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1 Algebraic Closures.

1.1 Algebraic Elements.

Definition. Let K be a field with a subfield F and a € K. We say that a is algebraic over
F if and only if there exists a nonzero polynomial f(x)in F[x] such that f(a)=0.

Remark. If a is algebraic over F then there exists a unique monic, irreducible polynomial
over F with root a. Such a polynomial is called the minimal polynomial of a over F.

1.2 Algebraic Extensions.

Definition. Let F be a field and K be an extension of F. Then K is algebraic over F iff
every element of K is algebraic over K.

1.3 Algebraically Closed Fields.

Definition. A field K is algebraically closed if and only if every polynomial over K splits
over K, that is, every nonconstant polynomial over K is a product of linear (of degree 1)
polynomials over K.

Remark. Given a field K, if every nonconstant polynomial over K has a root in K, then
K is algebraically closed.

1.4 Algebraic Closure.

Definition. Let K be a field and L be an extension of K. We say that L is an algebraic
closure of K if and only if the following two conditions hold:

1. L is algebraic over K.

2. L is algebraically closed.

1.5 Existence of Algebraic Closures.

Theorem. For every field K there exists an algebraic closure L of K .

1.6 Uniqueness of Algebraic Closures.

Theorem. If K,, K, are fields, f : K, — K, is an isomorphism and L,, L, are algebraic
closures of Ky, K,, respectively, then f can be extended to an isomorphism f’: L, — L,.

Corollary. IfL, and L, are algebraic closures of a field K , then there exists an isomorphism
f Ly — L, such that the restriction f |K of f to K is the identity function.
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2 Splitting Fields and Normal Field Extensions.

2.1 Splitting Field.

Definition. Let f be a nonconstant polynomial over a field F and let K be an extension
of F. We say that K is a splitting field of f over F if:

1. f is a product of linear polynomials over F, and

2. K=F(a,,...,a,)where a,,...,a, are the roots of f in K.

2.2 Homework 1 — due January 16.

Exercise. If K is a splitting field of some nonconstant polynomial f over F, then K is
algebraic over F.

2.3 Existence of Splitting Fields.

Remark. Let F be a field, f be a nonconstant polynomial over F and a,,...,a, be the
roots of f in the algebraical closure F? of F. Then the polynomials x —a,, ..., x —a,, are
the only irreducible factors of f(x)in F?[x].

Theorem. If F is any field and f is a nonconstant polynomial over F then there exists a
splitting field of f over F.

Proof. Let F? be an algebraic closure of F and a,,...,a, be the roots of f in F?. Define
K :=F(a,,...,a,)in F2 Then the polynomials x —a,,..., x —a, are the only irreducible
factors of f(x) so

fx)=c(x—a)"...(x—a,)"

for some c € F and k;, ..., k, € Z*. Thus K is a splitting field of f over F. O

2.4 Uniqueness of Splitting Fields.

Theorem. Let F be a field, f be a nonconstant polynomial over F and K,, K, be splitting
fields of f over F. Then there is an isomorphism ¢ : K; — K, such that ¢ [F = idg (the
restriction of  to F is the identity function).

Proof. Let K?, K} be algebraic closures of Kj, K, respectively. Then they are also alge-
braic closures of F so there is an isomorphism ¢ : K — K} such that ) [F =idp.
Let a,,...,a, be the roots of f in K; and b; :=(a;) foreachi=1,...,n. Since

fx)=c(x—a)"...(x—a,)"

for some ¢ € F and k;,...,k, € Z*, applying ) to the coefficients in above equation
between polynomials gives

fx)=c(x—b)"...(x—b,)"
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Thus b,,..., b, are the roots of f in K,.

Since K; and K, are splitting fields of f over F, we have K; = F(a,,...,a,)and K, =
F(by,...,b,). Let ¢ := Y [K,. Since ¢|F =idy and ¢(a;) = b; for each i = 1,...,n, the
image of ¢ is K,. O

2.5 Splitting Field of a Set of Polynomials.

Definition. Let F be afield and 7 = { firiel } be a set of nonconstant polynomials over
F. The splitting field of .7 over F is a field K such that:

1. Each polynomial f;(x) splits into linear factors over K.

2. If Ais the set of all root in K of all f;, then K = F(A).

Field embeddings. If F and K are fields then the embedding of F in K is a ring homo-
morphism F — K.

Remark. Since fields have only two ideals, any field embedding is injective. It does not
have to be surjective. An embedding is surjective if and only if it is an isomorphism.

Embeddings over a subfield. If F is a subfield of the fields K and L and ¢ : K — L is
an embedding, then we say that ¢ is over F when ¢ [F =idp. If ¢ is an isomorphism or
an automorphism (when K = L) and ¢ [F =idg, then we say that it an isomorphism or
automorphism over F.

Theorem. Let. 7 = { firiel } be a family of nonconstant polynomials over F .

1. There exists a splitting field of 7 over F .

Proof. Let F? be an algebraic closure of F and A be the set of all roots of all the poly-
nomials in % . Then F(A) is a splitting field of & over F. O

2. If K, and K, are splitting fields of  over F then there is an isomorphism ¢ : K; — K,
over F (such that ¢ [F = idp).

Proof. Exercise. O

2.6 Homework 2 — due January 18.

Exercise. Prove the second assertion of the theorem in section 2.5.
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2.7 Normal Field Extensions.

Motivation. Let A C B be sets, G be the group of permutations ¢ of B such that o [A is
a permutation of A and H be the subgroup of G consisting of those permutations o for
which o]A=id,. Then H is a normal subgroup of G.

Theorem. Let F be a field and K C F? be a field extension of F. The following conditions
are equivalent.

1. Every automorphism of F? over F restricted to K is an automorphism of K .
2. Every embedding of K in F? over F is an automorphism of K .

3. K is the splitting field of a family of polynomials over F .

4. Everyirreducible polynomial over F that has a root in K splits over K .

Proof. We will show that 1. = 2. = 1., that 1. = 3. and that 1. = 4. = 1.. The proof that
3. = 1. is left as an exercise.

1. = 2. Let ¢ : K — F® be an embedding over F. We need to show that the image
L = ¢(K)is equal to K. Since ¢ : K — L is an isomorphism and F? is the algebraic
closure of both K and L, the isomorphism ¢ can be extended to an automorphism y of
F?2. By 1., the restriction ¢ [K is an automorphism of K.

2. = 1. Every automorphism of F? restricted to K is an embedding of K in F2.

1. = 3. For each a € K|, let f, be the minimal polynomial of a over F. We will show
that K is the splitting field of 7 = { faiaeK } If A is the set of all roots in K of all the
polynomials in 7, then A= K so F(A)= K. It remains to show that every polynomial in
Z splits over F. Suppose, to the contrary, that for some a € K thereisaroot b € F*\ K
of f,. Then there is an isomorphism ¢ : F(a) — F(b) over F with ¢(a)= b and ¢ can
be extended to an automorphism ¢ of F2. By 1., ¥ [K is an automorphism of K. Since
Y(a)=p(a)=>b ¢ K, we have a contradiction.

1. = 4. Let f be an irreducible polynomial over F with aroot a in K. Suppose, to the
contrary, that f does not split over K. Then f hasaroot b € F?\ K. Then a and b have
the same minimal polynomial (equal to ¢! f where c is the leading coefficient of f) so
there is an isomorphism ¢ : F(a)— F(b) over F with ¢(a)= b. The isomorphism ¢ can
be extended to an automorphism ¢ of F?. By 1., ¥ [K is an automorphism of K. Since
Y(a)=yp(a)=>b ¢ K, we have a contradiction.

4. = 1. Let ¢ be an automorphism of F? over F. Let a € K and f be the minimal
polynomial of a over F. By 4., f splits over K. Since ¢ maps roots of f to roots of f, it
follows that ¢(a) € K. Since f has finitely many roots in K, there is a root b of f in K
with ¢(b)=a. Thus ¢ [K is an automorphism of K. O

Definition. A field K satisfying the conditions of the theorem is called a normal exten-
sion of F.

Example. Let F =Q be the field of rational numbers.
1. The field F(+/2) is a normal extension of F.
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2. The field F («3/5) is an extension of F that is not normal.

3. The field F(\S/E, co) with w = —% + ‘/731' € C is a normal extension of F.

2.8 Homework 3 — due January 23.

Exercise. Prove that 3. = 1. in the theorem of section 2.7.

3 Separable Field Extensions.

3.1 Separable Degree of a Finite Field Extension.

Definition. Let F be a field and K C F? be a finite extension of F ([K : F] is finite). The
separable degree of K over F, denoted [K : F], is the number of embeddings of K into
F?over F.

Lemma. Let F beafielda € F* and K = F(a). Then [K : F], <[K : F].

Proof. Let f be the minimal polynomial of a over F and a,, ..., a, be all the roots of f
in F2. If ¢ is an embedding of F(a) into F? over F, then p(a) € {al, oo an}. Since every
element of F(a) is of the form b, + b,a +---+ b,,_;a™ ! with by,..., b,,_; € F where m =
deg( f ), the value ¢(a) uniquely determines ¢. For each i =1, ..., n the elements a and
a; have the same minimal polynomial over F so there exists an embedding F(a) — F?
over F mapping a to a;. [K : F]; =n. Since n < deg(f) and [K : F| = deg(f), the result
follows. O]

Remark. The proof above shows that [K : F]; = [K : F] unless the minimal polynomial f
of a over F has multiple roots in F?. We will show later that such a situation is possible.

Proposition. Let F be a field and E C K C F? be finite extensions of F. Then [K : F|, =
[K:E|[E:F].

Proof. Let 0y,...,0, be all the embeddings of E in F? over F where n = [E : F|,. For
eachi=1,...,n,let 9;,..., 0y, : K — F*? be all the extensions of o; to an embedding
of K in F®. If i # i’, then for arbitrary j we have ¢;;[E = o; and for arbitrary j’ we have
¢y y|E =0y # 0, implying that ¢;; # ¢ . If  : K — F® is any embedding over F, then
Y[E is an embedding of E in F* over F so Y = y;; for some i and j. Thus to complete
the proof of [K : F], = [K : E|[E : F],, it suffices to show that m; = [K : E], for each
i=1,...,n.

Leti €{1,...,n}befixedand denote ¢ = @;;. Since  [E = ¢;;|E forany j € {1,..., m,-},
it follows that ¢(b) = ¢;;(b) for any b € E and consequently (go_l o go,-j) [E =idg. Thus
for each j=1,...,m;, themap ¢! og,; is an embedding of K in F* over E. Moreover, if
j#j thenp oy, #p~ oy, . Thus m; =[K : E];. O

Theorem. Let F be a field and K C F? be finite over F. Then [K : F], < [K : F].
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Proof. There are a,,...,a, € K such that K = F(a,,...,a,). Let = F and F, = F,_(a;)
foreachi=1,...,n. Then

[K:F]s:[Fn:E)]s:[Fn:Fn—l]s[Fn—l:Fn—Z]s"'[B:E]s[E:E)]s'

Since
[K:F]:[Fn:E)]:[Fn:Fn—l] [Fn—l:Fn—Z]--'[FZ:E] [EE)]»

and since [F,: F_,], <[F;: F,_;| foreachi=1,...,n, it follows that [K : F], <[K:F]. O

3.2 Separable Field Extensions.
Finite separable field extensions.
Definition. A finite field extension K 2 F is separableiff [K : F|,=[K : F].

Remark. Let K 2 F be afinite extension and a,,...,a, € K besuchthat K = F(a,,...,a,).
If [ =F and F, = F_,(a;)foreachi=1,...,n, then K is separable over F if and only if F,
is separable over F,_, foreveryi=1,...,n.

Separable elements.

Definition. Let K O F be a field extension and a € K be algebraic over F. We say that a
is separable over F iff F(a) is separable over F.

Remark. a is separable over F iff the minimal polynomial of a over F has no multiple
roots in F?2.
Separable polynomials.

Definition. Let F be field. A polynomial f over F is separableiff it has no multiple roots
in F2.

Proposition. Let F be a field.
1. Ifa polynomial f over F is separable, then any of its roots is separable over F .

2. If K € F? is an extension of F, then any element of F*? that is separable over F is
separable over K .

Proof. 1. is clear and the proof of 2. is an exercise. O
Theorem. Let K bea finite extension of a field F . The following conditions are equivalent.
1. [K:F|=[K:F],, thatis K is separable over F .
2. Each element of K is separable over F .

3. K = F(A) for some subset A C K whose elements are separable over F .
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Proof. 1. = 2. Suppose that K is separable over F and a € K. Then F C F(a) € K and
[K:F|],=[K:F(a)l;[F(a): Fl;<[K:F(a)|[F(a): F]=[K :F].

Since [K : F|,=[K : F], it follows that [F(a): F],=[F(a): F] so a is separable over F.

2. = 3. Take A=K.

3. = 1. Since K is finite over F, we have K = F(a,,...,a,) for some a,,...,a, € A.
Then a,,, is separable over F, hence over F(a,,...,a;), foreachi=1,...,n—1. If [,j=F
and F, = F_,(a;) foreach i =1,..., n, then each F; is separable over F,_; implying that K
is separable over F. O

Separabile field extensions.

Definition. Let K be an algebraic extension of a field F. We say that K is separable over
F iff every element of K is separable over F.

Corollary. Let K be an algebraic extension of a field F. The following conditions are
equivalent.

1. Everyelement of K is separable over F, that is K is separable over F .

2. If E is a subfield of K containing F and finite over F then [E : F],=[E : F] (that is,
E is separable over F ).

3. There is a subset A C K consisting of elements that are separable over F such that
K = F(A).

Proof. 1. = 2. Assume that K is separable over F and E C K is a finite extension of F.
Since every element of E is separable over F, the field E is separable over F.

2. = 1. Assume that every subfield of K containing F that is finite over F is separable
over F. Leta € K. Then F(a)is afinite extension of F so it is separable over F. Thus a is
separable over F. Since every element of K is separable over F, the field K is separable
over F.

1. = 3. Take A=K.

3. = 1. Assume A C K is such that every element of A is separable over F and
K = F(A). Let 8 be the family of all finite subsets of A. Note that K =| J,_,, F(B). (The
inclusion U peg F(B) € K is obvious and the inclusion K € U peg F(B) follows from the
observation that U pes F(B)isasubfield of K* containing A.) Since F(B)is finite dimen-
sional over F and each element of B is separable over F, it follows that every element of
F(B) is separable over F. Since any element of K belongs to F(B) for some B € 93, the
proof is complete. 0

3.3 Homework 4 — due January 28.

Exercise. Prove part (2) of the proposition in section 3.2.



4 Non-separable Extensions Exist.

4.1 Field of Fractions of an Integral Domain.

Definition. Let D be an integral domain. A field of fraction of D is a field F that extends
D (thatis D is a subring of F) such that for every a € F there are b,c € D witha=bc™.

Proposition. Let D be an integral domain, F be a field of fractions of D and f : D — K
be an embedding (injective homomorphism) where K is a field. Then there is exactly one
extension of f to an embeddingg : F — K.

Proof. For a € F there are b, ¢ € D such that a = bc¢™!. Define g(a)= f(b)f(c)_l.

(1) g iswell-defined.

Proof. Supposea blc bzc‘1 Then b, ¢, = b,c; so f(b,) f(c,)= f(b,) f(c,). Thus
fB) fle) = f(by) fle) O

(2) gisahomomorphism.
Proof. Exercise. O
(3) If h: F — K is another embedding extending f, then h = g.

Proof. If a € F with a=bc~! where b,c € D, then b =ac so

implying that h(a)= f(b) f(c) . ]
]

Corollary. Let D be an integral domain and F,, F, be fields of fractions of D. Then there
is an isomorphism f : F, — E such that f[D = idp.

Theorem. For every integral domain D there exists a field of fractions of D.

Proof. Let D*= D \. {0} and ~ be the equivalence relation on D x D* defined by (a, b) ~
(c,d)iff ad = bc. Denote by the equivalence class of ~ that contains the pair (a, b) €
D x D*. Let

F:{%:(a,b)erD*}.

Define addition on F by ; + & = % and multiplication by < = £2. Itis routine to

verify that the addition and multiplication in F are well-defined and that F is a field.
Let f : D — F be defined by f(a)= ¢. Then f is an embedding so the element a of D

can be identified with its image f(a)in F. After this identification D becomes a subring

of F. Itis clear that F is a field of fractions of D. O

8



4.2 Homework 5 — due January 30.

Exercise. Prove part (2) of the proof of the proposition in section 4.1.

4.3 Derivative of a Polynomial and Multiple Roots.

Definition. Let F be a field and f(x) = a,x" +:--+ a, be a polynomial over F. The
derivative f’ of f is defined by

fl(x)=na,x" '+(n—Da,_,x"*+---+2a,x +a,.

Remark. If f, g are polynomials over a field F, then ( f g)/ =f'g+fg.

Multiple roots of a polynomial. Let F be a field, f be a polynomial over F and a € F?
be aroot of f. We say that a is a multiple root if (x —a)* divides f(x)in F2[x].

Proposition. Let F bea field and f be a polynomial over F. Then f has no multiple roots
in F* ifand only if f(x) and f’(x) are relatively prime in F [ x].

Proof. Assume that f(x)and f’(x) are relatively prime in F[x]. Since F[x] is a principal
ideal domain, there are h(x) and k(x) in F[x] such that

1=hf+kf.

Suppose, to the contrary, that f has a multiple root a € F?. Then f(x)=(x —a)’ g(x) for
some g(x) € F?[x]. Thus

fl(x)=2(x—a)g(x)+(x—a) g'(x),
so a is aroot of f” as well. Then
1= h(a)f(a)+k(a) f'(a)=0,

which is a contradiction.

Assume that f has no multiple root in F?. If a € F? is a root of f, then f(x) =
(x —a)g(x) for some g(x) € F?[x] and g(a) # 0. Thus f'(x) = g(x)+(x—a)g’(x) and
so f’(a)=g(a)#0. Thus f(x) and f’(x) have no common roots in F?. Suppose, to the
contrary, that f(x) and f’(x) have a non-constant common factor i(x) in F[x]. Then h
has arootin F® which is a common root of f and f’ giving us a contradiction. Thus f(x)
and f’(x) are relatively prime in F[x]. O

Corollary. Let F bea field and f(x) € F[x] be irreducible. Then f is separable if and only
if f'(x)#0.

Proof. Assume that f’(x) is nonzero and deg( f ) =n. Then deg( f ’) < 1 SO0 any common
divisor g(x) of f(x) and f’(x) in F[x] must have degree smaller than n. Since f is irre-
ducible, g(x)is a constant polynomial so f(x)and f’(x) are relatively prime. Thus f has
no multiple roots and hence is separable.

If f is separable, then it has no multiple roots so f and f’ are relatively prime. Thus

f'#0. 0



4.4 An Algebraic Non-separable Extension.

Irreducible and prime elements of an integral domain.

Definition. Let D be an integral domain and a € D. Then a is irreducible iff it is not
zero, not a unit and if a = b ¢ for some b, c € D, then b or c is a unit. The element a is
prime iff it is not zero, not a unit and whenever a | b ¢ for some b,c € D, then a | b or
alc.

Primitive polynomials.

Definition. Let D be an integral domain. A polynomial f(x) € D[x] is primitive iff the
coefficients of f are relatively prime (have no common divisors except for units).

Eisenstein criterion.
Theorem. Let D be an integral domain with field of fractions F and
f(x)=ay+a,x+---+a,x" € D|x]
be a nonzero polynomial. Let p € D be a prime element such that p | a; for every i =
0,1,...,n—1butpta, and p?t a,.
1. If moreover f(x) is primitive, then it is irreducible in D[ x].

2. If D is a unique factorization domain, then f(x) is irreducible in F[x].

Example. Let D =Z,[x] be the integral domain of polynomials with coefficients in the
field Z, and F be the field of fractions of D. Since D is a principal ideal domain, it is a
unique factorization domain. The element x € D is irreducible hence it is prime. Thus
the polynomial f(y) =y?’—x¢€ D[y] is irreducible in F[y] Since f’(y) =2y =0, the
polynomials f and f’ are not relatively prime and so f has multiple roots. Explicitly, if
a € F?is aroot off(y), then a®=x andf(y):(y—a)z.

Thus f is an irreducible polynomial over F that is not separable. The field F(a) is
an algebraic extension of F that is not separable over F. We have [F(a): F] = 2 but
[F(a): F],=1.

4.5 Homework 6 — due February 1.

Exercise. Let p be a prime, D = Z,[x] and F be the field of fractions of D. Then the
polynomial y? — x is irreducible over F but is not separable.

5 When Every Algebraic Extension is Separable.

5.1 Characteristic of a Ring

Definition. Let R be aringand ¢ : Z — R be the ring homomorphism defined by ¢(n) =
n-1z. The kernel of ¢ is a principal ideal of Z with a unique non-negative generator which
is called the characteristic of R. The characteristic of R will be denoted by char(R).

10



Remarks.

1. The characteristic of a ring R is the smallest positive integer n such that

1R+1R+“‘+1R:0R

n

is such n exists and is equal 0 otherwise.
2. The only ring with characteristic 1 is the trivial ring.

Proposition. If D is an integral domain, then the characteristic of D is either 0 or a prime
integer.

Proof. Suppose m # 0 is the characteristic of D. Suppose m = k - ¢, where k,{ > 2. Let
¢ : Z — D be the ring homomorphism defined by ¢(n) = n-1,. Then 0p = p(k-{) =
¢ (k) p(¢) implying that (k) or ¢(¢) equals 05, which is a contradiction. O

5.2 Prime Subfield.

Definition. Let K be a field. The prime subfield of K is the intersection of all subfields
of K.

Remark. The prime subfield always exists.

Proposition. Let K bea field with a prime subfield F. If char(K) =0, then F is isomorphic
t0 Q, if char(K) = p where p is a prime, then F is isomorphic to Z,,.

Proof. Let ¢ : Z — K be the ring homomorphism defined by ¢(n)=n - 1¢. If the charac-
teristic of K is 0, then ¢ is injective and ¢ extends uniquely to an embedding ¢ : Q — K.
Since every subfield E of K contains 1,0(@), we have F = 1,0(@) so F is isomorphic to Q.

If char(K) = p is a prime, then ker(go) = pZ and the Fundamental Homomorphism
Theorem for rings implies that the image ¢(Z) is isomorphic to the quotient ring Z/pZ
which is isomorphic to Z,. Since every subfield E of K contains ¢(Z), it follows that
F = ¢(Z) is isomorphic to Z,,. O]

5.3 Homework 7 — due February 4.

Exercise. Let K be a field, F be the prime subfield of K and ¢ be any automorphism of
K. Prove that ¢ is over F, that is, prove that p(a)=a foreverya € F.

5.4 Perfect Fields.
Definition. A field F is perfect iff any algebraic extension of F is separable over F.

Remark. Afield F is perfect if and only if every irreducible polynomial over F is separa-
ble.

11



Theorem. Any field of characteristic 0 is perfect.

Proof. Let F be a field of characteristic 0 and
f(x)=a,x"+a, ,x" " +---+a,x +ay€ F|x]

be irreducible where n > 1 and a,, #0. Then f'(x)=na,x" ' +---+a,. Since char(F)=0
it follows that na, # 0. Thus f’(x) # 0 and consequently f is separable. Since every
irreducible polynomial over F is separable, the field F is perfect. O

Remark. We will show later that every finite field is perfect.

6 Finite Fields.

6.1 Possible Cardinalities of Finite Fields.

Theorem. The cardinality of a finite field is a positive power of a prime integer.

Proof. Let K be afinite field and F be its prime subfield. Since F is finite, it isisomorphic
to Z,, for some prime p. Let b,,..., b, € K be a basis of K over F. Since every element is
aunique linear combination of b, ..., b,, with coefficients from F, we have |K|=p". O

6.2 Uniqueness of Finite Fields.

Proposition (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G, then
|H | divides |G|.

Proof. If a, b € G, then the function f :aH — b H defined by f(ah)= bh is a bijection.
Thus any two left cosets of H in G have the same number of elements. Since the left
cosets of H in G form a partition of G, the result follows. O]

The multiplicative group of a field.

Definition. Let F be a field. The multiplicative group of F is the group F* = F \ {0}
under multiplication.

Theorem. Let K be a finite field of cardinality p". Then K is a splitting field of the poly-
nomial xP" — x over its prime subfield. In particular, all fields of cardinality p" are iso-
morphic.

Proof. The order of any a € K* in the group K* is a divisor of |[K*| = p"—1so aP" ' =1
and a?" = a. Since 0P" = 0 as well, all the elements of K are roots of the polynomial
f(x) = xP" —x. Since f can have at most p” roots in K?, it splits over K. Since each
element of K is aroot of f, the field K is a splitting field of f over the prime subfield of
K. O

12



6.3 Existence of Finite Fields.

Lemma. IfK is a field of prime characteristic p and a, b € K, then (a+b)"" = a?" + b?"
for any positive integer n.

Proof. By binomial formula

(a+b)p:(p)ap+(p)a”‘lb+---+( P )ab’”‘1+(p)b”.
0 1 p—1 p

If1<i<p-—1,then
(P):L
i) i(p—i)

is divisible by p since the numerator is divisible by p but the denominator is not. Thus
(a+b) =aP + bP.
We complete the proof using induction. Suppose that (a + b)” "= aP""' +bP"". Then
(a n b)pn _ ((a n b)pnfl)p _ (aerl n bpnfl)p _ (apnfl)p n (bpnfl)p _ apn n bpn.
O

Proposition. If a nonempty subset H of a finite group G is closed under the group opera-
tion, then H is a subgroup of G.

Proof. Exercise. O

Theorem. For every prime integer p and any positive integer n there exists a field with p”
elements.

Proof. Let F be the field Z, and f(x) be the polynomial x?"—x over F. Since f'(x)=—1,
the polynomial f(x) has p” distinct roots in Zj,. Let K be the splitting field of f(x) over

F and
L={a€K: f(a)=0}.

Since L has p” elements, to complete the proof, it suffices to show that L is a subfield
of K. Since L contains 0 and 1 an is finite, the proposition implies that we only need to
show that L is closed under addition and multiplication. In case of multiplication, it is
obvious, and in case of addition it follows from the lemma. O

Notation. For a prime p and a positive integer n the unique (up to isomorphism) field
with g = p" elements is denoted by F,.

6.4 Homework 8 — due February 6.

Exercise. Prove the proposition in section 6.3.
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6.5 Perfect Fields of Prime Characteristic.
Frobenius mapping.

Definition. Let F be a field of prime characteristic p. The Frobenius mapping is the
function ¢ : F — F defined by p(a)=a”.

Remark. The Frobenius mapping ¢ is an embedding and if F is finite, then it is an iso-
morphism. Moreover, the restriction of ¢ to the prime subfield I, of F is the identity on

F,.

Lemma. Let F be a field of prime characteristic p and
f(x)=ay+a,x+---+a,x" € F[x]
We have f'(x)=0 if and only if a; = 0 for every i which is not divisible by p.

Theorem. Let F be a field of prime characteristic p. If the Frobenius mapping F — F is
an isomorphism, then F is perfect.

Proof. Suppose that the Frobenius mapping is an isomorphism. Let K be an algebraic
extension of F and a € K. We want to show that a is separable over F. Let f be the
minimal polynomial over F. Suppose, to the contrary, that a is not separable over F.
Then f has multiple roots in K® so f’=0. Thus

f(X)=ao+a,x? +ay,,x°" +---+ a;, x"7.

Since the Frobenius mapping F — F is surjective, for each i =0,...,k, thereis b; € F
such that a;, = b/ . Thus

f(x):bop'i_bfxp"'bszzp”""blkap:(b0+b1x+b2x2+-~+bkxk)p,

contradicting the irreducibility of f over F. Since any algebraic extension of F is sepa-
rable, the field F is perfect. O]

Corollary. Any finite field is perfect. Any field of prime characteristic that is algebraic over
its prime field is perfect.

Proof. Exercise. O

Proposition. Let F be a field of prime characteristic p such that the Frobenius map ¢ :
F — F is not surjective and a € F be such that f(x) = xP —a € F[x] has no rootsin F.
Then f(x) is irreducible but not separable in F|x]. In particular, F is not perfect.

Proof. Clearly f(x) is not separable so we only need to show that it is irreducible. Let
b € F* be aroot of f. Then f(x)=(x—b)” and the minimal polynomial g(x) of b over
F is a divisor of f(x)so g(x)=(x— b)? for some integer d with 1 < d < p. We need to
show that d = p. Suppose d < p. Then g(x)=x?—dbx%' +... implying that db € F
and consequently that b € F which is a contradiction. O
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6.6 Homework 9 — due February 8.

Exercise. Prove the corollary in section 6.5.

6.7 Multiplicative Group of a Finite Field.
Cyclic groups.

Definition. A group G is cycliciff there is a € G such that a generates G, that is no proper
subgroup of G contains a.

Remark. Any cyclic group is isomorphic either to the additive group Z or the additive
group Z,, for some positive integer n.

Theorem. If F isa field and G is a finite subgroup of the multiplicative group F*, then G
is cyclic. In particular, if F is finite, then F* is cyclic.

Proof. Let a € G be an element of maximal order in G. If the order m of a equals n = |G|,
then a generates G so G is cyclic. Otherwise, since the order of any element of G divides
m (exercise), b™ =1 for any element b € G and the polynomial x —1 has n > m roots,
which is a contradiction. O

6.8 Homework 10 — due February 11.

Exercise. Let G be a finite abelian group of order n and a € G be an element of the
maximal order. If the order of a is m, then the order of any element of G is a divisor of
m.

7 The Primitive Element Theorem.

7.1 Primitive elements.

Remark. Recall that if F is a field, K is an extension of F and a € K is algebraic over F,
then F(a) is finite over F. Also, every finite extension is algebraic.

Definition. Let K be a finite extension of a field F. If K = F(a) for some a € K, then we
say that a is a primitive element of K over F.

7.2 A Finite Extension with no Primitive Element.

Example. Let F be the field of fractions of the integral domain IFz[x, y] and K be the
splitting field of the polynomial

(22— x)(z*—y)e Flz]

over F. Ifa € K isaroot of z2—x and b € K isaroot of z°— y, then K = F(a, b). Clearly,
K is finite over F. However, K has no primitive element over F.
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Proof. Suppose, to the contrary, that there exists ¢ € K such that K = F(c). Since z>— x
isirreducible over F and z*>—y is irreducible over F(a), it follows that 1, a, b, a b is a basis
of K over F. Thus we have

c=a+fa+yb+oab

with @, ,7,0 € F and
cc=a*+B*a*+y*b*+6%a’b*=a* + BPx +y*y +6°xy € F.

Thus c is a root of a quadratic polynomial over F implying that [F(c): F] < 2. Since
[K : F] =4 we have a contradiction. ]

Remark. Note that if a, B € F are distinct and we take c =a+ab and d =a + b, then
a,b e F(c,d)so K =F(c,d). Since K # F(c)and K # F(d) it follows that F(c) # F(d).
Since F is infinite, we have infinitely many intermediate fields E, (with F C E C K).

7.3 The Main Result.

Theorem. Let K be a finite extension of a field F .

1. The following conditions are equivalent

(a) K has a primitive element over F .
(b) The number of intermediate fields E (such that F C E C K) is finite.

Proof. (b) = (a)

Assume that the number of intermediate fields is finite. If F is finite, then K is finite
so K* is cyclic and K = F(a) where a is a generator of the group K*. Thus we can
assume that F is infinite.

Let a,b € K. There are only finitely many fields of the form F(a + c¢b) with ¢ € F.
Since F is infinite, it follows that F(a + ¢, b) = F(a + c,b) for some c;, ¢, € F with
¢, # ¢,. Thus the field F(a + ¢, b) contains both a + ¢; b and a + ¢, b. Thus

(a+cb)—(a+c,b)=(c;—c,)be F(a+cb).
Since ¢, —c, #0, it follows that b € F (a + ¢, b) and hence also a € F(a + ¢, b) implying

that F (a,b)=F(a+ c,b).

Since K is a finite extension of F, there are a,,...,a, € K with K = F(a,,...,a,). As-
sume that n is as small as possible. If n > 2, then there is ¢ € F such that F(a,,a,) =
F(a’), where a’ = a, + ca,. Thus K = F(a’, as, ..., a,) contradicting the minimality of
n. Thus n=1and K = F(a) for some a € K.

(@ = (b)

Assume that K = F(a) for some a € K and let f be the minimal polynomial of a over
F. Let & = {E : F CE C K} be the set of intermediate fields. If E € & and f; is the
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minimal polynomial of a over E, then f; divides f. Since F?[x] is a unique factoriza-
tion domain, f has only finitely many different monic divisors in F?[x]. Consider the
assignment of the polynomial f; to the field E € &. To show that & is finite, it suffices
to show that this assignment is injective.

Suppose that E, E’ € § and f; = fp.. Let fy =a,+a,x+---+a,x" and L = F(a,,...,a,).
Since fj is irreducible over E and L C E it follows that f is irreducible over L. Thus
fi = fr implying that [L: F] = [E : F]. Thus f; = f; implying that [L: F] = [E : F].
Since L € E we must have L = E. Similarly L = E’ implying that E = E’ and conse-
quently that the assignment E — f3 is injective. O

2. If K is separable over F then it has a primitive element over F .

Proof. Without loss of generality, F is infinite. We can also assume that K = F(a, b)
for some a, b € K since otherwise we can use induction. Let n = [K : F], = [K : F|
and 04,...,0, be all distinct embeddings of K in F?. Consider the polynomial

i#]j
If i # j, then either o,(a) # o;(a) or o,(b) # o ;(b). Thus each factor in the above
factorization of f is nonzero implying that f is nonzero and since F is infinite, there
is ¢ € F such that f(c)#0. Thusif i # j, then
ola+cb)=oc,a)+coib)#0o;a)+co;b)=0c;a+ch).
If d = a+ cb, then all the elements o,(d),...,0,(d) are distinct. If g is the minimal

polynomial of d over F, then o,(d),...,0 ,(d) are all roots of g so the degree of g is at
least n. Thus [F(d): F] > n implying that F(d)=K. O

8 Introduction to Galois Theory.

8.1 Closure Operators.

Definition. Let X be a set. A closure operator on X is a function I : 2(X) — 22(X) where
2?(X) is the family of all subsets of X, such that for every A, B € X we have:

1. ACT(A)

2. AC B implies that I'(A) CI(B);

A subset A C X is said to be I'-closed iff T (A) = A.
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Examples of closure operators.

1. Let G be agroup and for any A C G letI;(A) be the smallest subgroup of G contain-
ing A. Then I is a closure operator on G. A subset H C G is [7-closed if and only if
H is a subgroup of G.

2. Let G be a group and for any A C G let I[,(A) be the smallest normal subgroup of
G containing A. Then T, is a closure operator on G. A subset H C G is I,-closed if
and only if H is a normal subgroup of G.

3. Let K be a field and for A C K let I;(A) be the smallest subfield of K containing A.
Then I3 is a closure operator on K. A subset F of K is [3-closed if and only if F is a
subfield of K.

4. Let X be a topological space and for A C X let I';(A) be the closure of A with respect
to the topology on X. Then I is a closure operator on X. A subset Y of X is I;-
closed if and only if Y is closed with respect to the topology on X.

5. Let X be aset and for A C X let I;(A) = A. Then I is a closure operator on X and
any subset of X is I';-closed.

6. Let X be a set and for A C X let [;(A) = X. Then I is a closure operator on X and
the only I';-closed subset of X is X itself.

Proposition. Let " be a closure operator on a set X and 6 be the family of all T -closed
subsets of X. If 7 C 6 is a subfamily of 6, then the intersection (| F =), A of all the
sets in F belongs to 6. (We assume here that if =@, then ﬂ F=X.)

Proof. Exercise. N

Remark. LetT be a closure operator on aset X and % be the family of all I"-closed subsets
of X.

1. If Z C ¢ then the intersection (|7 is the greatest lower bound in ¢ on .Z with
respect to the inclusion relation.

2. If F C € then the union | JZ = J,., A of all sets in . may not belong to €.

The join operation for a family of subsets.

Definition. Let I" be a closure operator on a set X and % be the family of all I'-closed
subsets of X. If # C €, then the join of # denoted \/ 7 is the closure F(U 9’) of the
union of Z.

Remark. If F C 6 then the join \/ 7 is the least upper bound in ¢ on 7 with respect to
the inclusion relation.
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Proof. Note that \/ .7 belongs to 6 since

r(V7)=r(r(U#))=rlUz)=Vs

The set \/.Z is an upper bound on . since for every A € 7 we have

ac| Jzer(Jz)=\/7.

It remains to show that \/ .7 is the least upper bound on .#. Suppose that B € € is an
upper bound on .Z. Then | JZ C B which implies that

\/Z=r(J7)cr®)=5.

Since \/ Z C B for any B € ¢ that is an upper bound on .7, it follows that \/ .7 is the
least upper bound on 7. N

Example. Let K be a field and .7 be a family of subfields of K. Consider the closure
operator I; on K from the example above. Then the join \/ % is the smallest subfield of
K containing all the subfields from 7.

Remark. A partially ordered set S such that for every subset T' C S there exists the least
upper bound and the greatest lower bound on 7T in S is called a complete lattice. Thus,
given a closure operator I on a set X, the family of I'-closed subsets of X ordered by
inclusion is a complete lattice.

8.2 Homework 11 — due February 15.

Exercise. Prove the proposition in section 8.1.

8.3 Abstract Galois Connections.

Definition. Let X and Y be setsand R C X x Y be arelation. Let o : Z2(X) — 22(Y) be
the function such that b € o(A) iff aR b for every a € A. Similarly, let 7 : 2(Y) — 2 (X)
be such that a € (B) iff aRb for every b € B. We will say that the functions o and =
establish the Galois connection (between subsets of X and subsets of Y) determined by
R.

Remark. The functions o and 7 reverse the inclusion relation, thatis, if A’ C A C X then
o(A)Co(A’)andif B'C B C Y then n(B) C nt(B’).

Lemma. Let X and Y besets with R C X x Y and let o and 7 establish the Galois connec-
tion determined by R.

1. Forevery AC X, we have A C to(A) and for every BC Y, we have B C o 7t(B).

Proof. Let AC X and a € A. Then aRb for every b € 0(A) so a € mo(A). Thus A C
no(A).

Similarly B C ont(B) forevery BC Y. O
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2. ForeveryAC X, we haveono(A)=o(A) and for every B C Y we have ton(B)=n(B).

Proof. Let AC X and B = 0(A) € Y. Then on(B) 2 B so ono(A) 2 o(A). Since
o (A) 2 Aand o reverses the inclusion, it follows that o(7o(A)) € o(A). Thus oo (A) =
o(A).

Similarly ront(B)=n(B)forevery BC Y. H

Proposition. Let X and Y be sets with R € X x Y and let o and 7 establish the Galois
connection determined by R.

1. The function to : 2 (X)— 22 (X) is a closure operatoron X andon: 2P (Y)— 2(Y) is
a closure operatoron Y .

Proof. We will verify that 7o is a closure operator on X. We need to verify the three
axioms for closure operators.
1. We have A C to(A) for every A C X by the lemma.

2. Since both o and 7 reverse the inclusion relation, for every A C A’ € X we have
o(A) 2 o(A’) implying that mo(A) € o (A').

3. For every A C X, we have ntono(A)=rno(A) since mom(A)= n(A) by the lemma.

The proof that o7 is a closure operator on Y is similar. O

2. If AC X then A is closed (meaning mo -closed) if and only if A= nt(B) for some BC Y.
Correspondingly, if BC Y then B is closed (meaning o nt-closed) if and only if B = o (A)
forsome AC X.

Proof. Assume that A C X is closed. Then no(A) = A. Let B=0(A). Then A= n(B).

Now assume that A= 7(B) for some B C Y. Then the lemma implies that
no(A)=non(B)=mn(B)=A,

so A is closed.
The proof that B C Y is closed iff B=0(A) for some A C X is similar. N

3. The function o restricted to the family of the closed subsets of X is a bijection onto the
family of the closed subsets of Y with 1t being its inverse.

Proof. Let Z and % be the families of all closed subsets of X and Y respectively. We
want to show that o [Z' is a bijection onto % and that 7|% is the inverse of o [Z .
Let A, A’ € 2 besuch that o(A)=0(A’). Then A= n(B)and A’ = 7t(B’) for some B, B’ C
Y. Then A =7(B) = non(B) = no(A) and similarly A’ = 7o (A’). Since o(A) = g(4’) it
follows that A= A’. Thus o [Z is injective.
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Let Be %. Then B=0(A)forsome AC X. Let A’ =m(B). Then A’ € & and
o(A')=on(B)=0no(A)=0(A)=B.

Thus o [Z is a surjection onto %. The proof also shows that 7o (A) = A for every
AeZ and o7(B)= B for every B€ % . Thus 7[% is the inverse of o [Z . O

4. Consider the correspondence between the closed subsets of X and the closed subsets of
Y established by the bijections o and 7. If 7 is a family of closed subsets of X and ¢
is the corresponding family of closed subsets of Y, then (F corresponds to\/ ¢ and
\/ Z corresponds to(\¥.

Proof. Let % and % be the families of all closed subsets of X and Y respectively. Then
F CX and ¥ C %. Since o [Z is an order reversing bijection onto % the image of
the greatest lower bound ().Z on .7 in & is the least upper bound on ¢ in % which
is\/¥9.

Similarly \/ Z corresponds to () ¥%. O

Remark (*). Let X be any setand I" be any closure operator on X. Then there existsaset Y
and arelation R € X xY suchthatlI'=7no whereo : 2(X) > #Z(Y)and nt: 2(Y) — 2 (X)
establish the Galois connection determined by R.

Proof. Let Y be the set of all I'-closed subsets of X and define R € X x Y so that for
xe€ X and y € Y we have xRy iff x € y. Then Y and R satisfy the required condition
(exercise). ]

Example. Let K be a field extension of a field F and G = Aut;(K) be the group of au-
tomorphisms of K over F. Consider the Galois connection determined by the relation
R C K x G defined by aRg iff g(a)=a.

Remark. Any closed subset of K is a subfield of K containing F and any closed subset
of G is a subgroup of G.

Proof. Let o and 7 establish the Galois connection determined by R. Let E be a closed
subset of K. Then E = n(B) for some B C G. Since g(a) = a for every a € F and every
g € B, it follows that F C E. If a,b € E, then g(a) = a and g(b) = b for every g € B
implying that

gla+b)=gla)+g(b)=a+b.
Thus a + b € E. Similarly, we show that E is closed under subtraction, multiplication
and division by nonzero elements. Thus E is a subfield of K containing F.

Let H be a closed subset of G. Then H = og(A) for some A C K. Since idg(a) = a for
every a € A, it follows thatidy € H. If g, h € H then g(a)=a and h(a)=a foreverya € A
implying that

gh(a)=g(h(a))=gla)=a
for every a € Aso gh € H. Also g7'(a) = a foreverya € Aso g7! € H. Thus H is a
subgroup of G. O
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Example. Consider the Galois connection from the example above in the following sit-
uations:

l. Let F=Qand K =F ((75) Then K is separable over F but is not normal over F.
The group G is trivial and K is the only closed subset of K.

2. Let F be the field of fractions of the polynomial ring F,[x] and K is the splitting
field of the polynomial y>—x € F [ y] over F. Then K is normal over F but is not
separable over F. The group G is trivial and K is the only closed subset of K.

3. Let F be the field of fractions of F, [x, y] and K be the splitting field of the polyno-

mial (z2 - x) (z2 — y) over F. Again K isnormal but not separable over F. There are
infinitely many intermediate fields E (with F C E C K) but the group G is trivial
and K is the only closed subset of K.

4. Let X ={x;, x,,...} be aset of variables and F be the field of fractions of the integral
domain Q[X] of all polynomials in the variables x;, x,, ... with rational coefficients.

e Let K be the splitting field of the set Z C F [ y] of polynomials in over F, where
F = {y2 —Xx;:0i=1,2,... } Note that K is normal and separable over F.

e Let a; € K be aroot of y?2— x; foreach i = 1,2,... and F, = F(a,,...,a,) for
eachn=1,2,.... Then

00
K al; aZ; U

For each subset A C {1,...,n} let a, be the product [ [,_, a; (assuming that
ayz=1). Thentheset{a,:AC{1,...,n}}is abasis of F, over F. It follows that
the set consisting of all a, with A being a finite subset of {1,2,...} is a basis of
K over F.

e The group G is isomorphic to the direct product ]—[;X;1 G; with each G; being
equal to Z,. An element (s;,s,,...) € Hfil G; corresponds to the automor-
phism of K over F which maps a; to itself when s; =0 and to —a; when s; = 1.

e Let H be the subgroup of G consisting of the elements of G that correspond
to the direct sum @7 | G;, where the direct sum @}, G; consists of those el-
ements (s, $,,...) of direct product l_[fil G; for which s; = 0 for all i except
finitely many.

o Let b € K. Then b = F, forsome nso b =), . csa, for somec, € F.
Suppose o(b)=b foreveryo € H. If AC{1,...,n}isnonempty, say i € A, then
there is o € H with o(a;) = —a; and 0'(61]-) =a; forall j #i. Then o(c,a,) =
—c,a, implying that ¢4, =0. Thus

b=cyay=cy€F.
implying that n(H)=F and soon(H)=G.
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e Since H is a proper subgroup of G with G being the o rt-closure of H, the sub-
group H is not a closed subset of G.

5. Let F =Q and K be the splitting field of the polynomial f(x)= x*—2 over F. Then
K is normal and separable over F. Let a, = V2, a, = wv/2 and a3 = w?v'2, where

= —%+§ i,betherootsof f(x). The group G isisomorphicto S; (all permutations
of the set {a,, a,, a3} of the roots of f(x))

e There are six subgroups of G:

- the trivial subgroup G, consisting of identity,

— three subgroups G,, Gs, G, generated by a transposition:
G, consists of the identity and the transposition exchanging a, with a3,
G; consists of the identity and the transposition exchanging a, with a3,
G, consists of the identity and the transposition exchanging a; with a,.

- the subgroup Gj consisting of identity and both 3-cycles, and
- the group Gs=G.
e There are six intermediate fields:
- the field F, equal to K itself,
- the three subfields generated by a root of f over F namely:
Pé = F(al))
Fé =F ((12)»
EL = F (a?))!
- the subfield F; = F(w) generated by w over F,
— the subfield F; =
e Every subgroup of G is a closed subset of G and every intermediate field is a
closed subset of K with the subgroup G; corresponding to the subfield F; for
each i =1,...,6. Here is the resulting lattice of intermediate fields.

//\\
\\//

And here is the corresponding lattice of the subgroups of G.

{1g,(ap a3)}  {1g,(a; a3)}  {1g,(ay @)} {lg, (@) a; a3), (@) a5 @,)}

T L
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Remark. We will prove later that if K is both normal and separable over F, then any inter-
mediate field is a closed subset of K and that if the group G is finite, then any subgroup
of G is a closed subset of G.

8.4 Homework 12 — due February 22.

Exercise. Finish the proof of the remark (*) in section 8.3.

8.5 Galois Field Extensions and the Galois Correspondence.

Galois Field Extension.

Definition. Let F be a field and K be an algebraic field extension of F. We say that K is
Galois over F iff it is both normal and separable over F.

Remark. Let K be a finite Galois extension of a field F with Galois group G. Consider
the Galois connection between subsets of K and subsets of G. We will show that every
intermediate field is a closed subset of K and every subgroup of G is a closed subset of
G. Thus there is a bijection between the set of all intermediate field E with F C E C K
and all subgroups of G.

The Galois Group.

Definition. When K is Galois over F, then we will denote the group Aut;(K) of auto-
morphisms of K over F by Gal(K /F) and call it the Galois group of K over F.

Remark. Let K be afinite field extension of a field F with G = Autz(K). Then K is Galois
over F ifand only if |G| = [K : F].

Proof. Assume that K is Galois over F. Let n = [K : F]. Since K is separable over F,
we have n embeddings of K into F? over F. Since K is normal over F, each of those
embeddings is an automorphism of K. Thus |G| = n.

Assume that |G| = [K : F]. Each of the automorphisms of K over F is an embedding
of K into F?so [K : F|,=[K : F]. Thus K is separable over F. Since we can have at most
[K : F] embeddings of K into F?, there are no other embeddings of K into F? and hence
every embedding of K into F? is an automorphism of K. Thus K is normal over F. [

Fixed fields.
Definition. Let K be a field and G be a subgroup of Aut(K). Let
K%={aeK:o(a)=aforeveryc€G}.

Then K¢ is a subfield of K and say that K¢ is the fixed field of G.
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Every intermediate field of a Galois extension is closed.

Proposition. Let K be a Galois extension of a field F and G be the Galois group of K over
F.

1. Wehave K¢ =F.

Proof. Suppose a € K. If ¢ is an embedding of F(a)in F2= K? over F, then ¢ can
be extended to an automorphism of F? whose restriction to K isin G. Since a is fixed
by any element of G, it follows that p(a)=a so [F(a): F]; = 1. Since a is separable
over F, it follows thata € F. O

2. K is Galois over any intermediate field E .

Proof. Since K is separable over F, for every a € K the minimal polynomial f of a
over F has no multiple roots. The minimal polynomial of a over E is a factor of f so
it also has no multiple roots and a is separable over E.

Since K is normal over F, it is a splitting field of a set of polynomials over F. Then K
is a splitting field of the same set of polynomials over E. Thus K is normal over E. [

3. If E, and E, are different intermediate fields, then
Gal(K /E,) # Gal(K | E,).

Proof. Suppose Gal(K /E,) = Gal(K/E,) = H. Then 1. and 2. imply that E, = K =
E,. O

Remark. Let K be a (finite or infinite) Galois extension of a field F with Galois group G.
Consider the Galois connection between subsets of K and subsets of G. Every interme-
diate field is a closed subset of K.

Proof. Let E be an intermediate field. Then the proposition above implies that K is Ga-
lois over E and K¥X/F)= E. Thus E is a closed subset of K. O

Every finite subgroup is closed.

Theorem. Let K be a field, G be a finite subgroup of AuK) and F = K€ be the fixed
field.

1. K is Galois over F .
Proof. Let a € K. It suffices to show that a is a root of a polynomial over F that is

separable and splits over K. Let a,,...,a; be all the distinct images of a under the
automorphisms from G. Consider the polynomial

fxX)=(x—a))(x—ay)...(x —ay).

The polynomial f is clearly separable and a is a root of it. Since a;,...,a; arein K, it
splits over K.

It remains to show that the coefficients of f are in F. We claim that

25



() If

k—1 k

f(x)=by+byx+--+b_x" +x",

then ¢(b;) = b; for every ¢ €G.

Proof of (*). For each b;, we have b; = h;(a,, ..., a;) where h; is some composition
of the operations of addition, subtraction and multiplication. For example, b, =

(—1)* a,a,...a; and
k
b= ] ay
i=1 j#i
Let ¢ € G. Since ¢ restricted to A = {al, . ..,ak} is a permutation of 4, it follows
that
(x = (@) (x = ¢(a)...(x = p(an) = f(x).

Thus b; = hi(go(al),...,go(ak)) foreach i =0,1,...,k—1. Since ¢ is an automor-

phism of K it follows that ¢(b;) = h,-(ap(al),...,go(ak)). Thus ¢(b;) = b; for each
i. N

Since
F=K°={acK:yp(a)=a, forevery p €G},

if follows that f(x) e F[x]. ]
2. [K:F]=|G|.

Proof. Suppose [K : F] < |G|. Then [K : F] is finite and equals [K : F] so [K : F], <
|G| whichis a contradiction since any element of G is an embedding of K into F? = K?
over F. Thus [K:F] > |G|. If [K:F] > |G|, then there is an intermediate field E
with finite [E : F] > |G|. Since every element of K is separable over F, the field E is
separable over F. Thus [E : F|, =[E : F]and thereis a primitive element a € E over F.
The minimal polynomial of a over F has degree > |G| contradicting the observation
in the proof of 1. that such a degree is < |G|. ]

3. GallK/F)isequaltoG.

Proof. Ttis clear that G € H = Gal(K/F). Since |H| = [K : F] =|G| and G is finite, we
have G = H. O

Remark. Let K be a finite Galois extension of a field F with Galois group G. Consider
the Galois connection between subsets of K and subsets of G. Every subgroup of G is a
closed subset of G.

Proof. Let H be a subgroup of G. Since G is finite (we have |G| = [K : F]) also H is finite.
The theorem above implies that Gal (K /KH ) = H. Thus H is a closed subset of G. ]
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Remark. Without the assumption that K is finite over F, not every subgroup of G is a
closed subset of G. There is a topology on G (Krull topology on G) such that the closed
subsets of G are exactly the subgroups of G that are closed in the Krull topology. How-
ever, if a subgroup H of G is finite, then H is a closed subset of G. Thus every finite
subgroup of G is closed in the Krull topology.

The join of subfields and of subgroups.

Definition. If E; and E, are subfields of a field K, then E, E, denotes the join of E; and
E, which is the intersection of all subfields of K containing the union E; U E,.

Remark. Note the the join E, E, is equal to E;(E,) and to E,(E,).

Definition. Let H, and H, be subgroups of a group G. The join H,V H, is the intersection
of all subgroups of G containing H, U H,.

Remark. 1f one (or both) of the subgroups H,, H, is normal in G, then H,V H, = H H, =
H,H, where
Hle - {h]hZ . hl S Hl’ h2 S Hz} .

See the exercise in section 8.6.
Corollary. Let K be a finite Galois extension of a field F with Galois group G.

1. Thereis a bijection between the set of all intermediate fields and the set of all subgroups
of G.

2. The group corresponding to an intermediate field E is the Galois group Gal(K / E).
3. The field corresponding to a subgroup H is the fixed field K.

4. If E, C E, are intermediate fields and H, 2 H, are the corresponding subgroups of G,
then [Ez . El] = [Hl . Hz]

Proof. Since K is Galois over both E; and E,, wehave [K : E;| =|H,|and [K : E,| = |H,|.
Since [K : E;]| =[K : E,] [E, : E], it follows that

[K:E ] _ |H _H B

TSy AR

as claimed. O]

5. If E, and E, are intermediate fields and H,, H, are the corresponding subgroups of G,
then the join E, E, corresponds to the subgroup HiNH, of G, and the intermediate field
E, N E, corresponds to the join H, V H,.
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8.6 Homework 13 — due March 1.
Exercise. Let G be a group and H,, H, be subgroups of G.

1. Prove that if H, H, = H, H;, then H, H, is a subgroup of G.

2. Prove that if H, isnormal in G, then H, H, = H, H,.

8.7 Normality in the Galois Correspondence.

Theorem. Let K be a Galois extension of a field F with Galois group G. Let E be an
intermediate field with the corresponding subgroup H of G.

1. E isnormal over F if and only if H is normal in G.

Proof. Let E be an intermediate field and H = Gal(K/E). Suppose E is normal over
F. Let ¢ € G and ¢ € H. To show the normality of H in G we need to verify that
@y € H, that is that ¢~y p(a) = a for every a € E. Since E is normal over F, it
follows that ¢(a) € E so l/)(go(a)) = ¢(a) and hence ¢ " y(a)=a.

Now assume that H is normal in G. Let ¢’ be any automorphism of F? (= K?) over F.
Suppose, to the contrary, that E is not normal over F. Then the restriction of ¢’ to E
is not an automorphism of E. Thus there is a € E such that b = ¢’(a)e K \ E. Since
E is the fixed field of H, there is i € H such that i)(b) # b. Let ¢ be the restriction of
¢’ to K. Then

pppla)=¢ Y(b) £y (b)=a.
Since a € E, it follows that ¢!y ¢ ¢ H contradicting normality of H in G. O

2. If E is a normal over F (hence is Galois over F), then the Galois group Gal(E/F) is
isomorphic to the quotient group G /H.

Proof. Let f : G — Gal(E/F) assign to ¢ € G the restriction of ¢ to E. Then f isa
surjective group homomorphism with H = ker( f ) Thus Gal(E/F) is isomorphic to
G/H. 0

Remark. Let K be a Galois extension of F with G = Gal(K/F), let E; C E, be some in-
termediate fields with the corresponding subgroups H, 2 H, of G. Then the field E,
is normal over E, if and only if the group H, is normal in H,. If normality holds, then
Gal(E,/E;) is isomorphic to H,/H,.

Example. Let F = Q and K be the splitting field of the polynomial f(x)= x*—2 over
F. Then K is normal and separable over F. Let a; = V2, a, = wv2 and a3 = w?V2,

where w = —% + ?i, be the roots of f(x). Let G be the Galois group of K over F with the
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elements of G represented as the permutations of the set {a;, @,, a3} of the roots of f(x)
In the pictures below, thick lines denote normality.

//\\
\\//

//\\\

{1g,(az a3)}  {1g,(ay a3)}  {1lg,(ay @)} {lg, (o) @, a3),(ay a3 @)}

Proposition. Let K be a Galois extension of a field F and L be any field extension of F,
with both K and L being subfields of the same field.

KL
N
K L
\ /
KL

F

1. Thejoin K L is Galois over L and K is Galois over KN L.

Proof. Since K is Galois over F it is Galois over any intermediate field so, in particu-
lar, over K N L. In order to show that K L is Galois over L we will prove and use the
following claim.

(*) Every a € K is aroot of a separable polynomial f,(x) € L[x] that splits over K L.

Proofof (*). Let a € K. Since K is Galois over F, the minimal polynomial f,(x)
of a over F is separable and splits over K. Then f,(x) € L[x] and f, splits over
KL. [

Since K L is generated by K over L and every element of K is separable over L, it fol-
lows that K L is separable over L. Since K L is the splitting field of the set { faraeK }
of polynomials over L, it follows that K L is normal over L. O
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2. IfK is finite over KN L, then the function ¢ : Gal(K L/L)— Gal(K /K N L) assigning to
o therestriction o [K is a group isomorphism.

Proof. Since K is normal over KNL, every automorphism of K L over L restricted to K
is an automorphism of K over KNL. Thus ¢ [K € Gal(K/KNL). Ifo,7€Gal(KL/L),
then (0 o7)[K = (0[K)o(7[K) so the function ¢ is a group homomorphism. Since
KL =L(K), itis clear that ¢ is injective.

It remains to show the surjectivity of ¢. It suffices to show that [K : KN L]=[KL/L].
Since K is finite and separable over K N L, the Primitive Element Theorem implies
that K is generated over K N L be a single element a € K. Then KL = L(a). Let f(x)
be the minimal polynomial of a over K N L. The result will follow when we show that
f(x)isirreducible over L. Since K is normal over K N L, the polynomial f splits over
K implying that every monic divisor of f(x)in L[x] belongs to (K N L)[x]. Since f is
irreducible over K N L, it follows that it is irreducible over L. O

Remark. The assumption that K is finite over K N L in part 2. of the proposition above
was only used in the proof of the surjectivity of ¢ in order to simplify the argument.
Without this assumption, the result is still true. The proof however becomes more com-
plicated since we need to consider then the continuity of ¢ in the Krull topology.

Corollary. Let K be a finite Galois extension of a field F and E,, E, be intermediate fields.
Suppose that one (or both) of E,, E, is normal over E, N E,. Then [E\E,: E|| = [E,: E; N E,]
and [E1E2 . Ez] - [El . El N Ez]

Remark. When none of the intermediate fields E,, E, is normal over F, then the equali-
ties in the above corollary do not need to hold.

Example. Let F = Q and K be the splitting field of the polynomial x3—2 over F. Let
=2, &, = V2w with o =—1 + 2}, and let E, = F(a,) and E, = F(a,). Then E, E, = K
and E,NE,=F,but [E,: F]=[E,: F]=3while [K : E;] = [K : E,] =2. Note that none of
the fields E,, E, is normal over F.

Let E; = F(w). Then Ej is normal over F. Now we have [E;: F] =2 = [K : E;] and
[K :E)=3=|[E,: F].

In the picture below, bold lines are used when the extension is normal and the num-
bers denote the degree of the extension.

//\\
\\//

Remark. Instead of using the proposition, the corollary can be deduced alternatively
from the Second Isomorphism Theorem for groups (see section 8.8).
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Proof. Let G be the Galois group of K over F and let H; and H, be the subgroups of G
that correspond to the intermediate fields E, and E,. Suppose E; is normal over F. Then
H; isnormal in G.

K {1}

E,E, H,NH,
E/// \\\& H{// ~\\H2
~ _— ~ _—

E,NE, H,H,

F G

Thus H, N H, is normal in H, and there is an isomorphism H,H,/H, — H,/(H, N H,) im-
plying that
[H\H,: H\]=[H,: H N H,],

and consequently [E, E, : E,]| = [E, : E, N E,]. ]

8.8 Homework 14 — due March 4.

Exercise. Let G be a group and H;, H, be subgroups of G with H; normal in G. Prove
that the quotient H, H,/ H, isisomorphic to H,/(H, N H,). Hint: Define ahomomorphism
¢ : HiH, — H,/(H, N H,) such that ¢(h, h,) = h,(H, N H,) and use the Fundamental Ho-
momorphism Theorem for groups.

Remark. The result in the exercise is often called the Second Isomorphism Theorem for
groups.

8.9 The Galois Group of x*—2 over Q.

e Let F =Qand K be the splitting field of the polynomial x*—2 over F with G being
the Galois group of K over F. Let a, = V2, a, = iv/2, a3 =—+2 and a, = —i+2 be
all the roots of x*—2.
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e Since F(a;) has degree 4 over F and i ¢ F(«a,), the polynomial x? + 1 is irreducible
over F(a;) so K = F(a,,i) and [K : F] = 8. Consequently, the group G has 8 el-
ements. The root @; can be mapped to any of the roots a,,...,a, and i can be
mapped either to itself or to —i. There are 8 choices in total and each of them cor-
responds to exactly one element of G.

e Thereis ¢ € G suchthat p(a;)=a, and ¢(i) =i, and thereis T € G such that 7(a;) =
a, and 7(i) = —i. Note that ¢ corresponds to the 4-cycle (a; @, a5 a,) or to the
rotation by 90° anticlockwise around the origin. The automorphism 7 corresponds
to the transposition (a, a,) or the reflection in the real axis.

e The remaining elements of G are:

the identity 1,

the composition ¢? of ¢ with itself that corresponds to the product (¢, a5)(a, )
of two transpositions or to the rotation by 180° around the origin,

- 3=y~ corresponding to the 4-cycle (o, a, a5 ) or the rotation by 90° clock-
wise around the origin.

the composition 7y = @37 corresponding to the product (a, a,)(a, a3) or to
the reflection in line A.

the composition T¢? = p?7 corresponding to the transposition (a,; a3) or to
the reflection in the imaginary axis.

the composition 7¢* = @1 corresponding to the product (¢, a,)(a; a,) or to
the reflection in the line B.

e The subgroups of G are

- the trivial group {IG },

- five subgroups of order two generated by one of the elements whose order
in G is 2, namely the four reflections and rotation by 180°: (1), (T(p), (Tg02>,

{(79°), (9?)

— three subgroups of order four: the subgroup (cp) consisting of all rotations
(including the identity) that is generated by ¢, the two subgroups generated
by the reflections in two perpendicular lines, either both axis or the lines A
and B, namely (7, T¢?)and (T, Tp?).

- the group G.

e Allsubgroups of G of order four are normal in G (subgroups of index two are always
normal). The only subgroup of order two that is normal in G is (902>.
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e Here is the lattice of the subgroups of G.

{16}

//\\

(p?) @) (Tp3)

\// \\/

(T,79%) (@) (T, 79%)

N7

G

The corresponding lattice of the intermediate fields is given below, where 3, = a; +
a,and B, =a;, +a,.

K

e

QW2) QW2i) Q(i,v2) QB) Q)

NN LS

Qw2) Q) Q(v2i)

N

Q

Remark. The group that appears in the example above is call the dihedral group of order
8 and denoted D;. For each positive integer n, there is a dihedral group D,,, of order 2n
that is the group of all symmetries of a regular n-gon. The group D; is isomorphic to the
group S; of all permutations of the set {1,2,3}. Note that if n > 3, then the group D,, is
not abelian.

8.10 Homework 15 — due March 15.

Exercise. Let f(x)= x*—3x%—3 be a polynomial over F = Q and let K be the splitting
field of f(x) over F. Find the Galois group G of K over F and draw the lattice of all in-
termediate subfields and the corresponding lattice of all subgroups of G. Identify which
intermediate fields are normal over F.
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9 Sylow Subgroups of a Finite Group.

9.1 A Partial Converse of Lagrange’s Theorem.

Example. Let G = A, be the group of even permutations of the set {1, 2,3,4}. Then G has
12 elements so 6 is a divisor of 12, but G has no subgroup of order 6. Thus the converse
of Lagrange’s Theorems is false.

Remark. We will show that if G is a finite group, p is a prime and p”" divides the order
of G, then G has a subgroup of order p”. This gives us a partial converse of Lagrange’s
Theorem.

9.2 Sylow Subgroups.
p-subgroups. Let p be a prime. A p-subgroup of a finite group G is a subgroup whose
order is a power of p (including the trivial subgroup).

Sylow p-subgroups. Let G be a finite group and p be a prime. A Sylow p-subgroup of
G is a p-subgroup H such that the index [G : H] is not divisible by p.

Remark. We will show that for any prime p any finite group G contains a Sylow p-subgroup
and more generally that if p” divides the order of G, then G has a subgroup of order p"
(see Theorem and Corollary in section 9.7).

9.3 The Fundamental Theorem of Algebra.
Linear Orders. Let X be a set. A linear order on X is a binary relation < such that
1. <isreflexive (for every a € X we have a < a).
2. <istransitive (for everya,b,c € Xifa<b and b < c then a < ¢).
3. <is antisymmetric (foreverya,b € X ifa < b and b < a then a = b).
4. <istotal (foreverya,b € X wehavea < b or b < a).

Ordered Fields. An ordered fieldis a field F with a linear order relation < such that, for
anya,beF,ifa,b>0,thena+b>0and ab >0.

Remark. Equivalently, an ordered field is a field F with a distinguished set P C F such
that:

1. F is the disjoint union of P, {0} and —P, where —P ={—a : a € P}.
2. a+bePandabePforeverya,beP.

The elements of P are called positive and correspond to the elements that are > 0 but

£0.
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Elements that are squares. Let F be a field. We say that an element a € F is a square,
if there exists b € F such that a = b?.

Remark. 1f F is an ordered field, and a € F* is a square, then a is positive. In particular,
no ordered field can be algebraically closed.

Proposition. Any ordered field has characteristic zero.

Proof. Suppose that F is an ordered field of prime characteristic p. Then 1 is a square
so it is positive implying that —1 = 1 +---+ 1 is positive, which is a contradiction. []
~—_

p—1

Theorem. Let F be an ordered field such that every polynomial of odd degree over F has
aroot in F and every positive element of F is a square. If K is a splitting field of the poly-
nomial x*+ 1 over F, then K is algebraically closed.

Proof. Letibearootof f(x)=x?+1in F2 Then K = F(i). Let L be any finite extension
of K. It suffices to show that L =K.

We can assume without loss of generality that L is normal over F (otherwise L can
be replaced with the splitting field over F of the minimal polynomial of a € L such that
L = F(a)). Then L is a finite Galois extension of F. Let G be the Galois group of L over
F and H be a Sylow 2-subgroup of G. Let E = L¥ be the corresponding fixed field.

{16}

L
E H
F G

We claim that:

(*) E=F.

Proof of (*). We have then [E : F]| =[G :H]so [E: F]|is odd. Let a € E be arbitrary.
Then

[E:F]=[E:F(a)l[F(a):F],

implying that [F(a): F]is odd. Let g(x)be the minimal polynomial of @ over F. Then
g(x) has odd degree and is irreducible over F. Since any polynomial over F of odd
degree has a root in F, it follows that g(x) has degree 1. Thusa € F. O

Since E = F, it follows that H = G so G is a 2-group. Let J be the subgroup of G cor-
responding to K and suppose, to the contrary, that L # K. Then J is a nontrivial group
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whose order is 2 for some integer k > 1. Let J’ be a subgroup of J of order 2k=1 and K’
be the corresponding field.

L {16}
‘ f
F :

Then [ : J'] =2 so K’ is an extension of K of degree 2. To complete the proof it remains
to show that K has no proper extensions of degree 2 (exercise). O

Corollary. The field C of complex numbers is algebraically closed.

9.4 Homework 16 — due March 20.

Exercise. Finish the proof of the theorem in section 9.3.

9.5 Group Actions.

Definition. Let G be a group and X be a set. An action of G on X is a group homomor-
phism G — S(X), where S(X) is the group of all permutations of X. If ¢ : G — §(X)is an
action of G on X then we will also say that (go(g))(a) is the result of g acting on a and
denote it by g(a).

Example. Let G be a group. Then G acts on itself by conjugation.

Formally, the homomorphism ¢ : G — S(G)issuch thatif a € G then the permutation
¢(a): G — G is the conjugation by a, that is for b € G we have (cp(a))(b) =aba™'. pisa
homomorphism since

(go(ac))(b) = ach(ac)™!

so plac)=p(a)y(c).

Orbits of a Group Action.

Definition. Let G act on a set X. Let ~ be the equivalence relation on X given by a ~ b
iff there is g € G with b = g(a). The equivalence classes of ~ are called the orbits of this
action.
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Stabilizers.

Definition. Let G actonaset X. Ifa € X, thenletG, = {g €eG:gla)= a} be the stabilizer
ofainG.

Remark. The stabilizer G, is a subgroup of G.

9.6 Class Formula.

Theorem. Let G be a group acting on a finite set X and a,, ..., a,, be representatives of the
orbits of the action. Then |X|=Y_ [G : Gai], where G,, is the stabilizer of a;.

Proof. Let A; be the orbit containing a; for each i = 1,...,n. It suffices to show that
Ai} = [G : Gai]. Let G/G,, be the set of all left cosets of G,, in G. Define f : G/G,, — A;
so that f(bGui) is the result b(a;) of b acting on a;. We have bG, = b’G,, iff b~'b’' € G,
iff b='b’(a;) = a; iff b’(a;) = b(a;) implying that f is well-defined and injective. Clearly f
is surjective. O

Center of a group.

Definition. The center Z of a group G is the set of all a € G that commute with every
element of G.

Remark. 1f G acts on itself by conjugation, then the center of G is the set of all a € G
such that the singleton {a} is an orbit of G.
Centralizer of an element of a group.

Definition. If G is a group and a € G, then the centralizer C, of a in G is the set of all
elements of G that commute with a.

Remark. If G acts on itself by conjugation, then the stabilizer of a € G in this action is
the centralizer C,.
Conjugacy classes.

Definition. Let G be a group. The orbits when G acts on itself by conjugation are called
conjugacy classes.

Corollary. Let G be a finite group and a,, ..., a, be representatives of conjugacy classes
that are not singletons. Then

Gl=1z1+)_[G:C,],
i=1
where Z is the center of G.
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9.7 The First Sylow Theorem — Existence of Sylow Subgroups.

Proposition. Let G be a finite abelian group and p be a prime dividing the order of G.
The G has an element of order p.

Proof. We use induction on the order of G. Let a € G be not equal to 1. If the order of a
is divisible by p, say is equal to k p, then a* € G has order p. Otherwise, let H = (a) be the
cyclic subgroup of G generated by a. Since p divides the order of G/H, it follows from
the inductive hypothesis that there is an element b H € G/H of order p. Thus p divides
the order of b in G (see the exercise in section 9.9) and we can repeat the argument from
above. O

Theorem. Let G be a finite group and p be a prime. There exists a Sylow p -subgroup of
G.

Proof. We use induction on the order of G. If G is trivial the result is obvious. Assume
G is not trivial. If there is a proper subgroup H of G with [G : H] not divisible by p,
then the inductive hypothesis implies that H has a Sylow p-subgroup which is then a
Sylow p-subgroup of G. Suppose not. Then p divides the order of G. Let a,,...,a, be
representatives of the nontrivial (that are not singletons) conjugacy classes of G. Then
the index [G : Cai] is divisible by p for each i so the Class Formula implies that the order
of the center Z of G is divisible by p. Thus there is an element a € Z of order p. Let
H = (a) be the cyclic subgroup of G generated by a. Since a € Z, the subgroup H is
normal in G. By the inductive hypothesis G/H contains a Sylow p-subgroup which is of
the form K /H for some subgroup K of G containing H (by Correspondence Theorem).
Then [G : K] =[G/H : K/H] is not divisible by p so K is a Sylow p-subgroup of G. [

Corollary. If G is a finite group and p is a prime such that p" divides the order of G, then
G has a subgroup of order p".

Proof. The theorem above implies that we can assume, without loss of generality, that G
is a p-group. We use induction on n. If n =0, the result is obvious. Assume n > 1. Then
G is nontrivial so it has a nontrivial center Z (exercise). Then Z contains an element
of order p which implies that G has a normal subgroup H of order p. By the inductive
hypothesis (and the Correspondence Theorem for groups) the group G/H contains a
subgroup K /H of order p"~!, where K is a subgroup of G containing H. Then the order
of Kisp”. O

9.8 Homework 17 — due March 22.

Exercise. Let p be a prime integer and G be a nontrivial finite p-group. Prove that the
center Z of G is nontrivial.

9.9 Homework 18 — due April 1.

Exercise. Let G be a group and H be a subgroup of G. Let a € G be an element of a finite
order m. Let k be the smallest positive integer such that a* € H and ¢ be the order of a*
in H. Prove that k{ = m.
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9.10 More on Sylow Subgroups.
Fixed point of a group action.

Definition. Let G be a group acting on a set X. A fixed point of this action is an element
a € X such thato(a)=a forevery o € G.

Lemma. Letp be a prime integer and G be a finite p-group acting on a finite set X. Then
the number of fixed points of this action is congruent to | X | modulo p.

Proof. For any a € X the cardinality of the orbit of a is equal to [G : G,], where G, is the
stabilizer of a. If a is not a fixed point, then G, is a proper subgroup of G so the index
[G : G,] is divisible by p. Thus the class formula implies the result. O

Normalizer of a subgroup.

Definition. Let G be a group and H be a subgroup of G. The normalizer of H in G is the
setofallge G suchthatgH =Hg.

Remark. Note that the normalizer of H in G is a subgroup of G containing H. It is the
largest subgroup of G in which H is normal. Also H is normal in G if and only if the
normalizer of H in G isequal to G.

Group acting on the set of its subgroups by conjugation.

Definition. Let G be a group and X be the set of all subgroups of G. The action of G on
X by conjugation is defined by

gH)=gHg '={ghg ' :heH},
foranyge G and H € X.

Remark. Note that H is a fixed point of the action above if and only if H is normal in G.
If H is any subgroup of G, then the stabilizer of H in that action is the normalizer of H
inG.

The action above can also be considered when X is any set of subgroups of G that is
closed under conjugation. We can also consider the action on X be any subgroup of G.

Proposition. Let G be a finite group, p be a prime integer, H be a p -subgroup of G, P be a
Sylow p -subgroup of G and X be the set of all conjugates of P by elements of G. Consider
the action of H on X by conjugation. Then there exists a fixed point of this action. Any
such fixed point contains H.

Proof. Consider the action of G on X by conjugation first. This action has only one orbit
equal to X. Thus |X| =[G : N], where N is the stabilizer of P in that action, hence the
normalizer of P in G. Since N contains P, it follows that [G : N] is not divisible by p.
Thus | X| is not divisible by p.

Now consider the action of H on X by conjugation. The number of fixed points of
this action is congruent to | X| modulo p so it is nonzero. Let Q be a fixed point of this
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action. Then hQh™' =Q for any h € H so H € N’ where N’ is the normalizer of Q in G.
We claim that H C Q.

Suppose, to the contrary, that H is not a subset of Q. Then HQ # Q. Note that HQ
is a subgroup of N’ since Q is normal in N’. Since HQ/Q is isomorphic to H/(H NQ), it
follows that the index [HQ : Q] is a positive power of p. That is a contradiction since Q
is a Sylow p-subgroup of G. N

Conjugate subgroups.

Definition. Let G be a group and H and J be subgroups of G. We say that H and J are
conjugate in G if there exists g € G such that J=gHg™.

Remark. Any two subgroups of G that are conjugate are isomorphic. The converse does
not have to be true.

Example. Let H =7Z, x {0} and J = {0} x Z, be subgroups of G =Z, x Z,. Then H and J
are isomorphic but they are not conjugate in G. Since G is abelian, two subgroups of G
are conjugate if and only they are equal.

Theorem. Let G be a finite group and p be a prime integer.

(1) Any p-subgroup of G is contained in a Sylow p -subgroup of G.
Proof. Let H be a p-subgroup of G and P be a Sylow p-subgroup of G. Consider the
action of H by conjugation on the set X of all conjugates of P by elements of G. Let
Q be a fixed point of this action. Then Q is a Sylow p-subgroup containing H. [
(2) Any two Sylow p -subgroups of G are conjugate.
Proof. Let H and P be Sylow p-subgroups of G. Consider again the action of H by
conjugation on the set X of all conjugates of P by elements of G and let Q be a fixed
point of this action. Then H € Q implying that H = Q. Since Q is a conjugate of P, it
follows that H is a conjugate of P. N
(3) The number of Sylow p -subgroups of G is congruent to 1 modulo p.

Proof. Note that any fixed point of the action in the proof of (2) must be equal to H
so there is only one fixed point. Therefore | X| =1 modulo p. O

(4) The number of Sylow p -subgroups of G is a divisor of |G|.
Proof. Consider the action of G by conjugation on the set X of all Sylow p-subgroups
of G. Since X is the only orbit of this action, its size (equal to the index of the stabi-
lizer of any element of X) must be a divisor of |G]|. O

Corollary. Let G be a finite group and p be a prime integer.
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1. Any two Sylow p -subgroups of G are isomorphic.

2. If G is abelian, then it has a unique Sylow p -subgroup.

Remark. As a consequence, any subgroup of the symmetric group S, of order 8 is iso-
morphic to the dihedral group D;.

9.11 Homework 19 — due April 3.

Exercise. Let p be a prime integer, G be a finite group, H be a Sylow p-subgroup of G
and N be the normalizer of H in G. Prove that if J is any p-subgroup of G contained in
N, then J CH.

10 Solving Polynomials by Radicals.

10.1 Radical Field Extensions.

Definition. Let F be a field of characteristic zero and K be a field extension of F. We say
that K is radical over F iff there exists a chain F = F, C F, €... C F, = K of fields such
thatforeachi=1,...,n we have F, = F_,(a;) for some a; € F, such that there is a positive
integer n; with a," € F,_,.

Remark. Any radical field extension is a finite extension.

Example. Let

12,
azil Hﬂ—ﬁ+ vV19+78€R
VV15+ V5
and K = Q(a). Then K is a radical extension of Q. Indeed, if F; = Q( 1«2/7), E = E(m),
E= Fg(«s/g), F,=EV19and = F4( VY154 \75), then the chain
QEKRCECEKECECKCK

demonstrate that K is a radical extension of Q.

Polynomials solvable by Radicals.

Definition. Let F be a field of characteristic zero and f be a polynomial over F. We say
that f is solvable by radicals over F iff there exists a radical extension K of F such that
f(x) splitsin K[x].

Remark. Intuitively, a polynomial f(x) e F[x] is solvable by radicals over F if and only if
its roots can be expressed in terms of the elements of F using algebraical operations like
addition, subtraction, multiplication and division together with the operation of taking
roots of some degree n that is a positive integer (picking one of the roots of an equation
of the form x" = a).

Note that f is solvable by radicals over F if and only if the splitting field of f over F
can be extended to a radical extension of F.
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Proposition. Let F be a field of characteristic zero and f be a polynomial of degree < 4
over F. Then f is solvable by radicals over F .

Proof. The result is obvious when the degree of f is 1 and when it is 2, then we can use
the quadratic formula.

Assume that deg ( f ) = 3. Without loss of generality, we can assume that f is monic.
Let f(x)=x*+bx*+ cx+d with b, c,d € F. Substituting x = y — b /3, we get

b\’ b\’ b ,
gy)=\y—35| +oly—35 | +c|y—5|+d=y'+py+q
for some p,q € F. Let s € F. Substituting y = z + s/z and multiplying by z3, we get

3
((z+§) +p(z+§)+q)z3=Z6+(3s+p)z4+ng+s(33+p)z2+sg.

When s =—p/3, we get h(z) = z°+qz*—p?/27. Ttis clear that there is a radical extension
E of F such that h splits over E and that there is a radical extension K of E such that g
splits over K. Then K is a radical extension of F and f splits over K implying that f is
solvable by radicals over F.
Assume that deg( f ) = 4. Without loss of generality, we can assume that f is irre-
ducible and of the form
f(xX)=x*+px*+qgx+r

forsome p,q,r € F. If g =0, then it is clear that f is solvable by radicals over F. Assume
thus that g # 0. Suppose we find b, ¢, d in some radical extension E of F such that

f)=(x2+b) —(cx+d).

Then it is clear that f is solvable by radicals over E. Consequently, we will be able to
conclude that f is solvable by radicals over F. We need

x*+(2b—c?)x*—2cdx+b*—d*=x"+px*+qx+r.

Thus 2b — ¢?=p,—2cd = q and b?>—d? = r which gives us

2 212 2
b2 g (1) ()

2 2¢c

Expanding the last equation gives a cubic equation for ¢?. Thus there is a radical exten-
sion E of F containing ¢ and consequently also b and d. N

10.2 Homework 20 — due April 5.

Exercise. Prove that the polynomial x> —14x + 7 over Q has exactly three real roots.
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10.3 Solvable groups.

Definition. A group G is solvable iff there exists a chain of groups G =G, 2 G; 2 ... 2
G,= {IG} such that for each i =1,..., nn, the group G; is a normal subgroup of G;_, and
G;_,/G; is abelian.

Remark. Any abelian group is solvable. If G is an abelian group then the chain G 2 {IG}
demonstrate solvability of G.

Example. The group S; is solvable. The chain §; 2 A; 2 {1 53} demonstrate solvability of
S;. The group S, is also solvable. That is demonstrated by the chain

Si2A, 2V 2{1},

where V = {1g,(12)(34),(13)(24),(14)(23)}. The fact that V is normal in A, follows
from the fact that it is normal in S, which follows from the corollary below.

Cycle shape of a permutation.

Definition. Let n be a positive integer and 7 € S,,. The cycle shape of 7T is the sequence
(ay,a,,...,a,) of nonnegative integers, where a; is the number of cycles of length i ap-
pearing in the unique representation of 7 as a product of disjoint cycles.

Proposition. Let n be a positive integer and ©,0 € S,,. Then T and o are conjugate in S,
(there exists y € S,, such that o =yty™) ifand only if the permutations T and o have the
same cycle shape.

Proof. Notethatif(b, b, ... b,,)€S,isacycleoflength m andy € S, is any permutation,
theny(b, b, ... b,)y~"is the cycle (y(b,) 7(b,) ... 7(b,,)) which also is of length m. It
follows that any conjugate of a permutation 7 has the same cycle shape as 7.

Conversely, if (b, b, ... b,)and (¢, ¢, ... c,)are any two cycles of length m in §,,
then there is a permutation y € S, such that y(b;) = c; foreach i =1,2,...,m. Then

(b, by ... b))y ' =(c; ¢ ... Cp).
A simple modification of that argument shows that if T and o have the same cycle shape,
then they are conjugate. O

Corollary. Let n be a positive integer and H be a subgroup of S,,. Then H is normal in
S, if and only if for each cycle shape either H contains all permutations of S,, of that cycle
shape, or none of them.

The relation between solvability of polynomials by radicals and solvable groups.
Remark. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F. We will show that f is solvable by radicals over F if and only
if the Galois group of K over F is solvable.

Example. Let f(x)= x°>—14x + 7 be a polynomial over Q. Note that f(x) is irreducible
over Q. Let K be the splitting field of f(x) over Q. We will show later that the group
Autg(K) = Gal (K / Q) isisomorphicto S; (the group of all permutations of the set {1, ...,5}).
We will also show that the group S; is not solvable. It will follow that f(x) is not solvable
by radicals over Q.
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Quotients of solvable groups are solvable.

Lemma. Let G be a group, H be a normal subgroup of G and N be a subgroup of H
that is normal in G. Then H/N is a normal subgroup of G/N and the quotient group
(G/N)/(H/N) is isomorphicto G /H.

Proof. Exercise. O

Remark. The result in the lemma above is often called the Third Isomorphism Theorem
for Groups.

Theorem. Let G bea solvable group and H be a normal subgroup of G. Then the quotient
group G /H is also solvable.

Proof. LetG=Gy2G,2...2G, = {IG} be such that foreach i =1, ..., n, the group G; is
anormal subgroup of G,_; and G,_,/G; is abelian. Consider the chain

G/H=HG,/H2HG,/JH2...2HG,/H=H/H={H}

of subgroups of G/H.

We want to show, foreachi =1,2,...,n,that HG;/H isanormal subgroupof HG,_,/H
and that the quotient (HG;_,/H)/(H G;/H) is abelian. It suffices to verify that HG; is a
normal subgroup of HG,_, and the quotient HG,;_,/HG; is abelian. If h’g’ € HG; and
hg € HG,_,, then

(ng)(Wg')(ng) =hgh'g's ' h' =h(gh's™)(gg’'g ") h ™ = hh"(goh ' g;") g0 = hogo-

Since G; is normal in G,_,, it follows that g, = gg’g™"' € G; and since H is normal in G, it

follows that h” = gh’g™' € H and hj = goh~'g,' € H. Thus hy = hh”hj € H and HG,; is
normal in HG,_;.

It remains to show that HG;_,/H G; is abelian. Let ¢ : G;_,/G; — HG;_,/HG; be de-
fined by cp(gGi) = gHG;. Then g is well-defined and is a surjective homomorphism.
Since the image of an abelian group under a homomorphism is abelian, the result fol-
lows. O

10.4 Homework 21 — due April 8.

Exercise. Prove the lemma in section 10.3.

10.5 Subgroups of Finite Symmetric Groups.

Lemma. Let p be a prime integer, f(x) € Q[x] be an irreducible polynomial of degree p
and K be the splitting field of [ over Q. Let G be the subgroup of S, corresponding to the
Galois group of K over Q (treating the automorphism of K over Q as permutations of the
roots of [ ). Then the following hold.

1. G contains a cycle of length p.
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2. If f has exactly p—2 real roots, then G contains a transposition.

Proof. Let a be aroot of f. Then [Q(a) : Q] = p implying that [K : Q] is divisible by p.
Since K is Galois over Q, it follows that |G| = [K : Q]. Thus |G| is divisible by p and so
has an element of order p. Any element of S, of order p is a cycle of length p.

If f has exactly p —2 real roots, then it has two non-real roots one of which is a com-
plex conjugate of the other. The restriction of the complex conjugation to K exchanges
the two non-real root and does not move the real roots. Thus G contains a transposi-
tion. H

Proposition. Let p be a prime integer and G be a subgroup of the symmetric group S,
such that G contains a cycle of length p and a transposition. Then G =§,,.

Proof. Let T be a cycle of length p in G and o be a transposition in G. Replacing 7
with some power 7/ (1 < i < p —1) we can assume, without loss of generality, that
T= (ao a ... ap_l) and o = (aq a,). Note that to7! = (4, a,) and in general /o777 =
(a ja j+1) for every j =1,2,...,p —2. It follows that G contains all transpositions (exer-
cise), hence is equal to S,,. N

10.6 Homework 22 — due April 10.

Exercise. Let n be a positive integer and G be be a subgroup of S,, containing all trans-
positions of the form (i i + 1) foreveryi=1,2,...,n—1. Prove that G contains all trans-
positions.

10.7 Simple Groups.

Definition. A group G is simple if G has exactly two normal subgroup: the trivial sub-
group {IG} and itself.

Remark. An abelian group is simple iff it is isomorphic to Z,, for some prime p.
Example. There are no simple groups of order 30.

Proof. Let G be a group of order 30. We have 30 = 2-3-5. Let n; be the number of
Sylow 3-subgroups of G and n; be the number of Sylow 5-subgroups of G. Then n; =1
modulo 3 and n; divides 30. Thus n; can only be equal 1 or 10. Similarly, n5 can only
be equal 1 or 6. If n; =1, then the unique Sylow 3-subgroup of G must be normal in G
(otherwise its conjugate would be another Sylow 3-subgroup of G) so G is not simple.
Similarly if n; = 1, then G is not simple. It remains to consider the case when n; =10 and
ns; = 6. Each of the 10 Sylow 3-subgroups of G contains two elements of order 3. Since
the intersection of any different Sylow 3-subgroups is trivial (the size of the intersection
must divide 3 but not be equal to 3) there are 20 elements of order 3 in G. Similarly, there
are 6-4 =24 elements of order 5 in G. Since G has only 30 elements, that is not possible.
Thus G is not simple. O
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Remark. It can be proved that for any positive integer n < 60 that is not a prime, there are
no simple group of order n. We will show later that A5 (the subgroup of S; consisting of
all even permutations) is simple. Note that|A;| = 60. Thus A5 is the smallest non-abelian
simple group.

Theorem. Let n >5 be an integer. The alternating group A,, is simple.

Proof. Let H be a nontrivial normal subgroup of A,. We will show that H = A,,. Note
that it suffices to show that H contains a cycle of length 3.

1)

)

If H contains all cycles of length 3, then H = A,,.

Proof. Let T € A,,. Then T = 7,7,...7T,, where each 7; is a transposition. If 7,;_,
and 7,; are not disjoint, then the product 7,,_,7,; is a cycle of length 3. If they are
disjoint, then the product 7,;_,7,; is equal to the product of two cycles of length 3.
For example (1 2)(34)=(123)(234). Thus 7 is a product of cycles of length 3 and so
T € H since H is closed under taking products. N

If H contains at least one cycle of length 3, then H = A,,.

Proof. Let(a b c)e H andlet(u v w) € A, be any cycle of length 3. Then there exists
T€A, suchthat(u v w)=7(a b ¢c)T~! (exercise). Since H is normal in A,, it follows
that (u v w) € H. Thus H contains all cycles of length 3 and so H = A,, by (1). O

It remains to prove that H must contain a cycle of length 3. Let o € H be a non-identity
element. Consider the representation of o as a product of disjoint cycles. We are going
to consider the following cases:

(a)

(b)

There is a transposition in the representation of 0.
Leto=(ab)(cd...)....Lett=(a bd)eA,. Then

tot'=(bd)(ca...)...eH

and
B=c'trot ' =(ad)(bc)eH.

Letse{l,2,...,n}\{a,b,c,d}andy=(a d)(c s)€ A,. Then
6=yBr ' =(ad)(bs)eH
implying that 68 =(b ¢ s)€ H. Thus H contains a cycle of length 3.

There is a cycle of length at least 4 in the representation of o.
Leto=(abcd...)....Lett=(bcd)eA,. Then

tot'=(acdb...)...eH

and
o 'tor'=(abd)eH.

Thus H contains a cycle of length 3.
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(c) o isaproduct of disjoint cycles of length 3.

Leto=(abc)(uvw)....Lett=(a u)(b v)eA,. Then

tot'=(uvc)abw)..eH
and
o tor'=(bv)(cw)eH.

It follows from case (a) that H contains a cycle of length 3.

Since in each case we proved that H must contain a cycle of length 3, it follows from (2)
that H=A,,. O

Corollary. Let n >5 be an integer. The group S,, is not solvable.

Proof. Let H be a nontrivial proper normal subgroup of S,,. If H C A,,, then H is normal
in A,, implying that H = A,, since A,, is simple. Otherwise HA, =S, and H N A,, is trivial
(itisnormalin A, and it cannotbe A, as H is a proper subgroup of S,)). Since HA,,/A,, is
isomorphicto H/(H N A,), it follows that |H| = 2. Let T € H be the non-identity element.
Thus 7 is a product of disjoint transpositions. If (a b) is a transposition appearing in
this representation, and o = (b ¢) for some ¢ € {1,...,n}\ {b, ¢}, then oto ! has the
transposition (a c) in its representation as the product of disjoint cycles so it does not
belong to H contradicting the normality of H.

We have proved that A, is the only nontrivial proper normal subgroup of S,,. Since
A,, is not abelian, it follows that S,, is not solvable. O

10.8 Homework 23 — due April 12.

Exercise. Let n>5and (a b c) € A,, be a cycle of length 3. Prove that for every (u v w) e
A, there exists T € A, such that (u v w)=7(a b ¢)T7".

10.9 From Solvability by Radicals to Solvable Groups.

Proposition. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F. Then f is solvable by radicals over F if and only if there exists a
chain of fields F, C F, ... C F, such that

1. F, is Galois over F;
2. KCEFE,;

3. foreach i =2,...,n there exists a; € F; and a prime integer p; such that a" € F_,
andE = E—l(ai);

4. F is the splitting field of x">~P» —1 over Fy=F.
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Proof. If there exists a chain of fields as described, then this chain satisfies, in particular,
all the conditions required to demonstrate that f is solvable by radicals over F. Assume
now that f is solvable by radicals over F. Then there exists a chain

F=F CF'Cc...CF’
0o—"1— — m

of fields such that f splits over F, and for each i = 1,...,m we have F/ = F’ (a;) for
some a; € F/ and a positive integer n; with a;' € F! . If n; is not a prime integer, then
n,=q\q....qx, where q, ..., g, are prime integers. Then we can refine the chain between
F/ and F/ as follows

P(')/ g P(‘)/(alqz%mqk) g E)/(alqsch---qk) g . g E)/(alqk) g E/.

Thus we can assume, without loss of generality, that each n; is a prime integer. Suppose
that F? is an algebraic closure of F containing K. Consider all the images of a, under
the embeddings of " over F) into F*®. If a; is one of them then we can extend the chain
by adding F, ., = F,;l(a{) Note that (a{)nl = a," € F/ C F/. Repeating for all images of
a,, then for all images of a,, and so on, we get a chain F = F C... € F/ in which the last
field Fis normal over the F. Let n =t +1, p; be the prime integer such that F = F/ | (a;)
with a;""' € F/ . Let F, be the splitting field of x”-P» —1 over F and let w be a generator
of the group of roots of this polynomial. Then F = F(w). Define F; = F/ |(w) for every

0
i =2,3,...,n. The resulting chain of fields satisfies all the requirements. O

Lemma. Let G bea cyclic group. Then the group of all the automorphisms of G is abelian.

Proof. Let g be a generator of G and ¢, be automorphisms of G. It suffices to show
that py(g) =y ¢(g). Let p(g)=g"* and y(g)=g’. Then

¢ ¢
vy(g)=v(g')=v(g) =(g") =&""
Similarly, ¢ (g) = g'* and the proof is complete. O
Theorem. Let F be a field of characteristic zero.

(1) Ifp is a prime integer such that the polynomial x” —1 splits in F[x]| and K = F(a) for
some a € F? such that a” € F, then the group G = Autz(K) is cyclic (hence abelian).

Proof. Ifa € F, then G is trivial (hence cyclic). Assume a ¢ F. Let w be a generator of
the multiplicative group consisting of all the roots of x?—1. Then a, aw, aw?,...,aw?™!
are all the distinct roots of x”? —a” € F[x] and K is the splitting field of x” —a” over
F and K is Galois over F. In particular, the group G is nontrivial. Let ¢ € G be any
non-identity element and let k € {1,2, ey P— 1} be such such that (a) = awt. If

Y € G is any element and y(a) = aw’, where { € {0, L...,p— 1}, then there is an
integer s such that sk =¢ modulo p so

v'(a)= aw*=aw'= Y(a),

implying that ¢ = ¢°. Thus ¢ is a generator of G completing the proof that G is
cyclic. O
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Remark. Note that, it follows that ¢, ¢?, ..., ” =1 are all distinct so the group G
has order p. Consequently, [K : F] = p and so x? —aP? is irreducible over F.

(2) If K is the splitting field of x™ — 1 over F for some positive integer n, then Autp(K) is
abelian.

Proof. Let G be the set of all the roots of x” —1 in K. Then G is a finite subgroup
of K* so it is cyclic. Let H be the group of automorphisms of G. The function f :
Autz(K)— H defined by f (cp) = @G is an injective homomorphism. Thus Auty(K)
is isomorphic to the image of f which is a subgroup of H. Since any subgroup of H
is abelian, the proofis complete. N

Corollary. Let F be field of characteristic zero, f be a polynomial over F that is solvable
by radicals over F and K be the splitting field of f over F. Then Gal(K /F) is solvable.

Proof. Since f is solvable by radicals over F there is a chain
F=FRCFCEC...CF,

such that F) is Galois over F, the field K is a subfield of F,,, if i =2,3,..., n, then there is
a; € F; and a prime integer p; with a!" € F,_;, and F is a splitting field of x”~P» —1 over
F,. Then F, is Galois over F,_, with Gal(F,/F,_,) being abelian for eachi =1,2,...,n. Let
Gy 2 G, 2... 2 G, the the chain of groups with G; = Gal(F,/F,) foreach i =0,1,...,n.
Then G; is normal in G;_; with G,_,/G; being isomorphic to Gal(F;/F,_,), hence abelian,
foreveryi=1,2,...,n. Thus G, is solvable. Let H = Gal(F,/K). Since K is normal over
F, the group Gal(K /F) is isomorphic to G,/H which is solvable. O

Example. Let K be the splitting field of the polynomial f(x)= x>—14x+7 over Q. Then
Gal(K /Q) is isomorphic to S so it is not solvable. Thus f(x) is not solvable by radicals
over Q.

10.10 Homework 24 — due April 19.

Exercise. Let G be a group of order 105. Prove that G is not simple.

10.11 Linear Independence of Characters.

Characters.

Definition. Let X be a set and F be a field. Then F¥ (the set of all functions X — F) isa
vector space over F. Suppose there is some binary operation of multiplication defined
on X (any function X x X — X with the image on (a, b) denoted by ab). A function
o : X — F is a character in the vector space FX iffitis not zero (not the constant function
assigning 0 to every element of X) and preserves the operation of multiplication, that is,
when o(ab)=o(a)o(b)where in F we use the standard multiplication of F as a field.
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Theorem (Artin). Let X be a set with multiplication and F be a field. The set of characters
in the vector space FX is linearly independent.

Proof. Suppose, to the contrary, that the set of characters in F¥ is not linearly indepen-
dent. Then there are distinct characters y,,..., ¥, in FX and a,...,a, € F not all equal
to 0 such that a,y, +---+a, y, = 0. Assume that n is as small as possible. Since char-
acters are nonzero functions, we have n > 2. Since y, # y,, there is b € X such that
x1(b)# x.(b). Thus for every ¢ € X we have

a y(c)+ayy,(c)+--+a,y,(c) = 0,
a yi(be)tayy(be)+---+a,y,(bc) = 0.

Multiplying the first equation by y,(b) and using the property that characters preserve
multiplication to transform the second equation, we get

ay 1(b) yi(c)+ay 1 (b) yolc)+--+a, y1(b) y,(c) = 0,
ay y1(b) y1(c)+ay (D) yo(c)+---+a, y,(b) x,(c) = O.

Subtracting the second equation from the first gives:
a; (11(b)— 22(b)) 2(€) + -+ a, (11(b) = (D)) £a(€) =0

for every c € X. Thus a, ()(l(b)—)(z(b)) Yo+ +a, (xl(b)—)(n(b)))(n is the zero element
of the vector space FX and a, ( x:1(b)— )(2(19)) # 0 contradicting the minimality of n. [

Corollary. Let K be a field. Then Aut(K) is a linearly independent subset of the vector
space KX,
10.12 Norm over a Subfield.

Definition. Let F be a field of characteristic zero and K be a finite extension of F. The
norm on K over F is a function NX : K — F defined by NS (a) = ]_[?zlai(a), where
ogi,...,0, are all the embeddings of K into K® over F.

Cyclic extensions.

Definition. A field extension K of F is cycliciff it is Galois and the Galois group of K over
F is cyclic.

Lemma (Hilbert’s Theorem 90). Let F be a field of characteristic zero and K be a finite
cyclic extension of F. Let o be a generator of G = Gal(K/F) and 3 € K. Then le(([a’) =1
if and only if there exists a € K* with f = a/o(a).

Proof. 1f such a exists, then the norm of  is 1. Suppose the norm of 3 is 1 and let n =

[K : F1=|G|. Let By=1, B, =B, B.=Bo(B), Bs=Bo(B)d*B), ...,
Bur=Bo(B)o*(B)...a"*(B).
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Note that
Bo(p)=Po(pa(p)o*(p)...c"\(B)) = Bo(B)o*(B)...c'(B) = Pirn,
foreveryi=0,1,...,n—2and
Bo(B,-1)=Bo(B)o*(B)...0"(B)= N(B) = 1=

Since 15,0,07%,...,0" ! are distinct characters in the vector space KX, they are linearly
independent implying that the function

Bolg +ﬁ10'+/520'2+“'+/5n_10'n_1 :K— K
is not identically zero. Thus there is § € K* such that

a= o0 +p10(0)+p,0%(0)+-+ B,10" 7 (0) £0.

Note that
Bo@) = Bo(Bo)o(0)+Ba(B)o*(0)++Bo(Bus)o"(0)+Bo ()0
= 10(0)+B.0°(0)+---+ 10" (6)+ BB
= a,
soff=a/o(a O

Primitive roots of 1.

Definition. Let F be a field and n be a positive integer. An primitive n-th root of 1 is
any generator of the multiplicative group consisting of all roots of the polynomial x” —1
(which is cyclic as a finite subgroup of F*).

Transitive actions.

Definition. Let G be a group acting on a set X. The action is said to be transitiveiff there
only one orbit (it equal to X then) of the action.

Remark. Let F be a field and K be a splitting field of a polynomial f(x) € F[x] over
F. Consider the action of the group Aut;(K) on the roots of f(x)in K. If this action is
transitive, then f is irreducible over F.

Corollary. Let F be a field of characteristic zero with x" —1 splitting over F . If K is a finite
cyclic extension of F with [K : F] = n, then there isa € K such that K = F(a) and a" € F.

Proof. Let { be a primitive n-throot of 1 in F and G be the Galois group of K over F with
generator 0. Then N({™')= (C‘l)n =1. Thus ' =a/o(a) for some a € K* so o(a)={a.
We have o(a") = (o(a))" = a” so a™ € F. Since the action of G on the set of roots of
x"—a" in K is transitive, the polynomial x" —a” is irreducible over F and consequently
K =F(a). O
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10.13 The Commutator Subgroup.

Definition. Let G be a group. The commutator subgroup of G is the subgroup generated
by the set of all the elements of the form x y x~'y~!, where x, y € G. Each such element
is called a commutator.

Lemma. The commutator subgroup is normal.

Proof. Note that conjugating a commutator produces a commutator. Thus the intersec-
tion of the commutator subgroup with any of its conjugates contains all the commuta-
tors. It follows that the commutator subgroup is normal. O

Proposition. Let G be a group and H be a normal subgroup of G. Then G /H is abelian
if and only if H contains the commutator subgroup of G.

Proof. Let g,8, € G. Then the commutator g,8,8;'g," belongs to H if and only if
8:8.H = g,g,H which holds if and only if

(ng)(ng) = (ng)(ng)-

Thus G /H is abelian iff H contains all the commutators. ]

10.14 More on Solvable Groups.

Proposition. Let G be a finite group. Then G is solvable if and only if there exists a chain
G=G,2G,2...2G,={14}

of subgroups of G such thatG; isnormal in G,_, and G;_,/ G; is cyclic foreveryi =1,2,...,n.

Proof. Itis clear that if such a chain exists, then G is solvable. Assume that G is solvable.
Then there exists a chain

G=H,2H 2..2H, ={ls}

of subgroups of G such that H; is normal in H;_, and H;_,/H; is abelian for every i =
1,2,...,n.Leti€{1,2,...,n}and p be aprime integer dividing the order of H;_,/H;. Then
there is a subgroup H’ of H;_; containing H; such that H’/H, is a subgroup of H,_,/H, of
order p. Then H’ is normal in H;_;, H; is normal in H’ and the quotient groups H;_,/H’
and H'’/H; are abelian. Then we obtain a chain

G=Hy,2H,2...2H,_2H'2H;2...2 H.={15}

demonstrating solvability of G with H’/H having order p, hence being cyclic. Repeating
that procedure we obtain the required chain of subgroups of G. O

Lemma. If G is a solvable group, then any subgroup H of G is solvable.
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Proof. 1f the chain
G:GogGlg...QGOZ{IG}

demonstrate solvability of G, then
H=H,2H,2...2{1y}

demonstrate solvability of H, where H; = G; N H. It is clear that H;,_; N H is normal in
H;nH. The group H;_; N H/H; N H is abelian since all the commutators of H;_; N H
belongto H;NH. O

Theorem. Let G be a group and H be a normal subgroup of G. The following conditions
are equivalent.

1. G issolvable.
2. Both H and G/H are solvable.

Proof. Assume that G is solvable. We have already proved that both H and G/H are
solvable. Now assume that both H and G/H are solvable. Let

H=Hy2H 2...2H,={1y}
demonstrate solvability of H and
G/H=Gy/H2G,/H>2...2G,/H={H}
demonstrate solvability of G/H. Then
G=Gy2G,2...2G,2H 2H,2...2 H, = {15}

demonstrates solvability of G. O

10.15 From Solvable Group to Solvability by Radicals.

Theorem. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F with G = Gal(K /F) The following conditions are equivalent.

1. The polynomial f is solvable by radicals over F .
2. The group Gal(K /F) is solvable.

Proof. We only need to prove that 2. implies 1. Assume that Gal(K/F) is solvable. Let
n=[K:F]=|G|, let E be a splitting field of the polynomial x”—1 over F and let L=KE
be the join of the fields K and E. Then L is Galois over F. Let G = Gal(L/F) and H =
Gal(L/K). Then Gal(K/F) is isomorphic to the quotient group G/H. Since L is radical
over K, the group H is solvable. Since both G/H and H are solvable, it follows that G is
solvable and consequently its subgroup J = Gal(L/E) is also solvable. Let

J=J2h2...2 ki ={1;}
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be such that J; is normal in J;_;, with J;_,/J; being cyclic for each i =1,2,..., k. Let
E:EogElg...gEk:L
be the corresponding chain of subfields of L. Then, for every i =1,2,..., k, the field E;

is cyclic over E;_, so there is a; € E; and a positive integer n; such that a;” € E;_; and
E; = E;_,(a;). Thus L is a radical extension of F containing K completing the proof. []
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