Cardano formula (1570). The solutions of the equation $x^{3}+p x+q=0$ are of the form

$$
x=\sqrt[3]{-\frac{q}{2}+\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}+\sqrt[3]{-\frac{q}{2}-\sqrt{\frac{q^{2}}{4}+\frac{p^{3}}{27}}}
$$

Our example. Consider the equation $x^{3}-3 x+1=0$. We have $p=-3$ and $q=1$, so

$$
\sqrt{q^{2} / 4+p^{3} / 27}=\frac{\sqrt{3}}{2} i
$$

Thus the roots are of the form

$$
x=\sqrt[3]{\frac{-1+i \sqrt{3}}{2}}+\sqrt[3]{\frac{-1-i \sqrt{3}}{2}}
$$

You need to be careful in interpreting the cubic roots of complex numbers. Each of the above cubic roots has three values, but having a value for one of them, we have only one choice for the other.

