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1 Algebraic Closures.

1.1 Algebraic Elements.

Definition. Let K be a field with a subfield F and a ∈ K . We say that a is algebraic over
F if and only if there exists a nonzero polynomial f (x ) in F [x ] such that f (a ) = 0.

Remark. If a is algebraic over F then there exists a unique monic, irreducible polynomial
over F with root a . Such a polynomial is called the minimal polynomial of a over F .

1.2 Algebraic Extensions.

Definition. Let F be a field and K be an extension of F . Then K is algebraic over F iff
every element of K is algebraic over K .

1.3 Algebraically Closed Fields.

Definition. A field K is algebraically closed if and only if every polynomial over K splits
over K , that is, every nonconstant polynomial over K is a product of linear (of degree 1)
polynomials over K .

Remark. Given a field K , if every nonconstant polynomial over K has a root in K , then
K is algebraically closed.

1.4 Algebraic Closure.

Definition. Let K be a field and L be an extension of K . We say that L is an algebraic
closure of K if and only if the following two conditions hold:

1. L is algebraic over K .

2. L is algebraically closed.

1.5 Existence of Algebraic Closures.

Theorem. For every field K there exists an algebraic closure L of K .

1.6 Uniqueness of Algebraic Closures.

Theorem. If K1, K2 are fields, f : K1 → K2 is an isomorphism and L1, L2 are algebraic
closures of K1, K2, respectively, then f can be extended to an isomorphism f ′ : L1→ L2.

Corollary. If L1 and L2 are algebraic closures of a field K , then there exists an isomorphism
f : L1→ L2 such that the restriction f �K of f to K is the identity function.
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2 Splitting Fields and Normal Field Extensions.

2.1 Splitting Field.

Definition. Let f be a nonconstant polynomial over a field F and let K be an extension
of F . We say that K is a splitting field of f over F if:

1. f is a product of linear polynomials over F, and

2. K = F (a1, . . . , an )where a1, . . . , an are the roots of f in K .

2.2 Homework 1 — due January 16.

Exercise. If K is a splitting field of some nonconstant polynomial f over F , then K is
algebraic over F .

2.3 Existence of Splitting Fields.

Remark. Let F be a field, f be a nonconstant polynomial over F and a1, . . . , an be the
roots of f in the algebraical closure F a of F . Then the polynomials x −a1, . . . , x −an are
the only irreducible factors of f (x ) in F a[x ].

Theorem. If F is any field and f is a nonconstant polynomial over F then there exists a
splitting field of f over F .

Proof. Let F a be an algebraic closure of F and a1, . . . , an be the roots of f in F a. Define
K := F (a1, . . . , an ) in F a. Then the polynomials x −a1, . . . , x −an are the only irreducible
factors of f (x ) so

f (x ) = c (x −a1)
k1 . . . (x −an )

kn

for some c ∈ F and k1, . . . , kn ∈Z+. Thus K is a splitting field of f over F .

2.4 Uniqueness of Splitting Fields.

Theorem. Let F be a field, f be a nonconstant polynomial over F and K1, K2 be splitting
fields of f over F . Then there is an isomorphism ϕ : K1 → K2 such that ϕ�F = idF (the
restriction of ϕ to F is the identity function).

Proof. Let K a
1 , K a

2 be algebraic closures of K1, K2, respectively. Then they are also alge-
braic closures of F so there is an isomorphismψ : K a

1 → K a
2 such thatψ�F = idF .

Let a1, . . . , an be the roots of f in K1 and bi :=ψ(ai ) for each i = 1, . . . , n . Since

f (x ) = c (x −a1)
k1 . . . (x −an )

kn

for some c ∈ F and k1, . . . , kn ∈ Z+, applying ψ to the coefficients in above equation
between polynomials gives

f (x ) = c (x − b1)
k1 . . . (x − bn )

kn

2



Thus b1, . . . , bn are the roots of f in K2.
Since K1 and K2 are splitting fields of f over F , we have K1 = F (a1, . . . , an ) and K2 =

F (b1, . . . , bn ). Let ϕ := ψ�K1. Since ϕ�F = idF and ϕ(ai ) = bi for each i = 1, . . . , n , the
image of ϕ is K2.

2.5 Splitting Field of a Set of Polynomials.

Definition. Let F be a field andF =
�

fi : i ∈ I
	

be a set of nonconstant polynomials over
F . The splitting field ofF over F is a field K such that:

1. Each polynomial fi (x ) splits into linear factors over K .

2. If A is the set of all root in K of all fi , then K = F (A).

Field embeddings. If F and K are fields then the embedding of F in K is a ring homo-
morphism F → K .

Remark. Since fields have only two ideals, any field embedding is injective. It does not
have to be surjective. An embedding is surjective if and only if it is an isomorphism.

Embeddings over a subfield. If F is a subfield of the fields K and L and ϕ : K → L is
an embedding, then we say that ϕ is over F when ϕ�F = idF . If ϕ is an isomorphism or
an automorphism (when K = L) and ϕ�F = idF , then we say that it an isomorphism or
automorphism over F .

Theorem. LetF =
�

fi : i ∈ I
	

be a family of nonconstant polynomials over F .

1. There exists a splitting field ofF over F .

Proof. Let F a be an algebraic closure of F and A be the set of all roots of all the poly-
nomials inF . Then F (A) is a splitting field ofF over F .

2. If K1 and K2 are splitting fields ofF over F then there is an isomorphism ϕ : K1→ K2

over F (such that ϕ�F = idF ).

Proof. Exercise.

2.6 Homework 2 — due January 18.

Exercise. Prove the second assertion of the theorem in section 2.5.
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2.7 Normal Field Extensions.

Motivation. Let A ⊆ B be sets, G be the group of permutationsσ of B such thatσ�A is
a permutation of A and H be the subgroup of G consisting of those permutationsσ for
whichσ�A = idA. Then H is a normal subgroup of G .

Theorem. Let F be a field and K ⊆ F a be a field extension of F . The following conditions
are equivalent.

1. Every automorphism of F a over F restricted to K is an automorphism of K .

2. Every embedding of K in F a over F is an automorphism of K .

3. K is the splitting field of a family of polynomials over F .

4. Every irreducible polynomial over F that has a root in K splits over K .

Proof. We will show that 1.⇒ 2. ⇒ 1., that 1. ⇒ 3. and that 1. ⇒ 4. ⇒ 1.. The proof that
3. ⇒ 1. is left as an exercise.

1. ⇒ 2. Let ϕ : K → F a be an embedding over F . We need to show that the image
L = ϕ(K ) is equal to K . Since ϕ : K → L is an isomorphism and F a is the algebraic
closure of both K and L , the isomorphismϕ can be extended to an automorphismψ of
F a. By 1., the restrictionψ�K is an automorphism of K .

2. ⇒ 1. Every automorphism of F a restricted to K is an embedding of K in F a.
1. ⇒ 3. For each a ∈ K , let fa be the minimal polynomial of a over F . We will show

that K is the splitting field of F =
�

fa : a ∈ K
	

. If A is the set of all roots in K of all the
polynomials inF , then A = K so F (A) = K . It remains to show that every polynomial in
F splits over F . Suppose, to the contrary, that for some a ∈ K there is a root b ∈ F arK
of fa . Then there is an isomorphism ϕ : F (a )→ F (b ) over F with ϕ(a ) = b and ϕ can
be extended to an automorphismψ of F a. By 1., ψ�K is an automorphism of K . Since
ψ(a ) =ϕ(a ) = b /∈ K , we have a contradiction.

1.⇒ 4. Let f be an irreducible polynomial over F with a root a in K . Suppose, to the
contrary, that f does not split over K . Then f has a root b ∈ F arK . Then a and b have
the same minimal polynomial (equal to c −1 f where c is the leading coefficient of f ) so
there is an isomorphismϕ : F (a )→ F (b ) over F withϕ(a ) = b . The isomorphismϕ can
be extended to an automorphismψ of F a. By 1., ψ�K is an automorphism of K . Since
ψ(a ) =ϕ(a ) = b /∈ K , we have a contradiction.

4. ⇒ 1. Let ϕ be an automorphism of F a over F . Let a ∈ K and f be the minimal
polynomial of a over F . By 4., f splits over K . Since ϕ maps roots of f to roots of f , it
follows that ϕ(a ) ∈ K . Since f has finitely many roots in K , there is a root b of f in K
with ϕ(b ) = a . Thus ϕ�K is an automorphism of K .

Definition. A field K satisfying the conditions of the theorem is called a normal exten-
sion of F .

Example. Let F =Q be the field of rational numbers.

1. The field F
�p

2
�

is a normal extension of F .
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2. The field F
�

3p
2
�

is an extension of F that is not normal.

3. The field F
�

3p
2,ω

�

withω=−1
2
+
p

3
2

i ∈C is a normal extension of F .

2.8 Homework 3 — due January 23.

Exercise. Prove that 3. ⇒ 1. in the theorem of section 2.7.

3 Separable Field Extensions.

3.1 Separable Degree of a Finite Field Extension.

Definition. Let F be a field and K ⊆ F a be a finite extension of F ([K : F ] is finite). The
separable degree of K over F , denoted [K : F ]s is the number of embeddings of K into
F a over F .

Lemma. Let F be a field a ∈ F a and K = F (a ). Then [K : F ]s ≤ [K : F ] .

Proof. Let f be the minimal polynomial of a over F and a1, . . . , an be all the roots of f
in F a. If ϕ is an embedding of F (a ) into F a over F , then ϕ(a ) ∈

�

a1, . . . , an

	

. Since every
element of F (a ) is of the form b0+ b1a + · · ·+ bm−1a m−1 with b0, . . . , bm−1 ∈ F where m =
deg

�

f
�

, the value ϕ(a ) uniquely determines ϕ. For each i = 1, . . . , n the elements a and
ai have the same minimal polynomial over F so there exists an embedding F (a )→ F a

over F mapping a to ai . [K : F ]s = n . Since n ≤ deg
�

f
�

and [K : F ] = deg
�

f
�

, the result
follows.

Remark. The proof above shows that [K : F ]s = [K : F ] unless the minimal polynomial f
of a over F has multiple roots in F a. We will show later that such a situation is possible.

Proposition. Let F be a field and E ⊆ K ⊆ F a be finite extensions of F . Then [K : F ]s =
[K : E ]s [E : F ]s .

Proof. Let σ1, . . . ,σn be all the embeddings of E in F a over F where n = [E : F ]s . For
each i = 1, . . . , n , let ϕi 1, . . . ,ϕi mi

: K → F a be all the extensions of σi to an embedding
of K in F a. If i 6= i ′, then for arbitrary j we have ϕi j �E =σi and for arbitrary j ′ we have
ϕi ′ j ′�E =σi ′ 6=σi implying that ϕi j 6=ϕi ′ j ′ . Ifψ : K → F a is any embedding over F , then
ψ�E is an embedding of E in F a over F soψ = ϕi j for some i and j . Thus to complete
the proof of [K : F ]s = [K : E ]s [E : F ]s , it suffices to show that mi = [K : E ]s for each
i = 1, . . . , n .

Let i ∈ {1, . . . , n}be fixed and denoteϕ =ϕi 1. Sinceϕ�E =ϕi j �E for any j ∈
�

1, . . . , mi

	

,
it follows that ϕ(b ) = ϕi j (b ) for any b ∈ E and consequently

�

ϕ−1 ◦ϕi j

�

�E = idE . Thus
for each j = 1, . . . , mi , the map ϕ−1 ◦ϕi j is an embedding of K in F a over E . Moreover, if
j 6= j ′, then ϕ−1 ◦ϕi j 6=ϕ−1 ◦ϕi j ′ . Thus mi = [K : E ]s .

Theorem. Let F be a field and K ⊆ F a be finite over F . Then [K : F ]s ≤ [K : F ].

5



Proof. There are a1, . . . , an ∈ K such that K = F (a1, . . . , an ). Let F0 = F and Fi = Fi−1(ai )
for each i = 1, . . . , n . Then

[K : F ]s = [Fn : F0]s = [Fn : Fn−1]s [Fn−1 : Fn−2]s . . . [F2 : F1]s [F1 : F0]s .

Since
[K : F ] = [Fn : F0] = [Fn : Fn−1] [Fn−1 : Fn−2] . . . [F2 : F1] [F1 : F0] ,

and since [Fi : Fi−1]s ≤ [Fi : Fi−1] for each i = 1, . . . , n , it follows that [K : F ]s ≤ [K : F ].

3.2 Separable Field Extensions.

Finite separable field extensions.

Definition. A finite field extension K ⊇ F is separable iff [K : F ]s = [K : F ].

Remark. Let K ⊇ F be a finite extension and a1, . . . , an ∈ K be such that K = F (a1, . . . , an ).
If F0 = F and Fi = Fi−1(ai ) for each i = 1, . . . , n , then K is separable over F if and only if Fi

is separable over Fi−1 for every i = 1, . . . , n .

Separable elements.

Definition. Let K ⊇ F be a field extension and a ∈ K be algebraic over F . We say that a
is separable over F iff F (a ) is separable over F .

Remark. a is separable over F iff the minimal polynomial of a over F has no multiple
roots in F a.

Separable polynomials.

Definition. Let F be field. A polynomial f over F is separable iff it has no multiple roots
in F a.

Proposition. Let F be a field.

1. If a polynomial f over F is separable, then any of its roots is separable over F .

2. If K ⊆ F a is an extension of F , then any element of F a that is separable over F is
separable over K .

Proof. 1. is clear and the proof of 2. is an exercise.

Theorem. Let K be a finite extension of a field F . The following conditions are equivalent.

1. [K : F ] = [K : F ]s , that is K is separable over F .

2. Each element of K is separable over F .

3. K = F (A) for some subset A ⊆ K whose elements are separable over F .

6



Proof. 1. ⇒ 2. Suppose that K is separable over F and a ∈ K . Then F ⊆ F (a )⊆ K and

[K : F ]s = [K : F (a )]s [F (a ) : F ]s ≤ [K : F (a )] [F (a ) : F ] = [K : F ] .

Since [K : F ]s = [K : F ], it follows that [F (a ) : F ]s = [F (a ) : F ] so a is separable over F .
2. ⇒ 3. Take A = K .
3. ⇒ 1. Since K is finite over F , we have K = F (a1, . . . , an ) for some a1, . . . , an ∈ A.

Then ai+1 is separable over F , hence over F (a1, . . . , ai ), for each i = 1, . . . , n − 1. If F0 = F
and Fi = Fi−1(ai ) for each i = 1, . . . , n , then each Fi is separable over Fi−1 implying that K
is separable over F .

Separable field extensions.

Definition. Let K be an algebraic extension of a field F . We say that K is separable over
F iff every element of K is separable over F .

Corollary. Let K be an algebraic extension of a field F . The following conditions are
equivalent.

1. Every element of K is separable over F , that is K is separable over F .

2. If E is a subfield of K containing F and finite over F then [E : F ]s = [E : F ] (that is,
E is separable over F ).

3. There is a subset A ⊆ K consisting of elements that are separable over F such that
K = F (A).

Proof. 1. ⇒ 2. Assume that K is separable over F and E ⊆ K is a finite extension of F .
Since every element of E is separable over F , the field E is separable over F .

2.⇒ 1. Assume that every subfield of K containing F that is finite over F is separable
over F . Let a ∈ K . Then F (a ) is a finite extension of F so it is separable over F . Thus a is
separable over F . Since every element of K is separable over F , the field K is separable
over F .

1. ⇒ 3. Take A = K .
3. ⇒ 1. Assume A ⊆ K is such that every element of A is separable over F and

K = F (A). LetB be the family of all finite subsets of A. Note that K =
⋃

B∈B F (B ). (The
inclusion

⋃

B∈B F (B ) ⊆ K is obvious and the inclusion K ⊆
⋃

B∈B F (B ) follows from the
observation that

⋃

B∈B F (B ) is a subfield of K a containing A.) Since F (B ) is finite dimen-
sional over F and each element of B is separable over F , it follows that every element of
F (B ) is separable over F . Since any element of K belongs to F (B ) for some B ∈B , the
proof is complete.

3.3 Homework 4 — due January 28.

Exercise. Prove part (2) of the proposition in section 3.2.
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4 Non-separable Extensions Exist.

4.1 Field of Fractions of an Integral Domain.

Definition. Let D be an integral domain. A field of fraction of D is a field F that extends
D (that is D is a subring of F ) such that for every a ∈ F there are b , c ∈D with a = b c −1.

Proposition. Let D be an integral domain, F be a field of fractions of D and f : D → K
be an embedding (injective homomorphism) where K is a field. Then there is exactly one
extension of f to an embedding g : F → K .

Proof. For a ∈ F there are b , c ∈D such that a = b c −1. Define g (a ) = f (b ) f (c )−1.

(1) g is well-defined.

Proof. Suppose a = b1c −1
1 = b2c −1

2 . Then b1c2 = b2c1 so f (b1) f (c2) = f (b2) f (c1). Thus
f (b1) f (c1)

−1 = f (b2) f (c2)
−1.

(2) g is a homomorphism.

Proof. Exercise.

(3) If h : F → K is another embedding extending f , then h = g .

Proof. If a ∈ F with a = b c −1 where b , c ∈D , then b = a c so

f (b ) = h (b ) = h (a )h (c ) = h (a ) f (c ) ,

implying that h (a ) = f (b ) f (c )−1.

Corollary. Let D be an integral domain and F1, F2 be fields of fractions of D . Then there
is an isomorphism f : F1→ F2 such that f �D = idD .

Theorem. For every integral domain D there exists a field of fractions of D .

Proof. Let D ∗ =D r {0} and ∼ be the equivalence relation on D ×D ∗ defined by (a , b )∼
(c , d ) iff a d = b c . Denote by a

b
the equivalence class of ∼ that contains the pair (a , b ) ∈

D ×D ∗. Let

F =
§

a

b
: (a , b ) ∈D ×D ∗

ª

.

Define addition on F by a
b
+ c

d
= a d+b c

b d
and multiplication by a

b
c
d
= a c

b d
. It is routine to

verify that the addition and multiplication in F are well-defined and that F is a field.
Let f : D → F be defined by f (a ) = a

1
. Then f is an embedding so the element a of D

can be identified with its image f (a ) in F . After this identification D becomes a subring
of F . It is clear that F is a field of fractions of D .

8



4.2 Homework 5 — due January 30.

Exercise. Prove part (2) of the proof of the proposition in section 4.1.

4.3 Derivative of a Polynomial and Multiple Roots.

Definition. Let F be a field and f (x ) = an x n + · · · + a0 be a polynomial over F . The
derivative f ′ of f is defined by

f ′(x ) = nan x n−1+ (n −1)an−1x n−2+ · · ·+2a2x +a1.

Remark. If f , g are polynomials over a field F , then
�

f g
�′
= f ′g + f g ′.

Multiple roots of a polynomial. Let F be a field, f be a polynomial over F and a ∈ F a

be a root of f . We say that a is a multiple root if (x −a )2 divides f (x ) in F a[x ].

Proposition. Let F be a field and f be a polynomial over F . Then f has no multiple roots
in F a if and only if f (x ) and f ′(x ) are relatively prime in F [x ].

Proof. Assume that f (x ) and f ′(x ) are relatively prime in F [x ]. Since F [x ] is a principal
ideal domain, there are h (x ) and k (x ) in F [x ] such that

1= h f +k f ′.

Suppose, to the contrary, that f has a multiple root a ∈ F a. Then f (x ) = (x −a )2 g (x ) for
some g (x ) ∈ F a[x ]. Thus

f ′(x ) = 2 (x −a )g (x ) + (x −a )2 g ′(x ) ,

so a is a root of f ′ as well. Then

1= h (a ) f (a )+k (a ) f ′(a ) = 0,

which is a contradiction.
Assume that f has no multiple root in F a. If a ∈ F a is a root of f , then f (x ) =

(x −a )g (x ) for some g (x ) ∈ F a[x ] and g (a ) 6= 0. Thus f ′(x ) = g (x ) + (x −a )g ′(x ) and
so f ′(a ) = g (a ) 6= 0. Thus f (x ) and f ′(x ) have no common roots in F a. Suppose, to the
contrary, that f (x ) and f ′(x ) have a non-constant common factor h (x ) in F [x ]. Then h
has a root in F a which is a common root of f and f ′ giving us a contradiction. Thus f (x )
and f ′(x ) are relatively prime in F [x ].

Corollary. Let F be a field and f (x ) ∈ F [x ] be irreducible. Then f is separable if and only
if f ′(x ) 6= 0.

Proof. Assume that f ′(x ) is nonzero and deg
�

f
�

= n . Then deg
�

f ′
�

< n so any common
divisor g (x ) of f (x ) and f ′(x ) in F [x ]must have degree smaller than n . Since f is irre-
ducible, g (x ) is a constant polynomial so f (x ) and f ′(x ) are relatively prime. Thus f has
no multiple roots and hence is separable.

If f is separable, then it has no multiple roots so f and f ′ are relatively prime. Thus
f ′ 6= 0.
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4.4 An Algebraic Non-separable Extension.

Irreducible and prime elements of an integral domain.

Definition. Let D be an integral domain and a ∈ D . Then a is irreducible iff it is not
zero, not a unit and if a = b c for some b , c ∈D , then b or c is a unit. The element a is
prime iff it is not zero, not a unit and whenever a | b c for some b , c ∈ D , then a | b or
a | c .

Primitive polynomials.

Definition. Let D be an integral domain. A polynomial f (x ) ∈ D [x ] is primitive iff the
coefficients of f are relatively prime (have no common divisors except for units).

Eisenstein criterion.

Theorem. Let D be an integral domain with field of fractions F and

f (x ) = a0+a1x + · · ·+an x n ∈D [x ]

be a nonzero polynomial. Let p ∈ D be a prime element such that p | ai for every i =
0, 1, . . . , n −1 but p - an and p 2 - a0.

1. If moreover f (x ) is primitive, then it is irreducible in D [x ].

2. If D is a unique factorization domain, then f (x ) is irreducible in F [x ].

Example. Let D = Z2[x ] be the integral domain of polynomials with coefficients in the
field Z2 and F be the field of fractions of D . Since D is a principal ideal domain, it is a
unique factorization domain. The element x ∈D is irreducible hence it is prime. Thus
the polynomial f

�

y
�

= y 2 − x ∈ D
�

y
�

is irreducible in F
�

y
�

. Since f ′
�

y
�

= 2y = 0, the
polynomials f and f ′ are not relatively prime and so f has multiple roots. Explicitly, if

a ∈ F a is a root of f
�

y
�

, then a 2 = x and f
�

y
�

=
�

y −a
�2

.
Thus f is an irreducible polynomial over F that is not separable. The field F (a ) is

an algebraic extension of F that is not separable over F . We have [F (a ) : F ] = 2 but
[F (a ) : F ]s = 1.

4.5 Homework 6 — due February 1.

Exercise. Let p be a prime, D = Zp [x ] and F be the field of fractions of D . Then the
polynomial y p − x is irreducible over F but is not separable.

5 When Every Algebraic Extension is Separable.

5.1 Characteristic of a Ring

Definition. Let R be a ring andϕ :Z→R be the ring homomorphism defined byϕ(n ) =
n ·1R . The kernel ofϕ is a principal ideal ofZwith a unique non-negative generator which
is called the characteristic of R . The characteristic of R will be denoted by char(R ).

10



Remarks.

1. The characteristic of a ring R is the smallest positive integer n such that

1R +1R + · · ·+1R
︸ ︷︷ ︸

n

= 0R

is such n exists and is equal 0 otherwise.

2. The only ring with characteristic 1 is the trivial ring.

Proposition. If D is an integral domain, then the characteristic of D is either 0 or a prime
integer.

Proof. Suppose m 6= 0 is the characteristic of D . Suppose m = k · `, where k ,` ≥ 2. Let
ϕ : Z → D be the ring homomorphism defined by ϕ(n ) = n · 1D . Then 0D = ϕ(k · `) =
ϕ(k )ϕ(`) implying that ϕ(k ) or ϕ(`) equals 0D , which is a contradiction.

5.2 Prime Subfield.

Definition. Let K be a field. The prime subfield of K is the intersection of all subfields
of K .

Remark. The prime subfield always exists.

Proposition. Let K be a field with a prime subfield F . If char (K ) = 0, then F is isomorphic
toQ, if char (K ) = p where p is a prime, then F is isomorphic to Zp .

Proof. Let ϕ :Z→ K be the ring homomorphism defined by ϕ(n ) = n ·1K . If the charac-
teristic of K is 0, thenϕ is injective andϕ extends uniquely to an embeddingψ :Q→ K .
Since every subfield E of K containsψ

�

Q
�

, we have F =ψ
�

Q
�

so F is isomorphic toQ.

If char (K ) = p is a prime, then ker
�

ϕ
�

= pZ and the Fundamental Homomorphism
Theorem for rings implies that the image ϕ(Z) is isomorphic to the quotient ring Z/pZ
which is isomorphic to Zp . Since every subfield E of K contains ϕ(Z), it follows that
F =ϕ(Z) is isomorphic to Zp .

5.3 Homework 7 — due February 4.

Exercise. Let K be a field, F be the prime subfield of K and ϕ be any automorphism of
K . Prove that ϕ is over F , that is, prove that ϕ(a ) = a for every a ∈ F .

5.4 Perfect Fields.

Definition. A field F is perfect iff any algebraic extension of F is separable over F .

Remark. A field F is perfect if and only if every irreducible polynomial over F is separa-
ble.

11



Theorem. Any field of characteristic 0 is perfect.

Proof. Let F be a field of characteristic 0 and

f (x ) = an x n +an−1x n−1+ · · ·+a1x +a0 ∈ F [x ]

be irreducible where n ≥ 1 and an 6= 0. Then f ′(x ) = nan x n−1+ · · ·+a1. Since char(F ) = 0
it follows that nan 6= 0. Thus f ′(x ) 6= 0 and consequently f is separable. Since every
irreducible polynomial over F is separable, the field F is perfect.

Remark. We will show later that every finite field is perfect.

6 Finite Fields.

6.1 Possible Cardinalities of Finite Fields.

Theorem. The cardinality of a finite field is a positive power of a prime integer.

Proof. Let K be a finite field and F be its prime subfield. Since F is finite, it is isomorphic
to Zp for some prime p . Let b1, . . . , bn ∈ K be a basis of K over F . Since every element is
a unique linear combination of b1, . . . , bn with coefficients from F , we have |K |= p n .

6.2 Uniqueness of Finite Fields.

Proposition (Lagrange’s Theorem). If G is a finite group and H is a subgroup of G , then
|H | divides |G |.

Proof. If a , b ∈G , then the function f : a H → b H defined by f (a h ) = b h is a bijection.
Thus any two left cosets of H in G have the same number of elements. Since the left
cosets of H in G form a partition of G , the result follows.

The multiplicative group of a field.

Definition. Let F be a field. The multiplicative group of F is the group F ∗ = F r {0}
under multiplication.

Theorem. Let K be a finite field of cardinality p n . Then K is a splitting field of the poly-
nomial x p n − x over its prime subfield. In particular, all fields of cardinality p n are iso-
morphic.

Proof. The order of any a ∈ K ∗ in the group K ∗ is a divisor of |K ∗| = p n − 1 so a p n−1 = 1
and a p n = a . Since 0p n = 0 as well, all the elements of K are roots of the polynomial
f (x ) = x p n − x . Since f can have at most p n roots in K a, it splits over K . Since each
element of K is a root of f , the field K is a splitting field of f over the prime subfield of
K .
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6.3 Existence of Finite Fields.

Lemma. If K is a field of prime characteristic p and a , b ∈ K , then (a + b )p
n

= a p n + b p n

for any positive integer n.

Proof. By binomial formula

(a + b )p =

�

p

0

�

a p +

�

p

1

�

a p−1b + · · ·+
�

p

p −1

�

a b p−1+

�

p

p

�

b p .

If 1≤ i ≤ p −1, then
�

p

i

�

=
p !

i !
�

p − i
�

!

is divisible by p since the numerator is divisible by p but the denominator is not. Thus
(a + b )p = a p + b p .

We complete the proof using induction. Suppose that (a + b )p
n−1

= a p n−1+b p n−1
. Then

(a + b )p
n

=
�

(a + b )p
n−1
�p
=
�

a p n−1
+ b p n−1

�p
=
�

a p n−1
�p
+
�

b p n−1
�p
= a p n

+ b p n
.

Proposition. If a nonempty subset H of a finite group G is closed under the group opera-
tion, then H is a subgroup of G .

Proof. Exercise.

Theorem. For every prime integer p and any positive integer n there exists a field with p n

elements.

Proof. Let F be the fieldZp and f (x ) be the polynomial x p n −x over F . Since f ′(x ) =−1,
the polynomial f (x ) has p n distinct roots in Za

p . Let K be the splitting field of f (x ) over
F and

L =
�

a ∈ K : f (a ) = 0
	

.

Since L has p n elements, to complete the proof, it suffices to show that L is a subfield
of K . Since L contains 0 and 1 an is finite, the proposition implies that we only need to
show that L is closed under addition and multiplication. In case of multiplication, it is
obvious, and in case of addition it follows from the lemma.

Notation. For a prime p and a positive integer n the unique (up to isomorphism) field
with q = p n elements is denoted by Fq .

6.4 Homework 8 — due February 6.

Exercise. Prove the proposition in section 6.3.
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6.5 Perfect Fields of Prime Characteristic.

Frobenius mapping.

Definition. Let F be a field of prime characteristic p . The Frobenius mapping is the
function ϕ : F → F defined by ϕ(a ) = a p .

Remark. The Frobenius mapping ϕ is an embedding and if F is finite, then it is an iso-
morphism. Moreover, the restriction ofϕ to the prime subfield Fp of F is the identity on
Fp .

Lemma. Let F be a field of prime characteristic p and

f (x ) = a0+a1x + · · ·+an x n ∈ F [x ]

We have f ′(x ) = 0 if and only if ai = 0 for every i which is not divisible by p .

Theorem. Let F be a field of prime characteristic p . If the Frobenius mapping F → F is
an isomorphism, then F is perfect.

Proof. Suppose that the Frobenius mapping is an isomorphism. Let K be an algebraic
extension of F and a ∈ K . We want to show that a is separable over F . Let f be the
minimal polynomial over F . Suppose, to the contrary, that a is not separable over F .
Then f has multiple roots in K a so f ′ = 0. Thus

f (x ) = a0+ap x p +a2p x 2p + · · ·+ak p x k p .

Since the Frobenius mapping F → F is surjective, for each i = 0, . . . , k , there is bi ∈ F
such that ai p = b p

i . Thus

f (x ) = b p
0 + b p

1 x p + b p
2 x 2p · · ·+ b p

k x k p =
�

b0+ b1x + b2x 2+ · · ·+ bk x k
�p

,

contradicting the irreducibility of f over F . Since any algebraic extension of F is sepa-
rable, the field F is perfect.

Corollary. Any finite field is perfect. Any field of prime characteristic that is algebraic over
its prime field is perfect.

Proof. Exercise.

Proposition. Let F be a field of prime characteristic p such that the Frobenius map ϕ :
F → F is not surjective and a ∈ F be such that f (x ) = x p − a ∈ F [x ] has no roots in F .
Then f (x ) is irreducible but not separable in F [x ]. In particular, F is not perfect.

Proof. Clearly f (x ) is not separable so we only need to show that it is irreducible. Let
b ∈ F a be a root of f . Then f (x ) = (x − b )p and the minimal polynomial g (x ) of b over
F is a divisor of f (x ) so g (x ) = (x − b )d for some integer d with 1 ≤ d ≤ p . We need to
show that d = p . Suppose d < p . Then g (x ) = x d −d b x d−1 + . . . implying that d b ∈ F
and consequently that b ∈ F which is a contradiction.
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6.6 Homework 9 — due February 8.

Exercise. Prove the corollary in section 6.5.

6.7 Multiplicative Group of a Finite Field.

Cyclic groups.

Definition. A group G is cyclic iff there is a ∈G such that a generates G , that is no proper
subgroup of G contains a .

Remark. Any cyclic group is isomorphic either to the additive group Z or the additive
group Zn for some positive integer n .

Theorem. If F is a field and G is a finite subgroup of the multiplicative group F ∗, then G
is cyclic. In particular, if F is finite, then F ∗ is cyclic.

Proof. Let a ∈G be an element of maximal order in G . If the order m of a equals n = |G |,
then a generates G so G is cyclic. Otherwise, since the order of any element of G divides
m (exercise), b m = 1 for any element b ∈G and the polynomial x m −1 has n >m roots,
which is a contradiction.

6.8 Homework 10 — due February 11.

Exercise. Let G be a finite abelian group of order n and a ∈ G be an element of the
maximal order. If the order of a is m , then the order of any element of G is a divisor of
m .

7 The Primitive Element Theorem.

7.1 Primitive elements.

Remark. Recall that if F is a field, K is an extension of F and a ∈ K is algebraic over F ,
then F (a ) is finite over F . Also, every finite extension is algebraic.

Definition. Let K be a finite extension of a field F . If K = F (a ) for some a ∈ K , then we
say that a is a primitive element of K over F .

7.2 A Finite Extension with no Primitive Element.

Example. Let F be the field of fractions of the integral domain F2

�

x , y
�

and K be the
splitting field of the polynomial

�

z 2− x
� �

z 2− y
�

∈ F [z ]

over F . If a ∈ K is a root of z 2− x and b ∈ K is a root of z 2− y , then K = F (a , b ). Clearly,
K is finite over F . However, K has no primitive element over F .
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Proof. Suppose, to the contrary, that there exists c ∈ K such that K = F (c ). Since z 2− x
is irreducible over F and z 2−y is irreducible over F (a ), it follows that 1, a , b , a b is a basis
of K over F . Thus we have

c =α+βa +γb +δa b

with α,β ,γ,δ ∈ F and

c 2 =α2+β 2a 2+γ2b 2+δ2a 2b 2 =α2+β 2x +γ2 y +δ2x y ∈ F.

Thus c is a root of a quadratic polynomial over F implying that [F (c ) : F ] ≤ 2. Since
[K : F ] = 4 we have a contradiction.

Remark. Note that if α,β ∈ F are distinct and we take c = a +αb and d = a +βb , then
a , b ∈ F (c , d ) so K = F (c , d ). Since K 6= F (c ) and K 6= F (d ) it follows that F (c ) 6= F (d ).
Since F is infinite, we have infinitely many intermediate fields E , (with F ⊆ E ⊆ K ).

7.3 The Main Result.

Theorem. Let K be a finite extension of a field F .

1. The following conditions are equivalent

(a) K has a primitive element over F .

(b) The number of intermediate fields E (such that F ⊆ E ⊆ K ) is finite.

Proof. (b)⇒ (a)

Assume that the number of intermediate fields is finite. If F is finite, then K is finite
so K ∗ is cyclic and K = F (a ) where a is a generator of the group K ∗. Thus we can
assume that F is infinite.

Let a , b ∈ K . There are only finitely many fields of the form F (a + c b ) with c ∈ F .
Since F is infinite, it follows that F (a + c1b ) = F (a + c2b ) for some c1, c2 ∈ F with
c1 6= c2. Thus the field F (a + c1b ) contains both a + c1b and a + c2b . Thus

(a + c1b )− (a + c2b ) = (c1− c2)b ∈ F (a + c1b ) .

Since c1−c2 6= 0, it follows that b ∈ F (a + c1b ) and hence also a ∈ F (a + c1b ) implying
that F (a , b ) = F (a + c1b ).

Since K is a finite extension of F , there are a1, . . . , an ∈ K with K = F (a1, . . . , an ). As-
sume that n is as small as possible. If n ≥ 2, then there is c ∈ F such that F (a1, a2) =
F (a ′), where a ′ = a1+ c a2. Thus K = F (a ′, a3, . . . , an ) contradicting the minimality of
n . Thus n = 1 and K = F (a ) for some a ∈ K .

(a)⇒ (b)

Assume that K = F (a ) for some a ∈ K and let f be the minimal polynomial of a over
F . Let E = {E : F ⊆ E ⊆ K } be the set of intermediate fields. If E ∈ E and fE is the
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minimal polynomial of a over E , then fE divides f . Since F a[x ] is a unique factoriza-
tion domain, f has only finitely many different monic divisors in F a[x ]. Consider the
assignment of the polynomial fE to the field E ∈ E . To show that E is finite, it suffices
to show that this assignment is injective.

Suppose that E , E ′ ∈ E and fE = fE ′ . Let fE = a0+a1x+· · ·+an x n and L = F (a0, . . . , an ).
Since fE is irreducible over E and L ⊆ E it follows that fE is irreducible over L . Thus
fL = fE implying that [L : F ] = [E : F ]. Thus fL = fE implying that [L : F ] = [E : F ].
Since L ⊆ E we must have L = E . Similarly L = E ′ implying that E = E ′ and conse-
quently that the assignment E 7→ fE is injective.

2. If K is separable over F then it has a primitive element over F .

Proof. Without loss of generality, F is infinite. We can also assume that K = F (a , b )
for some a , b ∈ K since otherwise we can use induction. Let n = [K : F ]s = [K : F ]
andσ1, . . . ,σn be all distinct embeddings of K in F a. Consider the polynomial

f (x ) =
∏

i 6= j

�

σi (a )−σ j (a ) +
�

σi (b )−σ j (b )
�

x
�

.

If i 6= j , then either σi (a ) 6= σ j (a ) or σi (b ) 6= σ j (b ). Thus each factor in the above
factorization of f is nonzero implying that f is nonzero and since F is infinite, there
is c ∈ F such that f (c ) 6= 0. Thus if i 6= j , then

σi (a + c b ) =σi (a ) + cσi (b ) 6=σ j (a ) + cσ j (b ) =σ j (a + c b ) .

If d = a + c b , then all the elements σ1(d ) , . . . ,σn (d ) are distinct. If g is the minimal
polynomial of d over F , thenσ1(d ) , . . . ,σn (d ) are all roots of g so the degree of g is at
least n . Thus [F (d ) : F ]≥ n implying that F (d ) = K .

8 Introduction to Galois Theory.

8.1 Closure Operators.

Definition. Let X be a set. A closure operator on X is a function Γ :P (X )→P (X )where
P (X ) is the family of all subsets of X , such that for every A, B ⊆ X we have:

1. A ⊆ Γ (A);

2. A ⊆ B implies that Γ (A)⊆ Γ (B );

3. Γ (A) = Γ (Γ (A)).

A subset A ⊆ X is said to be Γ -closed iff Γ (A) = A.
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Examples of closure operators.

1. Let G be a group and for any A ⊆G let Γ1(A) be the smallest subgroup of G contain-
ing A. Then Γ1 is a closure operator on G . A subset H ⊆G is Γ1-closed if and only if
H is a subgroup of G .

2. Let G be a group and for any A ⊆ G let Γ2(A) be the smallest normal subgroup of
G containing A. Then Γ2 is a closure operator on G . A subset H ⊆G is Γ2-closed if
and only if H is a normal subgroup of G .

3. Let K be a field and for A ⊆ K let Γ3(A) be the smallest subfield of K containing A.
Then Γ3 is a closure operator on K . A subset F of K is Γ3-closed if and only if F is a
subfield of K .

4. Let X be a topological space and for A ⊆ X let Γ4(A) be the closure of A with respect
to the topology on X . Then Γ4 is a closure operator on X . A subset Y of X is Γ4-
closed if and only if Y is closed with respect to the topology on X .

5. Let X be a set and for A ⊆ X let Γ5(A) = A. Then Γ5 is a closure operator on X and
any subset of X is Γ5-closed.

6. Let X be a set and for A ⊆ X let Γ6(A) = X . Then Γ6 is a closure operator on X and
the only Γ6-closed subset of X is X itself.

Proposition. Let Γ be a closure operator on a set X and C be the family of all Γ -closed
subsets of X . IfF ⊆C is a subfamily ofC , then the intersection

⋂

F =
⋂

A∈F A of all the
sets inF belongs toC . (We assume here that ifF =∅, then

⋂

F = X .)

Proof. Exercise.

Remark. Let Γ be a closure operator on a set X andC be the family of all Γ -closed subsets
of X .

1. If F ⊆ C then the intersection
⋂

F is the greatest lower bound in C on F with
respect to the inclusion relation.

2. IfF ⊆C then the union
⋃

F =
⋃

A∈F A of all sets inF may not belong toC .

The join operation for a family of subsets.

Definition. Let Γ be a closure operator on a set X and C be the family of all Γ -closed
subsets of X . If F ⊆ C , then the join of F denoted

∨

F is the closure Γ
�⋃

F
�

of the
union ofF .

Remark. IfF ⊆C then the join
∨

F is the least upper bound inC onF with respect to
the inclusion relation.
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Proof. Note that
∨

F belongs toC since

Γ
�∨

F
�

= Γ
�

Γ
�⋃

F
��

= Γ
�⋃

F
�

=
∨

F .

The set
∨

F is an upper bound onF since for every A ∈F we have

A ⊆
⋃

F ⊆ Γ
�⋃

F
�

=
∨

F .

It remains to show that
∨

F is the least upper bound on F . Suppose that B ∈ C is an
upper bound onF . Then

⋃

F ⊆ B which implies that
∨

F = Γ
�⋃

F
�

⊆ Γ (B ) = B .

Since
∨

F ⊆ B for any B ∈ C that is an upper bound on F , it follows that
∨

F is the
least upper bound onF .

Example. Let K be a field and F be a family of subfields of K . Consider the closure
operator Γ3 on K from the example above. Then the join

∨

F is the smallest subfield of
K containing all the subfields fromF .

Remark. A partially ordered set S such that for every subset T ⊆ S there exists the least
upper bound and the greatest lower bound on T in S is called a complete lattice. Thus,
given a closure operator Γ on a set X , the family of Γ -closed subsets of X ordered by
inclusion is a complete lattice.

8.2 Homework 11 — due February 15.

Exercise. Prove the proposition in section 8.1.

8.3 Abstract Galois Connections.

Definition. Let X and Y be sets and R ⊆ X × Y be a relation. Let σ :P (X )→P (Y ) be
the function such that b ∈σ(A) iff a R b for every a ∈ A. Similarly, let π :P (Y )→P (X )
be such that a ∈ π(B ) iff a R b for every b ∈ B . We will say that the functions σ and π
establish the Galois connection (between subsets of X and subsets of Y ) determined by
R .

Remark. The functionsσ and π reverse the inclusion relation, that is, if A′ ⊆ A ⊆ X then
σ(A)⊆σ(A′) and if B ′ ⊆ B ⊆ Y then π(B )⊆π(B ′).

Lemma. Let X and Y be sets with R ⊆ X ×Y and letσ andπ establish the Galois connec-
tion determined by R .

1. For every A ⊆ X , we have A ⊆πσ(A) and for every B ⊆ Y , we have B ⊆σπ(B ).

Proof. Let A ⊆ X and a ∈ A. Then a R b for every b ∈ σ(A) so a ∈ πσ(A). Thus A ⊆
πσ(A).

Similarly B ⊆σπ(B ) for every B ⊆ Y .
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2. For every A ⊆ X , we haveσπσ(A) =σ(A) and for every B ⊆ Y we have πσπ(B ) =π(B ).

Proof. Let A ⊆ X and B = σ(A) ⊆ Y . Then σπ(B ) ⊇ B so σπσ(A) ⊇ σ(A). Since
πσ(A)⊇ A andσ reverses the inclusion, it follows thatσ(πσ(A))⊆σ(A). Thusσπσ(A) =
σ(A).

Similarly πσπ(B ) =π(B ) for every B ⊆ Y .

Proposition. Let X and Y be sets with R ⊆ X × Y and let σ and π establish the Galois
connection determined by R .

1. The function πσ :P (X )→P (X ) is a closure operator on X andσπ :P (Y )→P (Y ) is
a closure operator on Y .

Proof. We will verify that πσ is a closure operator on X . We need to verify the three
axioms for closure operators.

1. We have A ⊆πσ(A) for every A ⊆ X by the lemma.

2. Since both σ and π reverse the inclusion relation, for every A ⊆ A′ ⊆ X we have
σ(A)⊇σ(A′) implying that πσ(A)⊆πσ(A′).

3. For every A ⊆ X , we have πσπσ(A) =πσ(A) since πσπ(A) =π(A) by the lemma.

The proof thatσπ is a closure operator on Y is similar.

2. If A ⊆ X then A is closed (meaning πσ-closed) if and only if A = π(B ) for some B ⊆ Y .
Correspondingly, if B ⊆ Y then B is closed (meaningσπ-closed) if and only if B =σ(A)
for some A ⊆ X .

Proof. Assume that A ⊆ X is closed. Then πσ(A) = A. Let B =σ(A). Then A =π(B ).

Now assume that A =π(B ) for some B ⊆ Y . Then the lemma implies that

πσ(A) =πσπ(B ) =π(B ) = A,

so A is closed.

The proof that B ⊆ Y is closed iff B =σ(A) for some A ⊆ X is similar.

3. The functionσ restricted to the family of the closed subsets of X is a bijection onto the
family of the closed subsets of Y with π being its inverse.

Proof. LetX andY be the families of all closed subsets of X and Y respectively. We
want to show thatσ�X is a bijection ontoY and that π�Y is the inverse ofσ�X .

Let A, A′ ∈X be such thatσ(A) =σ(A′). Then A =π(B ) and A′ =π(B ′) for some B , B ′ ⊆
Y . Then A = π(B ) = πσπ(B ) = πσ(A) and similarly A′ = πσ(A′). Since σ(A) =σ(A′) it
follows that A = A′. Thusσ�X is injective.
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Let B ∈Y . Then B =σ(A) for some A ⊆ X . Let A′ =π(B ). Then A′ ∈X and

σ
�

A′
�

=σπ(B ) =σπσ(A) =σ(A) = B .

Thus σ�X is a surjection onto Y . The proof also shows that πσ(A) = A for every
A ∈X andσπ(B ) = B for every B ∈Y . Thus π�Y is the inverse ofσ�X .

4. Consider the correspondence between the closed subsets of X and the closed subsets of
Y established by the bijections σ and π. IfF is a family of closed subsets of X and G
is the corresponding family of closed subsets of Y , then

⋂

F corresponds to
∨

G and
∨

F corresponds to
⋂

G .

Proof. LetX andY be the families of all closed subsets of X and Y respectively. Then
F ⊆ X and G ⊆ Y . Since σ�X is an order reversing bijection onto Y the image of
the greatest lower bound

⋂

F onF inX is the least upper bound on G in Y which
is
∨

G .

Similarly
∨

F corresponds to
⋂

G .

Remark (*). Let X be any set and Γ be any closure operator on X . Then there exists a set Y
and a relation R ⊆ X ×Y such that Γ =πσwhereσ :P (X )→P (Y ) andπ :P (Y )→P (X )
establish the Galois connection determined by R .

Proof. Let Y be the set of all Γ -closed subsets of X and define R ⊆ X × Y so that for
x ∈ X and y ∈ Y we have x R y iff x ∈ y . Then Y and R satisfy the required condition
(exercise).

Example. Let K be a field extension of a field F and G = AutF (K ) be the group of au-
tomorphisms of K over F . Consider the Galois connection determined by the relation
R ⊆ K ×G defined by a R g iff g (a ) = a .

Remark. Any closed subset of K is a subfield of K containing F and any closed subset
of G is a subgroup of G .

Proof. Let σ and π establish the Galois connection determined by R . Let E be a closed
subset of K . Then E = π(B ) for some B ⊆ G . Since g (a ) = a for every a ∈ F and every
g ∈ B , it follows that F ⊆ E . If a , b ∈ E , then g (a ) = a and g (b ) = b for every g ∈ B
implying that

g (a + b ) = g (a ) + g (b ) = a + b .

Thus a + b ∈ E . Similarly, we show that E is closed under subtraction, multiplication
and division by nonzero elements. Thus E is a subfield of K containing F .

Let H be a closed subset of G . Then H =σ(A) for some A ⊆ K . Since idK (a ) = a for
every a ∈ A, it follows that idK ∈H . If g , h ∈H then g (a ) = a and h (a ) = a for every a ∈ A
implying that

g h (a ) = g (h (a )) = g (a ) = a

for every a ∈ A so g h ∈ H . Also g −1(a ) = a for every a ∈ A so g −1 ∈ H . Thus H is a
subgroup of G .
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Example. Consider the Galois connection from the example above in the following sit-
uations:

1. Let F = Q and K = F
�

3p
2
�

. Then K is separable over F but is not normal over F .
The group G is trivial and K is the only closed subset of K .

2. Let F be the field of fractions of the polynomial ring F2[x ] and K is the splitting
field of the polynomial y 2 − x ∈ F

�

y
�

over F . Then K is normal over F but is not
separable over F . The group G is trivial and K is the only closed subset of K .

3. Let F be the field of fractions of F2

�

x , y
�

and K be the splitting field of the polyno-
mial

�

z 2− x
� �

z 2− y
�

over F . Again K is normal but not separable over F . There are
infinitely many intermediate fields E (with F ⊆ E ⊆ K ) but the group G is trivial
and K is the only closed subset of K .

4. Let X = {x1, x2, . . .} be a set of variables and F be the field of fractions of the integral
domainQ[X ] of all polynomials in the variables x1, x2, . . . with rational coefficients.

• Let K be the splitting field of the setF ⊆ F
�

y
�

of polynomials in over F , where
F =

�

y 2− xi : i = 1, 2, . . .
	

. Note that K is normal and separable over F .

• Let ai ∈ K be a root of y 2 − xi for each i = 1, 2, . . . and Fn = F (a1, . . . , an ) for
each n = 1, 2, . . . . Then

K = F (a1, a2, . . . ) =
∞
⋃

n=1

Fn .

For each subset A ⊆ {1, . . . , n} let aA be the product
∏

i∈A ai (assuming that
a∅ = 1). Then the set {aA : A ⊆ {1, . . . , n}} is a basis of Fn over F . It follows that
the set consisting of all aA with A being a finite subset of {1, 2, . . .} is a basis of
K over F .

• The group G is isomorphic to the direct product
∏∞

i=1 Gi with each Gi being
equal to Z2. An element (s1, s2, . . . ) ∈

∏∞
i=1 Gi corresponds to the automor-

phism of K over F which maps ai to itself when si = 0 and to −ai when si = 1.

• Let H be the subgroup of G consisting of the elements of G that correspond
to the direct sum

⊕∞
i=1 Gi , where the direct sum

⊕∞
i=1 Gi consists of those el-

ements (s1, s2, . . . ) of direct product
∏∞

i=1 Gi for which si = 0 for all i except
finitely many.

• Let b ∈ K . Then b = Fn for some n so b =
∑

A⊆{1,...,n} cAaA for some cA ∈ F .
Supposeσ(b ) = b for everyσ ∈H . If A ⊆ {1, . . . , n} is nonempty, say i ∈ A, then
there is σ ∈ H with σ(ai ) = −ai and σ

�

a j

�

= a j for all j 6= i . Then σ(cAaA) =
−cAaA implying that cA = 0. Thus

b = c∅a∅ = c∅ ∈ F.

implying that π(H ) = F and soσπ(H ) =G .
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• Since H is a proper subgroup of G with G being theσπ-closure of H , the sub-
group H is not a closed subset of G .

5. Let F =Q and K be the splitting field of the polynomial f (x ) = x 3−2 over F . Then
K is normal and separable over F . Let α1 =

3p
2, α2 =ω

3p
2 and α3 =ω2 3p

2, where
ω=−1

2
+
p

3
2

i , be the roots of f (x ). The group G is isomorphic to S3 (all permutations
of the set {α1,α2,α3} of the roots of f (x )).

• There are six subgroups of G :

– the trivial subgroup G1 consisting of identity,
– three subgroups G2,G3,G4 generated by a transposition:

G2 consists of the identity and the transposition exchanging α2 with α3,
G3 consists of the identity and the transposition exchanging α1 with α3,
G4 consists of the identity and the transposition exchanging α1 with α2.

– the subgroup G5 consisting of identity and both 3-cycles, and
– the group G6 =G .

• There are six intermediate fields:

– the field F1 equal to K itself,
– the three subfields generated by a root of f over F namely:

F2 = F (α1),
F3 = F (α2),
F4 = F (α3),

– the subfield F5 = F (ω) generated byω over F ,
– the subfield F6 = F .

• Every subgroup of G is a closed subset of G and every intermediate field is a
closed subset of K with the subgroup Gi corresponding to the subfield Fi for
each i = 1, . . . , 6. Here is the resulting lattice of intermediate fields.

F

F (α1) F (α2) F (α3) F (ω)

K

And here is the corresponding lattice of the subgroups of G .

{1G }

{1G , (α2 α3)} {1G , (α1 α3)} {1G , (α1 α2)} {1G , (α1 α2 α3), (α1 α3 α2)}

G
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Remark. We will prove later that if K is both normal and separable over F , then any inter-
mediate field is a closed subset of K and that if the group G is finite, then any subgroup
of G is a closed subset of G .

8.4 Homework 12 — due February 22.

Exercise. Finish the proof of the remark (*) in section 8.3.

8.5 Galois Field Extensions and the Galois Correspondence.

Galois Field Extension.

Definition. Let F be a field and K be an algebraic field extension of F . We say that K is
Galois over F iff it is both normal and separable over F .

Remark. Let K be a finite Galois extension of a field F with Galois group G . Consider
the Galois connection between subsets of K and subsets of G . We will show that every
intermediate field is a closed subset of K and every subgroup of G is a closed subset of
G . Thus there is a bijection between the set of all intermediate field E with F ⊆ E ⊆ K
and all subgroups of G .

The Galois Group.

Definition. When K is Galois over F , then we will denote the group AutF (K ) of auto-
morphisms of K over F by Gal (K /F ) and call it the Galois group of K over F .

Remark. Let K be a finite field extension of a field F with G =AutF (K ). Then K is Galois
over F if and only if |G |= [K : F ].

Proof. Assume that K is Galois over F . Let n = [K : F ]. Since K is separable over F ,
we have n embeddings of K into F a over F . Since K is normal over F , each of those
embeddings is an automorphism of K . Thus |G |= n .

Assume that |G |= [K : F ]. Each of the automorphisms of K over F is an embedding
of K into F a so [K : F ]s = [K : F ]. Thus K is separable over F . Since we can have at most
[K : F ] embeddings of K into F a, there are no other embeddings of K into F a and hence
every embedding of K into F a is an automorphism of K . Thus K is normal over F .

Fixed fields.

Definition. Let K be a field and G be a subgroup of Aut(K ). Let

K G :=
�

a ∈ K :σ(a ) = a for everyσ ∈G
	

.

Then K G is a subfield of K and say that K G is the fixed field of G .
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Every intermediate field of a Galois extension is closed.

Proposition. Let K be a Galois extension of a field F and G be the Galois group of K over
F .

1. We have K G = F .

Proof. Suppose a ∈ K G . If ϕ is an embedding of F (a ) in F a = K a over F , then ϕ can
be extended to an automorphism of F a whose restriction to K is in G . Since a is fixed
by any element of G , it follows that ϕ(a ) = a so [F (a ) : F ]s = 1. Since a is separable
over F , it follows that a ∈ F .

2. K is Galois over any intermediate field E .

Proof. Since K is separable over F , for every a ∈ K the minimal polynomial f of a
over F has no multiple roots. The minimal polynomial of a over E is a factor of f so
it also has no multiple roots and a is separable over E .

Since K is normal over F , it is a splitting field of a set of polynomials over F . Then K
is a splitting field of the same set of polynomials over E . Thus K is normal over E .

3. If E1 and E2 are different intermediate fields, then

Gal (K /E1) 6=Gal (K /E2) .

Proof. Suppose Gal(K /E1) = Gal(K /E2) = H . Then 1. and 2. imply that E1 = K H =
E2.

Remark. Let K be a (finite or infinite) Galois extension of a field F with Galois group G .
Consider the Galois connection between subsets of K and subsets of G . Every interme-
diate field is a closed subset of K .

Proof. Let E be an intermediate field. Then the proposition above implies that K is Ga-
lois over E and K Gal(K /E ) = E . Thus E is a closed subset of K .

Every finite subgroup is closed.

Theorem. Let K be a field, G be a finite subgroup of Aut(K ) and F = K G be the fixed
field.

1. K is Galois over F .

Proof. Let a ∈ K . It suffices to show that a is a root of a polynomial over F that is
separable and splits over K . Let a1, . . . , ak be all the distinct images of a under the
automorphisms from G . Consider the polynomial

f (x ) = (x −a1) (x −a2) . . . (x −ak ) .

The polynomial f is clearly separable and a is a root of it. Since a1, . . . , ak are in K , it
splits over K .

It remains to show that the coefficients of f are in F . We claim that
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(*) If
f (x ) = b0+ b1x + · · ·+ bk−1x k−1+ x k ,

then ϕ(bi ) = bi for every ϕ ∈G .

Proof of (*). For each bi , we have bi = hi (a1, . . . , ak )where hi is some composition
of the operations of addition, subtraction and multiplication. For example, b0 =
(−1)k a1a2 . . . ak and

b1 = (−1)k−1
k
∑

i=1

∏

j 6=i

a j .

Let ϕ ∈ G . Since ϕ restricted to A =
�

a1, . . . , ak

	

is a permutation of A, it follows
that

�

x −ϕ(a1)
� �

x −ϕ(a2)
�

. . .
�

x −ϕ(ak )
�

= f (x ) .

Thus bi = hi

�

ϕ(a1) , . . . ,ϕ(ak )
�

for each i = 0, 1, . . . , k − 1. Since ϕ is an automor-
phism of K it follows that ϕ(bi ) = hi

�

ϕ(a1) , . . . ,ϕ(ak )
�

. Thus ϕ(bi ) = bi for each
i .

Since
F = K G =

�

a ∈ K :ϕ(a ) = a , for every ϕ ∈G
	

,

if follows that f (x ) ∈ F [x ].

2. [K : F ] = |G |.

Proof. Suppose [K : F ] < |G |. Then [K : F ] is finite and equals [K : F ]s so [K : F ]s <
|G |which is a contradiction since any element of G is an embedding of K into F a = K a

over F . Thus [K : F ] ≥ |G |. If [K : F ] > |G |, then there is an intermediate field E
with finite [E : F ] > |G |. Since every element of K is separable over F , the field E is
separable over F . Thus [E : F ]s = [E : F ]and there is a primitive element a ∈ E over F .
The minimal polynomial of a over F has degree > |G | contradicting the observation
in the proof of 1. that such a degree is ≤ |G |.

3. Gal(K /F ) is equal to G .

Proof. It is clear that G ⊆H = Gal(K /F ). Since |H | = [K : F ] = |G | and G is finite, we
have G =H .

Remark. Let K be a finite Galois extension of a field F with Galois group G . Consider
the Galois connection between subsets of K and subsets of G . Every subgroup of G is a
closed subset of G .

Proof. Let H be a subgroup of G . Since G is finite (we have |G |= [K : F ]) also H is finite.
The theorem above implies that Gal

�

K /K H
�

=H . Thus H is a closed subset of G .
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Remark. Without the assumption that K is finite over F , not every subgroup of G is a
closed subset of G . There is a topology on G (Krull topology on G ) such that the closed
subsets of G are exactly the subgroups of G that are closed in the Krull topology. How-
ever, if a subgroup H of G is finite, then H is a closed subset of G . Thus every finite
subgroup of G is closed in the Krull topology.

The join of subfields and of subgroups.

Definition. If E1 and E2 are subfields of a field K , then E1E2 denotes the join of E1 and
E2 which is the intersection of all subfields of K containing the union E1∪E2.

Remark. Note the the join E1E2 is equal to E1(E2) and to E2(E1).

Definition. Let H1 and H2 be subgroups of a group G . The join H1∨H2 is the intersection
of all subgroups of G containing H1∪H2.

Remark. If one (or both) of the subgroups H1, H2 is normal in G , then H1 ∨H2 =H1H2 =
H2H1 where

H1H2 = {h1h2 : h1 ∈H1, h2 ∈H2} .

See the exercise in section 8.6.

Corollary. Let K be a finite Galois extension of a field F with Galois group G .

1. There is a bijection between the set of all intermediate fields and the set of all subgroups
of G .

2. The group corresponding to an intermediate field E is the Galois group Gal (K /E ).

3. The field corresponding to a subgroup H is the fixed field K H .

4. If E1 ⊆ E2 are intermediate fields and H1 ⊇ H2 are the corresponding subgroups of G ,
then [E2 : E1] = [H1 : H2].

Proof. Since K is Galois over both E1 and E2, we have [K : E1] = |H1| and [K : E2] = |H2|.
Since [K : E1] = [K : E2] [E2 : E1], it follows that

[E2 : E1] =
[K : E1]
[K : E2]

=
|H1|
|H2|

= [H1 : H2] ,

as claimed.

5. If E1 and E2 are intermediate fields and H1, H2 are the corresponding subgroups of G ,
then the join E1E2 corresponds to the subgroup H1∩H2 of G , and the intermediate field
E1∩E2 corresponds to the join H1∨H2.
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8.6 Homework 13 — due March 1.

Exercise. Let G be a group and H1, H2 be subgroups of G .

1. Prove that if H1H2 =H2H1, then H1H2 is a subgroup of G .

2. Prove that if H1 is normal in G , then H1H2 =H2H1.

8.7 Normality in the Galois Correspondence.

Theorem. Let K be a Galois extension of a field F with Galois group G . Let E be an
intermediate field with the corresponding subgroup H of G .

1. E is normal over F if and only if H is normal in G .

Proof. Let E be an intermediate field and H = Gal(K /E ). Suppose E is normal over
F . Let ϕ ∈ G and ψ ∈ H . To show the normality of H in G we need to verify that
ϕ−1ψϕ ∈ H , that is that ϕ−1ψϕ(a ) = a for every a ∈ E . Since E is normal over F , it
follows that ϕ(a ) ∈ E soψ

�

ϕ(a )
�

=ϕ(a ) and hence ϕ−1ψϕ(a ) = a .

Now assume that H is normal in G . Letϕ′ be any automorphism of F a (= K a) over F .
Suppose, to the contrary, that E is not normal over F . Then the restriction of ϕ′ to E
is not an automorphism of E . Thus there is a ∈ E such that b =ϕ′(a ) ∈ K r E . Since
E is the fixed field of H , there isψ ∈H such thatψ(b ) 6= b . Let ϕ be the restriction of
ϕ′ to K . Then

ϕ−1ψϕ(a ) =ϕ−1ψ(b ) 6=ϕ−1(b ) = a .

Since a ∈ E , it follows that ϕ−1ψϕ /∈H contradicting normality of H in G .

2. If E is a normal over F (hence is Galois over F ), then the Galois group Gal (E /F ) is
isomorphic to the quotient group G /H .

Proof. Let f : G → Gal (E /F ) assign to ϕ ∈ G the restriction of ϕ to E . Then f is a
surjective group homomorphism with H = ker

�

f
�

. Thus Gal (E /F ) is isomorphic to
G /H .

Remark. Let K be a Galois extension of F with G = Gal (K /F ), let E1 ⊆ E2 be some in-
termediate fields with the corresponding subgroups H1 ⊇ H2 of G . Then the field E2

is normal over E1 if and only if the group H2 is normal in H1. If normality holds, then
Gal (E2/E1) is isomorphic to H1/H2.

Example. Let F = Q and K be the splitting field of the polynomial f (x ) = x 3 − 2 over
F . Then K is normal and separable over F . Let α1 =

3p
2, α2 = ω

3p
2 and α3 = ω2 3p

2,
whereω=−1

2
+
p

3
2

i , be the roots of f (x ). Let G be the Galois group of K over F with the
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elements of G represented as the permutations of the set {α1,α2,α3} of the roots of f (x ).
In the pictures below, thick lines denote normality.

F

F (α1) F (α2) F (α3) F (ω)

K

{1G }

{1G , (α2 α3)} {1G , (α1 α3)} {1G , (α1 α2)} {1G , (α1 α2 α3), (α1 α3 α2)}

G

Proposition. Let K be a Galois extension of a field F and L be any field extension of F ,
with both K and L being subfields of the same field.

K L

K L

K ∩ L

F

1. The join K L is Galois over L and K is Galois over K ∩ L.

Proof. Since K is Galois over F it is Galois over any intermediate field so, in particu-
lar, over K ∩ L . In order to show that K L is Galois over L we will prove and use the
following claim.

(*) Every a ∈ K is a root of a separable polynomial fa (x ) ∈ L [x ] that splits over K L .

Proof of (*). Let a ∈ K . Since K is Galois over F , the minimal polynomial fa (x )
of a over F is separable and splits over K . Then fa (x ) ∈ L [x ] and fa splits over
K L .

Since K L is generated by K over L and every element of K is separable over L , it fol-
lows that K L is separable over L . Since K L is the splitting field of the set

�

fa : a ∈ K
	

of polynomials over L , it follows that K L is normal over L .
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2. If K is finite over K ∩L, then the functionϕ : Gal (K L/L )→Gal (K /K ∩ L ) assigning to
σ the restrictionσ�K is a group isomorphism.

Proof. Since K is normal over K ∩L , every automorphism of K L over L restricted to K
is an automorphism of K over K ∩L . Thusϕ�K ∈Gal (K /K ∩ L ). Ifσ,τ ∈Gal (K L/L ),
then (σ ◦τ)�K = (σ�K ) ◦ (τ�K ) so the function ϕ is a group homomorphism. Since
K L = L (K ), it is clear that ϕ is injective.

It remains to show the surjectivity of ϕ. It suffices to show that [K : K ∩ L ] = [K L/L ].
Since K is finite and separable over K ∩ L , the Primitive Element Theorem implies
that K is generated over K ∩ L be a single element a ∈ K . Then K L = L (a ). Let f (x )
be the minimal polynomial of a over K ∩L . The result will follow when we show that
f (x ) is irreducible over L . Since K is normal over K ∩L , the polynomial f splits over
K implying that every monic divisor of f (x ) in L [x ] belongs to (K ∩ L )[x ]. Since f is
irreducible over K ∩ L , it follows that it is irreducible over L .

Remark. The assumption that K is finite over K ∩ L in part 2. of the proposition above
was only used in the proof of the surjectivity of ϕ in order to simplify the argument.
Without this assumption, the result is still true. The proof however becomes more com-
plicated since we need to consider then the continuity of ϕ in the Krull topology.

Corollary. Let K be a finite Galois extension of a field F and E1, E2 be intermediate fields.
Suppose that one (or both) of E1, E2 is normal over E1∩E2. Then [E1E2 : E1] = [E2 : E1∩E2]
and [E1E2 : E2] = [E1 : E1∩E2].

Remark. When none of the intermediate fields E1, E2 is normal over F , then the equali-
ties in the above corollary do not need to hold.

Example. Let F = Q and K be the splitting field of the polynomial x 3 − 2 over F . Let
α1 =

3p
2, α2 =

3p
2ω withω=−1

2
+
p

3
2

i , and let E1 = F (α1) and E2 = F (α2). Then E1E2 = K
and E1 ∩ E2 = F , but [E1 : F ] = [E2 : F ] = 3 while [K : E1] = [K : E2] = 2. Note that none of
the fields E1, E2 is normal over F .

Let E3 = F (ω). Then E3 is normal over F . Now we have [E3 : F ] = 2 = [K : E1] and
[K : E3] = 3= [E1 : F ].

In the picture below, bold lines are used when the extension is normal and the num-
bers denote the degree of the extension.

F

F (α1) F (α2) F (α3) F (ω)

K

3
3 3

2

2
2 2

3

Remark. Instead of using the proposition, the corollary can be deduced alternatively
from the Second Isomorphism Theorem for groups (see section 8.8).
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Proof. Let G be the Galois group of K over F and let H1 and H2 be the subgroups of G
that correspond to the intermediate fields E1 and E2. Suppose E1 is normal over F . Then
H1 is normal in G .

K

E1E2

E1 E2

E1∩E2

F

H1∩H2

H1 H2

H1H2

{1G }

G

Thus H1 ∩H2 is normal in H2 and there is an isomorphism H1H2/H1→H2/ (H1∩H2) im-
plying that

[H1H2 : H1] = [H2 : H1∩H2] ,

and consequently [E1E2 : E2] = [E1 : E1∩E2].

8.8 Homework 14 — due March 4.

Exercise. Let G be a group and H1, H2 be subgroups of G with H1 normal in G . Prove
that the quotient H1H2/H1 is isomorphic to H2/ (H1∩H2). Hint: Define a homomorphism
ϕ : H1H2→ H2/ (H1∩H2) such that ϕ(h1h2) = h2 (H1∩H2) and use the Fundamental Ho-
momorphism Theorem for groups.

Remark. The result in the exercise is often called the Second Isomorphism Theorem for
groups.

8.9 The Galois Group of x 4−2 overQ.

• Let F =Q and K be the splitting field of the polynomial x 4−2 over F with G being
the Galois group of K over F . Let α1 =

4p
2, α2 = i

4p
2, α3 = −

4p
2 and α4 = −i

4p
2 be

all the roots of x 4−2.

A B

α1

α2

α3

α4
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• Since F (α1) has degree 4 over F and i /∈ F (α1), the polynomial x 2+1 is irreducible
over F (α1) so K = F (α1, i ) and [K : F ] = 8. Consequently, the group G has 8 el-
ements. The root α1 can be mapped to any of the roots α1, . . . ,α4 and i can be
mapped either to itself or to −i . There are 8 choices in total and each of them cor-
responds to exactly one element of G .

• There isϕ ∈G such thatϕ(α1) =α2 andϕ(i ) = i , and there isτ ∈G such thatτ(α1) =
α1 and τ(i ) = −i . Note that ϕ corresponds to the 4-cycle (α1 α2 α3 α4) or to the
rotation by 90◦ anticlockwise around the origin. The automorphismτ corresponds
to the transposition (α2 α4) or the reflection in the real axis.

• The remaining elements of G are:

– the identity 1G ,

– the compositionϕ2 ofϕwith itself that corresponds to the product (α1 α3) (α2 α4)
of two transpositions or to the rotation by 180◦ around the origin,

– ϕ3 =ϕ−1 corresponding to the 4-cycle (α1 α4 α3 α2)or the rotation by 90◦ clock-
wise around the origin.

– the composition τϕ = ϕ3τ corresponding to the product (α1 α4) (α2 α3) or to
the reflection in line A.

– the composition τϕ2 = ϕ2τ corresponding to the transposition (α1 α3) or to
the reflection in the imaginary axis.

– the composition τϕ3 = ϕτ corresponding to the product (α1 α2) (α3 α4) or to
the reflection in the line B .

• The subgroups of G are

– the trivial group
�

1G

	

,

– five subgroups of order two generated by one of the elements whose order
in G is 2, namely the four reflections and rotation by 180◦: 〈τ〉,




τϕ
�

,



τϕ2
�

,



τϕ3
�

,



ϕ2
�

;

– three subgroups of order four: the subgroup



ϕ
�

consisting of all rotations
(including the identity) that is generated by ϕ, the two subgroups generated
by the reflections in two perpendicular lines, either both axis or the lines A
and B , namely




τ,τϕ2
�

and



τϕ,τϕ3
�

.

– the group G .

• All subgroups of G of order four are normal in G (subgroups of index two are always
normal). The only subgroup of order two that is normal in G is




ϕ2
�

.
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• Here is the lattice of the subgroups of G .

{1G }

〈τ〉 〈τϕ2〉 〈ϕ2〉 〈τϕ〉 〈τϕ3〉

〈τ,τϕ2〉 〈ϕ〉 〈τϕ,τϕ3〉

G

The corresponding lattice of the intermediate fields is given below, whereβ1 =α1+
α4 and β2 =α1+α2.

K

Q( 4p
2) Q( 4p

2i ) Q(i ,
p

2) Q(β1) Q(β2)

Q(
p

2) Q(i ) Q(
p

2i )

Q

Remark. The group that appears in the example above is call the dihedral group of order
8 and denoted D8. For each positive integer n , there is a dihedral group D2n of order 2n
that is the group of all symmetries of a regular n-gon. The group D6 is isomorphic to the
group S3 of all permutations of the set {1, 2, 3}. Note that if n ≥ 3, then the group D2n is
not abelian.

8.10 Homework 15 — due March 15.

Exercise. Let f (x ) = x 4− 3x 2− 3 be a polynomial over F =Q and let K be the splitting
field of f (x ) over F . Find the Galois group G of K over F and draw the lattice of all in-
termediate subfields and the corresponding lattice of all subgroups of G . Identify which
intermediate fields are normal over F .
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9 Sylow Subgroups of a Finite Group.

9.1 A Partial Converse of Lagrange’s Theorem.

Example. Let G = A4 be the group of even permutations of the set {1, 2, 3, 4}. Then G has
12 elements so 6 is a divisor of 12, but G has no subgroup of order 6. Thus the converse
of Lagrange’s Theorems is false.

Remark. We will show that if G is a finite group, p is a prime and p n divides the order
of G , then G has a subgroup of order p n . This gives us a partial converse of Lagrange’s
Theorem.

9.2 Sylow Subgroups.

p -subgroups. Let p be a prime. A p -subgroup of a finite group G is a subgroup whose
order is a power of p (including the trivial subgroup).

Sylow p -subgroups. Let G be a finite group and p be a prime. A Sylow p -subgroup of
G is a p -subgroup H such that the index [G : H ] is not divisible by p .

Remark. We will show that for any prime p any finite group G contains a Sylow p -subgroup
and more generally that if p n divides the order of G , then G has a subgroup of order p n

(see Theorem and Corollary in section 9.7).

9.3 The Fundamental Theorem of Algebra.

Linear Orders. Let X be a set. A linear order on X is a binary relation ≤ such that

1. ≤ is reflexive (for every a ∈ X we have a ≤ a ).

2. ≤ is transitive (for every a , b , c ∈ X if a ≤ b and b ≤ c then a ≤ c ).

3. ≤ is antisymmetric (for every a , b ∈ X if a ≤ b and b ≤ a then a = b ).

4. ≤ is total (for every a , b ∈ X we have a ≤ b or b ≤ a ).

Ordered Fields. An ordered field is a field F with a linear order relation≤ such that, for
any a , b ∈ F , if a , b ≥ 0, then a + b ≥ 0 and a b ≥ 0.

Remark. Equivalently, an ordered field is a field F with a distinguished set P ⊆ F such
that:

1. F is the disjoint union of P , {0} and −P , where −P = {−a : a ∈ P }.

2. a + b ∈ P and a b ∈ P for every a , b ∈ P .

The elements of P are called positive and correspond to the elements that are ≥ 0 but
6= 0.
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Elements that are squares. Let F be a field. We say that an element a ∈ F is a square,
if there exists b ∈ F such that a = b 2.

Remark. If F is an ordered field, and a ∈ F ∗ is a square, then a is positive. In particular,
no ordered field can be algebraically closed.

Proposition. Any ordered field has characteristic zero.

Proof. Suppose that F is an ordered field of prime characteristic p . Then 1F is a square
so it is positive implying that−1F = 1F + · · ·+1F

︸ ︷︷ ︸

p−1

is positive, which is a contradiction.

Theorem. Let F be an ordered field such that every polynomial of odd degree over F has
a root in F and every positive element of F is a square. If K is a splitting field of the poly-
nomial x 2+1 over F , then K is algebraically closed.

Proof. Let i be a root of f (x ) = x 2+1 in F a. Then K = F (i ). Let L be any finite extension
of K . It suffices to show that L = K .

We can assume without loss of generality that L is normal over F (otherwise L can
be replaced with the splitting field over F of the minimal polynomial of a ∈ L such that
L = F (a )). Then L is a finite Galois extension of F . Let G be the Galois group of L over
F and H be a Sylow 2-subgroup of G . Let E = L H be the corresponding fixed field.

L {1G }

E H

F G

We claim that:

(*) E = F .

Proof of (*). We have then [E : F ] = [G : H ] so [E : F ] is odd. Let a ∈ E be arbitrary.
Then

[E : F ] = [E : F (a )] [F (a ) : F ] ,

implying that [F (a ) : F ] is odd. Let g (x )be the minimal polynomial of a over F . Then
g (x ) has odd degree and is irreducible over F . Since any polynomial over F of odd
degree has a root in F , it follows that g (x ) has degree 1. Thus a ∈ F .

Since E = F , it follows that H = G so G is a 2-group. Let J be the subgroup of G cor-
responding to K and suppose, to the contrary, that L 6= K . Then J is a nontrivial group
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whose order is 2k for some integer k ≥ 1. Let J ′ be a subgroup of J of order 2k−1 and K ′

be the corresponding field.

L {1G }

K ′ J ′

K J

F G

Then [J : J ′] = 2 so K ′ is an extension of K of degree 2. To complete the proof it remains
to show that K has no proper extensions of degree 2 (exercise).

Corollary. The field C of complex numbers is algebraically closed.

9.4 Homework 16 — due March 20.

Exercise. Finish the proof of the theorem in section 9.3.

9.5 Group Actions.

Definition. Let G be a group and X be a set. An action of G on X is a group homomor-
phism G → S (X ), where S (X ) is the group of all permutations of X . If ϕ : G → S (X ) is an
action of G on X then we will also say that

�

ϕ
�

g
��

(a ) is the result of g acting on a and
denote it by g (a ).

Example. Let G be a group. Then G acts on itself by conjugation.
Formally, the homomorphismϕ : G → S (G ) is such that if a ∈G then the permutation

ϕ(a ) : G →G is the conjugation by a , that is for b ∈G we have
�

ϕ(a )
�

(b ) = a b a−1. ϕ is a
homomorphism since

�

ϕ(a c )
�

(b ) = a c b (a c )−1

= a c b c −1a−1

= a
��

ϕ(c )
�

(b )
�

a−1

=
�

ϕ(a )
���

ϕ(c )
�

(b )
�

=
�

ϕ(a )ϕ(c )
�

(b )

so ϕ(a c ) =ϕ(a )ϕ(c ).

Orbits of a Group Action.

Definition. Let G act on a set X . Let ∼ be the equivalence relation on X given by a ∼ b
iff there is g ∈G with b = g (a ). The equivalence classes of ∼ are called the orbits of this
action.
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Stabilizers.

Definition. Let G act on a set X . If a ∈ X , then let Ga =
�

g ∈G : g (a ) = a
	

be the stabilizer
of a in G .

Remark. The stabilizer Ga is a subgroup of G .

9.6 Class Formula.

Theorem. Let G be a group acting on a finite set X and a1, . . . , an be representatives of the
orbits of the action. Then |X |=

∑n
i=1

�

G : Gai

�

, where Gai
is the stabilizer of ai .

Proof. Let Ai be the orbit containing ai for each i = 1, . . . , n . It suffices to show that
�

�Ai

�

� =
�

G : Gai

�

. Let G /Gai
be the set of all left cosets of Gai

in G . Define f : G /Gai
→ Ai

so that f
�

b Gai

�

is the result b (ai ) of b acting on ai . We have b Gai
= b ′Gai

iff b −1b ′ ∈Gai

iff b −1b ′(ai ) = ai iff b ′(ai ) = b (ai ) implying that f is well-defined and injective. Clearly f
is surjective.

Center of a group.

Definition. The center Z of a group G is the set of all a ∈ G that commute with every
element of G .

Remark. If G acts on itself by conjugation, then the center of G is the set of all a ∈ G
such that the singleton {a } is an orbit of G .

Centralizer of an element of a group.

Definition. If G is a group and a ∈ G , then the centralizer Ca of a in G is the set of all
elements of G that commute with a .

Remark. If G acts on itself by conjugation, then the stabilizer of a ∈ G in this action is
the centralizer Ca .

Conjugacy classes.

Definition. Let G be a group. The orbits when G acts on itself by conjugation are called
conjugacy classes.

Corollary. Let G be a finite group and a1, . . . , an be representatives of conjugacy classes
that are not singletons. Then

|G |= |Z |+
n
∑

i=1

�

G : Cai

�

,

where Z is the center of G .
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9.7 The First Sylow Theorem — Existence of Sylow Subgroups.

Proposition. Let G be a finite abelian group and p be a prime dividing the order of G .
The G has an element of order p .

Proof. We use induction on the order of G . Let a ∈G be not equal to 1G . If the order of a
is divisible by p , say is equal to k p , then a k ∈G has order p . Otherwise, let H = 〈a 〉be the
cyclic subgroup of G generated by a . Since p divides the order of G /H , it follows from
the inductive hypothesis that there is an element b H ∈G /H of order p . Thus p divides
the order of b in G (see the exercise in section 9.9) and we can repeat the argument from
above.

Theorem. Let G be a finite group and p be a prime. There exists a Sylow p -subgroup of
G .

Proof. We use induction on the order of G . If G is trivial the result is obvious. Assume
G is not trivial. If there is a proper subgroup H of G with [G : H ] not divisible by p ,
then the inductive hypothesis implies that H has a Sylow p -subgroup which is then a
Sylow p -subgroup of G . Suppose not. Then p divides the order of G . Let a1, . . . , an be
representatives of the nontrivial (that are not singletons) conjugacy classes of G . Then
the index

�

G : Cai

�

is divisible by p for each i so the Class Formula implies that the order
of the center Z of G is divisible by p . Thus there is an element a ∈ Z of order p . Let
H = 〈a 〉 be the cyclic subgroup of G generated by a . Since a ∈ Z , the subgroup H is
normal in G . By the inductive hypothesis G /H contains a Sylow p -subgroup which is of
the form K /H for some subgroup K of G containing H (by Correspondence Theorem).
Then [G : K ] = [G /H : K /H ] is not divisible by p so K is a Sylow p -subgroup of G .

Corollary. If G is a finite group and p is a prime such that p n divides the order of G , then
G has a subgroup of order p n .

Proof. The theorem above implies that we can assume, without loss of generality, that G
is a p -group. We use induction on n . If n = 0, the result is obvious. Assume n ≥ 1. Then
G is nontrivial so it has a nontrivial center Z (exercise). Then Z contains an element
of order p which implies that G has a normal subgroup H of order p . By the inductive
hypothesis (and the Correspondence Theorem for groups) the group G /H contains a
subgroup K /H of order p n−1, where K is a subgroup of G containing H . Then the order
of K is p n .

9.8 Homework 17 — due March 22.

Exercise. Let p be a prime integer and G be a nontrivial finite p -group. Prove that the
center Z of G is nontrivial.

9.9 Homework 18 — due April 1.

Exercise. Let G be a group and H be a subgroup of G . Let a ∈G be an element of a finite
order m . Let k be the smallest positive integer such that a k ∈H and ` be the order of a k

in H . Prove that k`=m .
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9.10 More on Sylow Subgroups.

Fixed point of a group action.

Definition. Let G be a group acting on a set X . A fixed point of this action is an element
a ∈ X such thatσ(a ) = a for everyσ ∈G .

Lemma. Let p be a prime integer and G be a finite p -group acting on a finite set X . Then
the number of fixed points of this action is congruent to |X |modulo p .

Proof. For any a ∈ X the cardinality of the orbit of a is equal to [G : Ga ], where Ga is the
stabilizer of a . If a is not a fixed point, then Ga is a proper subgroup of G so the index
[G : Ga ] is divisible by p . Thus the class formula implies the result.

Normalizer of a subgroup.

Definition. Let G be a group and H be a subgroup of G . The normalizer of H in G is the
set of all g ∈G such that g H =H g .

Remark. Note that the normalizer of H in G is a subgroup of G containing H . It is the
largest subgroup of G in which H is normal. Also H is normal in G if and only if the
normalizer of H in G is equal to G .

Group acting on the set of its subgroups by conjugation.

Definition. Let G be a group and X be the set of all subgroups of G . The action of G on
X by conjugation is defined by

g (H ) = g H g −1 =
�

g hg −1 : h ∈H
	

,

for any g ∈G and H ∈ X .

Remark. Note that H is a fixed point of the action above if and only if H is normal in G .
If H is any subgroup of G , then the stabilizer of H in that action is the normalizer of H
in G .

The action above can also be considered when X is any set of subgroups of G that is
closed under conjugation. We can also consider the action on X be any subgroup of G .

Proposition. Let G be a finite group, p be a prime integer, H be a p -subgroup of G , P be a
Sylow p -subgroup of G and X be the set of all conjugates of P by elements of G . Consider
the action of H on X by conjugation. Then there exists a fixed point of this action. Any
such fixed point contains H .

Proof. Consider the action of G on X by conjugation first. This action has only one orbit
equal to X . Thus |X | = [G : N ], where N is the stabilizer of P in that action, hence the
normalizer of P in G . Since N contains P , it follows that [G : N ] is not divisible by p .
Thus |X | is not divisible by p .

Now consider the action of H on X by conjugation. The number of fixed points of
this action is congruent to |X |modulo p so it is nonzero. Let Q be a fixed point of this
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action. Then hQ h−1 =Q for any h ∈H so H ⊆N ′ where N ′ is the normalizer of Q in G .
We claim that H ⊆Q .

Suppose, to the contrary, that H is not a subset of Q . Then H Q 6=Q . Note that H Q
is a subgroup of N ′ since Q is normal in N ′. Since H Q/Q is isomorphic to H / (H ∩Q ), it
follows that the index [H Q : Q ] is a positive power of p . That is a contradiction since Q
is a Sylow p -subgroup of G .

Conjugate subgroups.

Definition. Let G be a group and H and J be subgroups of G . We say that H and J are
conjugate in G if there exists g ∈G such that J = g H g −1.

Remark. Any two subgroups of G that are conjugate are isomorphic. The converse does
not have to be true.

Example. Let H =Z2×{0} and J = {0}×Z2 be subgroups of G =Z2×Z2. Then H and J
are isomorphic but they are not conjugate in G . Since G is abelian, two subgroups of G
are conjugate if and only they are equal.

Theorem. Let G be a finite group and p be a prime integer.

(1) Any p -subgroup of G is contained in a Sylow p -subgroup of G .

Proof. Let H be a p -subgroup of G and P be a Sylow p -subgroup of G . Consider the
action of H by conjugation on the set X of all conjugates of P by elements of G . Let
Q be a fixed point of this action. Then Q is a Sylow p -subgroup containing H .

(2) Any two Sylow p -subgroups of G are conjugate.

Proof. Let H and P be Sylow p -subgroups of G . Consider again the action of H by
conjugation on the set X of all conjugates of P by elements of G and let Q be a fixed
point of this action. Then H ⊆Q implying that H =Q . Since Q is a conjugate of P , it
follows that H is a conjugate of P .

(3) The number of Sylow p -subgroups of G is congruent to 1 modulo p .

Proof. Note that any fixed point of the action in the proof of (2) must be equal to H
so there is only one fixed point. Therefore |X | ≡ 1 modulo p .

(4) The number of Sylow p -subgroups of G is a divisor of |G |.

Proof. Consider the action of G by conjugation on the set X of all Sylow p -subgroups
of G . Since X is the only orbit of this action, its size (equal to the index of the stabi-
lizer of any element of X ) must be a divisor of |G |.

Corollary. Let G be a finite group and p be a prime integer.
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1. Any two Sylow p -subgroups of G are isomorphic.

2. If G is abelian, then it has a unique Sylow p -subgroup.

Remark. As a consequence, any subgroup of the symmetric group S4 of order 8 is iso-
morphic to the dihedral group D8.

9.11 Homework 19 — due April 3.

Exercise. Let p be a prime integer, G be a finite group, H be a Sylow p -subgroup of G
and N be the normalizer of H in G . Prove that if J is any p -subgroup of G contained in
N , then J ⊆H .

10 Solving Polynomials by Radicals.

10.1 Radical Field Extensions.

Definition. Let F be a field of characteristic zero and K be a field extension of F . We say
that K is radical over F iff there exists a chain F = F0 ⊆ F1 ⊆ . . . ⊆ Fn = K of fields such
that for each i = 1, . . . , n we have Fi = Fi−1(ai ) for some ai ∈ Fi such that there is a positive
integer ni with a ni

i ∈ Fi−1.

Remark. Any radical field extension is a finite extension.

Example. Let

a = 5

√

√

√
7+ 12p7

11
p

7p15+ 3p5
+

17p
19+78 ∈R

and K =Q(a ). Then K is a radical extension of Q. Indeed, if F1 =Q
�

12p7
�

, F2 = F1

�

7p15
�

,

F3 = F2

�

3p5
�

, F4 = F3
17p19 and F5 = F4

�

11
p

7p15+ 3p5
�

, then the chain

Q⊆ F1 ⊆ F2 ⊆ F3 ⊆ F4 ⊆ F5 ⊆ K

demonstrate that K is a radical extension ofQ.

Polynomials solvable by Radicals.

Definition. Let F be a field of characteristic zero and f be a polynomial over F . We say
that f is solvable by radicals over F iff there exists a radical extension K of F such that
f (x ) splits in K [x ].

Remark. Intuitively, a polynomial f (x ) ∈ F [x ] is solvable by radicals over F if and only if
its roots can be expressed in terms of the elements of F using algebraical operations like
addition, subtraction, multiplication and division together with the operation of taking
roots of some degree n that is a positive integer (picking one of the roots of an equation
of the form x n = a ).

Note that f is solvable by radicals over F if and only if the splitting field of f over F
can be extended to a radical extension of F .
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Proposition. Let F be a field of characteristic zero and f be a polynomial of degree ≤ 4
over F . Then f is solvable by radicals over F .

Proof. The result is obvious when the degree of f is 1 and when it is 2, then we can use
the quadratic formula.

Assume that deg
�

f
�

= 3. Without loss of generality, we can assume that f is monic.
Let f (x ) = x 3+ b x 2+ c x +d with b , c , d ∈ F . Substituting x = y − b /3, we get

g
�

y
�

=

�

y −
b

3

�3

+ b

�

y −
b

3

�2

+ c

�

y −
b

3

�

+d = y 3+p y +q

for some p , q ∈ F . Let s ∈ F . Substituting y = z + s/z and multiplying by z 3, we get

�

�

z +
s

z

�3

+p
�

z +
s

z

�

+q

�

z 3 = z 6+
�

3s +p
�

z 4+q z 3+ s
�

3s +p
�

z 2+ s 3.

When s =−p/3, we get h (z ) = z 6+q z 3−p 3/27. It is clear that there is a radical extension
E of F such that h splits over E and that there is a radical extension K of E such that g
splits over K . Then K is a radical extension of F and f splits over K implying that f is
solvable by radicals over F .

Assume that deg
�

f
�

= 4. Without loss of generality, we can assume that f is irre-
ducible and of the form

f (x ) = x 4+p x 2+q x + r

for some p , q , r ∈ F . If q = 0, then it is clear that f is solvable by radicals over F . Assume
thus that q 6= 0. Suppose we find b , c , d in some radical extension E of F such that

f (x ) =
�

x 2+ b
�2− (c x +d )2 .

Then it is clear that f is solvable by radicals over E . Consequently, we will be able to
conclude that f is solvable by radicals over F . We need

x 4+
�

2b − c 2
�

x 2−2c d x + b 2−d 2 = x 4+p x 2+q x + r.

Thus 2b − c 2 = p , −2c d = q and b 2−d 2 = r which gives us

b =
p + c 2

2
, d =−

q

2c
,

�

p + c 2

2

�2

−
�

q

2c

�2

= r.

Expanding the last equation gives a cubic equation for c 2. Thus there is a radical exten-
sion E of F containing c and consequently also b and d .

10.2 Homework 20 — due April 5.

Exercise. Prove that the polynomial x 5−14x +7 overQ has exactly three real roots.
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10.3 Solvable groups.

Definition. A group G is solvable iff there exists a chain of groups G = G0 ⊇ G1 ⊇ . . . ⊇
Gn =

�

1G

	

such that for each i = 1, . . . , n , the group Gi is a normal subgroup of Gi−1 and
Gi−1/Gi is abelian.

Remark. Any abelian group is solvable. If G is an abelian group then the chain G ⊇
�

1G

	

demonstrate solvability of G .

Example. The group S3 is solvable. The chain S3 ⊇ A3 ⊇
�

1S3

	

demonstrate solvability of
S3. The group S4 is also solvable. That is demonstrated by the chain

S4 ⊇ A4 ⊇V ⊇
�

1S4

	

,

where V =
�

1S4
, (1 2) (3 4) , (1 3) (2 4) , (1 4) (2 3)

	

. The fact that V is normal in A4 follows
from the fact that it is normal in S4 which follows from the corollary below.

Cycle shape of a permutation.

Definition. Let n be a positive integer and τ ∈ Sn . The cycle shape of τ is the sequence
(a1, a2, . . . , an ) of nonnegative integers, where ai is the number of cycles of length i ap-
pearing in the unique representation of τ as a product of disjoint cycles.

Proposition. Let n be a positive integer and τ,σ ∈ Sn . Then τ and σ are conjugate in Sn

(there exists γ ∈ Sn such thatσ = γτγ−1) if and only if the permutations τ andσ have the
same cycle shape.

Proof. Note that if (b1 b2 . . . bm ) ∈ Sn is a cycle of length m andγ ∈ Sn is any permutation,
then γ (b1 b2 . . . bm )γ−1 is the cycle

�

γ(b1) γ(b2) . . . γ(bm )
�

which also is of length m . It
follows that any conjugate of a permutation τ has the same cycle shape as τ.

Conversely, if (b1 b2 . . . bm ) and (c1 c2 . . . cm ) are any two cycles of length m in Sn ,
then there is a permutation γ ∈ Sn such that γ(bi ) = ci for each i = 1, 2, . . . , m . Then

γ (b1 b2 . . . bm )γ
−1 = (c1 c2 . . . cm ) .

A simple modification of that argument shows that ifτ andσ have the same cycle shape,
then they are conjugate.

Corollary. Let n be a positive integer and H be a subgroup of Sn . Then H is normal in
Sn if and only if for each cycle shape either H contains all permutations of Sn of that cycle
shape, or none of them.

The relation between solvability of polynomials by radicals and solvable groups.
Remark. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F . We will show that f is solvable by radicals over F if and only
if the Galois group of K over F is solvable.

Example. Let f (x ) = x 5− 14x + 7 be a polynomial over Q. Note that f (x ) is irreducible
over Q. Let K be the splitting field of f (x ) over Q. We will show later that the group
AutQ(K ) =Gal

�

K /Q
�

is isomorphic to S5 (the group of all permutations of the set {1, . . . , 5}).
We will also show that the group S5 is not solvable. It will follow that f (x ) is not solvable
by radicals overQ.
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Quotients of solvable groups are solvable.

Lemma. Let G be a group, H be a normal subgroup of G and N be a subgroup of H
that is normal in G . Then H /N is a normal subgroup of G /N and the quotient group
(G /N )/ (H /N ) is isomorphic to G /H .

Proof. Exercise.

Remark. The result in the lemma above is often called the Third Isomorphism Theorem
for Groups.

Theorem. Let G be a solvable group and H be a normal subgroup of G . Then the quotient
group G /H is also solvable.

Proof. Let G =G0 ⊇G1 ⊇ . . .⊇Gn =
�

1G

	

be such that for each i = 1, . . . , n , the group Gi is
a normal subgroup of Gi−1 and Gi−1/Gi is abelian. Consider the chain

G /H =H G0/H ⊇H G1/H ⊇ . . .⊇H Gn/H =H /H = {H }

of subgroups of G /H .
We want to show, for each i = 1, 2, . . . , n , that H Gi/H is a normal subgroup of H Gi−1/H

and that the quotient (H Gi−1/H )/ (H Gi/H ) is abelian. It suffices to verify that H Gi is a
normal subgroup of H Gi−1 and the quotient H Gi−1/H Gi is abelian. If h ′g ′ ∈ H Gi and
hg ∈H Gi−1, then

�

hg
� �

h ′g ′
� �

hg
�−1
= hg h ′g ′g −1h−1 = h

�

g h ′g −1
� �

g g ′g −1
�

h−1 = hh ′′
�

g0h−1g −1
0

�

g0 = h0g0.

Since Gi is normal in Gi−1, it follows that g0 = g g ′g −1 ∈Gi and since H is normal in G , it
follows that h ′′ = g h ′g −1 ∈ H and h ′0 = g0h−1g −1

0 ∈ H . Thus h0 = hh ′′h ′0 ∈ H and H Gi is
normal in H Gi−1.

It remains to show that H Gi−1/H Gi is abelian. Let ϕ : Gi−1/Gi →H Gi−1/H Gi be de-
fined by ϕ

�

g Gi

�

= g H Gi . Then ϕ is well-defined and is a surjective homomorphism.
Since the image of an abelian group under a homomorphism is abelian, the result fol-
lows.

10.4 Homework 21 — due April 8.

Exercise. Prove the lemma in section 10.3.

10.5 Subgroups of Finite Symmetric Groups.

Lemma. Let p be a prime integer, f (x ) ∈ Q[x ] be an irreducible polynomial of degree p
and K be the splitting field of f overQ. Let G be the subgroup of Sp corresponding to the
Galois group of K overQ (treating the automorphism of K overQ as permutations of the
roots of f ). Then the following hold.

1. G contains a cycle of length p .
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2. If f has exactly p −2 real roots, then G contains a transposition.

Proof. Let a be a root of f . Then
�

Q(a ) :Q
�

= p implying that
�

K :Q
�

is divisible by p .
Since K is Galois over Q, it follows that |G | =

�

K :Q
�

. Thus |G | is divisible by p and so
has an element of order p . Any element of Sp of order p is a cycle of length p .

If f has exactly p −2 real roots, then it has two non-real roots one of which is a com-
plex conjugate of the other. The restriction of the complex conjugation to K exchanges
the two non-real root and does not move the real roots. Thus G contains a transposi-
tion.

Proposition. Let p be a prime integer and G be a subgroup of the symmetric group Sp

such that G contains a cycle of length p and a transposition. Then G = Sp .

Proof. Let τ be a cycle of length p in G and σ be a transposition in G . Replacing τ
with some power τi (1 ≤ i ≤ p − 1) we can assume, without loss of generality, that
τ =

�

a0 a1 . . . ap−1

�

and σ = (a0 a1). Note that τστ−1 = (a1 a2) and in general τ jστ− j =
�

a j a j+1

�

for every j = 1, 2, . . . , p − 2. It follows that G contains all transpositions (exer-
cise), hence is equal to Sp .

10.6 Homework 22 — due April 10.

Exercise. Let n be a positive integer and G be be a subgroup of Sn containing all trans-
positions of the form (i i +1) for every i = 1, 2, . . . , n −1. Prove that G contains all trans-
positions.

10.7 Simple Groups.

Definition. A group G is simple if G has exactly two normal subgroup: the trivial sub-
group

�

1G

	

and itself.

Remark. An abelian group is simple iff it is isomorphic to Zp for some prime p .

Example. There are no simple groups of order 30.

Proof. Let G be a group of order 30. We have 30 = 2 · 3 · 5. Let n3 be the number of
Sylow 3-subgroups of G and n5 be the number of Sylow 5-subgroups of G . Then n3 ≡ 1
modulo 3 and n3 divides 30. Thus n3 can only be equal 1 or 10. Similarly, n5 can only
be equal 1 or 6. If n3 = 1, then the unique Sylow 3-subgroup of G must be normal in G
(otherwise its conjugate would be another Sylow 3-subgroup of G ) so G is not simple.
Similarly if n5 = 1, then G is not simple. It remains to consider the case when n3 = 10 and
n5 = 6. Each of the 10 Sylow 3-subgroups of G contains two elements of order 3. Since
the intersection of any different Sylow 3-subgroups is trivial (the size of the intersection
must divide 3 but not be equal to 3) there are 20 elements of order 3 in G . Similarly, there
are 6 ·4= 24 elements of order 5 in G . Since G has only 30 elements, that is not possible.
Thus G is not simple.
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Remark. It can be proved that for any positive integer n < 60 that is not a prime, there are
no simple group of order n . We will show later that A5 (the subgroup of S5 consisting of
all even permutations) is simple. Note that |A5|= 60. Thus A5 is the smallest non-abelian
simple group.

Theorem. Let n ≥ 5 be an integer. The alternating group An is simple.

Proof. Let H be a nontrivial normal subgroup of An . We will show that H = An . Note
that it suffices to show that H contains a cycle of length 3.

(1) If H contains all cycles of length 3, then H = An .

Proof. Let τ ∈ An . Then τ = τ1τ2 . . .τ2k , where each τi is a transposition. If τ2i−1

and τ2i are not disjoint, then the product τ2i−1τ2i is a cycle of length 3. If they are
disjoint, then the product τ2i−1τ2i is equal to the product of two cycles of length 3.
For example (1 2) (3 4) = (1 2 3) (2 3 4). Thus τ is a product of cycles of length 3 and so
τ ∈H since H is closed under taking products.

(2) If H contains at least one cycle of length 3, then H = An .

Proof. Let (a b c ) ∈H and let (u v w ) ∈ An be any cycle of length 3. Then there exists
τ ∈ An such that (u v w ) =τ (a b c )τ−1 (exercise). Since H is normal in An it follows
that (u v w ) ∈H . Thus H contains all cycles of length 3 and so H = An by (1).

It remains to prove that H must contain a cycle of length 3. Letσ ∈H be a non-identity
element. Consider the representation of σ as a product of disjoint cycles. We are going
to consider the following cases:

(a) There is a transposition in the representation ofσ.

Letσ= (a b ) (c d . . . ) . . . . Let τ= (a b d ) ∈ An . Then

τστ−1 = (b d ) (c a . . . ) . . . ∈H

and
β =σ−1τστ−1 = (a d ) (b c ) ∈H .

Let s ∈ {1, 2, . . . , n}r {a , b , c , d } and γ= (a d ) (c s ) ∈ An . Then

δ= γβγ−1 = (a d ) (b s ) ∈H

implying that δβ = (b c s ) ∈H . Thus H contains a cycle of length 3.

(b) There is a cycle of length at least 4 in the representation ofσ.

Letσ= (a b c d . . . ) . . . . Let τ= (b c d ) ∈ An . Then

τστ−1 = (a c d b . . . ) . . . ∈H

and
σ−1τστ−1 = (a b d ) ∈H .

Thus H contains a cycle of length 3.
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(c) σ is a product of disjoint cycles of length 3.

Letσ= (a b c ) (u v w ) . . . . Let τ= (a u ) (b v ) ∈ An . Then

τστ−1 = (u v c ) (a b w ) . . . ∈H

and
σ−1τστ−1 = (b v ) (c w ) ∈H .

It follows from case (a) that H contains a cycle of length 3.

Since in each case we proved that H must contain a cycle of length 3, it follows from (2)
that H = An .

Corollary. Let n ≥ 5 be an integer. The group Sn is not solvable.

Proof. Let H be a nontrivial proper normal subgroup of Sn . If H ⊆ An , then H is normal
in An implying that H = An since An is simple. Otherwise H An = Sn and H ∩An is trivial
(it is normal in An and it cannot be An as H is a proper subgroup of Sn ). Since H An/An is
isomorphic to H / (H ∩An ), it follows that |H |= 2. Letτ ∈H be the non-identity element.
Thus τ is a product of disjoint transpositions. If (a b ) is a transposition appearing in
this representation, and σ = (b c ) for some c ∈ {1, . . . , n}r {b , c }, then στσ−1 has the
transposition (a c ) in its representation as the product of disjoint cycles so it does not
belong to H contradicting the normality of H .

We have proved that An is the only nontrivial proper normal subgroup of Sn . Since
An is not abelian, it follows that Sn is not solvable.

10.8 Homework 23 — due April 12.

Exercise. Let n ≥ 5 and (a b c ) ∈ An be a cycle of length 3. Prove that for every (u v w ) ∈
An there exists τ ∈ An such that (u v w ) =τ (a b c )τ−1.

10.9 From Solvability by Radicals to Solvable Groups.

Proposition. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F . Then f is solvable by radicals over F if and only if there exists a
chain of fields F0 ⊆ F1 ⊆ . . .⊆ Fn such that

1. Fn is Galois over F ;

2. K ⊆ Fn ;

3. for each i = 2, . . . , n there exists ai ∈ Fi and a prime integer pi such that a pi

i ∈ Fi−1

and Fi = Fi−1(ai );

4. F1 is the splitting field of x p2...pn −1 over F0 = F .
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Proof. If there exists a chain of fields as described, then this chain satisfies, in particular,
all the conditions required to demonstrate that f is solvable by radicals over F . Assume
now that f is solvable by radicals over F . Then there exists a chain

F = F ′0 ⊆ F ′1 ⊆ . . .⊆ F ′m

of fields such that f splits over F ′m and for each i = 1, . . . , m we have F ′i = F ′i−1(ai ) for
some ai ∈ F ′i and a positive integer ni with a ni

i ∈ F ′i−1. If n1 is not a prime integer, then
n1 = q1q2 . . . qk , where q1, . . . , qk are prime integers. Then we can refine the chain between
F ′0 and F ′1 as follows

F ′0 ⊆ F ′0
�

a q2q3...qk
1

�

⊆ F ′0
�

a q3q4...qk
1

�

⊆ . . .⊆ F ′0
�

a qk
1

�

⊆ F ′1 .

Thus we can assume, without loss of generality, that each ni is a prime integer. Suppose
that F a is an algebraic closure of F containing K . Consider all the images of a1 under
the embeddings of F ′1 over F ′0 into F a. If a ′1 is one of them then we can extend the chain

by adding F ′m+1 = F ′m
�

a ′1
�

. Note that
�

a ′1
�n1 = a n1

1 ∈ F ′0 ⊆ F ′m . Repeating for all images of
a1, then for all images of a2, and so on, we get a chain F = F ′0 ⊆ . . .⊆ F ′t in which the last
field F ′t is normal over the F . Let n = t +1, pi be the prime integer such that F ′i = F ′i−1(ai )
with a pi+1

i ∈ F ′i−1. Let F1 be the splitting field of x p2...pn −1 over F and letω be a generator
of the group of roots of this polynomial. Then F1 = F ′0 (ω). Define Fi = F ′i−1(ω) for every
i = 2, 3, . . . , n . The resulting chain of fields satisfies all the requirements.

Lemma. Let G be a cyclic group. Then the group of all the automorphisms of G is abelian.

Proof. Let g be a generator of G and ϕ,ψ be automorphisms of G . It suffices to show
that ϕψ

�

g
�

=ψϕ
�

g
�

. Let ϕ
�

g
�

= g k andψ
�

g
�

= g `. Then

ϕψ
�

g
�

=ϕ
�

g `
�

=ϕ
�

g
�`
=
�

g k
�`
= g k`.

Similarly,ψϕ
�

g
�

= g `k and the proof is complete.

Theorem. Let F be a field of characteristic zero.

(1) If p is a prime integer such that the polynomial x p −1 splits in F [x ] and K = F (a ) for
some a ∈ F a such that a p ∈ F , then the group G = AutF (K ) is cyclic (hence abelian).

Proof. If a ∈ F , then G is trivial (hence cyclic). Assume a /∈ F . Letωbe a generator of
the multiplicative group consisting of all the roots of x p−1. Then a , aω, aω2, . . . , aωp−1

are all the distinct roots of x p −a p ∈ F [x ] and K is the splitting field of x p −a p over
F and K is Galois over F . In particular, the group G is nontrivial. Let ϕ ∈G be any
non-identity element and let k ∈

�

1, 2, . . . , p −1
	

be such such that ϕ(a ) = aωk . If
ψ ∈ G is any element and ψ(a ) = aω`, where ` ∈

�

0, 1, . . . , p −1
	

, then there is an
integer s such that s k ≡ `modulo p so

ϕs (a ) = aωs k = aω` =ψ(a ) ,

implying that ψ = ϕs . Thus ϕ is a generator of G completing the proof that G is
cyclic.
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Remark. Note that, it follows that ϕ, ϕ2, . . . , ϕp = 1G are all distinct so the group G
has order p . Consequently, [K : F ] = p and so x p −a p is irreducible over F .

(2) If K is the splitting field of x n − 1 over F for some positive integer n, then AutF (K ) is
abelian.

Proof. Let G be the set of all the roots of x n − 1 in K . Then G is a finite subgroup
of K ∗ so it is cyclic. Let H be the group of automorphisms of G . The function f :
AutF (K )→H defined by f

�

ϕ
�

=ϕ�G is an injective homomorphism. Thus AutF (K )
is isomorphic to the image of f which is a subgroup of H . Since any subgroup of H
is abelian, the proof is complete.

Corollary. Let F be field of characteristic zero, f be a polynomial over F that is solvable
by radicals over F and K be the splitting field of f over F . Then Gal (K /F ) is solvable.

Proof. Since f is solvable by radicals over F there is a chain

F = F0 ⊆ F1 ⊆ F2 ⊆ . . .⊆ Fn

such that Fn is Galois over F0, the field K is a subfield of Fn , if i = 2, 3, . . . , n , then there is
ai ∈ Fi and a prime integer pi with a pi

i ∈ Fi−1, and F1 is a splitting field of x p2...pn − 1 over
F0. Then Fi is Galois over Fi−1 with Gal (Fi/Fi−1) being abelian for each i = 1, 2, . . . , n . Let
G0 ⊇ G1 ⊇ . . . ⊇ Gn the the chain of groups with Gi = Gal (Fn/Fi ) for each i = 0, 1, . . . , n .
Then Gi is normal in Gi−1 with Gi−1/Gi being isomorphic to Gal (Fi/Fi−1), hence abelian,
for every i = 1, 2, . . . , n . Thus G0 is solvable. Let H = Gal (Fn/K ). Since K is normal over
F , the group Gal (K /F ) is isomorphic to G0/H which is solvable.

Example. Let K be the splitting field of the polynomial f (x ) = x 5−14x +7 overQ. Then
Gal

�

K /Q
�

is isomorphic to S5 so it is not solvable. Thus f (x ) is not solvable by radicals
overQ.

10.10 Homework 24 — due April 19.

Exercise. Let G be a group of order 105. Prove that G is not simple.

10.11 Linear Independence of Characters.

Characters.

Definition. Let X be a set and F be a field. Then F X (the set of all functions X → F ) is a
vector space over F . Suppose there is some binary operation of multiplication defined
on X (any function X × X → X with the image on (a , b ) denoted by a b ). A function
σ : X → F is a character in the vector space F X iff it is not zero (not the constant function
assigning 0 to every element of X ) and preserves the operation of multiplication, that is,
whenσ(a b ) =σ(a )σ(b )where in F we use the standard multiplication of F as a field.
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Theorem (Artin). Let X be a set with multiplication and F be a field. The set of characters
in the vector space F X is linearly independent.

Proof. Suppose, to the contrary, that the set of characters in F X is not linearly indepen-
dent. Then there are distinct characters χ1, . . . ,χn in F X and a1, . . . , an ∈ F not all equal
to 0 such that a1χ1 + · · ·+ anχn = 0. Assume that n is as small as possible. Since char-
acters are nonzero functions, we have n ≥ 2. Since χ1 6= χ2, there is b ∈ X such that
χ1(b ) 6=χ2(b ). Thus for every c ∈ X we have

a1χ1(c ) +a2χ2(c )+ · · ·+anχn (c ) = 0,

a1χ1(b c )+a2χ2(b c ) + · · ·+anχn (b c ) = 0.

Multiplying the first equation by χ1(b ) and using the property that characters preserve
multiplication to transform the second equation, we get

a1χ1(b )χ1(c )+a2χ1(b )χ2(c )+ · · ·+anχ1(b )χn (c ) = 0,

a1χ1(b )χ1(c ) +a2χ2(b )χ2(c ) + · · ·+anχn (b )χn (c ) = 0.

Subtracting the second equation from the first gives:

a2

�

χ1(b )−χ2(b )
�

χ2(c ) + · · ·+an

�

χ1(b )−χn (b )
�

χn (c ) = 0

for every c ∈ X . Thus a2

�

χ1(b )−χ2(b )
�

χ2+ · · ·+an

�

χ1(b )−χn (b )
�

χn is the zero element
of the vector space F X and a2

�

χ1(b )−χ2(b )
�

6= 0 contradicting the minimality of n .

Corollary. Let K be a field. Then Aut (K ) is a linearly independent subset of the vector
space K K .

10.12 Norm over a Subfield.

Definition. Let F be a field of characteristic zero and K be a finite extension of F . The
norm on K over F is a function N K

F : K → F defined by N K
F (α) =

∏n
i=1σi (α), where

σ1, . . . ,σn are all the embeddings of K into K a over F .

Cyclic extensions.

Definition. A field extension K of F is cyclic iff it is Galois and the Galois group of K over
F is cyclic.

Lemma (Hilbert’s Theorem 90). Let F be a field of characteristic zero and K be a finite
cyclic extension of F . Let σ be a generator of G =Gal (K /F ) and β ∈ K . Then N K

F

�

β
�

= 1
if and only if there exists α ∈ K ∗ with β =α/σ(α).

Proof. If such α exists, then the norm of β is 1. Suppose the norm of β is 1 and let n =
[K : F ] = |G |. Let β0 = 1, β1 =β , β2 =βσ

�

β
�

, β3 =βσ
�

β
�

σ2
�

β
�

, . . . ,

βn−1 =βσ
�

β
�

σ2
�

β
�

. . .σn−2
�

β
�

.
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Note that

βσ
�

βi

�

=βσ
�

βσ
�

β
�

σ2
�

β
�

. . .σi−1
�

β
��

=βσ
�

β
�

σ2
�

β
�

. . .σi
�

β
�

=βi+1,

for every i = 0, 1, . . . , n −2 and

βσ
�

βn−1

�

=βσ
�

β
�

σ2
�

β
�

. . .σn−1
�

β
�

=N
�

β
�

= 1=β0.

Since 1G ,σ,σ2, . . . ,σn−1 are distinct characters in the vector space K K , they are linearly
independent implying that the function

β01G +β1σ+β2σ
2+ · · ·+βn−1σ

n−1 : K → K

is not identically zero. Thus there is θ ∈ K ∗ such that

α=β0θ +β1σ(θ ) +β2σ
2(θ )+ · · ·+βn−1σ

n−1(θ ) 6= 0.

Note that

βσ(α) = βσ
�

β0

�

σ(θ ) +βσ
�

β1

�

σ2(θ ) + · · ·+βσ
�

βn−2

�

σn−1(θ )+βσ
�

βn−1

�

σn (θ )

= β1σ(θ ) +β2σ
2(θ ) + · · ·+βn−1σ

n−1(θ )+β0θ

= α,

so β =α/σ(α).

Primitive roots of 1.

Definition. Let F be a field and n be a positive integer. An primitive n-th root of 1 is
any generator of the multiplicative group consisting of all roots of the polynomial x n −1
(which is cyclic as a finite subgroup of F ∗).

Transitive actions.

Definition. Let G be a group acting on a set X . The action is said to be transitive iff there
only one orbit (it equal to X then) of the action.

Remark. Let F be a field and K be a splitting field of a polynomial f (x ) ∈ F [x ] over
F . Consider the action of the group AutF (K ) on the roots of f (x ) in K . If this action is
transitive, then f is irreducible over F .

Corollary. Let F be a field of characteristic zero with x n−1 splitting over F . If K is a finite
cyclic extension of F with [K : F ] = n, then there is α ∈ K such that K = F (α) and αn ∈ F .

Proof. Let ζ be a primitive n-th root of 1 in F and G be the Galois group of K over F with
generatorσ. Then N

�

ζ−1
�

=
�

ζ−1
�n
= 1. Thus ζ−1 =α/σ(α) for some α ∈ K ∗ soσ(α) = ζα.

We have σ(αn ) = (σ(α))n = αn so αn ∈ F . Since the action of G on the set of roots of
x n−αn in K is transitive, the polynomial x n−a n is irreducible over F and consequently
K = F (α).

51



10.13 The Commutator Subgroup.

Definition. Let G be a group. The commutator subgroup of G is the subgroup generated
by the set of all the elements of the form x y x−1 y −1, where x , y ∈G . Each such element
is called a commutator.

Lemma. The commutator subgroup is normal.

Proof. Note that conjugating a commutator produces a commutator. Thus the intersec-
tion of the commutator subgroup with any of its conjugates contains all the commuta-
tors. It follows that the commutator subgroup is normal.

Proposition. Let G be a group and H be a normal subgroup of G . Then G /H is abelian
if and only if H contains the commutator subgroup of G .

Proof. Let g1, g2 ∈ G . Then the commutator g1g2g −1
1 g −1

2 belongs to H if and only if
g1g2H = g2g1H which holds if and only if

�

g1H
� �

g2H
�

=
�

g2H
� �

g1H
�

.

Thus G /H is abelian iff H contains all the commutators.

10.14 More on Solvable Groups.

Proposition. Let G be a finite group. Then G is solvable if and only if there exists a chain

G =G0 ⊇G1 ⊇ . . .⊇Gn =
�

1G

	

of subgroups of G such that Gi is normal in Gi−1 and Gi−1/Gi is cyclic for every i = 1, 2, . . . , n.

Proof. It is clear that if such a chain exists, then G is solvable. Assume that G is solvable.
Then there exists a chain

G =H0 ⊇H1 ⊇ . . .⊇Hk =
�

1G

	

of subgroups of G such that Hi is normal in Hi−1 and Hi−1/Hi is abelian for every i =
1, 2, . . . , n . Let i ∈ {1, 2, . . . , n}and p be a prime integer dividing the order of Hi−1/Hi . Then
there is a subgroup H ′ of Hi−1 containing Hi such that H ′/Hi is a subgroup of Hi−1/Hi of
order p . Then H ′ is normal in Hi−1, Hi is normal in H ′ and the quotient groups Hi−1/H

′

and H ′/Hi are abelian. Then we obtain a chain

G =H0 ⊇H1 ⊇ . . .⊇Hi−1 ⊇H ′ ⊇Hi ⊇ . . .⊇Hk =
�

1G

	

demonstrating solvability of G with H ′/H having order p , hence being cyclic. Repeating
that procedure we obtain the required chain of subgroups of G .

Lemma. If G is a solvable group, then any subgroup H of G is solvable.
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Proof. If the chain
G =G0 ⊇G1 ⊇ . . .⊇G0 =

�

1G

	

demonstrate solvability of G , then

H =H0 ⊇H1 ⊇ . . .⊇ {1H }

demonstrate solvability of H , where Hi = Gi ∩H . It is clear that Hi−1 ∩H is normal in
Hi ∩H . The group Hi−1 ∩H /Hi ∩H is abelian since all the commutators of Hi−1 ∩H
belong to Hi ∩H .

Theorem. Let G be a group and H be a normal subgroup of G . The following conditions
are equivalent.

1. G is solvable.

2. Both H and G /H are solvable.

Proof. Assume that G is solvable. We have already proved that both H and G /H are
solvable. Now assume that both H and G /H are solvable. Let

H =H0 ⊇H1 ⊇ . . .⊇Hk = {1H }

demonstrate solvability of H and

G /H =G0/H ⊇G1/H ⊇ . . .⊇Gn/H = {H }

demonstrate solvability of G /H . Then

G =G0 ⊇G1 ⊇ . . .⊇Gn ⊇H1 ⊇H2 ⊇ . . .⊇Hk =
�

1G

	

demonstrates solvability of G .

10.15 From Solvable Group to Solvability by Radicals.

Theorem. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F with G =Gal (K /F ) The following conditions are equivalent.

1. The polynomial f is solvable by radicals over F .

2. The group Gal (K /F ) is solvable.

Proof. We only need to prove that 2. implies 1. Assume that Gal (K /F ) is solvable. Let
n = [K : F ] = |G |, let E be a splitting field of the polynomial x n−1 over F and let L = K E
be the join of the fields K and E . Then L is Galois over F . Let G = Gal (L/F ) and H =
Gal (L/K ). Then Gal (K /F ) is isomorphic to the quotient group G /H . Since L is radical
over K , the group H is solvable. Since both G /H and H are solvable, it follows that G is
solvable and consequently its subgroup J =Gal (L/E ) is also solvable. Let

J = J0 ⊇ J1 ⊇ . . .⊇ Jk =
�

1J
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be such that Ji is normal in Ji−1 with Ji−1/Ji being cyclic for each i = 1, 2, . . . , k . Let

E = E0 ⊆ E1 ⊆ . . .⊆ Ek = L

be the corresponding chain of subfields of L . Then, for every i = 1, 2, . . . , k , the field Ei

is cyclic over Ei−1 so there is ai ∈ Ei and a positive integer ni such that a ni
i ∈ Ei−1 and

Ei = Ei−1(ai ). Thus L is a radical extension of F containing K completing the proof.
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