin{cases} 1 & \text{if } x \in (a_2, b_2) \\ 0 & \text{otherwise,} \end{cases}$$

By induction, for each $n \ge 2$, we get a_n, b_n such that $a_{n-1} < a_n < b_n < b_{n+1}$ and $d(g_n, f) < \frac{1}{n}$, where $g_n \in X$ is defined by:

$$g_n(x) := \begin{cases} 1 & \text{if } x \in (a_n, b_n) \\ 0 & \text{otherwise.} \end{cases}$$

Then $(g_n)_{n=1}^{\infty}$ converges to f in the metric space (X, d). However, the Nested Interval Property implies that

$$C := \bigcap_{n=1}^{\infty} \left[a_n, b_n \right] \neq \emptyset$$

If $c \in C$, then $c \in (a_n, b_n)$ for each $n \in \mathbb{N}$ so $g_n(c) = 1$ for each $n \in \mathbb{N}$. Thus $(g_n(c))_{n=1}^{\infty}$ does not converge to f(c) = 0, which is a contradiction.

1.2.2. Definition of topology.

A topological structure (or just topology) on a set X is a family \mathscr{T} of subsets (called *open sets*) of X such that the following conditions hold:

- 1. X is open and \emptyset is open.
- 2. The union of any family of open sets is open.
- 3. The intersection of any nonempty finite family of open sets is open.

A topological space is a set X together with a topology on X.

Examples.

- 1. The discrete topology on X is the family of all subsets of X.
- 2. The trivial topology on X is the family $\{X, \emptyset\}$.
- 3. The Sierpiński space is the set $X = \{1, 2\}$ with the topology $\{X, \emptyset, \{1\}\}$.
- 4. For any metric space X, the family of open sets is a topology on X.
- 5. Let X be an infinite set. The family of cofinite subsets of X (whose complements are finite) is a topology on X. It is called the *cofinite* topology.
- 6. Let X be an uncountable set. The family of cocountable subsets of X (with countable complements) is a topology on X. It is called the *cocountable* topology on X.

1.2.3. Comparing topologies on the same set.

Let \mathscr{T} and \mathscr{T}' be topologies on the same set X. If $\mathscr{T} \subseteq \mathscr{T}'$, then we say that \mathscr{T} is *coarser*, *smaller* or *weaker* than \mathscr{T}' and that \mathscr{T}' is *finer*, *larger* or *stronger* than \mathscr{T} .

Remark.

Note that the trivial topology on a set X is smaller than any topology on X and the discrete topology on X is larger than any topology on X.

1.2.4. Closed sets.

A subset C of a topological space X is *closed* if $X \setminus C$ is open.

1.2.5. Proposition (properties of closed sets).

Let X be a topological space.

- 1. The sets X and \varnothing are closed.
- 2. The intersection of any nonempty family of closed sets is closed.
- 3. The union of any finite family of closed sets is closed.

Proof. The set X is closed since \emptyset is open and \emptyset is closed since X is open. Let \mathscr{C} be a nonempty family of closed sets. Then

$$\mathscr{A} := \{X \smallsetminus C : C \in \mathscr{C}\}$$

is a family of open sets so $\bigcup \mathscr{A}$ is open. Since

$$\bigcap \mathscr{C} = X \smallsetminus \bigcup \mathscr{A},$$

it follows that $\bigcap \mathscr C$ is closed.

Let $\mathscr C$ be a finite family of closed sets. If $\mathscr C = \emptyset$, then $\bigcup \mathscr C = \emptyset$ is closed. If $\mathscr C \neq \emptyset$, then

$$\mathscr{A} = \{ X \smallsetminus C : C \in \mathscr{C} \}$$

is a nonempty family of open sets so $\bigcap \mathscr{A}$ is open. Since

$$\bigcup \mathscr{C} = X \smallsetminus \bigcap \mathscr{A},$$

it follows that $\bigcup \mathcal{C}$ is closed.

Remark.

An infinite union of closed sets does not have to be closed.

Example.

The closed interval $\left[\frac{1}{n}, 2\right]$ is closed in \mathbb{R} for each $n \in \mathbb{N}$, but the union

$$\bigcup_{n=1}^{\infty} \left[\frac{1}{n}, 2\right] = (0, 2]$$

is not closed.

Remark.

In a discrete space every set is both closed and open.

Example.

In \mathbb{Z} with the cofinite topology finite sets are closed, but not open. Cofinite sets are open, but not closed. Then set \mathbb{N} is neither closed nor open.

1.2.6. Homework 2 (due 1/21)

Problem 1.

Let $X := \{1, 2, 3\}$ and $\mathscr{T}_1 := \{\emptyset, X, \{1\}, \{1, 2\}\}$ and $\mathscr{T}_2 := \{\emptyset, X, \{3\}, \{2, 3\}\}$ be topologies on X.

- Prove that $\mathscr{T}_1 \cup \mathscr{T}_2$ is not a topology on X.
- Find the smallest topology on X containing $\mathscr{T}_1 \cup \mathscr{T}_2$.
- Find the largest topology on X contained in $\mathscr{T}_1 \cap \mathscr{T}_2$.

Solution.

• $\mathscr{T}_1 \cup \mathscr{T}_2$ is not a topology on X since $\{1\}, \{3\} \in \mathscr{T}_1 \cup \mathscr{T}_2$ but $\{1, 3\} \notin \mathscr{T}_1 \cup \mathscr{T}_2$.

- The smallest topology on X containing $\mathscr{T}_1 \cup \mathscr{T}_2$ is the discrete topology.
- The largest topology on X contained in $\mathscr{T}_1 \cap \mathscr{T}_2$ is the trivial topology.

Problem 2.

Let X be an infinite set and $x_0 \in X$. Let

 $\mathscr{T} := \{ G \subseteq X : X \smallsetminus G \text{ is finite or } x_0 \notin G \}.$

- Prove that \mathscr{T} is a topology on X.
- Let $x \in X$. Prove that $\{x\}$ is both open and closed if and only if $x \neq x_0$.

Solution. We have $\emptyset \in \mathscr{T}$ since $x_0 \notin \emptyset$ and $X \in \mathscr{T}$ since $X \smallsetminus X$ is empty hence finite.

Let $\mathscr{A} \subseteq \mathscr{T}$. If for every $A \in \mathscr{A}$ we have $x_0 \notin A$, then $x_0 \notin \bigcup \mathscr{A}$ so $\bigcup \mathscr{A} \in \mathscr{T}$. Otherwise, there is $A_0 \in \mathscr{A}$ such that $x_0 \in A_0$. Then $X \smallsetminus A_0$ is finite. Since $X \smallsetminus \bigcup \mathscr{A} \subseteq X \smallsetminus A_0$, it follows that $X \smallsetminus \bigcup \mathscr{A}$ is finite so $\bigcup \mathscr{A} \in \mathscr{T}$. Let $\mathscr{A} \subseteq \mathscr{T}$ be finite and nonempty. If there is $A_0 \in \mathscr{A}$ such that $x_0 \notin A_0$, then $x_0 \notin \bigcap \mathscr{A}$ so $\bigcap \mathscr{A} \in \mathscr{T}$. Otherwise, we have $x_0 \in A$ for every $A \in \mathscr{A}$ so $X \smallsetminus A$ is finite for every $A \in \mathscr{A}$. Then

$$X \smallsetminus \bigcap \mathscr{A} = \bigcup_{A \in \mathscr{A}} \left(X \smallsetminus A \right)$$

is finite as a finite union of finite sets. Thus $\bigcap \mathscr{A} \in \mathscr{T}$.

We have proved that \mathscr{T} is a topology on X.

Let $x \in X$. Assume that $\{x\}$ is both open and closed. Since $\{x\}$ is open, it follows the either $X \setminus \{x\}$ is finite or $x_0 \notin \{x\}$. Since X is infinite, it follows that $X \setminus \{x\}$ is infinite so $x_0 \notin \{x\}$ and $x \neq x_0$.

Now assume that $x \neq x_0$. Then $x_0 \notin \{x\}$ so $\{x\}$ is open. Let $A := X \setminus \{x\}$. Then $X \setminus A = \{x\}$ is finite so A is open. It follows that $\{x\}$ is closed.

Problem 3.

Let $X := \mathscr{B}([0,1])$ with the supremum metric (see Example 1.1.7). Show that

 $C := \{ f \in X : f \text{ is continuous} \}$

is closed in X.

Solution. We will show that $X \\ \subset C$ is open in X. Let $g \in X \\ \subset C$. We need r > 0 such that the ball $B(g, r) \subseteq X \\ \subset C$.

Since g is not continuous, there is $x \in [0,1]$ such that g is not continuous at x. Thus there is $\varepsilon > 0$ such that for every $\delta > 0$ there is $y \in [0,1]$ with $|x-y| < \delta$ and $|g(x) - g(y)| \ge \varepsilon$. Let $r := \varepsilon/3$. If $f \in B(g,r)$, then $|f(z) - g(z)| < \varepsilon/3$ for every $z \in [0,1]$. We show that $f \in X \smallsetminus C$ by showing that f is not continuous at x. Actually, we will show that for every $\delta > 0$ there is $y \in [0,1]$ such that $|x-y| < \delta$ and $|f(x) - f(y)| > \varepsilon/3$.

Let $\delta > 0$. There is $y \in [0, 1]$ with $|x - y| < \delta$ and $|g(x) - g(y)| \ge \varepsilon$. Then

$$\varepsilon \le |g(x) - g(y)| \le |g(x) - f(x)| + |f(x) - f(y)| + |f(y) - g(y)|$$

$$< \varepsilon/3 + |f(x) - f(y)| + \varepsilon/3 = 2\varepsilon/3 + |f(x) - f(y)|,$$

which implies that $|f(x) - f(y)| > \varepsilon/3$.

Problem 4.

Consider $X := \mathbb{R}^2$ with the standard Euclidean metric d. Give an example of nonempty disjoint closed subsets $A, B \subseteq X$ such that

$$\inf \{ d(x, y) : x \in A, \ y \in B \} = 0.$$

Solution. Let

 $A := \{ \langle a, b \rangle : a, b \in \mathbb{R} \text{ with } ab = 1 \}$

and $B := \{ \langle 0, b \rangle : b \in \mathbb{R} \}$. Then A and B are nonempty disjoint closed subsets of X. For any $\varepsilon > 0$ we have $x := \langle \varepsilon, 1/\varepsilon \rangle \in A$ and $b := \langle 0, 1/\varepsilon \rangle \in B$ with $d(x, y) = \varepsilon$, which implies that

$$\inf \{ d(x, y) : x \in A, \ y \in B \} = 0.$$

1.2.7. Neighborhoods.

Let X be a topological space and $x \in X$. A set $N \subseteq X$ is a *neighborhood* of x (*nbhd* for short) if there exists an open set U such that $x \in U \subseteq N$.

Example.

The interval [0,2) is a nbhd of 1 in \mathbb{R} that is not open.

Remark.

If U is an open set, then it is a nbhd of each $x \in U$. In particular, X is a nbhd of each $x \in X$.

1.2.8. Proposition (properties of nbhds).

Let X be a topological space and, for each $x \in X$, let \mathcal{N}_x be the family of all nbhds of x. Then the following conditions hold for each $x \in X$:

- 1. $\mathcal{N}_x \neq \emptyset;$
- 2. $x \in N$ for every $N \in \mathscr{N}_x$;
- 3. if $N_1, N_2 \in \mathcal{N}_x$, then $N_1 \cap N_2 \in \mathcal{N}_x$;
- 4. if $N \in \mathscr{N}_x$ and $N \subseteq M \subseteq X$, then $M \in \mathscr{N}_x$;
- 5. if $N \in \mathcal{N}_x$, then $\{y \in N : N \in \mathcal{N}_y\} \in \mathcal{N}_x$.

Proof. 1. holds since $X \in \mathcal{N}_x$.

2. holds since if $N \in \mathscr{N}_x$, then there is open U with $x \in U \subseteq N$, which implies that $x \in N$.

3. holds since if $N_1, N_2 \in \mathscr{N}_x$, then there are open U_1, U_2 with $x \in U_1 \subseteq N_1$ and $x \in U_2 \subseteq N_2$. Let $U := U_1 \cap U_2$. Then U is open and

$$x \in U \subseteq N_1 \cap N_2.$$

4. holds since if N, M are as assumed, then there is open U with $x \in U \subseteq N$. Since $N \subseteq M$, this implies that $U \subseteq M$ so $M \in \mathscr{N}_x$.

5. holds since $N \in \mathscr{N}_x$ implies that there is open U with $x \in U \subseteq N$. Since $U \in \mathscr{N}_y$ for every $y \in U$, we have $N \in \mathscr{N}_y$ for every $y \in U$. Thus

$$U \subseteq \mathring{N} := \{ y \in N : N \in \mathscr{N}_y \} \,.$$

Since $U \in \mathscr{N}_x$, it follows that $\mathring{N} \in \mathscr{N}_x$.

Example.

Let $X := \{1, 2, 3\}$ with $\mathscr{N}_1 := \{\{1, 2\}, X\}$ and $\mathscr{N}_2 := \mathscr{N}_3 := \{X\}$. Then conditions 1.-4. of Proposition 1.2.8 hold, but 5. fails since $N := \{1, 2\} \in \mathscr{N}_1$, but $\mathring{N} = \{1\} \notin \mathscr{N}_1$.

$$\mathscr{T} := \{ U \subseteq X : U \in \mathscr{N}_x \text{ for every } x \in U \},\$$

then $\mathscr{T} = \{X, \varnothing\}$ is the trivial topology on X. Then N is not a nbhd of 1 relative to \mathscr{T} .

1.2.9. Proposition (topology from nbhds).

Let X be a set and for each $x \in X$ let \mathscr{N}_x be a family of subsets of X such that the conditions 1.-4. of Proposition 1.2.8 hold. Then

$$\mathscr{T} := \{ U \subseteq X : U \in \mathscr{N}_x \text{ for every } x \in U \}$$

is a topology on X such that each nbhd of $x \in X$ relative to \mathscr{T} belongs to \mathscr{N}_x . If 5. is also satisfied, then \mathscr{N}_x is equal to the family of all nbhds of x relative to \mathscr{T} and \mathscr{T} is the unique topology having that property.

Proof. It is clear that $\emptyset \in \mathscr{T}$. Now we show that $X \in \mathscr{T}$. Given $x \in X$ we have $\mathscr{N}_x \neq \emptyset$ by 1. so there is $N \in \mathscr{N}_x$ which implies that $X \in \mathscr{N}_x$ by 4. Thus $X \in \mathscr{N}_x$ for every $x \in X$, which implies that $X \in \mathscr{T}$.

Let \mathscr{A} be a family of members of \mathscr{T} . To show that $\bigcup \mathscr{A} \in \mathscr{T}$ we need to show that $\bigcup \mathscr{A} \in \mathscr{N}_x$ for every $x \in \bigcup \mathscr{A}$. Let $x \in \bigcup \mathscr{A}$. Then there is $U \in \mathscr{A}$ with $x \in U$. Since $U \in \mathscr{T}$, we have $U \in \mathscr{N}_y$ for each $y \in U$ so, in particular, $U \in \mathscr{N}_x$. Then 4. implies that $\bigcup \mathscr{A} \in \mathscr{N}_x$.

Let \mathscr{A} be a nonempty finite family of members of \mathscr{T} . To show that $\bigcap \mathscr{A} \in \mathscr{T}$ we need to show that $\bigcap \mathscr{A} \in \mathscr{N}_x$ for every $x \in \bigcap \mathscr{A}$. Let $x \in \bigcap \mathscr{A}$. Then $x \in U$ for every $U \in \mathscr{A}$. Since $\mathscr{A} \subseteq \mathscr{T}$, we have $U \in \mathscr{N}_x$ for every $U \in \mathscr{A}$. Since \mathscr{A} is finite, applying 3. and induction we conclude that $\bigcap \mathscr{A} \in \mathscr{N}_x$.

Let N be a nbhd of $x \in X$ relative to \mathscr{T} . Then there is $U \in \mathscr{T}$ with $x \in U \subseteq N$. The definition of \mathscr{T} implies that $U \in \mathscr{N}_x$. Thus $N \in \mathscr{N}_x$ by 4.

Now assume 5. as well. Let $x \in X$ and $N \in \mathscr{N}_x$. To show that N is a nbhd of x relative to \mathscr{T} , it suffices to show that

$$N := \{ y \in N : N \in \mathscr{N}_y \} \in \mathscr{T}.$$

If $z \in \mathring{N}$, then 5. implies that $\mathring{N} \in \mathscr{N}_z$ so $\mathring{N} \in \mathscr{N}_z$ for every $z \in \mathring{N}$ and consequently $\mathring{N} \in \mathscr{T}$ as required.

Suppose that \mathscr{T}' is any topology having the property that \mathscr{N}_x is the family of nbhds of x relative to \mathscr{T}' . To show that $\mathscr{T}' = \mathscr{T}$ it suffices to show that $U \in \mathscr{T}'$ if and only if $U \in \mathscr{N}_x$ for every $x \in U$. Assume that $U \in \mathscr{T}'$. Then U is a nbhd of every $x \in U$ by the definition of a nbhd. Assume that $U \in \mathscr{N}_x$ for every $x \in U$. Then for each $x \in U$, there is $V_x \in \mathscr{T}'$ such that $x \in V_x \subseteq U$. Since

$$U = \bigcup_{x \in U} V_x$$

it follows that $U \in \mathscr{T}'$.

1.2.10. Homework 3 (due 1/28).

Problem 1.

In a metric space (X, d), for any real number $r \ge 0$, the closed r-ball at $x \in X$ is the set $\{y \in X : d(x, y) \le r\}$. Show that a closed ball is always closed in the metric topology.

Solution. Let $r \ge 0$ and

$$C := \{ y \in X : d(x, y) \le r \}.$$

We will show that $X \\ \subset C$ is open in X. Let $z \in X \\ \subset C$. Then d(x, z) > r so $\varepsilon := d(x, z) - r > 0$. To show that $X \\ \subset C$ is open in X it suffices to show that $B(z, \varepsilon) \subseteq X \\ \subset C$.

Let $y \in B(z,\varepsilon)$. Then $d(y,z) < \varepsilon$ so

$$r + \varepsilon = d(x, z) \le d(x, y) + d(y, z) < d(x, y) + \varepsilon,$$

which implies that d(x, y) > r so $y \in X \setminus C$ as required.

L		

 \square

Problem 2.

What is the topology determined by the metric on X given by d(x, y) := 1 if $x \neq y$ and d(x, y) = 0 if x = y?

Solution. The resulting topology is the discrete topology. For any $x \in X$, the set $\{x\}$ is open in X since $B(x,1) \subseteq \{x\}$. Since any subset of X is a union of singletons, any subset of X is open so the obtained topology is discrete. \Box

Problem 3.

Let X be a set with at least two elements. Prove that there are no metric on X that induces the trivial topology on X.

Solution. Let $x, y \in X$ with $x \neq y$. Suppose, for a contradiction, that d is a metric on X that induces the trivial topology. Let d(x, y) = r > 0. Then U := B(x, r)is open in X with $x \in U$ and $y \notin U$. Thus $U \neq \emptyset$ and $U \neq X$. This is a contradiction since \emptyset and X are the only open sets in the trivial topology. \Box

Problem 4.

Let (X, d) be a metric space and $C \subseteq X$ be closed. Prove that there is a sequence $(U_n)_{n \in \mathbb{N}}$ of open subsets of X such that $C = \bigcap_{n \in \mathbb{N}} U_n$.

Solution. For each $n \in \mathbb{N}$, let

$$U_n := \bigcup_{x \in C} B\left(x, \frac{1}{n}\right).$$

Then U_n is open in X as a union of a family of open sets. It remains to show that

$$C = \bigcap_{n \in \mathbb{N}} U_n.$$

Since $x \in U_n$ for every $x \in C$ and every $n \in \mathbb{N}$, it follows that $C \subseteq U_n$ for every $n \in \mathbb{N}$ so

$$C \subseteq \bigcap_{n \in \mathbb{N}} U_n.$$

Now let $y \in \bigcap_{n \in \mathbb{N}} U_n$. We aim at showing that $y \in C$. Suppose, for a contradiction, that $y \in X \setminus C$. Since $X \setminus C$ is open there is $\varepsilon > 0$ such that $B(y, \varepsilon) \subseteq X \setminus C$. Let $n \in \mathbb{N}$ be such that $\frac{1}{n} < \varepsilon$. Since $y \in U_n$, there is $x \in C$ with $d(x, y) < \frac{1}{n}$. Then $d(x, y) < \varepsilon$ so $x \in B(y, \varepsilon)$, implying that $B(y, \varepsilon) \cap C \neq \emptyset$, which is a contradiction.

1.3. Derived Concepts

1.3.1. Interior

Let X be a topological space and $A \subseteq X$. The *interior* of A is denoted by A° or by int (A) and is defined by

$$A^{\circ} := \bigcup \left\{ U \subseteq A : U \text{ is open} \right\}.$$

If $x \in A^{\circ}$, then x is an *interior point* of A.

Remarks.

Note that A° is open and it is the largest open subset of A. Moreover, x is an interior point of A if and only if A is a nbhd of x. It is also clear that A is open if and only if $A = A^{\circ}$.

Examples.

In \mathbb{R} we have $\mathbb{Q}^{\circ} = \emptyset$. If A is the closed interval [a, b], then A° is the open interval (a, b).

1.3.2. Proposition (properties of interior).

Let X be a topological space and $A, B \subseteq X$.

1. $(A^{\circ})^{\circ} = A^{\circ},$ 2. $A \subseteq B$ implies that $A^{\circ} \subseteq B^{\circ},$ 3. $A^{\circ} \cap B^{\circ} = (A \cap B)^{\circ},$ 4. $A^{\circ} \cup B^{\circ} \subseteq (A \cup B)^{\circ}.$

Example.

If $X := \mathbb{R}$, A := [0, 1] and B := [1, 2], then $1 \notin A^{\circ} \cup B^{\circ}$, but $1 \in (A \cup B)^{\circ}$.

1.3.3. Closure.

Let X be a topological space and $A \subseteq X$. The closure of A is denoted by cl(A) or \overline{A} . It is defined by

$$\overline{A} := \bigcap \left\{ A \subseteq C : C \text{ is closed} \right\}.$$

If $x \in \overline{A}$, then x is an *adherent point* of A.

Remarks.

Note that \overline{A} is the smallest closed set containing A and that A is closed if and only if $\overline{A} = A$.

Examples.

If $X = \mathbb{R}$, then $\overline{\mathbb{Q}} = \mathbb{R}$. If A is the open interval (a, b) with a < b, then \overline{A} is the closed interval [a, b].

1.3.4. Proposition (properties of closure).

Let X be a topological space and $A, B \subseteq X$.

1. $\overline{\overline{A}} = \overline{A}$, 2. $A \subseteq B$ implies that $\overline{A} \subseteq \overline{B}$, 3. $\overline{A} \cup \overline{B} = \overline{A \cup B}$, 4. $\overline{A} \cap \overline{B} \supset \overline{A \cap B}$.

Example.

If $X := \mathbb{R}$, A := (0, 1) and B := (1, 2), then $1 \in \overline{A} \cap \overline{B}$, but $1 \notin \overline{A \cup B}$.

1.3.5. Theorem (characterization of closure).

Let X be a topological space and $A \subseteq X$. Then $x \in \overline{A}$ if and only if $U \cap A \neq \emptyset$ for every open nbhd U of x.

Proof. Assume that $x \in \overline{A}$. Let U be an open nbhd of x and suppose, for a contradiction, that $U \cap A = \emptyset$. Then $A \subseteq X \setminus U$ and $X \setminus U$ is closed. Thus $x \in \overline{A} \subseteq X \setminus U$, which contradicts $x \in U$.

Now assume that $U \cap A \neq \emptyset$ for every open nbhd U of x. Let C be closed with $A \subseteq C$. Then $X \smallsetminus C$ is open and disjoint with A so $x \notin X \smallsetminus C$. Thus $x \in C$. Since x belongs to every closed set containing A, it follows that $x \in \overline{A}$. \Box

1.3.6. Limit points.

Let X be a topological space and $A \subseteq X$. A point $x \in X$ is a *limit point* (*cluster point*) of A if every open nbhd U of x contains at least one point of $A \setminus \{x\}$. The set A' of all limit points of A is called the *derived set* of A.

Example.

In \mathbb{R} if $A := (0, 1) \cup \{2\}$, then A' = [0, 1].

1.3.7. Theorem (closure and derived set).

Let X be a topological space and $A \subseteq X$. Then $\overline{A} = A \cup A'$.

Proof. If $x \in A$, then $x \in \overline{A}$. If $x \in A'$, then every open nbhd U of x contains at least one point of $A \setminus \{x\}$ so $A \cap U \neq \emptyset$, which implies that $x \in \overline{A}$.

Now assume that $x \in \overline{A} \setminus A$. We show that $x \in A'$. Let U be an open nbhd of x. Since $x \in \overline{A}$, we have $U \cap A \neq \emptyset$. Since $A \setminus \{x\} = A$, we have

$$U \cap (A \smallsetminus \{x\}) \neq \emptyset$$

as required.

Corollary.

A set is closed if and only if it contains all its limit points.

Proof. A is closed if and only if $\overline{A} = A$, which holds if and only if $A = A \cup A'$, which is equivalent to $A' \subseteq A$.

1.3.8. Boundary.

Let X be a topological space and $A \subseteq X$. The boundary (also called the *frontier*) of A is denoted by ∂A and is defined by

$$\partial A := \overline{A} \cap \overline{X \smallsetminus A}.$$

Example.

In \mathbb{R} if A = [0, 1], then $\partial A = \{0, 1\}$.

1.3.9. Theorem (closure and boundary).

Let X be a topological space and $A \subseteq X$. Then $\overline{A} = A \cup \partial A$.

Proof. We have $A \subseteq \overline{A}$ and the definition of ∂A implies that $\partial A \subseteq \overline{A}$. Thus $\overline{A} \supseteq A \cup \partial A$.

Now assume that $x \in \overline{A} \setminus A$. Then $x \in X \setminus A$ so $x \in \overline{X \setminus A}$. Thus $x \in \partial A$. \Box

Corollary.

A set is closed if and only if it contains it's boundary.

Proof. A is closed if and only if $\overline{A} = A$, which is equivalent to $A = A \cup \partial A$ and to $\partial A \subseteq A$.

1.3.10. Isolated points.

Let X be a topological space and $A \subseteq X$. If $x \in A \setminus A'$, then x is an isolated point of A.

1.3.11. Perfect sets.

Let X be a topological space and $A \subseteq X$. We say that A is *perfect* if A is closed and has no isolated points.

1.3.12. Example (the Cantor set).

Let

$$J_1 = \left(\frac{1}{3}, \frac{2}{3}\right)$$
$$J_2 = \left(\frac{1}{9}, \frac{2}{9}\right) \cup \left(\frac{7}{9}, \frac{8}{9}\right)$$

and, in general, for each $n \in \mathbb{N}$, let

$$J_n = \bigcup_{k=0}^{3^{n-1}-1} \left(\frac{1+3k}{3^n}, \frac{2+3k}{3^n}\right) \setminus \bigcup_{j=1}^{n-1} J_j.$$

The set

$$C := [0,1] \setminus \bigcup_{n=1}^{\infty} J_n$$

is called the *Cantor set*. It consists of those $x \in [0, 1]$ that have a triadic expansion using only the digits 0 and 2.

The Cantor set is perfect since it is closed and has no isolated points. If $x \in C$ has a triadic expansion $0.a_1a_2...$, and U is any open interval containing x, then we can choose $n \in \mathbb{N}$ large enough, so that changing the digit a_n to $2 - a_n$ produces a different point in $U \cap C$.

1.3.13. Dense sets.

Let X be a topological space and $A \subseteq X$. We say that A is *dense* if $\overline{A} = X$.

Examples.

 \mathbb{Q} is dense in \mathbb{R} . If X is an infinite set with cofinite topology, then any infinite subset of X is dense.

1.3.14. Homework 4 (due 2/4).

Problem 1.

Let $X := \{a, b, c\}$ with the topology $\{\emptyset, X, \{a\}, \{a, b\}\}$. Find the derived sets of $\{a\}, \{b\}, \{c\}$ and $\{a, c\}$.

Solution.

$$\{a\}' = \{b, c\}$$
$$\{b\}' = \{c\}$$
$$\{c\}' = \emptyset$$
$$\{a, c\}' = \{b, c\}$$

Problem 2.

Let U be open in a topological space X. Prove that

$$\overline{U} = \overline{\operatorname{int}\left(\overline{U}\right)}.$$

Solution. U is open and $U \subseteq \overline{U}$ so $U \subseteq \operatorname{int}(\overline{U})$, which implies that $\overline{U} \subseteq \operatorname{int}(\overline{U})$. Since $\operatorname{int}(\overline{U}) \subseteq \overline{U}$ and since \overline{U} is closed, it follows that $\operatorname{int}(\overline{U}) \subseteq \overline{U}$. Thus $\overline{U} = \operatorname{int}(\overline{U})$.

Problem 3.

Let X be a topological space and $G \subseteq X$. Prove that G is open if and only if

$$\overline{G \cap \overline{A}} = \overline{G \cap A}$$

for every $A \subseteq X$.

Solution. Assume that G is open. Since $A \subseteq \overline{A}$, it follows that $G \cap A \subseteq G \cap \overline{A}$, which implies that $\overline{G \cap A} \subseteq \overline{G \cap \overline{A}}$.

Let $x \in \overline{G \cap \overline{A}}$. If U is an open nbhd of x, then $U \cap (G \cap \overline{A}) \neq \emptyset$. Let $y \in U \cap (G \cap \overline{A})$. Then $U \cap G$ is an open nbhd of y and $y \in \overline{A}$ so $U \cap G \cap A \neq \emptyset$. Since any open nbhd of x has a nonempty intersection with $G \cap A$, it follows that $x \in \overline{G \cap A}$. Thus $\overline{G \cap \overline{A}} \subseteq \overline{G \cap A}$. Therefore $\overline{G \cap \overline{A}} = \overline{G \cap A}$. Now assume that $\overline{G \cap \overline{A}} = \overline{G \cap A}$ for every $A \subseteq X$. We aim to show that G is open. Suppose, for a contradiction, that G is not open. Then $A := X \setminus G$ is not closed, so $\overline{A} \cap G \neq \emptyset$. Then $\overline{G \cap A} = \emptyset$, but $\overline{G \cap \overline{A}} \neq \emptyset$, which is a contradiction.

Problem 4.

Let X be an infinite set with the cofinite topology. Prove that if $A \subseteq X$ is infinite, then every point in A is a limit point of A and that if A is finite, then it has no limit points.

Solution. Assume that $A \subseteq X$ is infinite. If $x \in A$ and U is an open nbhd of x, then $X \setminus U$ is finite so $U \cap A$ is infinite and hence contains an element of A distinct from x. Thus x is a limit point of A.

Assume that A is finite. If $x \in X$ then $U := (X \setminus A) \cup \{x\}$ is an open nbhd of x such that $U \cap A \subseteq \{x\}$. Thus x is not a limit point of A.

1.4. Bases

1.4.1. Proposition (family of topologies).

Let X be a set and A be a nonempty family of topologies on X. Then $\bigcap A$ is a topology on X.

Proof. Both X and \varnothing belong to \mathscr{T} for every $\mathscr{T} \in \mathbb{A}$. Thus $X, \emptyset \in \bigcap \mathbb{A}$.

Assume that $\mathscr{A} \subseteq \bigcap \mathbb{A}$. Then $\mathscr{A} \subseteq \mathscr{T}$ for every $\mathscr{T} \in \mathbb{A}$ so $\bigcup \mathscr{A} \in \mathscr{T}$ for every $\mathscr{T} \in \mathbb{A}$. Thus $\bigcup \mathscr{A} \in \bigcap \mathbb{A}$.

Assume that $\mathscr{A} \subseteq \bigcap \mathbb{A}$ is nonempty and finite. Then $\mathscr{A} \in \mathscr{T}$ for every $\mathscr{T} \in \mathbb{A}$ so $\bigcap \mathscr{A} \in \mathscr{T}$ for every $\mathscr{T} \in \mathbb{A}$. Thus $\bigcap \mathscr{A} \in \bigcap \mathbb{A}$.

1.4.2. Subbases.

Let X be a set and \mathscr{S} be any family of subsets of X. Define

$$\mathscr{T}(\mathscr{S}) := \bigcap \mathbb{A},$$

where \mathbb{A} is the family of all topologies \mathscr{T} on X such that $\mathscr{S} \subseteq \mathscr{T}$. The set \mathscr{S} is called the *subbasis* of the topological space $(X, \mathscr{T}(\mathscr{S}))$.

Remark.

Note that any family of subsets of X is a subbasis of a unique topology on X. For a given topology on X there are usually many possible subbases.

1.4.3. Proposition (topology from subbasis).

Let X be a set and \mathscr{S} be a family of subsets of X. The topology $\mathscr{T}(\mathscr{S})$ consists of X, \varnothing and all unions of all possible intersections of nonempty finite subfamilies of \mathscr{S} .

Proof. It is clear that $X, \emptyset \in \mathscr{T}(\mathscr{S})$ since X, \emptyset belong to any topology on X. Moreover, any topology on X containing \mathscr{S} contains all unions of all possible intersections of nonempty finite subfamilies of \mathscr{S} .

To complete the proof, it suffices to show that the family \mathscr{T} of all unions of all possible intersections of nonempty finite subfamilies of \mathscr{S} together with X and \varnothing is a topology on X. It is clear that $X, \emptyset \in \mathscr{T}$.

Let $\mathscr{A} \subseteq \mathscr{T}$. If $X \in \mathscr{A}$, then $\bigcup \mathscr{A} = X \in \mathscr{T}$. Otherwise, $\bigcup \mathscr{A} = \bigcup \mathscr{A}'$, where $\mathscr{A}' = \mathscr{A} \setminus \{\varnothing\}$. Every member of \mathscr{A}' is a union of intersection of nonempty finite subfamilies of \mathscr{S} , which implies that $\bigcup \mathscr{A}'$ is such a union. Thus $\bigcup \mathscr{A} \in \mathscr{T}$.

Let $\mathscr{A} \subseteq \mathscr{T}$ be finite and nonempty. If $\mathscr{D} \in \mathscr{A}$, then $\bigcap \mathscr{A} = \mathscr{D} \in \mathscr{T}$. Otherwise, let $\mathscr{A}' = \mathscr{A} \setminus \{X\}$. If $\mathscr{A}' = \mathscr{D}$, then $\bigcap \mathscr{A} = X \in \mathscr{T}$. If $\mathscr{A}' \neq \mathscr{D}$, then each

member of \mathscr{A}' is a union of intersections of nonempty finite subfamilies of \mathscr{S} . Let $\mathscr{A}' = \{A_1, A_2, \ldots, A_n\}$ with

$$A_i = \bigcup_{j \in J_i} A_{i,j},$$

where $A_{i,j}$ is the intersection of some nonempty finite subfamily of \mathscr{S} and J_i is some set for each i = 1, 2, ..., n. Then

$$\bigcap \mathscr{A}' = \left(\bigcup_{j \in J_1} A_{1,j}\right) \cap \left(\bigcup_{j \in J_2} A_{2,j}\right) \cap \dots \cap \left(\bigcup_{j \in J_n} A_{n,j}\right)$$
$$= \bigcup_{f \in J} \left(A_{1,f(1)} \cap A_{2,f(2)} \cap \dots \cap A_{n,f(n)}\right),$$

where J is the set of all functions f on $\{1, 2, ..., n\}$ with $f(i) \in J_i$ for every i. Thus $\bigcap \mathscr{A}$ is a union of intersections of nonempty finite subfamilies of \mathscr{S} and so $\bigcap \mathscr{A} \in \mathscr{T}$.

1.4.4. Linear order

Let X be a set and \leq be a binary relation on X. We say that < is a *linear order* on X if

- 1. \leq is reflexive ($x \leq x$ for each $x \in X$).
- 2. \leq is transitive ($x \leq y$ and $y \leq z$ implies that $x \leq z$ for each $x, y, z \in X$).
- 3. \leq is antisymmetric ($x \leq y$ and $y \leq x$ implies that x = y for every $x, y \in X$).
- 4. \leq is total $(x \leq y \text{ or } y \leq x \text{ for every } x, y \in X)$.

Example.

The standard order on \mathbb{R} is a linear order.

1.4.5. Order topology

Let X be a set with a linear order \leq . For $x \in X$, let

$$(-\infty, x) = \{ y \in X : y \le x \text{ and } y \ne x \}$$

and

$$(x,\infty) = \{y \in X : x \le y \text{ and } y \ne x\}.$$

The order topology on X induced by \leq is the topology $\mathscr{T}(\mathscr{S})$, where

$$\mathscr{S} = \{(-\infty, x) : x \in X\} \cup \{(x, \infty) : x \in X\}.$$

Example.

The standard topology on $\mathbb R$ is the order topology on $\mathbb R$ induced by the standard order.

1.4.6. Homework 5 (due 2/11).

Problem 1.

Consider \mathbb{N} with the standard order. Prove that the resulting order topology on \mathbb{N} is discrete.

Solution. Let $n \in \mathbb{N}$. If n = 1, then $\{n\} = (-\infty, 2)$ is open in the order topology. If $n \ge 2$, then

$$\{n\} = (-\infty, n+1) \cap (n-1, \infty)$$

so $\{n\}$ is open as well. Since every singleton $\{n\}$ is open, the topology is discrete.

Problem 2.

Consider the set $X := \{1, 2\} \times \mathbb{N}$ with the dictionary order, that is such that $\langle a, b \rangle \leq \langle c, d \rangle$ when a < c or $(a = c \text{ and } b \leq d)$. Prove that the resulting order topology on X is not discrete.

Solution. We show that $A := \{\langle 2, 1 \rangle\}$ is not open. Suppose, for a contradiction, that A is open. Then $A = \bigcup \mathscr{K}$ for some family \mathscr{K} consisting of intersections of finite nonempty subfamilies of the subbasis

$$\mathscr{S} = \left\{ (-\infty, x) : x \in X \right\} \cup \left\{ (x, \infty) : x \in X \right\}.$$

Let $K \in \mathscr{K}$ be such that $A \subseteq K$. Then K must contain $\langle 2, 1 \rangle$ so

$$K = (-\infty, \langle 2, k_1 \rangle) \cap \dots \cap (-\infty, \langle 2, k_s \rangle)$$
$$\cap (\langle 1, k_{s+1} \rangle, \infty) \cap \dots \cap (\langle 1, k_t \rangle, \infty)$$

for some $s, t \in \mathbb{N}$ with $0 \le s \le t$. Let $\ell := \max\{k_{s+1}, \ldots, k_t\} + 1$. Then $\langle 1, \ell \rangle \in K$ so $\langle 1, \ell \rangle \in A$, which is a contradiction.

Problem 3.

Describe the topology on the plane for which the family of all straight lines is a subbasis.

Solution. The intersection of two lines that are not parallel is a singleton. Any singleton on the plane can be represented as the intersection of two lines. Thus each singleton is open and so the topology is discrete. \Box

Problem 4.

For each $q \in \mathbb{Q}$, let $A_q := \{x \in \mathbb{R} : x > q\}$ and $B_q := \{x \in \mathbb{R} : x < q\}$. Prove that the set

$$\mathscr{S} := \{A_q : q \in \mathbb{Q}\} \cup \{B_q : q \in \mathbb{Q}\}$$

is a subbasis for the standard topology on \mathbb{R} .

Solution. Let $\mathscr{T} := \mathscr{T}(\mathscr{S})$ and \mathscr{T}' be the standard topology on \mathbb{R} . Since $\mathscr{S} \subseteq \mathscr{T}'$, it follows that $\mathscr{T} \subseteq \mathscr{T}'$. It remains to show that $\mathscr{T}' \subseteq \mathscr{T}$.

Let $U \in \mathscr{T}'$. For each $x \in U$ there are rational p, q with p < x < q and $J_x := (p,q) \subseteq U$. Then

$$U = \bigcup_{x \in U} J_x$$

and $J_x = A_p \cap B_q \in \mathscr{T}$ for every $x \in U$. Thus $U \in \mathscr{T}$.

1.4.7. Well-ordered sets.

A set X is *well-ordered* by \leq if \leq is a linear order on X and for every nonempty $A \subseteq X$ there is $a \in A$ such that $a \leq b$ for every $b \in A$.

1.4.8. Well-ordering principle.

The axioms of set theory imply that every set can be well-ordered.

1.4.9. The well-ordered set $[0, \Omega]$ as a topological space.

Let X be any uncountable set and \leq be a well-ordering of X. If the set

$$A = \{x \in X : \{y \in X : y \le x\} \text{ is uncountable}\}\$$

is nonempty, let Ω be the smallest element of A and

$$[0,\Omega] := \{x \in X : x \le \Omega\}.$$

Otherwise, let

$$[0,\Omega] := X \cup \{\Omega\}$$

with \leq extended to $[0, \Omega]$ by declaring that $x \leq \Omega$ for every $x \in [0, \Omega]$. We will consider $[0, \Omega]$ as a topological space with the order topology.

1.4.10. Theorem (the space $[0, \Omega]$).

The set $[0, \Omega]$ is an uncountable well-ordered set such that for every $x \in [0, \Omega]$ that is strictly smaller than Ω , the set

$$\{y \in [0,\Omega] : y \le x\}$$

is countable. Moreover, if X is any well-ordered set with the largest element Ω' such that for every $x \in X$ that is strictly smaller than Ω' , the set

$$\{y \in X : y \le x\}$$

is countable, then there is a bijection $\varphi : X \to [0, \Omega]$ such that for every $x, y \in X$ with $x \leq y$, we have $\varphi(x) \leq \varphi(y)$.

Proof. The set $[0, \Omega]$ has the required properties directly from the definition. The proof of the existence of the bijection φ is omitted.

1.4.11. Bases.

Let X be a topological space. A *basis* for the topology on X is a family \mathscr{B} of open subsets of X such that for every open set U and $x \in U$ there is $B \in \mathscr{B}$ with $x \in B \subseteq U$.

Remarks.

 \mathscr{B} is a basis for the topology \mathscr{T} on X if and only if $\mathscr{B} \subseteq \mathscr{T}$ and every open set is a union of members of \mathscr{B} . Any basis for the topology on X is also a subbasis.

Examples.

In a discrete space X the family of all singletons $\{x\}$ is a basis. In a metric space X the collection of all open balls B(x, r) for $x \in X$ and r > 0 is a basis.

Remark.

Let \mathscr{S} be a subbasis of the topology on X. Then the family \mathscr{B} consisting of X and all intersections of finite nonempty subfamilies of \mathscr{S} is a basis for the topology on X.

Remark.

Let X be the topological space having the order topology induced by a linear order \leq . If for $a, b \in X$ we define

$$(a,b) := \left\{ x \in X \setminus \{a,b\} : a \le x \le b \right\},\$$

then

$$\mathscr{B} := \{(a,b): a,b \in X\} \cup \{(-\infty,a): a \in X\} \cup \{,(a,\infty): a \in X\}$$

is a basis for the topology on X.

Example.

Consider the topological space $[0, \Omega]$. Let S be the set of all successor elements in $[0, \Omega]$, that is let $x \in S$ if the set

$$\{y \in [0, \Omega] : y < x\}$$

has the largest element. Let $S' := S \cup \{0\}$, where 0 is the smallest element of $[0, \Omega]$ and $L := [0, \Omega] \smallsetminus S'$. Define

$$\mathscr{B} := \{\{a\} : a \in S'\} \cup \{(a, b] : a < b, b \in L\}.$$

Then \mathscr{B} is a basis for the topology on $[0, \Omega]$.

1.4.12. Theorem (basis for a topology).

Let X be a set and \mathscr{B} be a collection of subsets of X. Then \mathscr{B} is a basis for some topology on X if and only if the following conditions hold:

- 1. $\bigcup \mathscr{B} = X$ and
- 2. for every $B_1, B_2 \in \mathscr{B}$ and every $x \in B_1 \cap B_2$ there is $B \in \mathscr{B}$ with $x \in B \subseteq B_1 \cap B_2$.

Proof. Assume that \mathscr{B} is a basis for a topology \mathscr{T} on X. Since $X \in \mathscr{T}$, it follows that 1. holds. To prove 2., assume that $B_1, B_2 \in \mathscr{B}$ and $x \in B_1 \cap B_2$. Since $B_1, B_2 \in \mathscr{T}$, it follows that $B_1 \cap B_2 \in \mathscr{T}$ so there is $B \in \mathscr{B}$ with $x \in B \subseteq B_1 \cap B_2$. Thus 2. holds.

Now assume that 1. and 2. hold. Let \mathscr{T} be the family of all unions of subfamilies of \mathscr{B} . Then 1. implies that $X \in \mathscr{T}$ and \varnothing is the union of the empty family so $\emptyset \in \mathscr{T}$. The family \mathscr{T} is closed under taking unions since the union of unions of subfamilies of \mathscr{B} is also a union of subfamilies of \mathscr{B} .

Let $U, V \in \mathscr{T}$. We show that $U \cap V \in \mathscr{T}$. Assume

$$U = \bigcup_{\alpha \in A} B_{\alpha}$$

and

$$V = \bigcup_{\alpha \in C} D_{\alpha},$$

where A, C are some sets and $B_{\alpha}, D_{\beta} \in \mathscr{B}$ for each $\alpha \in A$ and $\beta \in C$. We have

$$U \cap V = \bigcup_{(\alpha,\beta) \in A \times C} B_{\alpha} \cap D_{\beta}.$$

For each $(\alpha, \beta) \in A \times C$ and each $x \in B_{\alpha} \cap D_{\beta}$ let $G_{\alpha,\beta,x} \in \mathscr{B}$ be such that

$$x \in G_{\alpha,\beta,x} \subseteq B_{\alpha} \cap D_{\beta}.$$

Then

$$U \cap V = \bigcup_{(\alpha,\beta) \in A \times C} \bigcup_{x \in B_{\alpha} \cap D_{\beta}} G_{\alpha,\beta,x}$$

so $U \cap V \in \mathscr{T}$.

We have proved that \mathscr{T} is a topology on X. Clearly, $\mathscr{B} \subseteq \mathscr{T}$. To show that \mathscr{B} is a basis for \mathscr{T} , let $U \in \mathscr{T}$ and $x \in U$. There is $B \in \mathscr{B}$ with $x \in B \subseteq U$. \Box

1.4.13. Homework 6 (due 2/18).

Problem 1.

Let $A := \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$. Let \mathscr{B}_1 be the collection of open intervals in \mathbb{R} and \mathscr{B}_2 be the collection of all subsets of \mathbb{R} that are of the form $(a, b) \smallsetminus A$ for $a, b \in \mathbb{R}$ with a < b. Prove that $\mathscr{B} := \mathscr{B}_1 \cup \mathscr{B}_2$ is a basis for a topology on \mathbb{R} and that the sequence $\left(\frac{1}{n}\right)_{n \in \mathbb{N}}$ does not converge to 0 in this topology.

Solution. For each $x \in \mathbb{R}$ we have $x \in (x - 1, x + 1) \in \mathscr{B}_1$. Thus $\bigcup \mathscr{B} = \mathbb{R}$. Let $B_1, B_2 \in \mathscr{B}$ with $x \in B_1 \cap B_2$. We need to find $B \in \mathscr{B}$ with $x \in B$. There are a_1, a_2, b_1 and b_2 such that $B_1 = (a_1, b_1)$ or $B_1 = (a_1, b_1) \smallsetminus A$ and $B_2 = (a_2, b_2)$ or $B_2 = (a_2, b_2) \backsim A$. If $x \in A$, then $B_1 = (a_1, b_1)$ and $B_2 = (a_2, b_2)$ so $B = B_1 \cap B_2$ satisfies the requirements. If $x \notin A$, then

$$B = ((a_1, b_1) \cap (a_2, b_2)) \smallsetminus A$$

satisfies the requirements. Thus \mathscr{B} is a basis for the topology on \mathbb{R} .

Now we show that $\left(\frac{1}{n}\right)_{n\in\mathbb{N}}$ does not converge to 0 in this topology. Suppose, for a contradiction, that it does converge to 0. Then for every nbhd U of 0 there is $k \in \mathbb{N}$ with $\frac{1}{n} \in U$ for every $n \ge k$. In particular, this holds when $U = (-1, 1) \smallsetminus A$. However, for such U we have $\frac{1}{n} \notin U$ for all $n \in \mathbb{N}$ so we have a contradiction. \Box

Problem 2.

Let $\mathscr{B} := \{(x, \infty) : x \in \mathbb{R}\}$. Prove that \mathscr{B} is a basis of a topology on \mathbb{R} and find the closures of $A := \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$ and $B := \mathbb{N}$ in this topology. solution. We have $\bigcap \mathscr{B} = \mathbb{R}$ since for every $x \in \mathbb{R}$ we have $x \in (x - 1, \infty)$. If $B_1, B_2 \in \mathscr{B}$, then there are $b_1, b_2 \in \mathbb{R}$ such that $B_1 = (b_1, \infty)$ and $B_2 = (b_2, \infty)$ and let $x \in B_1 \cap B_2$. Let $b = \max\{b_1, b_2\}$. Then $(b, \infty) \in \mathscr{B}$ and $x \in (b, \infty) \subseteq B_1 \cap B_2$ as required. Thus \mathscr{B} is a basis for a topology on \mathbb{R} .

 \square

The closure of A is this topology is $(-\infty, 1]$ and the closure of B is \mathbb{R} .

Problem 3.

Consider \mathbb{R} with the topology generated by the basis $\mathscr{B} := \{[a, b) : a, b \in \mathbb{Q}\}$. Find the boundary, closure and interior of the subsets $(0, \sqrt{2})$ and $(\sqrt{3}, 4)$ of \mathbb{R} .

Solution. The set $(0, \sqrt{2})$ is equal to it's interior. It's closure is $[0, \sqrt{2}]$ and the boundary is $\{0, \sqrt{2}\}$.

The set $(\sqrt{3}, 4)$ is also equal to it's interior. It's closure is $[\sqrt{3}, 4)$ and the boundary is $\{\sqrt{3}\}$.

Problem 4.

Let \mathscr{B} be a basis of the topological space X and $A \subseteq X$. Prove that $x \in \overline{A}$ if and only if $B \cap A \neq \emptyset$ for every $B \in \mathscr{B}$ such that $x \in B$.

Solution. Assume that $x \in \overline{A}$. Let $B \in \mathscr{B}$ with $x \in B$. Since B is an open nbhd of x, it follows that $B \cap A \neq \emptyset$.

Now assume that $B \cap A \neq \emptyset$ for every $B \in \mathscr{B}$ such that $x \in B$. Let U be any open nbhd of x. Then there is $B \in \mathscr{B}$ with $x \in B \subseteq U$. Since $B \cap A \neq \emptyset$, it follows that $U \cap A \neq \emptyset$. Thus $x \in \overline{A}$.

1.4.14. Proposition (comparing topologies).

Let \mathscr{T} and \mathscr{T}' be topologies on the set X generated by bases \mathscr{B} and \mathscr{B}' , respectively. Then \mathscr{T}' is finer than \mathscr{T} if and only if for every $B \in \mathscr{B}$ and every $x \in B$ there is $B' \in \mathscr{B}'$ with $x \in B' \subseteq B$.

Proof. Assume that $\mathscr{T} \subseteq \mathscr{T}'$. If $B \in \mathscr{B}$ and $x \in \mathscr{B}$, then $B \in \mathscr{T}$ so $B \in \mathscr{T}'$ and there is $B' \in \mathscr{B}'$ with $x \in B' \subseteq B$.

Assume that every $B \in \mathscr{B}$ and every $x \in B$ there is $B' \in \mathscr{B}'$ with $x \in B' \subseteq B$. Let $U \in \mathscr{T}$. For every $x \in U$, there is $B_x \in \mathscr{B}$ with $x \in B_x \subseteq U$. By assumption, there is $B'_x \subseteq B_x$ with $x \in B'_x$. Thus

$$U = \bigcup_{x \in U} B'_x \in \mathscr{T}'.$$

Therefore $\mathscr{T} \subseteq \mathscr{T}'$.

1.4.15. Equivalent metrics.

Two metrics on the same set X are *equivalent* if they induce the same topology on X.

1.4.16. Proposition (equivalent metrics).

The metrics d and d' on a set X are equivalent if and only if for each $x \in X$ and each $\varepsilon > 0$ there are $\delta_1, \delta_2 > 0$ such that

$$B_d(x,\delta_1) \subseteq B_{d'}(x,\varepsilon)$$

and

$$B_{d'}(x,\delta_2) \subseteq B_d(x,\varepsilon).$$

Proof. Let \mathscr{T} and \mathscr{T}' be the topologies induced by d and d', respectively. Assume that d and d' are equivalent. Then $\mathscr{T} = \mathscr{T}'$. Let $x \in X$ and $\varepsilon > 0$. Since $B_{d'}(x,\varepsilon) \in \mathscr{T}'$, it follows that $B_{d'}(x,\varepsilon) \in \mathscr{T}$ so there is $\delta_1 > 0$ with

$$B_d(x,\delta_1) \subseteq B_{d'}(x,\varepsilon).$$

Similarly, there is $\delta_2 > 0$ with

$$B_{d'}(x,\delta_2) \subseteq B_d(x,\varepsilon).$$

Now assume that for each $x \in X$ and each $\varepsilon > 0$ there are $\delta_1, \delta_2 > 0$ such that

$$B_d(x,\delta_1) \subseteq B_{d'}(x,\varepsilon)$$

and

$$B_{d'}(x,\delta_2) \subseteq B_d(x,\varepsilon).$$

Let $U \in \mathscr{T}$. For each $x \in U$ there is $\varepsilon_x > 0$ with $B_d(x, \varepsilon_x) \subseteq U$. For each $x \in U$, let δ_x be such that

$$B_{d'}(x,\delta_x) \subseteq B_d(x,\varepsilon).$$

Then

$$U = \bigcup_{x \in U} B_{d'}(x, \delta_x) \in \mathscr{T}'.$$

Thus $\mathscr{T} \subseteq \mathscr{T}'$. Similarly $\mathscr{T}' \subseteq \mathscr{T}$.

1.4.17. Corollary (bounded metric)

Let (X, d) be a metric space. For each $\lambda > 0$, there is a metric d_{λ} that is equivalent to d such that the diameter of X in d_{λ} is at most λ .

Proof. Define

$$d_{\lambda}(x,y) := \min \left\{ \lambda, d(x,y) \right\}$$

for every $x, y \in X$. Then d_{λ} is a metric on X. Indeed, the positivity and symmetry of d_{λ} are clear and the triangle inequality holds since otherwise there are $x, y, z \in X$ with

 $d_{\lambda}(x,y) + d_{\lambda}(y,z) < d_{\lambda}(x,z)$

and, since $d_{\lambda}(x, z) \leq d(x, z)$, this implies that that

$$d_{\lambda}(x,y) + d_{\lambda}(y,z) < d(x,z)$$

so at least one of $d_{\lambda}(x, y)$, $d_{\lambda}(y, z)$ must be equal λ and consequently $d_{\lambda}(x, z) > \lambda$, which is a contradiction. The diameter of X in d_{λ} , which is equal to

$$\sup \left\{ d_{\lambda}(x,y) : x, y \in X \right\}$$

is at most λ since $d_{\lambda}(x, y) \leq \lambda$ for every $x, y \in X$.

It remains to show that the metrics d and d_{λ} are equivalent. Let $x \in X$ and $\varepsilon > 0$. Taking $\delta_1 := \varepsilon$ and $\delta_2 = \min \{\varepsilon, \lambda\}$, we get

$$B_d(x,\delta_1) \subseteq B_{d_\lambda}(x,\varepsilon)$$

since $d(x,y) < \delta_1 = \varepsilon$ implies that $d_{\lambda}(x,y) < \varepsilon$, and

$$B_{d_{\lambda}}(x,\delta_2) \subseteq B_d(x,\varepsilon),$$

since $d_{\lambda}(x, y) < \delta_2$ implies that $d_{\lambda}(x, y) < \lambda$ so $d_{\lambda}(x, y) = d(x, y)$ and so $d(x, y) < \varepsilon$. It follows that d and d_{λ} are equivalent.

1.4.18. Local basis.

Let X be a topological space and $x \in X$. A *nbhd basis* (*local basis*) at x is a collection \mathscr{B}_x of nbhds of x such that each nbhd of x contains a member of \mathscr{B}_x .

Examples.

The family of all open nbhds of x is a nbhd basis at x. In a discrete space, the family consisting of the singleton $\{x\}$ is a nbhd basis at x. In a metrics space the set $\{B(x, \varepsilon) : \varepsilon > 0\}$ is a nbhd basis at x.

1.4.19. Proposition (properties of nbhd basis).

Let X be a topological space and, for each $x \in X$, let \mathscr{B}_x be a nbhd basis at x. Then the following conditions hold for every $x \in X$:

- 1. $\mathscr{B}_x \neq \varnothing;$
- 2. $x \in B$ for every $B \in \mathscr{B}_x$;
- 3. for every $B_1, B_2 \in \mathscr{B}_x$ there is $B \in \mathscr{B}_x$ with $B \subseteq B_1 \cap B_2$;

4. for each $B \in \mathscr{B}_x$ there is $B' \in \mathscr{B}_x$ such that B contains a member of \mathscr{B}_y for every $y \in B'$.

Proof. Conditions 1.–3. follow easily from conditions 1.–3. of Proposition 1.2.8. We show that 4. holds. Let $B \in \mathscr{B}_x$. Since B is a nbhd of x, condition 5. of Proposition 1.2.8 implies that if

$$\mathring{B} := \{ y \in B : B \text{ is a nbhd of } y \}$$

is a nbhd of x. By the definition of a nbhd basis, there is $B' \in \mathscr{B}_x$ with $B' \subseteq \mathring{B}$. Then for every $y \in B'$, the set B is a nbhd of y so contains a member of \mathscr{B}_y . \Box

1.4.20. Theorem (topology from nbhd basis).

Let X be a set and, for each $x \in X$, let \mathscr{B}_x be a family of subsets of X satisfying conditions 1.-4. of Proposition 1.4.19. Then there exists a unique topology on X such that \mathscr{B}_x is a nbhd basis at x for every $x \in X$.

Proof. First note that if \mathscr{T} is a topology on X such that for each $x \in X$, the family \mathscr{B}_x is a nbhd basis at x relative to \mathscr{T} , then a subset U of X is in \mathscr{T} if and only if U contains a member of \mathscr{B}_x for each $x \in U$. Thus such a topology \mathscr{T} is unique provided it exists.

Define

 $\mathscr{T} := \{ U \subseteq X : \text{for every } x \in U \text{ there is } B \in \mathscr{B}_x \text{ with } B \subseteq U \}.$

We verify that \mathscr{T} is a topology on X. We have $\mathscr{D} \in \mathscr{T}$ since there are no $x \in \mathscr{D}$. We have $X \in \mathscr{T}$ since for every $x \in X$ the set \mathscr{B}_x is nonempty.

Let $\mathscr{A} \subseteq \mathscr{T}$ be arbitrary. We show that $\bigcup \mathscr{A} \in \mathscr{T}$. Let $x \in \bigcup \mathscr{A}$. Then $x \in U$ for some $U \in \mathscr{A}$ so there is $B \in \mathscr{B}_x$ with $B \subseteq U$ hence $B \subseteq \bigcup \mathscr{A}$.

Now let $U, V \in \mathscr{T}$. We show that $U \cap V \in \mathscr{T}$. Let $x \in U \cap V$. Then there are $B, D \in \mathscr{B}_x$ with $B \subseteq U$ and $D \subseteq V$. Let $G \in \mathscr{B}_x$ with $G \subseteq B \cap D$. Then $G \subseteq U \cap V$.

It remains to show that \mathscr{B}_x is a nbhd basis at x for every $x \in X$ relative to \mathscr{T} . Let $x \in X$. First we check that any $B \in \mathscr{B}_x$ is a nbhd of x. Given $B \in \mathscr{B}_x$, let

$$U := \{ y \in B : \text{there is } D \in \mathscr{B}_y \text{ with } D \subseteq B \}.$$

Since $x \in U$, it suffices to verify that $U \in \mathscr{T}$. If $y \in U$, and $D \in \mathscr{B}_y$ with $D \subseteq B$, then 4. implies that there is $D' \in \mathscr{B}_y$ such that D contains a member of \mathscr{B}_z for every $z \in D'$. Then B contains a member of \mathscr{B}_z for every $z \in D'$, which implies that $D' \subseteq U$. Thus for every $y \in U$ there is $D' \in \mathscr{B}_y$ with $D' \subseteq U$. Hence $U \in \mathscr{T}$. If N be a nbhd of x, then there is $U \in \mathscr{T}$ with $x \in U \subseteq N$ so there is $B \in \mathscr{B}_x$ with $B \subseteq U$. Thus $B \subseteq N$.

1.4.21. Homework 7 (due 2/25).

Problem 1.

Let \mathscr{S} be a subbasis for the topology of a space X and $D \subseteq X$ be such that $U \cap D \neq \emptyset$ for each $U \in \mathscr{S}$. Does it follow that D is dense in X? Give a proof or a counterexample.

Solution. No. Here is a counterexample. Let $X := \mathbb{R}$,

$$\mathscr{S} := \{(-\infty, a) : a \in \mathbb{R}\} \cup \{(a, \infty) : a \in \mathbb{R}\}$$

and $D := \mathbb{Z}$. Then \mathscr{S} is a subbasis for the standard topology on X and $U \cap D \neq \emptyset$ for each $U \in \mathscr{S}$. However, D is not dense in X.

Problem 2.

Let (X, d) be a metric space. Show that the metric d', defined by

$$d'(x,y) := \frac{d(x,y)}{1+d(x,y)}$$

is equivalent to d.

Solution. Let $x \in X$ and $\varepsilon > 0$. We find $\delta_1, \delta_2 > 0$ such that

 $B_d(x,\delta_1) \subseteq B_{d'}(x,\varepsilon)$ and $B_{d'}(x,\delta_2) \subseteq B_d(x,\varepsilon)$.

Define $\delta_1 := \varepsilon$. If $y \in B_d(x, \delta_1)$, then $d(x, y) < \delta_1 = \varepsilon$ so $d'(x, y) \le d(x, y) < \varepsilon$. Thus $y \in B_{d'}(x, \varepsilon)$ as required.

Define $\delta_2 := \frac{\varepsilon}{1+\varepsilon}$. If $y \in B_{d'}(x, \delta_2)$, then $d'(x, y) < \delta_2$ so $\frac{d(x, y)}{1+d(x, y)} < \frac{\varepsilon}{1+\varepsilon}$ $(1+\varepsilon) d(x, y) < \varepsilon (1+d(x, y))$

and $y \in B_d(x,\varepsilon)$ as required.

Problem 3.

Let d and d' be metrics defined on the set $\mathscr{C}(I)$ of all continuous function $f : [0,1] \to \mathbb{R}$ defined by

 $d(x, y) < \varepsilon$

$$d(f,g) := \int_0^1 |f(t) - g(t)| dt$$

$$d'(f,g) := \sup \{ |f(t) - g(t)| : t \in [0,1] \}.$$

Prove that d and d' are not equivalent.

Solution. For each $n \in \mathbb{N}$, let $f_n : [0,1] \to \mathbb{R}$ be defined by

$$f_n(x) := \begin{cases} 1 - nx & x \in \begin{bmatrix} 0, \frac{1}{n} \\ 0 & x \in \begin{bmatrix} \frac{1}{n}, 1 \end{bmatrix}; \end{cases}$$

and let $A = \{f_n : n \in \mathbb{N}\} \subseteq \mathscr{C}(I)$. Let $f : [0,1] \to \mathbb{R}$ be the constant function with f(x) := 0 for every $x \in [0,1]$. Then f is in the closure of A when $\mathscr{C}(I)$ has the topology induced by the metric d, but f is not in the closure of A when $\mathscr{C}(I)$ has the topology induced by the metric d'. Thus these two topologies are not the same, which means that d and d' are not equivalent. \Box

-	_	_	-
L			
L			

Problem 4.

Consider \mathbb{R} with the standard topology. Prove that for each $x \in \mathbb{R}$ the collection

$$\mathscr{B}_x := \{ (x - r, x + r) : r \in \mathbb{Q}, r > 0 \}$$

is a nbhd basis at x.

Solution. Each member of \mathscr{B}_x is open and contains x so it is a nbhd of x. Let N be any nbhd of x. There is open U with $x \in U \subseteq N$. There is an open interval $(a, b) \subseteq U$ with $x \in (a, b)$. Let $r \in \mathbb{Q}$ be such that

$$0 < r < \min\{x - a, b - x\}.$$

Then $x \in (x - r, x + r) \subseteq U$ and $(x - r, x + r) \in \mathscr{B}_x$. Therefore, \mathscr{B}_x is a nbhd basis at x.

1.5. Subspaces

1.5.1. Proposition (subspace topology).

Let (X, \mathscr{T}) be a topological space and $Y \subseteq X$. Let

$$\mathscr{T}' := \{ U \cap Y : U \in \mathscr{T} \} \,.$$

Then \mathscr{T}' is a topology on Y.

Proof. Since $\emptyset \in \mathscr{T}$, we have

$$\emptyset = \emptyset \cap Y \in \mathscr{T}'.$$

Since $X \in \mathscr{T}$ and $Y = X \cap Y$, it follows that $Y \in \mathscr{T}'$.

Let $\mathscr{A} \subseteq \mathscr{T}'$. Then for each $U \in \mathscr{A}$, there is $V_U \in \mathscr{T}$ with $U = Y \cap V_U$. Since

$$\bigcup_{U\in\mathscr{A}} V_U \in \mathscr{T}$$

and

$$\bigcup \mathscr{A} = \bigcup_{U \in \mathscr{A}} (Y \cap V_U) = Y \cap \left(\bigcup_{U \in \mathscr{A}} V_U\right),$$

it follows that $\bigcup \mathscr{A} \in \mathscr{T}'$.

Let $U, V \in \mathscr{T}'$. There are $U', V' \in \mathscr{T}$ with $U = Y \cap U'$ and $V = Y \cap V'$. Then

$$U \cap V = Y \cap (U' \cap V')$$

and $U' \cap V' \in \mathscr{T}$ so $U \cap V \in \mathscr{T}'$.

1.5.2. Relative topology.

Let (X, \mathscr{T}) be a topological space and $Y \subseteq X$. The topology

$$\mathscr{T}' := \{ U \cap Y : U \in \mathscr{T} \}$$

is called the *relative topology* (or *subspace topology*) on Y.

Remark.

Let (Y, \mathscr{T}') be a subspace of a topological space (X, \mathscr{T}) . If $Z \subseteq Y$ then the subspace topology on Z induced by \mathscr{T} is the same as the subspace topology induced by \mathscr{T}' .

1.5.3. Proposition (closed sets in subspaces).

Let X be a topological space and $Y \subseteq X$. Consider Y as a topological space with the subspace topology. Then $C \subseteq Y$ is closed in Y if and only if there is a closed C' in X with $C = C' \cap Y$.

Proof. Assume that C is closed in Y. Then $Y \smallsetminus C$ is open in Y so there is open U in X with

$$Y\smallsetminus C=U\cap Y.$$

Let $C' := X \setminus U$. Then C' is closed in X and $C = C' \cap Y$.

Now assume that there is a closed C' in X with $C = C' \cap Y$. Then $X \smallsetminus C'$ is open in X so

$$Y \smallsetminus C = (X \smallsetminus C') \cap Y$$

is open in Y implying that C is closed in Y.

1.5.4. Proposition (relative metric induces relative topology).

Let (X, d) be a metric space and $Y \subseteq X$. Then the restriction d' of d to $Y \times Y$ is a metric that induces the relative topology on Y.

Proof. Let \mathscr{T} be the topology on X induced by d, let \mathscr{T}' be the corresponding subspace topology on Y. We show that \mathscr{T}' is induced by the metric d'. Let $U \in \mathscr{T}'$ and $x \in U$. There is $V \in \mathscr{T}$ with $U = V \cap Y$. Since $x \in V$, there is $\varepsilon > 0$ with $B_d(x, \varepsilon) \subseteq V$. Then

$$B_{d'}(x,\varepsilon) = B_d(x,\varepsilon) \cap Y \subseteq U,$$

implying that U is open in the metric space (Y, d').

Now assume that U is open in the metric space (Y, d'). For each $x \in U$ there is $\varepsilon_x > 0$ with

$$B_{d'}(x,\varepsilon_x) \subseteq U.$$

Since

$$B_{d'}(x,\varepsilon_x) = B_d(x,\varepsilon_x) \cap Y,$$

it is open in the subspace topology on Y. Thus

$$U = \bigcup_{x \in U} B_{d'}(x, \varepsilon_x) \in \mathscr{T}'$$

as required.

1.5.5. Proposition (closed and open subspaces).

Let X be a topological space and $Y \subseteq X$ be a subspace of X. If Y is open in X, then for any $A \subseteq Y$, the set A is open in Y if and only if it is open in X. If Y is closed in X, then any $A \subseteq Y$ is closed in Y if and only if it is closed in X.

Proof. Assume that Y is open in X. Let $A \subseteq Y$. If A is open in X, then $A = A \cap Y$ is open in Y. If A is open in Y, then $A = U \cap Y$ for some $U \subseteq X$ that is open in X. Then A is open in X.

If Y is closed in X, the proof is similar.

1.5.6. Proposition (relative subbasis, basis and nbhd basis).

Let X be a topological space and $Y \subseteq X$ be a subspace.

1. If \mathscr{S} is a subbasis of the topology on X then

$$\mathscr{S}' := \{ S \cap Y : S \in \mathscr{S} \}$$

is a subbasis for the topology on Y.

2. If \mathscr{B} is a basis of the topology on X then

$$\mathscr{B}' := \{ B \cap Y : B \in \mathscr{B} \}$$

is a basis for the topology on Y.

3. If \mathscr{B}_x is a nbhd basis at $x \in X$ in X and if $x \in Y$, then

$$\mathscr{B}'_x := \{ B \cap Y : B \in \mathscr{B}_x \}$$

is a nbhd basis at x in Y.

1.5.7. Proposition (relative closure and derived set).

Let X be a topological space and $Y \subseteq X$. For $A \subseteq Y$, let \overline{A}_X and A'_X denote the closure and the derived set of A, respectively, relative to the topology on X and

let \overline{A}_Y and A'_Y denote the closure and the derived set of A, respectively, relative to the topology on Y. Then

$$\overline{A}_Y = \overline{A}_X \cap Y$$

and

$$A'_Y = A'_X \cap Y,$$

for every $A \subseteq Y$.

Proof. Let $A \subseteq Y$. Assume that $x \in \overline{A}_Y$. Then $x \in Y$. To show that $x \in \overline{A}_X$, let U be an open nbhd of x in X. Then $U' := U \cap Y$ is an open nbhd of x in Y so $U' \cap A \neq \emptyset$. It follows that $U \cap A \neq \emptyset$ as required.

Assume that $x \in \overline{A}_X \cap Y$. Let U be an open nbhd of x in Y. Then there is open U' in X with $U = U' \cap Y$. Since $x \in \overline{A}_X$, we have $U' \cap A \neq \emptyset$. Since $A \subseteq Y$, it follows that $U \cap A \neq \emptyset$. Thus $x \in \overline{A}_Y$.

The equality for derived sets is proved in a similar way.

1.5.8. Proposition (relative interior and boundary).

Let X be a topological space and $Y \subseteq X$. For $A \subseteq Y$, let A_X° and ∂A_X denote the interior and the boundary of A, respectively, relative to the topology on X and let A_Y° and ∂A_Y denote the interior and the boundary of A, respectively, relative to the topology on Y. Then

$$A_Y^\circ \supseteq A_X^\circ \cap Y$$

and

$$\partial A_Y \subseteq \partial A_X \cap Y,$$

for every $A \subseteq Y$.

Proof. Let $A \subseteq Y$. The inclusion $A_Y^{\circ} \supseteq A_X^{\circ} \cap Y$ holds since if $x \in A_X^{\circ} \cap Y$, then there is an open U in X with $x \in U \subseteq A$. Since U is open in Y, it follows that $x \in A_Y^{\circ}$.

 \square

Let $x \in \partial A_Y$. Then $x \in \overline{A}_Y$ and $x \in Y$. Since

$$\overline{Y \smallsetminus A}_Y = \overline{Y \smallsetminus A}_X \cap Y \subseteq \overline{X \smallsetminus A}_X \cap Y$$

and $x \in \overline{X \setminus A_X}$, it follows that $x \in \overline{Y \setminus A_Y}$.

Example.

Let $X = \mathbb{R}$ and $Y = \{0\}$ with $A = \{0\}$. Then

$$A_Y^\circ = \{0\} \neq A_X^\circ \cap Y = \emptyset$$

and

$$\partial A_Y = \emptyset \neq \partial A_X \cap Y = \{0\}$$

1.5.9. Proposition (relative linear order).

Let X be a topological space with an order topology induced by a linear order \leq on X and let $Y \subseteq X$. Let \mathscr{T} be the subspace topology on Y and \mathscr{T}' be the order topology on Y induced by the restriction \leq' of \leq to $Y \times Y$. Then $\mathscr{T}' \subseteq \mathscr{T}$. If moreover Y is an interval, then equality holds.

Proof. Let $V \in \mathscr{T}'$. If $x \in V$ then there are $a, b \in Y \cup \{-\infty, \infty\}$ with

$$x \in V_x = (a, b)_Y \subseteq V,$$

where

$$(a,b)_Y := \{ y \in Y : a < y < b \}.$$

Let

$$U_x := (a, b)_X := \{ y \in X : a < y < b \}$$

and $U = \bigcup_{x \in V} U_x$. Then U is open in X. Since $V_x = U_x \cap Y$ for each $x \in V$, we have

$$V = \bigcup_{x \in V} V_x = \left(\bigcup_{x \in V} U_x\right) \cap Y = U \cap Y,$$

so $V \in \mathscr{T}$ as required.

Assume that Y is an interval and $V \in \mathscr{T}$. Let U be open in X with $V = U \cap Y$. If $x \in V$, then there are $a, b \in X \cup \{-\infty, \infty\}$ with $x \in (a, b)_X \subseteq U$. Define a' := a if $a \in Y$ and $a' := -\infty$ otherwise. Let b' := b if $b \in Y$ and $b := \infty$ otherwise. Since Y is an interval, it follows that

$$V_x := (a', b')_Y = (a, b)_X \cap Y \subseteq V,$$

 \mathbf{SO}

$$V = \bigcup_{x \in V} V_x \in \mathscr{T}'$$

as required.

Example.

Let

$$X := \{0\} \cup (1,2) \subseteq \mathbb{R}.$$

Then $\{0\}$ is open in subspace topology on X induced from the topology on \mathbb{R} . However, if X is equipped with the order topology induced by restricting the linear order on \mathbb{R} to X, then $\{0\}$ is not open.

1.5.10. Homework 8 (due 3/3)

Problem 1.

A subset Y of a topological space is called *discrete* if the relative topology on Y is discrete. Prove that every subset of a discrete space is discrete. Prove that the subset $\{1/n : n \in \mathbb{N}\}$ of the real line \mathbb{R} with the standard topology is discrete and the subset $\{0\} \cup \{1/n : n \in \mathbb{N}\}$ is not discrete.

Solution. Let X be a discrete topological space and $Y \subseteq X$. If $A \subseteq Y$, then A is open in X and $A = A \cap Y$ so A is open in Y. Since every subset of Y is open in Y, the relative topology on Y is discrete.

Let $A := \{1/n : n \in \mathbb{N}\} \subseteq \mathbb{R}$. For each $n \in \mathbb{N}$, let $U_n := \left(\frac{1}{n+1}, \frac{1}{n-1}\right)$ provided $n \ge 2$ and $U_1 := \left(\frac{1}{2}, 2\right)$. For each $n \in \mathbb{N}$ the set U_n is open in \mathbb{R} and $U_n \cap \mathbb{R} = \left\{\frac{1}{n}\right\}$. Thus $\left\{\frac{1}{n}\right\}$ is open in A for each $n \in \mathbb{N}$, which implies that the relative topology on A is discrete.

Let $B := \{0\} \cup \{1/n : n \in \mathbb{N}\} \subseteq \mathbb{R}$. To prove that the relative topology on B is not discrete, we show that the set $\{0\}$ is not open in the relative topology on B. Suppose, for a contradiction that $\{0\}$ is open in B. Then there is open U in \mathbb{R} with $U \cap B = \{0\}$. Since U is open in \mathbb{R} , there are is an open interval $(a, b) \subseteq \mathbb{R}$ with $x \in (a, b) \subseteq U$. Since b > 0, there is $n \in \mathbb{N}$ with $\frac{1}{n} < b$. Thus $\frac{1}{n} \in U \cap B$, which is a contradiction.

Problem 2.

Let $a, b \in \mathbb{R} \setminus \mathbb{Q}$ with a < b. Prove that $[a, b] \cap \mathbb{Q}$ is both open and closed in the relative topology on \mathbb{Q} .

Solution. Since $a, b \notin \mathbb{Q}$, we have $[a, b] \cap \mathbb{Q} = (a, b) \cap \mathbb{Q}$. Since (a, b) is open in \mathbb{R} , it follows that $(a, b) \cap \mathbb{Q}$ is open in the relative topology on \mathbb{Q} . Thus $[a, b] \cap \mathbb{Q}$ is open in the relative topology on \mathbb{Q} .

Since [a, b] is closed in \mathbb{R} , it follows that $[a, b] \cap \mathbb{Q}$ is closed in the relative topology on \mathbb{Q} .

Problem 3.

Let X be a topological space such that every finite subspace of X has the trivial relative topology. Prove that the topology on X is trivial.

Solution. Suppose, for a contradiction, that the topology of X is non-trivial. Let $U \subseteq X$ be open in X with $U \notin \{\emptyset, X\}$. Let $x \in U$ and $y \in X \setminus U$. Then $\{x\} = U \cap \{x, y\}$ so $\{x\}$ is open in the relative topology on $\{x, y\}$, which means that the relative topology on $\{x, y\}$ is not trivial. This is a contradiction. \Box

Problem 4.

Let X be a topological space such that every finite subspace of X has the discrete topology. Does it follow that X has the discrete topology? Give a proof or a counterexample.

Solution. No. Here is a counterexample. Let X be \mathbb{R} with the standard topology. If $A \subseteq \mathbb{R}$ is finite, then the relative topology on A is discrete. However the topology on \mathbb{R} is not discrete.

2. Continuity and the Product Topology

2.1. Continuous Functions

2.1.1. Definition of a continuous function.

Let X and Y be topological spaces and $f: X \to Y$. We say that f is *continuous* if $f^{-1}[U]$ is open in X for every open $U \subseteq Y$.

Examples.

If X is discrete, then any function with domain X into any topological space Y is continuous.

If Y has the trivial topology then any function $f: X \to Y$ for any topological space X is discrete.

If X and Y are any topological spaces and $f: X \to Y$ is constant, then it is continuous.

If X is a topological space and $f: X \to X$ is the identity function (f(x) = x for each $x \in X$), then f is continuous.

2.1.2. Theorem (characterization of continuity).

Let X and Y be topological spaces and $f: X \to Y$. The following conditions are equivalent:

- 1. f is continuous.
- 2. $f^{-1}[C]$ is closed in X for any closed $C \subseteq Y$.
- 3. $f[\overline{A}] \subseteq \overline{f[A]}$ for any $A \subseteq X$.
- 4. $\overline{f^{-1}[B]} \subseteq f^{-1}[\overline{B}]$ for any $B \subseteq Y$.

Proof. Assume 1. and let $C \subseteq Y$ be closed. Then $Y \smallsetminus C$ is open in Y so $f^{-1}[Y \smallsetminus C]$ is open in X. Since

$$f^{-1}[C] = X \smallsetminus f^{-1}[Y \smallsetminus C],$$

it follows that $f^{-1}[C]$ is closed in X. Thus 2. holds. Similarly, 2. implies 1.

Now we show that 1. implies 3. Let $A \subseteq X$ and $y \in f[\overline{A}]$. Then y = f(x) for some $x \in \overline{A}$. Let U be an open nbhd of y in Y. Then $f^{-1}[U]$ is an open nbhd of x so

$$f^{-1}[U] \cap A \neq \emptyset.$$

Thus there is $z \in A$ with $f(z) \in U$ so

$$f[A] \cap U \neq \varnothing.$$

It follows that $y \in \overline{f[A]}$ and so 3. holds.

Now we show that 3. implies 4. Let $B \subseteq Y$. With $A := f^{-1}[B]$, 3. implies that

$$f\left[\overline{f^{-1}[B]}\right] \subseteq \overline{f[f^{-1}[B]]}.$$

Since $f\left[f^{-1}[B]\right] \subseteq B$, it follows that $f\left[\overline{f^{-1}[B]}\right] \subseteq \overline{B}$, so
 $\overline{f^{-1}[B]} \subseteq f^{-1}[\overline{B}].$

It remains to show that 4. implies 2. Let $C \subseteq Y$ be closed. Then 4. implies that

$$\overline{f^{-1}[C]} \subseteq f^{-1}[\overline{C}] = f^{-1}[C].$$

Since $f^{-1}[C] \subseteq \overline{f^{-1}[C]}$, it follows that $f^{-1}[C]$ is closed. Thus 2. holds.

2.1.3. Theorem (continuity and basis).

Let X and Y be topological spaces and $f: X \to Y$. Let \mathscr{B} be a basis and \mathscr{S} be a subbasis for the topology on Y. The following conditions are equivalent:

- 1. f is continuous.
- 2. $f^{-1}[B]$ is open in X for every $B \in \mathscr{B}$.
- 3. $f^{-1}[S]$ is open in X for every $S \in \mathscr{S}$.

Proof. Since every member of \mathscr{B} and every member of \mathscr{S} is open in Y, 1. implies both 2. and 3. If 2. holds, and U is open in Y, then $U = \bigcup \mathscr{A}$ for some $\mathscr{A} \subseteq \mathscr{B}$. Then

$$f^{-1}[U] = \bigcup_{B \in \mathscr{A}} f^{-1}[B]$$

is open in X so 1. holds.

Now assume 3. Let U be open in Y. If U = Y, then $f^{-1}[U] = X$ is open in X. If $U = \emptyset$, then $f^{-1}[U] = \emptyset$ is open in X. Otherwise, $U = \bigcup \mathscr{A}$ for some family \mathscr{A} consisting of intersections of finite nonempty subfamilies of \mathscr{S} . Since

$$f^{-1}[U] = \bigcup_{A \in \mathscr{A}} f^{-1}[A],$$

it suffices to show that $f^{-1}[A]$ is open for every $A \in \mathscr{A}$. If

$$A := S_1 \cap S_2 \cap \cdots \cap S_k,$$

then

$$f^{-1}[A] = f^{-1}[S_1] \cap f^{-1}[S_2] \cap \dots \cap f^{-1}[S_k],$$

which is an intersection of finitely many open sets in X. Thus $f^{-1}[A]$ is open in X.

2.1.4. Theorem (composition of continuous functions).

Let X, Y, Z be topological space and $f : X \to Y$ and $g : Y \to Z$ be continuous. Then $g \circ f : X \to Y$ is continuous. *Proof.* Let U be open in Z. Then

$$(g \circ f)^{-1}[U] = g^{-1}[f^{-1}[U]].$$

Since f is continuous, $f^{-1}[U]$ is open in Y and since g is continuous, $g^{-1}[f^{-1}[U]]$ is open in X. Thus $g \circ f$ is continuous.

2.1.5. Theorem (characterization of subspace topology).

Let X be a topological space and Y be a subset of X. The subspace topology on Y is the smallest topology on Y for which the embedding $j : Y \to X$ (with j(y) := y for each $y \in Y$) is continuous.

Proof. If U is open in X, then $j^{-1}[U] = U \cap Y$ is open in the subspace topology on Y. Thus j is continuous. Assume that \mathscr{T} is any topology on Y for which j is continuous. Then

$$U \cap Y = j^{-1}[U] \in \mathscr{T}$$

for any open $U \subseteq X$ so \mathscr{T} is larger than the subspace topology on Y.

2.1.6. Localized continuity.

Let X and Y be topological spaces and $f : X \to Y$. Then f is continuous at $x \in X$ provided $f^{-1}[U]$ is a nbhd of x for any nbhd U of f(x).

2.1.7. Theorem (localized continuity).

Let X and Y be topological spaces. A function $f: X \to Y$ is continuous if and only if f is continuous at each $x \in X$.

Proof. Assume that f is continuous and $x \in X$. If U is a nbhd of f(x), then there is open U' in Y with $f(x) \in U' \subseteq U$. Since f is continuous, $f^{-1}[U']$ is open in X and

$$x \in f^{-1}[U'] \subseteq f^{-1}[U].$$

Thus $f^{-1}[U]$ is a nbhd of x in X.

Now assume that f is continuous at each $x \in X$. Let U be open in Y. For each $x \in f^{-1}[U]$, the set U is a nbhd of f(x) so $f^{-1}[U]$ is nbhd of x. Thus $f^{-1}[U]$ is open in X.

2.1.8. Theorem (Gluing Lemma).

Let X and Y be topological spaces with

$$X = \bigcup_{i=1}^{n} X_i,$$

where each X_i is open in X. If $f_i : X_i \to Y$ is continuous for each i = 1, 2, ..., nand

$$f := \bigcup_{i=1}^{n} f_i$$

is a function, then $f: X \to Y$ is continuous. The same conclusion holds if we assume that each X_i is closed in X.

Proof. Let U be open in Y. Then

$$f^{-1}[U] = \bigcup_{i=1}^{n} f_i^{-1}[U]$$

and $f_i^{-1}[U]$ is open in X_i for each i = 1, 2, ..., n. Since X_i is open in X, it follows that $f_i^{-1}[U]$ is open in X for each i = 1, 2, ..., n. Thus $f^{-1}[U]$ is open in X.

Assuming that each X_i is closed in X, we use a similar argument starting with a closed subset of Y.

Remark.

Let X and Y be topological spaces with $X = \bigcup_{i \in A} X_i$, where each X_i is open in X. If $f_i : X_i \to Y$ is continuous for each $i \in A$ and $f := \bigcup_{i \in A} f_i$ is a function, then $f : X \to Y$ is continuous.

Example.

Let $X := \mathbb{R}$ with $X_r := \{r\}$ for each $r \in \mathbb{R}$. Then each X_r is closed in X. If $f_r : X_r \to \mathbb{R}$ is defined by $f_r(r) := 1$ for $r \in \mathbb{Q}$ and $f_r(r) := 0$ for $r \in \mathbb{R} \setminus \mathbb{Q}$, then f_r is continuous for each $r \in \mathbb{R}$, but the functions $f := \bigcup_{i \in A} f_i$ is not continuous.

2.1.9. Locally finite family.

Let X be a topological space and \mathscr{A} be a family of subsets of X. We say that \mathscr{A} is *locally finite* when each $x \in X$ has a nbhd U such that

$$\{A \in \mathscr{A} : A \cap U \neq \emptyset\}$$

is finite.

2.1.10. Proposition (closure and locally finite family).

Let X be a topological space and \mathscr{A} be a locally finite family of subsets of X. Then $\bigcup_{A \in \mathscr{A}} \overline{A}$ is closed.

Proof. Let

$$x\in\overline{\bigcup_{A\in\mathscr{A}}\overline{A}}$$

There is an open nbhd U of x such that

$$\mathscr{A}' := \{ A \in \mathscr{A} : A \cap U \neq \emptyset \}$$

is finite. Then $U \cap \overline{A} = \emptyset$ for any $A \in \mathscr{A} \setminus \mathscr{A}'$. Suppose, for a contradiction, that

$$x \notin \bigcup_{A \in \mathscr{A}} \overline{A}.$$

For each $A \in \mathscr{A}'$, let $U_A := X \setminus \overline{A}$. Then U_A is an open nbhd of x with $U_A \cap \overline{A} = \varnothing$. If

$$V := U \cap \bigcap_{A \in \mathscr{A}'} U_A,$$

then V is a nbhd of x such that

$$V \cap \bigcup_{A \in \mathscr{A}} \overline{A} = \varnothing,$$

which is a contradiction.

Remark.

In particular, the union of a locally finite family of closed sets is closed.

2.1.11. Corollary (closure and locally finite family).

Let X and Y be topological spaces with $X = \bigcup_{i \in A} X_i$, where each X_i is closed in X and $\{X_i : i \in A\}$ is locally finite. If $f_i : X_i \to Y$ is continuous for each $i \in A$ and $f := \bigcup_{i \in A} f_i$ is a function, then $f : X \to Y$ is continuous.

Proof. Let C be closed in Y. Then $f_i^{-1}[C]$ is closed in X_i for each $i \in A$ so it is closed in X. Since $\{X_i : i \in A\}$ is locally finite, it follows that $\{f_i^{-1}[C] : i \in A\}$ is locally finite. Since

$$f^{-1}[C] = \bigcup_{i \in A} f_i^{-1}[C],$$

it follows that $f^{-1}[C]$ is closed.

2.1.12. Homeomorphism.

Let X and Y be topological space. If $f: X \to Y$ is a bijection such that both f and f^{-1} are continuous, then f is a *homeomorphism*. If there exists a homeomorphism $X \to Y$, then we say that X and Y are *homeomorphic*.

Example.

The Euclidean space \mathbb{R}^n is homeomorphic to the open ball B(0,1) in \mathbb{R}^n . The map $f: \mathbb{R}^n \to B(0,1)$ defined by

$$f(x) := \frac{x}{1 + \|x\|}$$

is a homeomorphism.

2.1.13. Open and closed functions.

Let X and Y be topological spaces and $f: X \to Y$. We say that f is open if f[U] is open in Y for every open U in X. We say that f is closed if f[C] is closed in Y for every closed C in X.

Examples.

The inclusion function $f:(0,1) \to \mathbb{R}$ is continuous and open, but not closed.

The inclusion function $f:[0,1] \to \mathbb{R}$ is continuous and closed, but not open.

The function $f: [0, 2\pi) \to \mathbb{R}^2$ defined by $f(x) = \langle \cos x, \sin x \rangle$ is continuous, but it is neither open nor closed.

2.1.14. Theorem (characterization of homeomorphisms).

Let X and Y be topological spaces and $f: X \to Y$ be a bijection. The following conditions are equivalent:

- 1. f is a homeomorphism.
- 2. f is continuous and open.
- 3. f is continuous and closed.

Proof. Let $g := f^{-1}$. Assume 1. Then $g : Y \to X$ is continuous. If U is open in X, then $f[U] = g^{-1}[U]$ is open in X. Thus 2. hold. Similarly, we show that 3. holds.

Now assume that 2. holds. If U is open in X, then $g^{-1}[U] = f[U]$ is open in Y so 1. holds. Similarly, we show that 3. implies 1.

2.1.15. Proposition (characterization of closed functions).

Let X and Y be topological spaces and $f: X \to Y$. Then f is closed if and only if $\overline{f[A]} \subseteq f[\overline{A}]$ for every $A \subseteq X$.

Proof. Assume that f is closed. Let $A \subseteq X$. Since $f[\overline{A}]$ is closed and contains f[A], it follows that $\overline{f[A]} \subseteq f[\overline{A}]$.

Now assume that $\overline{f[A]} \subseteq f[\overline{A}]$ for every $A \subseteq X$. Let C be closed in X. Then

$$\overline{f[C]} \subseteq f[\overline{C}] = f[C].$$

Since $f[C] \subseteq \overline{f[C]}$, it follows that equality holds so f[C] is closed.

Corollary.

A function $f: X \to Y$ is continuous and closed if and only if $f[\overline{A}] = \overline{f[A]}$ for any $A \subseteq X$.

2.1.16. Theorem (characterization of open functions).

Let X and Y be topological spaces with \mathscr{B} being a basis for the topology on X and $f: X \to Y$. Then f is open if and only if f[B] is open in Y for every $B \in \mathscr{B}$.

Proof. Assume that f is open. Since the members of \mathscr{B} are open, the image f[B] is open in Y for every $B \in \mathscr{B}$.

Now assume that f[B] is open in Y for every $B \in \mathscr{B}$. Let U be open in X. Then $U = \bigcup \mathscr{A}$ for some $\mathscr{A} \subseteq \mathscr{B}$. Since

$$f[U] = \bigcup_{A \in \mathscr{A}} f[A]$$

and f[A] is open in Y for every $A \in \mathscr{A}$, it follows that f[U] is open in Y. Thus f is open.

2.1.17. Topological embedding.

Let X and Y be topological spaces and $f: X \to Y$. The function f is a topological embedding if it is a homeomorphism onto f[X].

Remark.

f is a topological embedding provided it is injective, continuous and it's inverse as a function $f[X] \to X$ is continuous.

Example.

The function $f : [0, 2\pi) \to \mathbb{R}^2$ defined by $f(x) = \langle \cos x, \sin x \rangle$ is injective and continuous, but it is not a topological embedding.

2.1.18. Homework 9 (due 4/7)

Problem 1.

Let X be an uncountable set with the cofinite (or cocountable) topology. Show that every continuous function $X \to \mathbb{R}$ is constant.

Problem 2.

Give an example of topological spaces X, Y a function $f : X \to Y$ and a subspace $A \subseteq X$ such that $f \upharpoonright A$ is continuous, although f is not continuous at any point of A.

Problem 3.

Let X be a partially ordered set. Define a topology on X be declaring $U \subseteq X$ to be open if it satisfies the condition: if $y \leq x$ and $x \in U$, then $y \in U$. Show that a function $f: X \to X$ is continuous if and only if it is order preserving (i.e., $x \leq x'$ implies that $f(x) \leq f(x')$).

Problem 4.

Prove that the addition function $\mathbb{R}^2 \to \mathbb{R}$ is open, but is not closed.

2.2. Product Spaces

2.2.1. Proposition (basis for product topology)

Let X and Y be topological spaces and

$$\mathscr{B} := \{ U \times V : U \text{ is open in } X \text{ and } V \text{ is open in } Y \}.$$

Then \mathscr{B} is a basis for a topology on $X \times Y$.

Proof. According to Theorem 1.4.12, need to verify that $\bigcup \mathscr{B} = X \times Y$ and for every $B_1, B_2 \in \mathscr{B}$ and every $z \in B_1 \cap B_2$ there is $B \in \mathscr{B}$ with $z \in B \subseteq B_1 \cap B_2$. Since $X \times Y \in \mathscr{B}$, it follows that $\bigcup \mathscr{B} = X \times Y$.

Let $B_1, B_2 \in \mathscr{B}$ with $B_1 = U_1 \times V_1$ and $B_2 = U_2 \times V_2$. Then $\langle x, y \rangle \in B_1 \cap B_2$ if and only if $x \in U_1 \cap U_2$ and $y \in V_1 \cap V_2$ so

$$B_1 \cap B_2 = (U_1 \cap U_2) \times (V_1 \cap V_2) \in \mathscr{B}.$$

Thus we can take $B = B_1 \cap B_2$ for any $z \in B_1 \cap B_2$.

2.2.2. Product topology.

Let X and Y be topological spaces. The topology induced by the basis

 $\mathscr{B} := \{ U \times V : U \text{ is open in } X \text{ and } V \text{ is open in } Y \}$

is called the *product topology* on $X \times Y$ and the obtained topological space is called the *product space*.

The functions $p_X : X \times Y \to X$ and $p_Y : X \times Y \to Y$ defined by $p_X(x, y) := x$ and $p_Y(x, y) := y$ are called *projections*.

2.2.3. Proposition (characterization of product topology).

Let X and Y be topological spaces and $Z := X \times Y$ be the product space. The projections $p_X : Z \to X$ and $p_Y : Z \to Y$ are continuous and open. Moreover, the product topology on $X \times Y$ is the smallest topology for which both p_X and p_Y are continuous.

Proof. Let

 $\mathscr{B} := \{ U \times V : U \text{ is open in } X \text{ and } V \text{ is open in } Y \}.$

Since $p_X^{-1}[U \times V] = U$ is open in X for every $U \times V \in \mathscr{B}$, it follows that p_X is continuous. Similarly, p_Y is continuous. Theorem 2.1.16 implies that both p_X and p_Y are open.

Assume that \mathscr{T} is any topology on $X \times Y$ for which both p_X and p_Y are continuous. If U is open in X and V is open in Y, then

$$U \times V = (U \times Y) \cap (X \times V) = p_X^{-1}[U] \cap p_Y^{-1}[V]$$

belongs to \mathscr{T} . Thus $\mathscr{B} \subseteq \mathscr{T}$, which implies that \mathscr{T} is finer than the product topology on $X \times Y$.

Example.

Let $X = Y := \mathbb{R}$ and

$$C := \{ \langle x, y \rangle \in X \times Y : xy = 1 \}.$$

Then C is closed in $X \times Y$, but $p_X[C] = X \setminus \{0\}$ is not closed in X.

Remark.

If X and Y are topological spaces and

$$\mathscr{S} := \left\{ p_X^{-1}[U] : U \text{ is open in } X \right\} \cup \left\{ p_Y^{-1}[V] : V \text{ is open in } Y \right\},$$

then \mathscr{S} is a subbasis for the product topology on $X \times Y$.

2.2.4. Proposition (basis for product topology from bases).

Let \mathscr{B} and \mathscr{D} be bases for the topologies on X and Y, respectively. Then

$$\mathscr{E} := \{ B \times D : B \in \mathscr{B}, D \in \mathscr{D} \}$$

is a basis for the product topology on $X \times Y$.

Proof. It is clear that the members of \mathscr{E} are open in the product topology on $X \times Y$. Let W be open in the product topology on $X \times Y$ and $\langle x, y \rangle \in W$. There is an open U in X and an open V in Y with

$$\langle x, y \rangle \in U \times V \subseteq W.$$

Then $x \in B \subseteq U$ and $y \in D \subseteq V$ for some $B \in \mathscr{B}$ and $D \in \mathscr{D}$ so

$$\langle x, y \rangle \in B \times D \subseteq U \times V.$$

Thus $B \times D \subseteq W$ as required.

 \square

2.2.5. Proposition (product topology on \mathbb{R}^2).

The standard topology on \mathbb{R}^2 is the product topology on $\mathbb{R} \times \mathbb{R}$.

Proof. Let

$$\mathscr{B} := \{B(\langle x,y\rangle\,,r): \langle x,y\rangle \in \mathbb{R}\times\mathbb{R},\, r>0\}$$

and

$$\mathscr{D} := \left\{ (a,b) \times (c,d) : a,b,c,d \in \mathbb{R}, \ a < b, \ c < d \right\}.$$

Then \mathscr{B} is a basis of the standard topology on \mathbb{R}^2 and \mathscr{D} is a basis for the product topology on $\mathbb{R} \times \mathbb{R}$. Let $B \in \mathscr{B}$ and $\langle x, y \rangle \in B$. There are open intervals (a, b)and (c, d) with

$$\langle x, y \rangle \in (a, b) \times (c, d) \subseteq B.$$

Since $(a, b) \times (c, d) \in \mathscr{D}$, Proposition 1.4.14 implies that the product topology on $\mathbb{R} \times \mathbb{R}$ is finer than the standard topology. Similarly, the standard topology is finer than the product topology.

Remark.

If X, Y and Z are topological spaces then $X \times Y$ is homeomorphic with $Y \times X$ and $(X \times Y) \times Z$ is homeomorphic with $X \times (Y \times Z)$.

2.2.6. Theorem (product and subspace topologies commute).

Let X and Y be topological spaces with $A \subseteq X$ and $B \subseteq Y$. Let \mathscr{T} be the subspace topology on $A \times B$ inherited from the product topology on $X \times Y$ and \mathscr{T}' be the product topology on $A \times B$, where A has the subspace topology inherited from X and B has the subspace topology inherited from Y. Then $\mathscr{T} = \mathscr{T}'$.

Proof. The family

 $\mathscr{B} := \{ (A \times B) \cap (U \times V) : U \text{ open in } X \text{ and } V \text{ open in } Y \}$

is a basis for ${\mathscr T}$ and

$$\mathscr{B}' := \{ (A \cap U) \times (B \cap V) : U \text{ open in } X \text{ and } V \text{ open in } Y \}$$

is a basis for \mathscr{T}' . Since

$$(A \times B) \cap (U \times V) = (A \cap U) \times (B \cap V)$$

for any $U \subseteq X$ and $V \subseteq Y$, it follows that $\mathscr{B} = \mathscr{B}'$ so $\mathscr{T} = \mathscr{T}'$.

2.2.7. Theorem (continuity into products).

Let X, Y and Z be topological spaces and $f: Z \to X \times Y$. Then f is continuous if and only if both compositions $p_X \circ f$ and $p_Y \circ f$ are continuous.

Proof. If f is continuous, then both $p_X \circ f$ and $p_Y \circ f$ are continuous since compositions of continuous functions is continuous.

Assume that both $p_X \circ f$ and $p_Y \circ f$ are continuous. To show that f is continuous it suffices to prove that $f^{-1}[U \times V]$ is open in Z for any open $U \subseteq X$ and any open $V \subseteq Y$. Assume that U is open in X and V is open in Y. Note that $z \in f^{-1}[U \times V]$ if and only if $(p_X \circ f)(z) \in U$ and $(p_Y \circ f)(z) \in V$ so

$$f^{-1}[U \times V] = (p_X \circ f)^{-1}[U] \cap (p_Y \circ f)^{-1}[V].$$

Since both $(p_X \circ f)^{-1}[U]$ and $(p_Y \circ f)^{-1}[V]$ are open in Z, it follows that $f^{-1}[U \times V]$ is open in Z, as required.

Corollary.

Let X, X', Y and Y' be topological spaces and $f: X \to X'$ and $g: Y \to Y'$ be continuous. Let

$$f \times g : X \times Y \to X' \times Y'$$

be defined by

$$(f \times g) (x, y) := (f(x), g(y))$$

for any $x \in X$ and $y \in Y$. Then $f \times g$ is continuous.

Proof. It suffices to show that both $p_{X'} \circ (f \times g)$ and $p_{Y'} \circ (f \times g)$ are continuous. Since

$$p_{X'} \circ (f \times g) = f \circ p_X,$$

and since both f and p_X are continuous, it follows that $p_{X'} \circ (f \times g)$ is continuous. Similarly, $p_{Y'} \circ (f \times g)$ is continuous.

Corollary.

Let X, Y and Z be topological spaces and $f: Z \to X$ and $g: Z \to Y$ be continuous. Let

$$(f,g): Z \to X \times Y$$

be defined by

$$(f,g)(z) := (f(z),g(z))$$

for any $z \in Z$. Then (f, g) is continuous.

Proof. Since $p_X \circ (f,g) = f$ and $p_Y \circ (f,g) = g$ are continuous, it follows that (f,g) is continuous.

2.2.8. Infinite Cartesian products.

Let X_{α} be a set for any $\alpha \in A$. The *Cartesian product* $X := \prod_{\alpha \in A} X_{\alpha}$ is the set of all functions f with domain A such that $f(\alpha) \in X_{\alpha}$ for any $\alpha \in A$. Such a function f will be denoted by $(x_{\alpha})_{\alpha \in A}$, where x_{α} is the value of f at α .

For each $\alpha \in A$, let $p_{\alpha} : X \to X_{\alpha}$ be the projection defined by

$$p_{\alpha}\Big((x_{\beta})_{\beta\in A}\Big) := x_{\alpha}.$$

2.2.9. Box topology.

Let X_{α} be a topological space for each $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$. The collection

$$\mathscr{B} := \left\{ \prod_{\alpha \in A} U_{\alpha} : U_{\alpha} \text{ open in } X_{\alpha} \text{ for every } \alpha \in A \right\}$$

can be proved to be a basis for a topology on X. This topology is called the *box* topology on X.

Example.

Let $X_n := \mathbb{R}$ for every $n \in \mathbb{N}$ and $X := \prod_{n \in \mathbb{N}} X_n$ with the box topology. Let $f_n : \mathbb{R} \to X_n$ be the identity function and $f : \mathbb{R} \to X$ be defined by

$$f(x) = (x, x, x, \dots) \, .$$

Then $f_n = p_n \circ f$ is continuous for every $n \in \mathbb{N}$. However, f is not continuous.

Proof. Let $U_n := \left(-\frac{1}{n}, \frac{1}{n}\right)$ for each $n \in \mathbb{N}$. Then $U := \prod_{n \in \mathbb{N}} U_n$ is open in the box topology on X, but $f^{-1}[U] = \{0\}$ is not open in \mathbb{R} .

2.2.10. Product topology.

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. The product topology (or Tychonoff topology) on X is induced by the subbasis

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[U_{\alpha}] : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for each } \alpha \in A \right\}.$$

2.2.11. Proposition (characterization of infinite products).

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. The product topology on X is the smallest topology on X for which each projection p_{α} is continuous.

Proof. If X has the product topology, then each p_{α} is continuous since each member of the subbasis

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[U_{\alpha}] : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for each } \alpha \in A \right\}$$

is open in the product topology on X.

Assume that \mathscr{T} is a topology on X such that $p_{\alpha}: X \to X_{\alpha}$ is continuous for each $\alpha \in A$. Then $\mathscr{S} \subseteq \mathscr{T}$ so \mathscr{T} is finer than the product topology on X. \Box

Remark.

The box topology on X is finer than the product topology and when A is finite, these topologies are identical.

2.2.12. Proposition (subbasis for infinite product).

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. If \mathscr{S}_{α} is a subbasis for the topology on X_{α} for every $\alpha \in A$, then

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[S_{\alpha}] : S_{\alpha} \in \mathscr{S}_{\alpha} \text{ for every } \alpha \in A \right\}$$

is a subbasis for the product topology on X.

Proof. Let

 $\mathscr{S}' := \left\{ p_{\alpha}^{-1}[U_{\alpha}] : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for each } \alpha \in A \right\},\$

with \mathscr{T} being the topology induced by \mathscr{S} and \mathscr{T}' being the product topology (induced by \mathscr{S}'). Since $\mathscr{S} \subseteq \mathscr{S}'$, it follows that $\mathscr{T} \subseteq \mathscr{T}'$. To show that $\mathscr{T}' \subseteq \mathscr{T}$, it suffices to show that $\mathscr{S}' \subseteq \mathscr{T}$.

Assume that $S \in \mathscr{S}'$. Then $S = p_{\alpha}^{-1}(U_{\alpha})$ for some $\alpha \in A$ and U_{α} open in X_{α} . If $U_{\alpha} = X_{\alpha}$, then $S = X \in \mathscr{T}$. If $U_{\alpha} = \varnothing$, then $S = \emptyset \in \mathscr{T}$. Otherwise, U_{α} is a union of a family \mathscr{A} of nonempty finite intersections of members of \mathscr{S}_{α} so

$$S = p_{\alpha}^{-1} \left[\bigcup \mathscr{A} \right] = \bigcup_{A \in \mathscr{A}} p_{\alpha}^{-1}[A].$$

For $A \in \mathscr{A}$, if

$$A = S_1 \cap S_2 \cap \dots \cap S_n,$$

where $S_1, \ldots, S_n \in \mathscr{S}$, then

$$p_{\alpha}^{-1}[A] = p_{\alpha}^{-1}[S_1] \cap p_{\alpha}^{-1}[S_2] \cap \dots \cap p_{\alpha}^{-1}[S_n] \in \mathscr{T}.$$

Since $p_{\alpha}^{-1}[A] \in \mathscr{T}$ for every $A \in \mathscr{A}$, it follows that $S \in \mathscr{T}$, as required.

2.2.13. Proposition (basis for infinite product).

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. Assume that \mathscr{B}_{α} is a subbasis for the topology on X_{α} for every $\alpha \in A$, and let \mathscr{B} consist of products $\prod_{\alpha \in A} B_{\alpha}$ such that there is a finite $A' \subseteq A$ with $B_{\alpha} \in \mathscr{B}_{\alpha}$ for $\alpha \in A'$ and $B_{\alpha} = X_{\alpha}$ for $\alpha \in A \setminus A'$. Then \mathscr{B} is a basis for the product topology on X.

Proof. Since \mathscr{B}_{α} is a subbasis for the topology on X_{α} for every $\alpha \in A$, Proposition 2.2.12 implies that the family

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[B_{\alpha}] : B_{\alpha} \in \mathscr{B}_{\alpha} \text{ for every } \alpha \in A \right\}$$

is a subbasis for the product topology on X. Since \mathscr{B} consists of X and all intersections of finite nonempty subfamilies of \mathscr{S} , it follows that \mathscr{B} is a basis for the topology on X.

2.2.14. Proposition (infinite products and subspaces commute).

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. For each $\alpha \in A$ let Y_{α} be a subspace of X_{α} and let $Y := \prod_{\alpha \in A} Y_{\alpha}$. Then the product topology on Y coincides with the subspace topology inherited from X.

Proof. Let \mathscr{T} be the product topology on Y and \mathscr{T}' be the subspace topology. Let \mathscr{S}_{α} be a subbasis for the topology on X_{α} for all $\alpha \in A$. Then

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[S_{\alpha}] : S_{\alpha} \in \mathscr{B}_{\alpha} \text{ for every } \alpha \in A \right\}$$

is a subbasis for the product topology on X so

$$\mathscr{S}' := \left\{ p_{\alpha}^{-1}[S_{\alpha}] \cap Y : S_{\alpha} \in \mathscr{B}_{\alpha} \text{ for every } \alpha \in A \right\}$$

is a subbasis for \mathscr{T} . Since

$$p_{\alpha}^{-1}[S_{\alpha}] \cap Y = (p_{\alpha} \upharpoonright Y)^{-1} [S_{\alpha} \cap Y_{\alpha}]$$

and since

$$\mathscr{S}'_{\alpha} := \{ S_{\alpha} \cap Y_{\alpha} : \alpha \in A \}$$

is a subbasis for the topology on X_{α} for each $\alpha \in A$, it follows the \mathscr{S}' is a subbasis for \mathscr{T}' .

2.2.15. Theorem (infinite products and continuity).

Let X_{α} be a topological space for each $\alpha \in A$ and let $X := \prod_{\alpha \in A} X_{\alpha}$. Let $f: Y \to X$ for some topological space Y. Then f is continuous if and only if $p_{\alpha} \circ f: Y \to X_{\alpha}$ is continuous is continuous for each $\alpha \in A$. Moreover, the product topology on X is the unique topology with such a property.

Proof. If f is continuous, then it is clear that $p_{\alpha} \circ f$ is continuous for each $\alpha \in A$. Assume that $p_{\alpha} \circ f$ is continuous for each $\alpha \in A$. Since

$$\mathscr{S} := \left\{ p_{\alpha}^{-1}[U_{\alpha}] : U_{\alpha} \text{ is open in } X_{\alpha} \text{ for each } \alpha \in A \right\}$$

is a subbasis for the product topology on X, and since

$$f^{-1}[p_{\alpha}^{-1}[U_{\alpha}]] = (p_{\alpha} \circ f)^{-1}[U_{\alpha}]$$

is open in Y for each $\alpha \in A$, it follows that f is continuous.

Suppose that \mathscr{T} is any topology on X such that for any topological space Y and any $f: Y \to X$, the continuity of $p_{\alpha} \circ f$ for each $\alpha \in A$ is equivalent to the continuity of f. Taking Y := X with the same topology \mathscr{T} and f to be the identity function (which is continuous), we conclude that p_{α} is continuous for each $\alpha \in A$. This implies that \mathscr{T} is finer than the product topology on X by Proposition 2.2.11.

Taking Y := X with the product topology (and X with topology \mathscr{T}) and $f : Y \to X$ to be the identity function, we have $p_{\alpha} \circ f$ continuous for each $\alpha \in A$ so f is continuous. It follows that any member of \mathscr{T} is open in Y, thus \mathscr{T} is coarser than the product topology on X.

2.2.16. Theorem (countable products are metrizable).

Let (X_n, d_n) be a metric space for each $n \in \mathbb{N}$ and let $X := \prod_{n \in \mathbb{N}} X_n$. Consider X_n to be the topological space with the topology induced by d_n . Then there exists a metric d on X that induces the product topology on X.

Proof. For each $n \in \mathbb{N}$, let $\lambda_n > 0$ with $\lim_{n\to\infty} \lambda_n = 0$ and let d'_n be a metric on X_n such that the diameter of X_n in d'_n is at most λ_n . Such a metric d'_n exists by Corollary 1.4.17. For $x := (x_n)_{n \in \mathbb{N}}$ and $y := (y_n)_{n \in \mathbb{N}}$ in X, define

$$d(x,y) = \sup \left\{ d'_n(x_n, y_n) : n \in \mathbb{N} \right\}$$

It is clear that d is positive and symmetric. We verify the triangle inequality. Let $x := (x_n)_{n \in \mathbb{N}}$, $y := (y_n)_{n \in \mathbb{N}}$ and $z := (z_n)_{n \in \mathbb{N}}$ be in X. Then

$$d'_n(x_n, y_n) + d'_n(y_n, z_n) \ge d'_n(x_n, z_n)$$

for each $n \in \mathbb{N}$ so

$$d(x,y) + d(y,z) \ge d'_n(x_n, z_n)$$

for each $n \in \mathbb{N}$. Thus

$$d(x,y) + d(y,z) \ge d(x,z),$$

as required. Thus d is a metric on X.

Now we show that d induces the product topology on X. Let $n \in \mathbb{N}$ and U_n be open in X_n . For each

$$x = (x_k)_{k \in \mathbb{N}} \in p_n^{-1}[U_n]$$

there is $r_x > 0$ such that

$$x \in B_{d'_n}(x_n, r_x) \subseteq U_n.$$

If

$$y = (y_k)_{k \in \mathbb{N}} \in B_d(x, r_x),$$

then $d(x, y) < r_x$ so $d(x_k, y_k) < r_x$ for each $k \in \mathbb{N}$ and, in particular, $d(x_n, y_n) < r_x$ so $y_n \in U_n$ and consequently $y \in p_n^{-1}[U_n]$. Thus

$$B_d(x, r_x) \subseteq p_n^{-1}[U_n],$$

which implies that $p_n^{-1}[U_n]$ is open in the topology induced by d. Since

 $\mathscr{S} := \left\{ p_n^{-1}[U_n] : U_n \text{ is open in } X_n \text{ for each } n \in \mathbb{N} \right\}$

is a subbasis for the product topology on X, it follows that the topology induced by d is finer than the product topology.

Let U be open in the topology induced by d. We will show that U is open in the product topology. Let $x := (x_k)_{k \in \mathbb{N}} \in U$. There is r > 0 such that $B_d(x, r) \subseteq U$. Let $n \in \mathbb{N}$ be such that $\lambda_k < r/2$ for each k > n. For each k = 1, 2, ..., n let

$$U_k := B_{d'_k}(x_k, r)$$

and for k > n, let $U_k := X_k$. Then

$$U' := \prod_{k=1}^{\infty} U_k$$

is open in the product topology and

$$x \in U' \subseteq B_d(x, r) \subseteq U,$$

which implies that U is open in the product topology.

2.2.17. Metrizable spaces.

A topological space X is *metrizable* if there exists a metric d on X that induces the given topology.

Remark.

We have proved that the product of countably many metrizable spaces is metrizable.

Example.

Let A be an uncountable set and $X_{\alpha} := \mathbb{R}$ for each $\alpha \in A$. Then $X := \prod_{\alpha \in A} X_{\alpha}$ is not metrizable.

Proof. Suppose, for a contradiction, that d is a metric on X that induces the product topology. For each $n \in \mathbb{N}$ let B_n be the open ball $B_d(0, 1/n)$, where $0 \in X$ is the constant function with value 0, and let $A_n \subseteq A$ be finite such that

$$0 \in U_n := \prod_{\alpha \in A} U_{n,\alpha} \subseteq B_n,$$

where $U_{n,\alpha}$ is an open interval in \mathbb{R} for all $\alpha \in A_n$ and $U_{n,\alpha} = \mathbb{R}$ for all $\alpha \in A \setminus A_n$. Since $\bigcup_{n \in \mathbb{N}} A_n$ is countable and A is not, there is

$$\beta \in A \smallsetminus \bigcup_{n \in \mathbb{N}} A_n.$$

Let

$$x := (x_{\alpha})_{\alpha \in A} \in X,$$

with $x_{\beta} := 1$ and $x_{\alpha} := 0$ for $\alpha \in A \setminus \{\beta\}$. Then $x \in U_n$ for each $n \in \mathbb{N}$. Since $x \neq 0$ and since

$$\bigcap_{n\in\mathbb{N}}U_n\subseteq\bigcap_{n\in\mathbb{N}}B_n=\{0\},$$

we have a contradiction.

2.2.18. Exercises.

3. Connectedness

3.1. Connected Spaces

3.1.1. Separation.

Let X be a topological space. A separation of X is a pair $\{A, B\}$ of nonempty disjoint open subsets of X with $A \cup B = X$.

Remark.

If $\{A, B\}$ is a separation of X, then both A and B are closed.

3.1.2. Definition of connected spaces.

A topological space X is *connected* if it has no separation, otherwise is it is *disconnected*.

Examples.

The Sierpiński space is connected. The infinite space with cofinite topology is connected. Any trivial space is connected. A discrete space with more than one point is disconnected.

3.1.3. Theorem (connectedness and functions into discrete).

A topological space X is connected if and only if any continuous function from X to a discrete space is constant.

Proof. Assume that X is connected and Y is a discrete space. Suppose, for a contradiction, that $f: X \to Y$ is continuous and not constant. Then there are $x, x' \in X$ with $f(x) \neq f(x')$. Since Y is discrete, the sets $U := \{f(x)\}$ and $V := Y \setminus \{f(x)\}$ are open. Then $\{f^{-1}[U], f^{-1}[V]\}$ is a separation of X and we get a contradiction.

Now assume that any continuous function from X to a discrete space is constant. Suppose, for a contradiction, that $\{A, B\}$ is a separation of X. Let $Y := \{0, 1\}$ have the discrete topology. Define f(x) := 0 for $x \in A$ and f(x) := 1 for $x \in B$. Then f is continuous, but not constant, which is a contradiction.

3.1.4. Connected subsets.

A subset Y of a topological space X is *connected* if it is connected as a topological space with the subspace topology.

Remark.

A subset Y of a topological space X is connected if and only if there are no open subsets $A, B \subseteq X$ such that

- 1. $Y \subseteq A \cup B$,
- 2. $A \cap Y \neq \emptyset \neq B \cap Y$, and
- 3. $A \cap B \cap Y = \emptyset$.

3.1.5. Theorem (connected subsets of \mathbb{R}).

A subset Y of \mathbb{R} is connected if and only if Y is an interval.

Proof. Assume that Y is not an interval. Then there are $a, b \in Y$ and $c \in (a, b) \setminus Y$. With $A := (-\infty, c)$ and $B := (c, \infty)$, the pair $\{A \cap Y, B \cap Y\}$ is a separation of Y so Y is disconnected.

Now assume that Y is disconnected. Let A, B be open in \mathbb{R} and such that $\{A \cap Y, B \cap Y\}$ is a separation of Y. Let $a \in A \cap Y$ and $b \in B \cap Y$. Without loss of generality, we can assume that a < b. Let

$$c := \sup \left\{ x \in A : x < b \right\}.$$

Since B is open in \mathbb{R} and since $b \in B$, it follows that $c \notin B$. Since A is open, it follows that $c \notin A$. Thus $c \notin Y$ and since $a, b \in Y$ and a < c < b, it follows that Y is not an interval.

3.1.6. Separated subsets.

Let X be a topological space and $A, B \subseteq X$. We say that A and B are *separated* if $A \cap \overline{B} = \emptyset$ and $\overline{A} \cap B = \emptyset$.

3.1.7. Proposition (connectedness and separated subsets).

Let X be a topological space and $Y \subseteq X$. Then Y is connected if and only if Y is not a union of two nonempty separated subsets of X.

Proof. Assume that Y is connected. Suppose, for a contradiction, that $Y = A \cup B$, where A, B are nonempty and separated subsets of X. Let $U := X \setminus \overline{B}$ and $V := X \setminus \overline{A}$. Then $\{U \cap Y, V \cap Y\}$ is a separation of Y, which is a contradiction. Assume that Y is disconnected. Let U, V be open in X and such that $\{A, B\}$ is a separation of Y, where $A := U \cap Y$ and $B := V \cap Y$. Proposition 1.5.7 implies that the closure of A in Y is equal to $\overline{A} \cap Y$. Since A is closed in Y, it follows that $\overline{A} \cap Y = A$ so $\overline{A} \cap B = \emptyset$. Similarly, $A \cap \overline{B} = \emptyset$ so A and B are separated in X. Thus Y is a union of two nonempty separated subsets A and B of X. \Box

3.1.8. Theorem (continuous preserve connectedness).

Let X and Y be topological spaces and $f: X \to Y$. If X is connected, then Y is connected.

Proof. If Y is disconnected, then there is a separation $\{A, B\}$ of Y. If follows that $\{f^{-1}[A], f^{-1}[B]\}$ is a separation of X.

3.1.9. Corollary (Generalized Intermediate Value Theorem).

Let X be a connected topological space, $f : X \to \mathbb{R}$ be continuous and a < b < c be such that a and c are values of f. Then b is also a value of f.

Proof. Since f[X] is a connected subset of \mathbb{R} , it is an interval.

Corollary.

If $f : [0, 1] \to [0, 1]$, then f(t) = t for some $t \in [0, 1]$.

Proof. Suppose, for a contradiction, that such t does not exist. Then f(0) > 0and f(1) < 1. Define $g : [0,1] \to \mathbb{R}$ be g(x) := f(x) - x. Then g is continuous, g(0) > 0 and g(1) < 0 so there is $t \in (0,1)$ with g(t) = 0. Then f(t) = t, which is a contradiction.

3.1.10. Theorem (union of connected sets).

Let X be a topological space and \mathscr{A} be a family of connected subsets of X such that $A \cap A' \neq \emptyset$ for any $A, A' \in \mathscr{A}$. Then $\bigcup \mathscr{A}$ is a connected subset of X.

Proof. Suppose, for a contradiction, that $\bigcup \mathscr{A}$ is disconnected. Let $\{U, V\}$ be a separation of $\bigcup \mathscr{A}$. Then there are $A, A' \in \mathscr{A}$ with $U \cap A \neq \mathscr{O}$ and $V \cap A' \neq \mathscr{O}$. Let $x \in A \cap A'$. If $x \in V$, then $\{U \cap A, V \cap A\}$ is a separation of A, which is a contradiction. Similarly, we get a contradiction when $x \in U$.

Remark.

Let X be a topological space such that for any $x, y \in X$ there is a connected $A \subseteq X$ with $x, y \in A$. Then X is connected.

Proof. Suppose, for a contradiction, that X is disconnected. Let $\{A, B\}$ be a separation of X. Let $a \in A$ and $b \in B$. If C is a connected subset of X with $a, b \in C$, then $\{A \cap C, B \cap C\}$ is a separation of C, which is a contradiction. \Box

Remark.

Let X be a topological space, C be a connected subset of X and \mathscr{A} be a family of connected subsets of X such that $C \cap Y \neq \emptyset$ for any $Y \in \mathscr{A}$. Then $C \cup \bigcup \mathscr{A}$ is connected.

Proof. Suppose, for a contradiction, that $C \cup \bigcup \mathscr{A}$ is disconnected. Let $\{A, B\}$ be a separation of $C \cup \bigcup \mathscr{A}$. Since C is connected, either $A \cap C = \varnothing$ or $B \cap C = \varnothing$. Assume $A \cap C = \varnothing$. Let $a \in A$ and $Y \in \mathscr{A}$ be such that $a \in Y$. Since $C \subseteq B$ and $C \cap Y \neq \varnothing$, it follows that $B \cap Y \neq \varnothing$ so $\{A \cap Y, B \cap Y\}$ is a separation of Y, which is a contradiction. \Box

3.1.11. Lemma (connectedness of closure).

Let X be a topological space and $A \subseteq X$ be connected. If $A \subseteq B \subseteq \overline{A}$, then B is connected.

Proof. Let D be a discrete space and $f : B \to D$ be continuous. Then $f \upharpoonright A$ is constant. Let d be the value of f on A. Since B is the closure of A in B, it follows that

$$f[B] \subseteq \overline{f[A]} = \overline{\{d\}} = \{d\},\$$

so f is constant. Thus B is connected.

3.1.12. Theorem (product of connected spaces).

Let X_{α} be a topological space for every $\alpha \in A$. Then $X := \prod_{\alpha \in A} X_{\alpha}$ is connected if and only if X_{α} is connected for each $\alpha \in A$.

Proof. If X is connected, then each X_{α} is connected since $p_{\alpha} : X \to X_{\alpha}$ is continuous for each $\alpha \in A$.

Assume that X_{α} is connected for each $\alpha \in A$. Let $y = (y_{\alpha})_{\alpha \in A} \in X$ be fixed and let \mathscr{A} be the family of all connected subsets of X containing y. Then $\bigcup \mathscr{A}$ is connected so $\bigcup \mathscr{A}$ is connected. We will show that $\bigcup \mathscr{A} = X$. Let $x = (x_{\alpha})_{\alpha \in A} \in$ X. To show that $x \in \bigcup \mathscr{A}$ we will take any basic open nbhd B of x and prove that there is $Y \in \mathscr{A}$ such that $B \cap Y \neq \emptyset$, that is, that there is a connected subset Y of X with $y \in Y$ and $Y \cap B \neq \emptyset$.

Let $A' \subseteq A$ be finite and

$$B := \prod_{\alpha \in A} B_{\alpha},$$

where B_{α} is an open nbhd of x_{α} for $\alpha \in A'$ and $B_{\alpha} = X_{\alpha}$ for $\alpha \in A \setminus A'$. Assume that

$$A' := \{\alpha_1, \alpha_2, \ldots, \alpha_n\}.$$

Let

$$Y_1 := \left\{ (z_\alpha)_{\alpha \in A} : z_\alpha = y_\alpha \text{ for every } \alpha \in A \setminus \{\alpha_1\} \right\}.$$

Then Y_1 is homeomorphic to X_{α_1} and $y \in Y_1$. Let

 $Y_2 := \left\{ (z_\alpha)_{\alpha \in A} : z_{\alpha_1} = x_{\alpha_1}, \ z_\alpha = y_\alpha \text{ for every } \alpha \in A \smallsetminus \{\alpha_1, \alpha_2\} \right\}.$

Then Y_2 is homeomorphic to X_{α_2} and $Y_1 \cap Y_2 \neq \emptyset$. Thus $Y_1 \cup Y_2$ is connected. By induction, for $k \in \{2, 3, \ldots, n\}$ let

$$Y_k := \left\{ (z_\alpha)_{\alpha \in A} : z_{\alpha_i} = x_{\alpha_i} \text{ for } i = 1, \dots, k-1 \\ \text{and } z_\alpha = y_\alpha \text{ for } \alpha \in A \smallsetminus \{\alpha_1, \dots, \alpha_k\} \right\}.$$

Then Y_k is homeomorphic to X_{α_k} and $Y_{k-1} \cap Y_k \neq \emptyset$. Thus

$$(Y_1 \cup \dots \cup Y_{k-1}) \cap Y_k \neq \emptyset$$

so $Y_1 \cup \cdots \cup Y_k$ is connected. In particular,

$$Y := Y_1 \cup Y_2 \cup \cdots \cup Y_n$$

is connected and $y \in Y$ since $y \in Y_1$. Moreover, $Y \cap B \neq \emptyset$ since $x \in Y_n$.

3.1.13. Exercises.

3.2. Connected Components

3.2.1. Definition of components.

Let X be a topological space and $x \in X$. The component of x in X, denoted C(x) is the union of all connected subsets of X that contain x.

Remark.

The components of X are connected subsets.

3.2.2. Proposition (properties of components).

Let X be a topological space.

- 1. The set of components of X is a partition of X.
- 2. Each component is closed.
- 3. Each connected subset of X is contained in a component of X.

Proof. To prove 1. we show that if $x, y \in X$, then either C(x) = C(y) or $C(x) \cap C(y) = \emptyset$. Let $x, y \in X$. Suppose that $C(x) \cap C(y) \neq \emptyset$ then $C(x) \cup C(y)$ is connected and contains x so

$$C(x) \cup C(y) \subseteq C(x)$$

and consequently

$$C(x) \cup C(y) = C(x).$$

Similarly,

$$C(x) \cup C(y) = C(y).$$

Thus C(x) = C(y) as required.

Let $x \in X$. Since C(x) is connected, it follows that $\overline{C(x)}$ is connected. Thus $\overline{C(x)} \subseteq C(x)$ so $\overline{C(x)} = C(x)$ and C(x) is closed.

If A is a connected subset of X and $A \neq \emptyset$, then $A \subseteq C(x)$, where $x \in A$. \Box

Example.

Let \mathbb{Q} have the subspace topology. Then no subset of \mathbb{Q} with at least two points is connected (\mathbb{Q} contains no nontrivial intervals). Thus singletons are the components of \mathbb{Q} . They are not open in \mathbb{Q} .

Example.

Let C be the Cantor set. The components of C are singletons, since C contains no nontrivial interval.

3.2.3. Totally disconnected space.

A topological space X is *totally disconnected* if the components of X are singletons.

Examples.

The set of rational numbers \mathbb{Q} , the Cantor set C or the set $\mathbb{R} \setminus \mathbb{Q}$ of irrational numbers are all totally disconnected as topological spaces with the subspace topology inherited from \mathbb{R} .

3.2.4. Quasi-components.

Let X be a topological space and $K \subseteq X$. We say that K is a *quasi-component* of X if:

- 1. for each separation $\{A, B\}$ of X, either $K \subseteq A$ or $K \subseteq B$, and
- 2. for any $L \subseteq X$ with $K \subsetneqq L$ there is a separation $\{A, B\}$ of X with $L \cap A \neq \emptyset$ and $L \cap B \neq \emptyset$.

Example.

Let

$$J := \left\{\frac{1}{n} : n \in \mathbb{N}\right\} \times [0, 1] \cup \{0\} \times \left([0, 1] \setminus \left\{\frac{1}{2}\right\}\right)$$

with the subspace topology inherited from \mathbb{R}^2 . Then

$$J_1 = \{0\} \times \left[0, \frac{1}{2}\right)$$
 and $J_2 := \{0\} \times \left(\frac{1}{2}, 1\right]$

are components of J, but they are not quasi-components. $J_1 \cup J_2$ is a quasicomponent.

3.2.5. Proposition (properties of quasi-components).

Let X be a space.

- 1. Each point belongs to a unique quasi-component of X.
- 2. The quasi-component containing a point x is the intersection of all clopen subsets of X that contain x.
- 3. Each component of X is contained in a quasi-component of X.

Proof. 1. For $x \in X$, let K(x) be the set of all $y \in X$ such that there are no separation $\{A, B\}$ of X with $x \in A$ and $y \in B$. Then K(x) is a quasi-component of X containing x. Suppose that K and K' are quasi-components of X with $x \in K \cap K'$. If $\{A, B\}$ is a separation of X, then either $x \in A$ or $x \in B$. If $x \in A$,

then $K \subseteq A$ and $K' \subseteq A$ so $K \cup K' \subseteq A$. If $x \in B$, then $K \cup K' \subseteq B$. Thus $K \cup K'$ can't be a proper superset of neither K nor K'. It follows that

$$K = K \cup K' = K'.$$

2. Let K be a quasi-component of X with $x \in K$. If $A \subseteq X$ is clopen with $x \in A$, then either A = X or $\{A, X \smallsetminus A\}$ is a separation of X. In either case, $K \subseteq A$. Thus if \mathscr{A} is the family of all clopen subsets of X that contain x, then $K \subseteq \bigcap \mathscr{A}$. Let $\{A, B\}$ be any separation of X. If $x \in A$, then $A \in \mathscr{A}$ so $\bigcap \mathscr{A} \subseteq A$. If $x \in B$, then $\bigcap \mathscr{A} \subseteq B$. Thus $K = \bigcap \mathscr{A}$.

3. Let C be a component of X. Let $x \in C$ and K be the quasi-component of X with $x \in K$. Suppose, for a contradiction, that there is $y \in C \setminus K$. Then there is a separation $\{A, B\}$ of X with $x \in A$ and $y \in B$. This implies that $\{C \cap A, C \cap B\}$ is a separation of C, which is a contradiction.

Remark.

Any component of X that is clopen is a quasi-component. In particular, if there are only finitely many components, they are clopen so they are quasi-components.

3.2.6. Exercises.

3.3. Path-connected Spaces

3.3.1. Paths.

Let X be a topological space. A path in X is a continuous function $f : [0, 1] \to X$, where [0, 1] is the closed interval with the subspace topology inherited from \mathbb{R} . If f is a path in X with x := f(0) and y := f(1), then we say that f is a path from x to y.

3.3.2. Definition of path-connectivity.

A topological space X is *path-connected* if for every $x, y \in X$ there is a path in X from x to y.

Examples.

The trivial space is path-connected. The Sierpiński space is path-connected. The Euclidean space \mathbb{R}^n is path connected for each $n \in \mathbb{N}$.

3.3.3. Lemma.

Let X be a topological space and $x \in X$. Then X is path-connected if and only if for every $y \in X$ there is a path in X from x to y.

Proof. If X is path-connected, then for every $y \in X$ there is a path in X from x to y. Assume that for every $y \in X$ there is a path in X from x to y. Let $y, z \in X$. We show that there is a path in X from y to z. Let f be a path in X from x to y and g be a path in X from x to z. Define $h : [0, 1] \to X$ by

$$h(x) := \begin{cases} f(2x) & \text{if } 0 \le x \le \frac{1}{2}; \\ g\left(2\left(\frac{1}{2} - x\right)\right) & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Then h is a path in X from y to z.

Corollary.

The union of path-connected subspaces of X containing a given point x is path-connected.

Proof. If y belongs to such a union Y, then y belongs to a subspace Z of X that is path-connected and contains x. Consequently, there is a path f in Z from x to y. Then f is a path in Y from x to y. \Box

3.3.4. Theorem (path-connected are connected)

Every path-connected space is connected.

Proof. Let X be path-connected and suppose, for a contradiction, that $\{A, B\}$ is a separation of X. Let $x \in A$ and $y \in B$ and f be a path in X from x to y. Then $\{f^{-1}[A], f^{-1}[B]\}$ is a separation of [0, 1], which is a contradiction since [0, 1] is connected.

Remark.

Every connected subspace of \mathbb{R} is an interval so it is path-connected.

3.3.5. Example (topologist's sine curve).

Let

$$X := \left\{ \langle x, y \rangle \in \mathbb{R}^2 : x \in (0, 1], \ y = \sin \frac{1}{x} \right\} \cup (\{0\} \times [-1, 1])$$

with the subspace topology inherited from \mathbb{R}^2 . Then X is connected, but it is not path-connected.

Proof. Since

$$X' := \left\{ \langle x, y \rangle \in \mathbb{R}^2 : x \in (0, 1], \ y = \sin \frac{1}{x} \right\}$$

is the image of continuous function on a connected space (0, 1], it follows that X' is connected. Since X is the closure of X' in \mathbb{R} , it is connected.

Suppose, for a contradiction, that X is path-connected. Let f be a path in X from (0,0) to $(1/\pi, 0)$. Let

$$t := \sup \{s \in [0, 1] : (f_1)(s) = 0\},\$$

where f_1 is the composition of f with the projection on the first coordinate. We get a contradiction by showing that f_2 is not continuous at t, where f_2 is the composition of f with the projection on the second coordinate.

Since f_1 is continuous, it follows that $f_1(t) = 0$ so t < 1. By the intermediate value property of the function f_1 there are sequences $(c_n)_{n \in \mathbb{N}}$ and $(d_n)_{n \in \mathbb{N}}$ in (t, 1] both converging to t such that $f_2(c_n) = 1$ and $f_2(d_n) = -1$ for each $n \in \mathbb{N}$. This proves the discontinuity of f_2 and provides the required contradiction.

3.3.6. Theorem (path-connectedness and continuity).

If $f: X \to Y$ is continuous and X is path-connected, then f[X] is path-connected.

Proof. Let $x, y \in X$ and g be a path in X from x to y. Then $f \circ g$ is a path in Y from f(x) to f(y).

3.3.7. Theorem (path-connectedness and products).

The product of a family of path-connected spaces is path-connected.

Proof. Let X_{α} be path-connected for each $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$. Let $x := (x_{\alpha})_{\alpha \in A}$ and $y := (y_{\alpha})_{\alpha \in A}$ be point in X. For each $\alpha \in A$ there is a path f_{α} in X_{α} from x_{α} to y_{α} . Then

$$f := \prod_{\alpha \in A} f_{\alpha},$$

defined by

$$f(t) := (f_{\alpha}(t))_{\alpha \in A},$$

 \square

for each $t \in [0, 1]$, is a path in X from x to y.

3.3.8. Path components.

Let X be a topological space and $x \in X$. The *path component* of x in X is the union of all path-connected subsets of X that contain x.

Example.

Let X be be the topologist's sine curve. Then X has two path components.

3.3.9. Theorem (Space-Filling curve).

There exists a continuous surjection $f: [0,1] \to [0,1]^2$.

Sketch of proof. Let $X_n := \{0, 1\}$ with the discrete topology and $X := \prod_{n \in \mathbb{N}} X_n$. There is a continuous surjection $g : X \to [0, 1]$ defined by

$$g((x_n)_{n\in\mathbb{N}}) := \sum_{n\in\mathbb{N}} \frac{x_n}{2^n}.$$

Then $g \times g : X^2 \to [0,1]^2$ is a continuous surjection. There is a homeomorphism $h: X \to X^2$ defined by

$$h((x_n)_{n\in\mathbb{N}}) := \left\langle (x_{2n})_{n\in\mathbb{N}}, (x_{2n+1})_{n\in\mathbb{N}} \right\rangle.$$

and there is a homeomorphism $\varphi : X \to C$, where $C \subseteq [0, 1]$ is the Cantor set, defined by

$$\varphi((x_n)_{n\in\mathbb{N}}) = \sum_{n\in\mathbb{N}} \frac{2x_n}{3^n}.$$

Then $\varphi^{-1}: C \to X$ can be extended to a continuous function $\psi: [0,1] \to X$ by defining ψ to be linear on each open interval removed during the construction of C. Then

$$f := (g \times g) \circ h \circ \psi$$

is a continuous surjection $[0,1] \rightarrow [0,1]^2$ as required.

Remark.

Every connected subspace of [0, 1] is path-connected, but there exists a connected subspace of $[0, 1]^2$ that is not path-connected. If follows that [0, 1] and $[0, 1]^2$ are not homeomorphic. We will show later that any continuous surjection $[0, 1] \rightarrow [0, 1]^2$ would be a homeomorphism, which implies that there are no such continuous surjection.

3.3.10. Exercises.

3.4. Local Connectivity

3.4.1. Locally connected spaces.

A topological space X is *locally connected* at $x \in X$ if for every nbhd U of x there is a connected nbhd V of x with $V \subseteq U$. We say that X is locally connected if it is locally connected at each $x \in X$.

Examples.

A trivial space is locally connected. A discrete space is locally connected. An Euclidean space \mathbb{R}^n is locally connected. The topologist's sine curve is not locally connected.

3.4.2. Theorem (criterion for local connectedness).

A topological space X is locally connected if and only if the components of every open subset of X are open in X.

Proof. Assume that X is locally connected and U is open in X. If C is a component of U and $x \in C$, then U is a nbhd of x in X so there is a connected nbhd V of x in X with $x \in V \subseteq U$. Then $V \subseteq C$ so C is a nbhd of x in X. Since C is a nbhd of each $x \in C$, it follows that C is open in X.

Now assume that the components of every open subset of X are open in X. Let $x \in X$ and U be a nbhd of x. Let U' be an open nbhd of x with $U' \subseteq U$ and V be the component of U' containing x. Then V is a connected nbhd of x with $V \subseteq U$. Thus X is locally connected.

Remark.

Every open subspace of a locally connected topological space is locally connected.

3.4.3. Theorem (continuity and local connectedness).

Let $f: X \to Y$ be a continuous closed surjection. If X is locally connected, then Y is locally connected.

Proof. Let U be open in Y and C be a component of U. We will show that $f^{-1}[C]$ is open in X. Since f is a closed surjection, we have

$$f[X \smallsetminus f^{-1}[C]] = Y \smallsetminus C,$$

so it will follow then that $Y \\ C$ is closed in Y and consequently that is C is open. Let $x \\\in f^{-1}[C]$. Then $x \\\in f^{-1}[U]$, which is open in X. Let V be the component of $f^{-1}[U]$ that contains x. Then $f(x) \\\in f[V]$ and f[V] is connected so $f[V] \\\subseteq C$ and hence $V \\\subseteq f^{-1}[C]$. Since V is open, $f^{-1}[C]$ is a nbhd of x. Since $f^{-1}[C]$ is a nbhd of each $x \\\in f^{-1}[C]$, it follows that $f^{-1}[C]$ is open, as required. \Box

Remark.

The above result also holds when f is a continuous open surjection.

Example.

Let $X := \{0\} \cup \mathbb{N}$ with discrete topology and

$$Y := \{0\} \cup \left\{\frac{1}{n} : n \in \mathbb{N}\right\}$$

with the topology inherited from \mathbb{R} . If $f: X \to Y$ is defined by f(0) := 0 and f(n) := 1/n for each $n \in \mathbb{N}$, then f is a continuous surjection. The space X is locally connected, but Y is not.

3.4.4. Theorem (local connectedness and products).

Let X_{α} be a topological space for each $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$. Then X is locally connected if and only if X_{α} is locally connected for each $\alpha \in A$ and all but finitely many X_{α} are connected. Proof. Assume that X is locally connected. Let $\beta \in A$ and $x \in X_{\beta}$. We show that X_{β} is locally connected at x. Let U_{β} be an open nbhd of x in X_{β} . Then $p_{\beta}^{-1}[U_{\beta}]$ is open in X. Let $\xi = (\xi_{\alpha})_{\alpha} \in p_{\beta}^{-1}[U_{\beta}]$ with $\xi_{\alpha} = x$. There is a connected nbhd V of ξ in X with $V \subseteq p_{\beta}^{-1}[U_{\beta}]$. Then

$$x \in p_{\beta}[V] \subseteq U_{\beta}$$

and $p_{\beta}[V]$ is a connected nbhd of x since p_{β} is continuous and open. Thus X_{β} is locally connected at x.

Now we show that all but finitely many of X_{α} are connected. Let C be a component of X. Then C is open so there is finite $A' \subseteq A$ and open $U_{\alpha} \in X_{\alpha}$ for every $\alpha \in A$ such that

$$\emptyset \neq B := \bigcap_{\alpha \in A'} p_{\alpha}^{-1}[U_{\alpha}] \subseteq C.$$

If $\alpha \in A \setminus A'$, then $p_{\alpha}[B] = X_{\alpha}$ so $p_{\alpha}[C] = X_{\alpha}$, which implies that X_{α} is connected. Now assume that X_{α} is locally connected for each $\alpha \in A$ and $A' \subseteq A$ is finite and such that X_{α} is connected for every $\alpha \in A \setminus A'$. Let $\xi = (\xi_{\alpha})_{\alpha \in A} \in X$. To show that X is locally connected at ξ , it suffices to show that for every finite $B \subseteq A$ and an open nbhd U_{α} of ξ_{α} for every $\alpha \in B$, the set

$$V := \bigcap_{\alpha \in B} p_{\alpha}^{-1}[U_{\alpha}]$$

contains a connected nbhd of ξ . Given a set V as described above, let V_{α} be a connected nbhd of ξ with $V_{\alpha} \subseteq U_{\alpha}$ for every $\alpha \in B$ and let V_{α} be any connected nbhd of ξ_{α} for each $\alpha \in A' \smallsetminus B$. Let

$$C := \bigcap_{\alpha \in A' \cup B} p_{\alpha}^{-1}[V_{\alpha}] = \prod_{\alpha \in A} V_{\alpha},$$

where $V_{\alpha} = X_{\alpha}$ for $\alpha \in A \setminus (A' \cup B)$. Then C is a nbhd of ξ contained in V and C is connected by Theorem 3.1.12, since V_{α} is connected for each $\alpha \in A$.

3.4.5. Local path-connectedness.

A topological space X is *locally path-connected at* $x \in X$ if for each nbhd U of x there exists a path-connected nbhd V of x with $V \subseteq U$. We say that X is *locally*

path-connected if it is locally path-connected at each $x \in X$.

3.4.6. Proposition (criterion for local path-connectedness).

A topological space X is locally path-connected if and only if the path-components of every open subspace of X are open.

Proof. Assume that the path-components of every open subspace of X are open. If $x \in X$ and U is an open nbhd of x in X, then the component of U that contains x is the required path-connected nbhd of x that is contained in U. Thus X is locally path-connected.

Assume that X is locally path-connected. Let U be open in X and P be a pathcomponent of U. If $x \in P$, there is a path-connected nbhd V of x with $V \subseteq U$. Then $P \cup V$ is path-connected so $P \cup V = P$ and so P is a nbhd of x. Since P is a nbhd of each $x \in P$, it is open.

Remark.

A topological space X is locally path-connected if and only if it has a basis consisting of path-connected sets.

3.4.7. Proposition (components of locally path-connected space)

Let X be a locally-path connected space. Then each path-component of X is clopen and is a component of X.

Proof. Let P be a path component of X. Then P is open. Since each other path component is also open, it follows that P is closed. Since P is clopen, no proper superset of P can be connected. Since P is connected, it is a component. \Box

Example.

The topologist's sine curve is connected, but it is not locally path-connected. It's path components are neither closed nor open.

Remark.

A connected locally-path connected space is path-connected.

3.4.8. Theorem (continuity and local path-connectedness).

Let $f: X \to Y$ be a continuous surjection that is open or closed. If X is locally path-connected, then Y is also locally path-connected.

3.4.9. Theorem (local path-connectedness and products).

Let X_{α} be a topological space for each $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$. Then X is locally path-connected if and only if X_{α} is locally path-connected for each $\alpha \in A$ and all but finitely many X_{α} are path-connected.

3.4.10. Exercises.

4. Convergence

4.1. Sequences

4.1.1. Convergence of sequences.

Let X be a topological and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. Then $(x_n)_{n \in \mathbb{N}}$ converges to $x \in X$ provided for each nbhd U of x there is $k \in \mathbb{N}$ such that $x_n \in U$ for each $n \geq k$.

4.1.2. Cluster points of sequences.

Let X be a topological and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. Then $x \in X$ is a *cluster* point of $(x_n)_{n \in \mathbb{N}}$ provided for each nbhd U of x and each $k \in \mathbb{N}$ there is $n \geq k$ such that $x_n \in U$.

Remark.

The point x is a cluster point of $(x_n)_{n \in \mathbb{N}}$ if and only if for each nbhd U of x the set

$$\{n \in \mathbb{N} : x_n \in U\}$$

is infinite.

4.1.3. Proposition (sequences and closure in metric spaces).

Let X be a metric space and $A \subseteq X$. Then $x \in \overline{A}$ if and only if there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A that converges to x.

Proof. Assume that there is a sequence $(x_n)_{n \in \mathbb{N}}$ in A that converges to x and U be a nbhd of x. Then there is $k \in \mathbb{N}$ with $x_n \in U$ for every $n \geq k$. In particular, $x_k \in U$ so $A \cap U \neq \emptyset$. If follows that $x \in \overline{A}$.

Now assume that $x \in \overline{A}$. Let $U_n := B(x, 1/n)$ be an open ball for each $n \in \mathbb{N}$. Then U_n is a nbhd of x for each $n \in \mathbb{N}$ so there is $x_n \in A \cap U_n$. If U is any nbhd of x, then there is $k \in \mathbb{N}$ with $U_k \subseteq U$. Then $x_k \in U$ for every $k \ge n$ so $(x_n)_{n \in \mathbb{N}}$ converges to x.

4.1.4. Proposition (continuity and sequences in metric spaces).

Let X and Y be metric spaces and $f: X \to Y$. Then f is continuous if and only if for every sequence $(x_n)_{n \in \mathbb{N}}$ in X that converges to $x \in X$, the sequence $(f(x_n))_{n \in \mathbb{N}}$ converges to f(x).

Proof. Assume that f is continuous and $(x_n)_{n \in \mathbb{N}}$ converges to $x \in X$. Let U be a nbhd of f(x) in Y. Then $f^{-1}[U]$ is a nbhd of x in X so there is $k \in \mathbb{N}$ such that $x_n \in f^{-1}[U]$ for every $n \geq k$. Then $f(x_n) \in U$ for every $n \geq k$, implying that $(f(x_n))_{n \in \mathbb{N}}$ converges to f(x).

Assume that for every sequence $(x_n)_{n\in\mathbb{N}}$ in X that converges to $x \in X$, the sequence $(f(x_n))_{n\in\mathbb{N}}$ converges to f(x). Let $A \subseteq X$ and $x \in \overline{A}$. Then there is a sequence $(x_n)_{n\in\mathbb{N}}$ in A that converges to x in X. Since $(f(x_n))_{n\in\mathbb{N}}$ converges to f(x), it follows that $f(x) \in \overline{f[A]}$. Since $f[\overline{A}] \subseteq \overline{f[A]}$, it follows that f is continuous.

4.1.5. Subsequences.

If $(x_n)_{n \in \mathbb{N}}$ is a sequence in a set X and $(k_n)_{n \in \mathbb{N}}$ is a sequence in \mathbb{N} with $k_1 < k_2 < \ldots$, then $(y_n)_{n \in \mathbb{N}}$ is a subsequence of $(x_n)_{n \in \mathbb{N}}$, where $y_n := x_{k_n}$ for each $n \in \mathbb{N}$.

Remark.

For any topological space and $A \subseteq X$. If a sequence $(x_n)_{n \in \mathbb{N}}$ in A converges to x, then $x \in \overline{A}$.

4.1.6. Proposition (subsequences and cluster points).

Let X be metric space and $(x_n)_{n\in\mathbb{N}}$ be a sequence in X. Then $x \in X$ is a cluster point of $(x_n)_{n\in\mathbb{N}}$ if and only if there is a subsequence $(y_n)_{n\in\mathbb{N}}$ of $(x_n)_{n\in\mathbb{N}}$ that converges to x.

Proof. Assume that x is a cluster point of $(x_n)_{n\in\mathbb{N}}$. For each $n\in\mathbb{N}$, let $U_n := B(x, 1/n)$. Let $k_1\in\mathbb{N}$ be such that $x_{k_1}\in U_1$ and for each $n\in\mathbb{N}$, let $k_{n+1} > k_n$ be such that $x_{k_{n+1}}\in U_{n+1}$. If $y_n := x_{k_n}$ for each $n\in\mathbb{N}$, then $(y_n)_{n\in\mathbb{N}}$ is a subsequence of $(x_n)_{n\in\mathbb{N}}$ that converges to x.

Assume that there is a subsequence $(y_n)_{n \in \mathbb{N}}$ of $(x_n)_{n \in \mathbb{N}}$ that converges to x. If U is a nbhd of x, then there is $k \in \mathbb{N}$ such that $y_n \in U$ for every $n \geq k$. Thus the set $\{n \in \mathbb{N} : x_n \in U\}$ is infinite, so x is a cluster point of $(x_n)_{n \in \mathbb{N}}$. \Box

Example.

Let $X := \mathbb{R}$ be the set of real numbers with the cocountable topology and $A := \mathbb{R} \setminus \mathbb{Q}$. Then no sequence $(x_n)_{n \in \mathbb{N}}$ in A converges to 0 since

$$U := \mathbb{R} \setminus \{x_n : n \in \mathbb{N}\}$$

is open and $0 \in U$. However $0 \in \overline{A}$ as any nbhd U of 0 is cocountable so $U \cap A \neq \emptyset$.

Example.

Let

$$X := \{ \langle 0, 0 \rangle \} \cup \mathbb{N} \times \mathbb{N}$$

with a topology such that $\{\langle m, n \rangle\}$ is open for every $m, n \in \mathbb{N}$ and U containing $\langle 0, 0 \rangle$ is open when there is $m_0 \in \mathbb{N}$ such that $\{\langle m, n \rangle \notin U : n \in \mathbb{N}\}$ is finite for every $m \geq m_0$. If $(x_n)_{n \in \mathbb{N}}$ is a bijective sequence in $\mathbb{N} \times \mathbb{N}$, then $\langle 0, 0 \rangle$ is a cluster point of $(x_n)_{n \in \mathbb{N}}$, but no sequence in $\mathbb{N} \times \mathbb{N}$ converges to $\langle 0, 0 \rangle$ so, in particular, no subsequence of $(x_n)_{n \in \mathbb{N}}$ converges to $\langle 0, 0 \rangle$.

4.1.7. Exercises.

4.2. Nets

4.2.1. Directed set.

A directed set is a set A with a binary relation \leq that is reflexive and transitive and for every $\alpha, \beta \in A$ there is $\gamma \in A$ with $\alpha \leq \gamma$ and $\beta \leq \gamma$.

Examples.

The set \mathbb{N} with standard linear order is a directed set. The family of finite subsets of a set X is directed by inclusion. The family of nbhds of $x \in X$ for a topological space X is directed by inverted inclusion.

4.2.2. Definition of a net.

A *net* in a set X is a function $(x_{\alpha})_{\alpha \in A}$ from a directed set A to X.

4.2.3. Convergence of nets in topological spaces.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a topological space X. If $Y \subseteq X$, then $(x_{\alpha})_{\alpha \in A}$ is eventually in Y provided there is $\beta \in A$ such that $x_{\alpha} \in Y$ for every $\alpha \geq \beta$.

A net $(x_{\alpha})_{\alpha \in A}$ in X converges to $x \in X$ provided for every nbhd U of x the net $(x_{\alpha})_{\alpha \in A}$ is eventually in U.

Example.

Let X be a trivial space. Then any net in X converges to any point of X.

4.2.4. Hausdorff spaces.

A topological space X is *Hausdorff* if for every distinct $x, y \in X$ there are disjoint open sets U, V with $x \in U$ and $y \in V$.

Example.

The Sierpiński space is not Hausdorff. Any discrete space is Hausdorff. Any metric space is Hausdorff. Any ordered space is Hausdorff.

4.2.5. Theorem (uniqueness of limits in Hausdorff spaces).

A topological space X is Hausdorff if and only if every net in X converges to at most one point in X.

Proof. Assume that X is Hausdorff. Suppose, for a contradiction, that $x, y \in X$ are distinct and $(x_{\alpha})_{\alpha \in A}$ is a net in X that converges to both x and y. Let U and V be disjoint and open in X with $x \in U$ and $y \in V$. There are $\beta, \gamma \in A$ with $x_{\alpha} \in U$ for $\alpha \geq \beta$ and $x_{\alpha} \in V$ for $\alpha \geq \gamma$. Let $\delta \in A$ be such that $\alpha \leq \delta$ and $\beta \leq \delta$. Then $x_{\delta} \in U \cap V$, which is a contradiction.

Assume that every net in X converges to at most one point in X. Let $x, y \in X$ be distinct and suppose, for a contradiction, that $U \cap V \neq \emptyset$ for any open U, V in X with $x \in U$ and $y \in V$. Let

 $A := \left\{ \langle U, V \rangle : U, V \text{ are open nbhds of } x \text{ and } y, \text{ respectively} \right\}.$

Define \leq on A by

$$\langle U,V\rangle\leq \langle U',V'\rangle$$

if $U' \subseteq U$ and $V' \subseteq V$. Then A becomes a directed set. Let $x_{\alpha} \in U \cap V$ for every $\alpha := \langle U, V \rangle \in A$. Then $(x_{\alpha})_{\alpha \in A}$ converges to x since for any open nbhd U of x we have $x_{\alpha} \in U$ for $\alpha \geq \langle U, X \rangle$. Similarly, $(x_{\alpha})_{\alpha \in A}$ converges to y, which is a contradiction.

4.2.6. Theorem (nets and closure).

Let X be a topological space and $A \subseteq X$. Then $x \in \overline{A}$ if and only if there is a net $(x_{\alpha})_{\alpha \in A}$ in A that converges to x.

Proof. Assume that there is a net $(x_{\alpha})_{\alpha \in A}$ in A that converges to x. Let U be a nbhd of x. Then there is $\beta \in A$ such that $x_{\alpha} \in U$ for every $\alpha \geq \beta$. In particular, $x_{\beta} \in U$ so $U \cap A \neq \emptyset$. Thus $x \in \overline{A}$.

Now assume that $x \in \overline{A}$. Let D be the set of all nbhds of x directed by inverted inclusion. For each $\alpha \in D$ there is $x_{\alpha} \in \alpha \cap A$. Then $(x_{\alpha})_{\alpha \in A}$ converges to x. \Box

4.2.7. Theorem (nets and continuity).

Let X and Y be topological spaces and $f: X \to Y$. Then f is continuous if and only if for every net $(x_{\alpha})_{\alpha \in A}$ in X that converges to $x \in X$, the net $(f(x_{\alpha}))_{\alpha \in A}$ converges to f(x).

Proof. Assume that f is continuous and $(x_{\alpha})_{\alpha \in A}$ is a net in X that converges to $x \in X$. Let U be a nbhd of f(x) in Y. Then $f^{-1}[U]$ is a nbhd of x in X so there is $\beta \in A$ such that $x_{\alpha} \in f^{-1}[U]$ for every $\alpha \geq \beta$. Thus $f(x_{\alpha}) \in U$ for every $\alpha \geq \beta$ so $(f(x_{\alpha}))_{\alpha \in A}$ converges to f(x).

Now assume that for every net $(x_{\alpha})_{\alpha \in A}$ in X that converges to $x \in X$, the net $(f(x_{\alpha}))_{\alpha \in A}$ converges to f(x). If $B \subseteq X$, and $x \in \overline{B}$, then there is a net $(x_{\alpha})_{\alpha \in A}$ in X that converges to x. Since $(f(x_{\alpha}))_{\alpha \in A}$ converges to f(x), it follows that $f(x) \in \overline{f[A]}$. Since $f[\overline{A}] \subseteq \overline{f[A]}$ for any $A \subseteq X$, it follows that f is continuous. \Box

4.2.8. Theorem (convergence of nets in product spaces).

Let X_{α} be a topological space for each $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$. A net $(x_{\beta})_{\beta \in B}$ in X converges to $x \in X$ if and only of the net $(p_{\alpha}(x_{\beta}))_{\beta \in B}$ converges to $p_{\alpha}(x)$ for every $\alpha \in A$.

Proof. Assume that $(x_{\beta})_{\beta \in B}$ converges to x. Since p_{α} is continuous, it follows that $(p_{\alpha}(x_{\beta}))_{\beta \in B}$ converges to $p_{\alpha}(x)$ for every $\alpha \in A$.

Assume that $(p_{\alpha}(x_{\beta}))_{\beta \in B}$ converges to $p_{\alpha}(x)$ for every $\alpha \in A$. Let U be a nbhd of x. There is a finite $A' \subseteq A$ and open U_{α} in X_{α} for every $\alpha \in A'$ such that

$$\prod_{\alpha \in A} U_{\alpha} \subseteq U,$$

where $U_{\alpha} := X_{\alpha}$ for every $\alpha \in A \smallsetminus A'$. Let

$$A' := \{\alpha_1, \alpha_2, \ldots, \alpha_n\}.$$

For each $\alpha \in A'$ there is $\beta_{\alpha} \in B$ such that $p_{\alpha}(x_{\beta}) \in U_{\alpha}$ for every $\beta \geq \beta_{\alpha}$. Since A' is finite, there is $\gamma \in B$ such that $\beta_{\alpha} \leq \gamma$ for every $\alpha \in A'$. If $\beta \geq \gamma$, then $p_{\alpha}(x_{\beta}) \in U_{\alpha}$ for every $\alpha \in A$ so $(x_{\beta})_{\beta \in B}$ converges to x.

4.2.9. Cluster points of nets.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a set X and $Y \subseteq X$. We say that $(x_{\alpha})_{\alpha \in A}$ is frequently in Y if for every $\beta \in A$ there is $\alpha \geq \beta$ with $x_{\alpha} \in Y$. If X is a topological space, $(x_{\alpha})_{\alpha \in A}$ is a net in X and $Y \subseteq X$, then $x \in X$ is a cluster point of $(x_{\alpha})_{\alpha \in A}$ if for every nbhd U of x the net $(x_{\alpha})_{\alpha \in A}$ is frequently in U.

4.2.10. Subnet.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a set X. A subnet of $(x_{\alpha})_{\alpha \in A}$ is a net $(y_{\beta})_{\beta \in B}$ such that there is a function $\varphi : B \to A$ which satisfies:

1. for every $\alpha \in A$ there is $\beta \in B$ with $\alpha \leq \varphi(\beta')$ for $\beta' \geq \beta$, and

2. $y_{\beta} = x_{\varphi(\beta)}$ for every $\beta \in B$.

We will say that φ defines the subnet.

4.2.11. Theorem (cluster points and subnets).

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a topological space X. Then $x \in X$ is a cluster point of $(x_{\alpha})_{\alpha \in A}$ if and only if there exists a subnet $(y_{\beta})_{\beta \in B}$ of $(x_{\alpha})_{\alpha \in A}$ that converges to x.

Proof. Assume that there exists a subnet $(y_{\beta})_{\beta \in B}$ of $(x_{\alpha})_{\alpha \in A}$ that converges to x. Let U be a nbhd of x in X. There is $\beta_0 \in B$ such that $y_{\beta} \in U$ for every $\beta \geq \beta_0$. Let $\varphi : B \to A$ define the subnet. Let $\alpha \in A$. There is $\beta_1 \in B$ such that $\varphi(\beta) \geq \alpha$ for every $\beta \geq \beta_1$. Let $\beta \in B$ be such that $\beta \geq \beta_0$ and $\beta \geq \beta_1$. then

$$x_{\varphi(\beta)} = y_{\beta} \in U$$

and $\varphi(\beta) \ge \alpha$. Thus $(x_{\alpha})_{\alpha \in A}$ is frequently in U, which implies that x is a cluster point of $(x_{\alpha})_{\alpha \in A}$.

Now assume that x is a cluster point of $(x_{\alpha})_{\alpha \in A}$. Let B be the family of all pairs $\langle \alpha, U \rangle$ with $\alpha \in A$ and U being a nbhd of x with $x_{\alpha} \in U$. Define a direction \leq on B by

$$\langle \alpha, U \rangle \le \langle \alpha', U' \rangle$$

if $\alpha \leq \alpha'$ and $U' \subseteq U$. Then $\varphi : B \to A$ given by $\varphi(\alpha, U) := \alpha$ defines a subnet $(y_{\beta})_{\beta \in B}$ of $(x_{\alpha})_{\alpha \in A}$. We show that $(y_{\beta})_{\beta \in B}$ converges to x. Let U be a nbhd of x. There is $\alpha \in A$ with $x_{\alpha} \in U$. Let $\beta_0 := \langle \alpha, U \rangle$. If $\beta := \langle \alpha', U' \rangle \geq \beta_0$, then

$$y_{\beta} = x_{\varphi(\beta)} = x_{\alpha'} \in U' \subseteq U,$$

as required.

4.2.12. Universal net (ultranet).

A net $(x_{\alpha})_{\alpha \in A}$ in a set X is a *universal net* (also called *ultranet*) if for every $Y \subseteq X$ the net $(x_{\alpha})_{\alpha \in A}$ is eventually in Y or in $X \smallsetminus Y$.

Remark.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a set X such that there is $\beta \in A$ and $y \in X$ with $x_{\alpha} = y$ for every $\alpha \geq \beta$. Then $(x_{\alpha})_{\alpha \in A}$ is an ultranet in X.

A net $(x_{\alpha})_{\alpha \in A}$ in a set X is frequently in some $Y \subseteq X$ if and only if $(x_{\alpha})_{\alpha \in A}$ is not eventually in $X \smallsetminus Y$, hence a universal net in a topological space converges to any of it's cluster points.

4.2.13. Exercises.

4.3. Filters

4.3.1. Definition of a filter.

Let X be a set. A *filter* on X is a family \mathscr{F} of subsets of X such that:

- 1. $\mathscr{F} \neq \varnothing$ and $\varnothing \notin \mathscr{F}$;
- 2. if $F \in \mathscr{F}$ and $F \subseteq F' \subseteq X$, then $F' \in \mathscr{F}$;
- 3. if $F_1, F_2 \in \mathscr{F}$, then $F_1 \cap F_2 \in \mathscr{F}$.

Examples.

If X is any nonempty set and $\mathscr{F} := \{X\}$, then \mathscr{F} is a filter on X.

Let X be an infinite set and \mathscr{F} consist of all cofinite sets. Then \mathscr{F} is a filter on X.

4.3.2. Filter generated by a net.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a set X and \mathscr{F} consist of those $F \subseteq \mathscr{F}$ for which there exist $\beta \in A$ such that $x_{\alpha} \in F$ for every $\alpha \geq \beta$, that is $F \in \mathscr{F}$ provided the net is eventually in F. Then \mathscr{F} is a filter on X.

4.3.3. Nbhd filter.

Let X be a topological space, $x \in X$ and \mathscr{F} consist of all nbhds of x. Then \mathscr{F} is a filter. It is called the *nbhd filter* at x.

4.3.4. Comparing filters.

Let \mathscr{F} and \mathscr{F}' be filters on a set X. Then \mathscr{F} is finer than \mathscr{F}' when $\mathscr{F}' \subseteq \mathscr{F}$.

4.3.5. Convergence of filters.

Let \mathscr{F} be a filter in a topological space X. Then \mathscr{F} converges to $x \in X$ provided \mathscr{F} is finer than the nbhd filter at x.

4.3.6. Theorem.

Let X be a topological space, $(x_{\alpha})_{\alpha \in A}$ be a net in X and \mathscr{F} be the filter generated by $(x_{\alpha})_{\alpha \in A}$. Then, for every $x \in X$, the net $(x_{\alpha})_{\alpha \in A}$ converges to x if and only if \mathscr{F} converges to x.

Proof. (to be written)

4.3.7. Ultrafilters.

A filter \mathscr{F} on a set X is an *ultrafilter* provided every filter on X that is finer than \mathscr{F} must be equal \mathscr{F} .

4.3.8. Theorem.

A filter \mathscr{F} on a set X is an ultrafilter if and only if for every $Y \subseteq X$ either $Y \in \mathscr{F}$ or $X \smallsetminus Y \in \mathscr{F}$.

Proof. (to be written)

4.3.9. Theorem.

Let $(x_{\alpha})_{\alpha \in A}$ be a net in a set X and \mathscr{F} be the filter generated by $(x_{\alpha})_{\alpha \in A}$. Then \mathscr{F} is an ultrafilter if and only if $(x_{\alpha})_{\alpha \in A}$ is an ultranet.

Proof. (to be written)

4.3.10. Zorn's Lemma.

If X is a partially ordered set and each chain in X has an upper bound, then there exists a maximal element in X.

4.3.11. Theorem.

Let X be a set and \mathscr{F} be a filter on X. Then there exists an ultrafilter on X that is finer than \mathscr{F} .

Proof. (to be written)

4.3.12. Theorem.

Let X be a set and $(x_{\alpha})_{\alpha \in A}$ be a net in X. Then there exists a subnet $(y_{\beta})_{\beta \in B}$ of $(x_{\alpha})_{\alpha \in A}$ that is an ultranet.

Proof. Let \mathscr{F} be the filter on X that is generated by $(x_{\alpha})_{\alpha \in A}$ and \mathscr{U} be an ultrafilter on X that is finer than \mathscr{F} . Define

$$B := \{ \langle \alpha, U \rangle : \alpha \in A, \ U \in \mathscr{F}, \ x_{\alpha} \in U \}$$

and let B be directed by

 $\langle \alpha, U \rangle \leq \langle \alpha', U' \rangle$

if $\alpha \leq \alpha'$ and $U' \subseteq U$. If $\varphi : B \to A$ is given by $\varphi(\alpha, U) := \alpha$, then φ defines a subnet $(y_{\beta})_{\beta \in B}$ of $(x_{\alpha})_{\alpha \in A}$. We show that $(y_{\beta})_{\beta \in B}$ is an ultranet.

Let $Y \subseteq X$. Then either Y or $X \smallsetminus Y$ belongs to \mathscr{U} . If $Y \in \mathscr{U}$, then $X \smallsetminus Y \notin \mathscr{U}$, which implies that $X \smallsetminus Y \notin \mathscr{F}$. Thus the net $(x_{\alpha})_{\alpha \in A}$ is not eventually in $X \smallsetminus Y$ and hence $(x_{\alpha})_{\alpha \in A}$ is frequently in Y. Let $\alpha_0 \in A$ be such that $x_{\alpha_0} \in Y$. Then

$$\beta_0 := \langle \alpha_0, Y \rangle \in B.$$

If $\beta := \langle \alpha, U \rangle \geq \beta_0$, then $x_{\alpha} \in U \subseteq Y$ so $y_{\beta} = x_{\alpha} \in Y$. Thus $(y_{\beta})_{\beta \in B}$ is eventually in Y. If $X \smallsetminus Y \in \mathscr{U}$, then a similar argument shows that $(y_{\beta})_{\beta \in B}$ is eventually in $X \smallsetminus Y$.

4.4. Hausdorff Spaces

4.4.1. Proposition.

Let X be a topological space. The following conditions are equivalent:

- 1. X is Hausdorff.
- 2. For each $x \in X$ the intersection of all closed nbhds of x is $\{x\}$.
- 3. The diagonal $\Delta := \{ \langle x, x \rangle \in X \}$ is closed in $X \times X$.

Proof. Assume 1. We show that 2. holds. Let $x \in X$ and let C be the intersection of all closed nbhds of x. Suppose, for a contradiction, that $C \neq \{x\}$. Then there is $y \in C \setminus \{x\}$. Let U, V be disjoint open sets with $x \in U$ and $y \in V$. Then $X \setminus V$ is a closed nbhd of x so $C \subseteq X \setminus V$. Since $y \in C \cap V$, we have a contradiction.

Assume 2. We show that 3. holds. Let

$$\langle x, y \rangle \in (X \times X) \smallsetminus \Delta.$$

Then $x \neq y$ so there is a closed nbhd N of x with $y \notin N$. Let U be open with $x \in U \subseteq N$ and $V := X \setminus N$. Then $U \times V$ is open in $X \times X$ with $\langle x, y \rangle \in U \times V$ and

$$(U \times V) \cap \Delta = \emptyset.$$

Thus $(X \times X) \setminus \Delta$ is open in $X \times X$, which implies that Δ is closed in $X \times X$.

Assume 3. We show that 1. holds. Let $x, y \in X$ be distinct. Then $\langle x, y \rangle \in (X \times X) \setminus \Delta$ so there are open U and V in X with

$$\langle x, y \rangle \in U \times V \subseteq (X \times X) \smallsetminus \Delta.$$

Thus U and V are disjoint with $x \in U$ and $y \in V$.

4.4.2. Corollary.

Assume that Y is a Hausdorff space.

- 1. If $f: X \to Y$ is continuous for some topological space X, then the graph of f is closed in $X \times Y$.
- 2. If $f, g: X \to Y$ are continuous for some topological space X, then

$$\{x \in X : f(x) = g(x)\}$$

is closed in X.

Proof. Assume that $f: X \to Y$ is continuous for some topological space Y. The graph of f is the set

$$G := \{ \langle x, f(x) \rangle : x \in X \}.$$

Let $1_Y : Y \to Y$ be the identity function and $\Delta := \{\langle y, y \rangle \in Y\}$. Since the function

$$f \times 1_Y : X \times Y \to Y \times Y$$

is continuous, Δ is closed and $G = (f \times 1_Y)^{-1} [\Delta]$, it follows that G is closed.

Now assume that $f, g: X \to Y$ are continuous for some topological space X and

$$G := \{ x \in X : f(x) = g(x) \}.$$

Let $h: X \to X \times Y$ be defined by $h(x) := \langle f(x), g(x) \rangle$. Since h is continuous and $G = h^{-1}[\Delta]$, it follows that G is closed.

Remark.

Any subspace of a Hausdorff space is Hausdorff.

4.4.3. Theorem (product of Hausdorff spaces).

If X_{α} is a Hausdorff space for every $\alpha \in A$ and $X := \prod_{\alpha \in A} X_{\alpha}$, then X is Hausdorff.

Proof. Let $(x_{\alpha})_{\alpha \in A}$ and $(y_{\alpha})_{\alpha \in A}$ be distinct elements of X. There is $\beta \in A$ with $x_{\beta} \neq y_{\beta}$. Since X_{β} is Hausdorff, there are disjoint open U_{β} and V_{β} in X_{β} with $x_{\beta} \in U_{\beta}$ and $y_{\beta} \in V_{\beta}$. Let $U_{\alpha} := V_{\alpha} := X_{\alpha}$ for every $\alpha \in A \setminus \{\beta\}$ and

$$U := \prod_{\alpha \in A} U_{\alpha}$$
 and $V := \prod_{\alpha \in A} V_{\alpha}$.

Then U and V are disjoint open sets in X with $x \in U$ and $y \in V$.

4.4.4. T_0 spaces and T_1 spaces.

A T_0 space is a topological space such that for any distinct $x, y \in X$ there is an open set U with $x \in U$, but $y \notin U$. A T_0 space is a topological space such that for any distinct $x, y \in X$ there is an open set U with $\{x, y\} \cap U$ having exactly one element.

Remark.

Any Hausdorff space is T_1 and any T_1 space is T_0 .

Examples.

The Sierpiński space is T_0 but not T_1 . The space of natural numbers with the cofinite topology is T_1 but is not Hausdorff.

4.4.5. Proposition (characterization of T_1 spaces).

Let X be a topological space. The following conditions are equivalent:

- 1. X is T_1 ;
- 2. $\{x\}$ is closed for every $x \in X$;
- 3. the intersection of all nbhds of x is equal $\{x\}$ for every $x \in X$.

Proof. Assume X is T_1 . Let $x \in X$. For every $y \in X \setminus \{x\}$ there is open U_y with $y \in U_y$ and $x \notin U_y$. Then

$$U := \bigcup_{y \in X \smallsetminus \{x\}} U_y = X \smallsetminus \{x\}$$

is open, so $\{x\}$ is closed.

Assume that $\{x\}$ is closed for every $x \in X$. To prove 3. suppose for a contradiction that there is $y \in X \setminus \{x\}$ such that y belongs to every nbhd of x. Since $\{y\}$ is closed $X \setminus \{y\}$ is open and contains x, which is a contradiction.

Now assume that 3. holds. If $x, y \in X$ are distinct, then there is a nohulo U of x with so X is T_1 .

5. Compactness

- 5.1. Compact Spaces
- 5.2. Countable Compact Spaces
- 5.3. Compact Metric Spaces
- 5.4. Locally Compact Spaces
- 5.5. Proper Maps