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1. Modules over Principal Ideal Domains.

Two Results in Algebra.

Structure of Finite Abelian Groups.

Theorem 1.1. Let M be a finite abelian group (written additively). Then M is a direct product
∏n

i=1 Mi of cyclic groups such that
�

�Mi

�

� = pki
i for some prime integers p1, . . . , pn and positive

integers k1, . . . , kn.

Jordan Canonical Form of Matrices.

Theorem 1.2. Let V be a finite dimensional vector space over C and ϕ : V → V be a
linear function. Then there is a basis v1,1, . . . , v1,k1

, v2,1, . . . , vk2
, . . . , vn,1, . . . , vn,kn

of V and
a1, . . . , an ∈ C such that for every i = 1, . . . , n we have ϕ

�

vi,t

�

= ai vi,t + vi,t+1 when t =
1, . . . , ki − 1 and ϕ

�

vi,ki

�

= ai vi,ki
.

Remark. Note that the matrix of ϕ with respect to the basis described in the theorem above
has the form

A1 0 0 · · · 0 0
0 A2 0 · · · 0 0
0 0 A3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · An−1 0
0 0 0 · · · 0 An

,

where A j is the k j × k j matrix

a j 0 0 0 · · · 0 0 0
1 a j 0 0 · · · 0 0 0
0 1 a j 0 · · · 0 0 0
0 0 1 a j · · · 0 0 0
...

...
...

... . . . ...
...

...
0 0 0 0 · · · a j 0 0
0 0 0 0 · · · 1 a j 0
0 0 0 0 · · · 0 1 a j

Connection between the Results.

The two results above are special cases of a theorem concerning finitely generated torsion
modules over principal ideal domains. In the first result we specialize the theorem to
modules over Z and in the second to modules over the C[x] (polynomials over C). Recall
that both Z and C[x] are principal ideal domains.
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Modules over General Rings.

Rings.

Recall that a ring R has two operations, addition and multiplication, such that:

1. R is an abelian group under +.

2. Multiplication is associative and has the identity element 1 ∈ R.

3. Addition is distributive (on both sides) with respect to multiplication.

Modules.

Let R be a ring. An R-module (a left R-module) is an abelian group M with a scalar multi-
plication R×M → M such that:

1. (a+ b)m= am+ bm;

2. a (m+ n) = am+ an;

3. (ab)m= a (bm);

4. 1m= m;

for every a, b ∈ R and m, n ∈ M , with 1 being the multiplicative identity of R.

Examples of Modules.

1. Let F be a field. Any vector space over F is an F -module.

2. Any abelian group M is a Z-module with scalar multiplication defined by

km=















0 k = 0;
m+ · · ·+m
︸ ︷︷ ︸

k

k > 0;

(−k)m k < 0;

for any k ∈ Z and m ∈ M .

3. For any ring R and any positive integer n, the product

Rn = R× . . .× R
︸ ︷︷ ︸

n

of n copies of R is an R-module with scalar multiplication being the componentwise
multiplication in R.

4. Let R be a commutative ring and I be any ideal in R, then I is an R-module with scalar
multiplication being the multiplication of R.

5. Let R be any ring. A left ideal in R is an additive subgroup S of R such that rs ∈ S
for any r ∈ R. Any left ideal of R is an R-module with scalar multiplication being the
multiplication of R.
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Homework 1 (due 8/21).

Let M be an abelian group (under +) and End(M) be the set of all homomorphisms f :
M → M . Define addition on End(M) by

�

f + g
�

(m) = f (m) + g(m) and let multiplication
be the composition.

1. Prove that End(M) is a ring.

2. Prove that any ring is a subring of End(M) for some M .

3. Let f : R→ End(M) be a ring homomorphism. Define scalar multiplication R×M →
M by am=

�

f (a)
�

(m). Prove that M is an R-module.

Modules over Commutative Rings.

Assume that R is a commutative ring.

Torsion Modules.

Definition. An R-module M is torsion iff for every m ∈ M there exists r ∈ Rr {0} with
rm= 0.

Example. Note that any finite abelian group is a torsion Z-module. The quotient group
Q/Z, which is infinite, is also a torsion Z-module.

Finitely Generated Modules.

Definition. An R-module M is finitely generated iff there exist finitely many elements
a1, . . . , an ∈ M that generate M , that is, iff each m ∈ M can be expressed as a linear
combination m= r1a1 + · · ·+ rnan for some r1, . . . , rn ∈ R.

Remark. Note that, trivially, any finite abelian group is a finitely generated Z-module (take
all the elements as generators). The infinite abelian group Z is also a finitely generated
Z-module. It is generated by one element 1 ∈ Z.

Proposition 1.3. Let M be an abelian group. Then M is a finitely generated torsion Z-module
if and only if M is finite.

Proof. Of course, any finite abelian group is a finitely generated torsion Z-module. Assume
that M is a finitely generated torsion Z-module. Let a1, . . . , an ∈ M generate M and for
each i = 1, . . . , n, let ki ∈ Z be positive and such that kiai = 0. Then each m ∈ M can be
expressed as

m= t1a1 + · · ·+ tnan

with t i ∈
�

0,1, . . . , ki − 1
	

. There are at most k1k2 . . . kn such linear combinations so M is
finite.

3



Homework 2 (due 8/23).

Prove that Q is not a finitely generated Z-module and that Q/Z is not a finitely generated
Z-module without using Proposition 1.3.

Annihilator of a Module.

Definition. Let M be an R-module. The annihilator annR(M) is the set of all r ∈ R so that
ra = 0 for every a ∈ M . Note that annR(M) is an ideal in R.

Example. Consider the torsion Z-module Q/Z. Then annZ(Q/Z) = {0}. For the Z-module
Zn we have annZ

�

Zn

�

= nZ.

Proposition 1.4. Let R be an integral domain and M be a finitely generated torsion R-module.
Then there exists nonzero r ∈ R such that ra = 0 for every a ∈ M. In particular, the annihilator
annR(M) is a nonzero ideal of R.

Proof. Let a1, . . . , an ∈ M generate M over R. Since M is torsion, there are nonzero r1, . . . , rn ∈
R with riai = 0 for each i = 1, . . . , n. Then r = r1r2 . . . rn 6= 0 and ra = 0 for every
a ∈ M .

An Example of a Module over the Ring of Polynomials.

Definition. Let F be a field, V be a vector space over F and R = F[x] be the ring of
polynomials over F . If ϕ : V → V is a linear function, then we can make V to be an R-
module with scalar multiplication defined as follows. If f (x) = a0 + a1 x + · · ·+ an xn and
v ∈ V , then let the product f v be:

f v = a0v + a1ϕ(v) + a2ϕ
2(v) + · · ·+ anϕ

n(v),

where ϕi = ϕ ◦ · · · ◦ϕ
︸ ︷︷ ︸

i

is the composition of i copies of ϕ. We will denote such a module

by Vϕ.

Proposition 1.5. Let R, S be commutative rings f : R → S be a ring homomorphism and
a ∈ S be a fixed element. Then there exists exactly one ring homomorphism g : R[x]→ S that
extends f and maps x to a.

Corollary 1.6. Let R be a commutative ring, S be any ring, f : R→ S be a ring homomorphism
and a ∈ S be a fixed element that commutes with f (r) for any r ∈ R. Then there exists exactly
one ring homomorphism R[x]→ S that extends f and maps x to a.

Proof. Note that the subring S′ of S generated by f (R)∪ {a} is commutative.

Remark. Let V be a vector space over a field F . Considering V as an abelian group, we
have a ring homomorphism f : F → End (V ) mapping a ∈ F to the endomorphism of V
that is the scalar multiplication by a. If ϕ : V → V is a linear map, then ϕ ∈ End (V )
and it commutes with f (a) for any a ∈ F . Thus f can be extended to a unique ring
homomorphism F[x] → End (V ) that maps x to ϕ. The structure of an F[x]-module on
Vϕ is then obtained as in point 3. of Homework 1.
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Lemma 1.7. If V is a finitely dimensional vector space over a field F, and ϕ : V → V is a
linear function, then the F[x]-module Vϕ as defined above is finitely generated and torsion.

Proof. Since V is finitely dimensional over F , there is a finite basis of V over F . This basis
obviously generates Vϕ over F[x]. Thus Vϕ is finitely generated.

Let n be the dimension of V . If v ∈ V , then v,ϕ(v), . . . ,ϕn(v) are linearly dependent so
there are a0, a1, . . . , an ∈ F , not all zeros, with

a0v + a1ϕ(v) + · · ·+ anϕ
n(v) = 0.

Then the polynomial f (x) = a0 + a1 x + · · · + an xn is nonzero and f v = 0. Thus Vϕ is
torsion.

Cyclic Modules.

Definition. An R-module M is cyclic if it is generated by one element a ∈ M .

The Structure Theorem for Modules over PID.

Theorem 1.8. Let R be a principal ideal domain and M be a finitely generated torsion R-
module. Then M is isomorphic to a finite direct product M =

∏n
i=1 Mi with each Mi being

cyclic and annR

�

Mi

�

= pki
i R for some prime pi ∈ R and a positive integer ki.

Proof of Theorem 1.1.

Let M be a finite abelian group. Then M is a finitely generated torsion Z-module so M
is isomorphic to a finite direct product

∏n
i=1 Mi of cyclic Z-modules so that for each i =

1, . . . , n we have annR

�

Mi

�

= pki
i Z for some prime pi ∈ Z and a positive integer ki. Clearly,

we can chose every pi to be positive. Then
�

�Mi

�

�= pki
i for each i = 1, . . . , n and the proof is

complete.

Submodules.

Definition. Let M be an R-module. A subset N ⊆ M is a submodule of M if it is a subgroup
under addition and is closed under scalar multiplication.

Remark. Consider a ring R as a module over itself. A subset N ⊆ R is a submodule if and
only if it is a left ideal of R.

Proposition 1.9. Let M an R-module isomorphic to a direct product
∏n

i=1 Ni of R-modules.
Then for each i = 1, . . . , n there exists a submodule Mi of M that is isomorphic to Ni and each
m ∈ M can be uniquely expresses as m= m1 + · · ·+mn with mi ∈ Mi for each i.

5



Homework 3 (due 8/28).

Let F be a field, k be a positive integer, a ∈ F and p(x) = x − a. Prove that for any
polynomial f (x) ∈ F[x] there are b0, b1, . . . , bk−1 ∈ F such that the polynomial

b0 + b1p(x) + b2p(x)2 + · · ·+ bk−1p(x)k−1 − f (x)

is divisible by p(x)k.

Proof of Theorem 1.2.

Let V be a finite dimensional vector space over C and ϕ : V → V be a linear function. Then
Vϕ is a finitely generated torsion C[x]-module so Vϕ is isomorphic to finite direct product
∏n

i=1 Mi of cyclic C[x]-modules so that for each i = 1, . . . , n we have annR

�

Mi

�

= pki
i C[x]

for some prime pi ∈ C[x] and a positive integer ki. By Proposition 1.9, we can assume
that M1, . . . , Mn are submodules of M and that each m ∈ M can be uniquely expresses as
m= m1 + · · ·+mn with mi ∈ Mi for each i.

Since C is algebraically closed, the prime elements in C[x] are of first degree and we
can choose each pi to be of the form x − ai with ai ∈ C. For each i = 1, . . . , n, let vi,1 be a
generator of the module Mi and let vi, j+1 = pi vi, j for every j = 0, 1, . . . , ki. Then

v1,1, . . . , v1,k1
, v2,1, . . . , vk2

, . . . , vn,1, . . . , vn,kn

is the required basis of V over F .
Remark. Theorem 1.2 (with the same proof) holds for any finitely dimensional vector space
over an algebraically closed field F (instead of being over C).

Homework 4 (due 9/9).

Let F be an arbitrary field, V be a finite dimensional vector space over F and ϕ : V → V be
a linear function. Prove that there exists a basis of V with respect to which the matrix of
ϕ will be of the form

A1 0 0 · · · 0 0
0 A2 0 · · · 0 0
0 0 A3 · · · 0 0
...

...
... . . . ...

...
0 0 0 · · · An−1 0
0 0 0 · · · 0 An

,

where Ai has the form
0 0 0 · · · 0 0 ai,1
1 0 0 · · · 0 0 ai,2
0 1 0 · · · 0 0 ai,3
...

...
... . . . ...

...
...

0 0 0 · · · 0 0 ai,t i−2

0 0 0 · · · 1 0 ai,t i−1

0 0 0 · · · 0 1 ai,t i

6



for some positive integer t i and some ai,1, . . . , ai,t i
∈ F .

Proof of Theorem 1.8.

Annihilation by Prime Powers.

Definition. Let R be an integral domain and M be an R-module. For each prime p ∈ R, let
M
�

p
�

consist of all elements a ∈ M such that there exists a positive integer k with pka = 0.

Remark. M
�

p
�

is a submodule of M .

Example. If M is a Z-module (abelian group) and p is a prime integer, then M
�

p
�

consists
of elements whose order is a power of p.

Prime Representatives.

Let R be an integral domain. Recall that a, b ∈ R are associate iff a = bu for some unit
u ∈ R and that the relation of being associate is an equivalence relation. For each class
containing a prime fix one element of the class. We will call those fixed elements the prime
representatives in R.

Lemma 1.10. Let M be a nontrivial finitely generated torsion module over a principal ideal
domain R. There exists a finite set I of prime representatives in R with M

�

p
�

6= {0} for each
p ∈ I and

M ∼=
∏

p∈I

M
�

p
�

.

Proof. Let a ∈ R be nonzero with am = 0 for every m ∈ M . Let a = upr1
1 . . . prn

n , where u is
a unit, p1, . . . , pn are distinct prime representatives in R and r1, . . . , rn are positive integers.
Let M ′ =

∏n
i=1 M

�

pi

�

and ϕ : M ′ → M be defined by ϕ
�

t1, . . . , tn

�

= t1 + · · ·+ tn. Clearly
ϕ is a homomorphism. Let

�

t1, . . . , tn

�

∈ ker
�

ϕ
�

. For each i = 1, . . . , n, let ki be a positive
integer such that pki

i t i = 0. Let q, s ∈ R be such that 1 = qpk1
1 + spk2

2 . . . pkn
n . Then t1 =

−
�

t2 + · · ·+ tn

�

so

t1 =
�

qpk1
1 + spk2

2 . . . pkn
n

�

t1

= qpk1
1 t1 + spk2

2 . . . pkn
n t1

= −spk2
2 . . . pkn

n

�

t2 + · · ·+ tn

�

= 0.

Similarly, t i = 0 for each i = 2, . . . , n. Thus ϕ is injective.
Let m ∈ M be arbitrary. For each i = 1, . . . , n, let qi ∈ R be such that

1=
n
∑

i=1

qi

∏

j∈{1,...,n}r{i}

p
r j

j ,
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and

mi =

 

qi

∏

j∈{1,...,n}r{i}

p
r j

j

!

m ∈ Mi.

Then m= ϕ
�

m1, . . . , mn

�

so ϕ is surjective.

Submodules of Finitely Generated Modules.

Lemma 1.11. Let M be a finitely generated module over a principal ideal domain. Then every
submodule N of M is also finitely generated.

Proof. Let a1, . . . , an generate M . We will show that there exist b1, . . . , bn ∈ N that generate
N . The proof is by induction on n. We show that there exists b1 ∈ N such that the submod-
ule of M generated by b1, a2, a3, . . . , an contains N . Then we apply the inductive hypothesis
to the submodule M ’ of M generated by a2, . . . , an and its submodule N ′ = M∩N obtaining
b2, . . . , bn ∈ N ′ that generate N ′. Now each element a ∈ N is of the form γb1+ b with γ ∈ R
and b ∈ N ′. So b1, . . . , bn generate N .

To show the existence of the required b1 ∈ N , let I be the set consisting of all r ∈ R so
that some element of N is of the form ra1+c with c being a linear combination of a2, . . . , an.
Then I is an ideal of R. Let s ∈ I be such that I = sR. Then some element b1 ∈ N is of the
form b1 = sa1 + c with c being a linear combination of a2, . . . , an.

Remark. Let F be a field, X be an infinite set of variables and R = F[X ] be the ring of all
polynomials with coefficients in F . Then R is a finitely generated R-module (cyclic) but the
submodule M of R consisting of those polynomials whose constant term is equal to 0 is not
finitely generated. The ring R is a unique factorization domain, so the lemma is not true
when we replace principal ideal domains with unique factorization domains.

Quotient Modules.

Let M be an R-module and N be a submodule of M . The quotient module M/N is the
quotient abelian group with scalar multiplication defined by a (b+ N) = ab + N for any
a ∈ R and b ∈ M . If b+N = b′+N , then b− b′ ∈ N so a

�

b− b′
�

= ab− ab′ ∈ N implying
that ab + N = ab′ + N . Thus the scalar multiplication is well-defined. It is routine to
verificar that M/N is an R-module under this identification.

Correspondence Theorem for Modules.

Let M be an R-module and N be a submodule of M . Any submodule of M/N is of the form
M ′/N for some submodule M ′ of M containing N . The proof is routine.

Direct Sum of Submodules.

Let M be an R-module and M1, . . . , Mn be submodules of M . The sum M ′ =
∑n

i=1 Mi is the
set of elements of the form a1+ · · ·+ an with ai ∈ Mi for each i. Clearly M ′ is a submodule
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of M . We say that the sum is direct if such an expression is unique for each m ∈ M ′ and
we write then M =

⊕n
i=1 Mi.

Remark. Let M be an R-module and M1, . . . , Mn be submodules of M . Then M =
⊕n

i=1 Mi

if and only if ϕ :
∏n

i=1 Mi → M given by ϕ
�

a1, . . . , an

�

= a1 + · · ·+ an is an isomorphism.
Thus to verificar that M =

⊕n
i=1 Mi it suffices to verificar that M =

∑n
i=1 Mi and that if

a1 + · · ·+ an = 0 with ai ∈ Mi for each i, then ai = 0 for each i.

Modules Annihilated by Prime Powers.

Lemma 1.12. Let R be a principal ideal domain, M be a finitely generated R-module, k be
a positive integer and p ∈ R be a prime such that pkm = 0 for each m ∈ M. Then M is
isomorphic to

∏n
i=1 Mi with each Mi being cyclic.

Proof. Let m1, . . . , mn generate M . We use induction on n to show that there are cyclic
submodules M1, . . . , Mn of M such that M =

⊕n
i=1 Mi.

If n = 1 then M is cyclic so there is nothing to prove. Assume that n ≥ 2. For each
i = 1,2, . . . , n let ki be the smallest nonnegative integer with pki mi = 0. We can assume
without loss of generality that k1 = max

�

k1, . . . , kn

	

as otherwise we can permute the
generators m1, . . . , mn. Let M1 = Rm1 be the cyclic submodule of M generated by m1.

(*) Let N be a submodule of M containing M1 such that N/M1 is cyclic. Then there exists
a ∈ N such that N/M1 is generated by a+M1 and annR(a) = annR

�

a+M1

�

.

Proof of (*). Let b ∈ N be any element such that b+M1 generates N/M1. Let annR(b) =
ptR. Then annR

�

b+M1

�

= psR for some s ≤ t and consequently ps b ∈ M1. Since
m1 generates M1, we have ps b = qm1 for some q ∈ R. Let q = pw v where w is a
nonnegative integer and v ∈ R is not divisible by p. Thus ps b = pw vm1. Note that vm1
is also a generator of M1 so annR

�

vm1

�

= pk1R. Note also that

pk1−wR= annR

�

pw vm1

�

= annR

�

ps b
�

= pt−sR.

Thus k1 − w = t − s. Since t ≤ k1, it follows that s ≤ w. Thus ps b = psc for c =
pw−svm1 ∈ M1. Let a = b − c. Then a + M1 = b + M1 and psa = 0 implying that
annR(a) = annR

�

a+M1

�

.

The quotient module M/M1 is generated by n−1 elements m2, . . . , mn, where mi = mi+M1,
so by the inductive hypothesis

M/M1 =
n
⊕

i=2

M ′
i /M1

for some submodules M ′
2, . . . , M ′

n of M containing M1 such that each M ′
i /M1 is cyclic. By

(*), we can select m′2, . . . , m′n so that m′i generates M ′
i /M1 and

annR

�

m′i
�

= annR

�

m′i
�

9



for each i = 2, . . . , n. Let Mi be the cyclic submodule of M generated by m′i for each
i = 2, . . . , n.

First we show that M =
∑n

i=1 Mi. Let m ∈ M . Then

m= r2m′2 + · · ·+ rnm′n = r2m′2 + · · ·+ rnm′n

for some r2, . . . , rn ∈ R. Thus

m−
�

r2m′2 + · · ·+ rnm′n
�

∈ M1

implying that M =
∑n

i=1 Mi.
Let ai ∈ Mi be such that a1 + · · · + an = 0. Note that the choice of m′i implies that to

prove that ai = 0 for i = 2, . . . , n, it suffices to show that ai = 0. Since

a2 + · · ·+ an = −a1 ∈ M1

it follows that a2 + · · ·+ an = 0 in the quotient module M/M1. Thus each ai equals 0 for
each i. Consequently a2 = a3 = · · ·= an = 0 which implies that a1 = 0 as well.

The Completion of the Proof of Theorem 1.8

Let R be a principal ideal domain and M be a finitely generated torsion R-module. By
Lemma 1.10 there exists a finite set I of prime representatives in R with M

�

p
�

6= {0} for
each p ∈ I and

M ∼=
∏

p∈I

M
�

p
�

.

Each M
�

p
�

is finitely generated and there is a positive integer kp such that pkp m = 0 for
each m ∈ M . Thus each M

�

p
�

is isomorphic to
∏np

i=1 Mp,i with each Mi,p being cyclic and
annR

�

Mp,i

�

= pki R for some positive integer ki ≤ kp.

2. Group Representations and Modules over Group Rings.

Burnside Theorem.

Solvable Groups.

Definition. A group G is solvable iff there exists a chain of groups

G = G0 ⊇ G1 ⊇ . . . ⊇ Gn =
�

1G

	

such that for each i = 1, . . . , n, the group Gi is a normal subgroup of Gi−1 and Gi−1/Gi is
abelian.

Remark. Let F be a field of characteristic zero, f be a polynomial over F and K be the
splitting field of f over F . Recall that the following conditions are equivalent.
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1. The polynomial f is solvable by radicals over F .

2. The Galois group of K over F is solvable.

Recall that the group A5 consisting of all even permutations of five elements is not solvable.
Note that the order of A5 is 60= 22 · 3 · 5.

Also recall that if G is a group and H is a normal subgroup of G then the following
conditions are equivalent:

1. G is solvable.

2. Both H and G/H are solvable.

Theorem 2.1 (Burnside). Let p, q be primes and a, b be nonnegative integers. Any finite
group of order paqb is solvable.

Remark. The proof of Burnside Theorem uses the following lemma. Its proof will be pre-
sented later. It is based on group representations. There is a proof that does not use group
representations but it is more complicated.

Lemma 2.2. Let G be a finite non-abelian simple group. No conjugacy class of G has order
pa with p being a prime integer and a being a positive integer.

Example. In the nonabelian group S3 the conjugacy classes have orders 1, 2 and 3, however
S3 is not simple. In the simple nonabelian group A5 the conjugacy classes have orders 1,
20, 15, 12, 12.

Homework 5 (due 9/11).

Prove that the conjugacy classes of A5 have orders 1, 20, 15, 12, 12.

Proof of Burnside Theorem.

Let G be a group of order paqb with p, q being prime and a, b being nonnegative integers.
Suppose, by way of contradiction, that G is not solvable and that G is of the smallest possible
cardinality. Then G must be simple and non-abelian since, otherwise, if H were a nontrivial
proper normal subgroup of G then either H or G/H would be non-solvable and would have
smaller order than G. It follows that both a and b are positive (a group of prime power
order is either cyclic or has a nontrivial center which is a normal subgroup).

Let P be a Sylow p-subgroup of G. Then the center Z of P is nontrivial. Let z ∈ Z
be a non-identity element. The centralizer C(z) of z contains P so the index [G : C(z)] is
a power of q. Since [G : C(z)] is equal to the order of the conjugacy class containing z it
follows from Lemma 2.2 that C(z) = G. Thus z is in the center of G implying that the center
of G is nontrivial. Since the center of G is a normal subgroup of G we have a contradiction.
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Group Representations.

Definition. Let G be a group and R be a commutative ring. A representation of G over R is
a group homomorphism G → AutR(M) for some R-module M . Here AutR(M) is the group
of all isomorphisms M → M .

We will be mostly interested in the case when R is a field and especially the case when
G is finite, R= C and M is finitely dimensional.

Faithful Representations.

Definition. We say that a group representation ϕ : G → AutR(M) is faithful iff the the
homomorphism ϕ is injective.

Proposition 2.3. For every group there exists a faithful representation over any nontrivial
commutative ring.

Proof. Every group is isomorphic to a permutation group (a subgroup of all permutations
of some set). Let R be a nontrivial commutative ring and A be a set. Then the set M of all
functions A→ R is an R-module. If S(A) is the group of all permutations of A, then there
exists an injective group homomorphism S(A)→ AutR(M).

Homework 6 (due 9/13).

Define an injective group homomorphism S(A)→ AutR(M) for the proof of Proposition 2.3.

Monoid Rings and Group Rings.

Monoids.

Definition. A monoid is a set with a binary operation that is associative and has the identity
element.

Example. Any group is a monoid. The nonnegative integers form a monoid under addition.
Any ring under multiplication is a monoid.

Monoid Rings.

Definition. Let G be a monoid with the operation denoted as multiplication and R be a
commutative ring. Let R[G] be the set of all functions α : G → R such that α

�

g
�

= 0 for
all but finitely many elements of g ∈ G. We define addition on R[G] as

�

α+ β
� �

g
�

=
α
�

g
�

+ β
�

g
�

and multiplication by

αβ
�

g
�

=
∑

ab=g

α(a)β(b),

where the summation is taken over all pairs (a, b) ∈ G × G with ab = g. The sum is finite
since there are only finitely many such pairs with α(a) and β(b) being nonzero and since
all the other pairs can be ignored.
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Notation. An element α ∈ R[G] will be denoted as a sum r1 g1 + r2 g2 + · · ·+ rn gn where
α
�

gi

�

= ri for all i = 1, 2, . . . , n and α
�

g
�

= 0 for any g ∈ Gr
�

g1, . . . , gn

	

. Note that using
this notation, we have

�

r1 g1 + · · ·+ rn gn

� �

s1h1 + · · ·+ smhm

�

=
n
∑

i=1

m
∑

j=1

ris j

�

gih j

�

.

Example. Let R be a commutative ring. The monoid ring R[N] is isomorphic to the ring
R[x] of polynomials in one variable. The isomorphism maps the polynomial r0 + r1 x +
r2 x2 + · · ·+ rn xn to α ∈ R[N] with α(i) = ri for i = 0,1, . . . , n and α(i) = 0 for i > n.

Group Rings.

A group ring is a monoid ring with the monoid being a group.

Remark. Given a group ring R[G], we can identify an element r ∈ R with the element
r1G ∈ R[G] and an element g ∈ G with the element 1R g ∈ R[G]. Thus we may think of R
and G as being subsets of R[G]. Moreover R becomes a subring of R[G] and G becomes a
submonoid of the multiplicative monoid of R[G].

Modules over Group Rings.

Proposition 2.4. Let M be an R[G]-module. If ϕ : R[G] → End (M) is the corresponding
ring homomorphism, then the restriction of ϕ to G is a representation of G over R.

Proof. Identifying the elements of R with the corresponding elements of R[G], the and
restricting the scalar multiplication to R× M , we obtain an R-module M . Since ϕ assigns
to an element β ∈ R[G] the scalar multiplication by β and since β commutes with any
element of R the resulting endomorphism ϕ

�

β
�

of the the abelian group M preserves scalar
multiplication by elements of R so ϕ

�

β
�

∈ EndR(M). Every element of G is invertible in
R[G], so the restriction of ϕ to G is a group homomorphism G→ AutR(M).

Remark. We see that any R[G]-module induces a representation of G over R.

Proposition 2.5. Let G be a group and R be a commutative ring. If ϕ : G → AutR(M) is
a representation of G, then ϕ can be extended uniquely to a ring homomorphism R[G] →
EndR(M).

Proof. Let ψ : R[G]→ EndR(M) be defined by

�

ψ
�

r1 g1 + · · ·+ rn gn

��

(m) = r1

�

ϕ
�

g1

�

(m)
�

+ · · ·+ rn

�

ϕ
�

gn

�

(m)
�

for any r1, . . . , rn ∈ R, any g1, . . . , gn ∈ G and any m ∈ M . For any g ∈ G, the image ϕ
�

g
�

is
in AutR(M) so it preserves the operation of addition of M and the scalar multiplication of
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the elements of M by the elements of R. Thus
�

ψ
�

r1 g1 + · · ·+ rn gn

�� �

m1 +m2

�

= r1

�

ϕ
�

g1

��

m1 +m2

��

+ · · ·+ rn

�

ϕ
�

gn

��

m1 +m2

��

= r1

�

ϕ
�

g1

��

m1

�

+ϕ
�

g1

��

m2

��

+ · · ·+ rn

�

ϕ
�

gn

��

m1

�

+ϕ
�

gn

��

m2

��

= r1

�

ϕ
�

g1

��

m1

��

+ r1

�

ϕ
�

g1

��

m2

��

+ · · ·+ rn

�

ϕ
�

gn

��

m1

��

+ rn

�

ϕ
�

gn

��

m2

��

=
�

r1

�

ϕ
�

g1

��

m1

��

+ · · ·+ rn

�

ϕ
�

gn

��

m1

���

+
�

r1

�

ϕ
�

g1

��

m2

��

+ · · ·+ rn

�

ϕ
�

gn

��

m2

���

=
�

ψ
�

r1 g1 + · · ·+ rn gn

�� �

m1

�

+
�

ψ
�

r1 g1 + · · ·+ rn gn

�� �

m2

�

,

so ψ
�

r1 g1 + · · ·+ rn gn

�

preserves addition, and
�

ψ
�

r1 g1 + · · ·+ rn gn

��

(rm) = r1

�

ϕ
�

g1

�

(rm)
�

+ · · ·+ rn

�

ϕ
�

gn

�

(rm)
�

= r1r
�

ϕ
�

g1

�

(m)
�

+ · · ·+ rnr
�

ϕ
�

gn

�

(m)
�

= r
�

r1

�

ϕ
�

g1

�

(m)
�

+ · · ·+ rn

�

ϕ
�

gn

�

(m)
��

= r
�

ψ
�

r1 g1 + · · ·+ rn gn

�

(m)
�

,

soψ
�

r1 g1 + · · ·+ rn gn

�

preserves scalar multiplication. Thus the values ofψ are in EndR(M).
It remains to verify that ψ is a ring homomorphism. It is clear that ψ preserves addition.
We have also

 

ψ

 

�

n
∑

i=1

ri gi

�

 

k
∑

j=1

s jh j

!!!

(m) = ψ

 

n
∑

i=1

k
∑

j=1

ris j

�

gih j

�

!

(m)

=
n
∑

i=1

k
∑

j=1

ris j

�

ϕ
�

gih j

�

(m)
�

=
n
∑

i=1

k
∑

j=1

ris j

�

ϕ
�

gi

��

ϕ
�

h j

�

(m)
��

=
n
∑

i=1

ri

 

ϕ
�

gi

�

 

k
∑

j=1

s j

�

ϕ
�

h j

�

(m)
�

!!

=

�

ψ

�

n
∑

i=1

ri gi

��

 

ψ

 

k
∑

j=1

s jh j

!

(m)

!

for each m ∈ M , implying that

ψ

 

�

n
∑

i=1

ri gi

�

 

k
∑

j=1

s jh j

!!

=ψ

�

n
∑

i=1

ri gi

�

◦ψ

 

k
∑

j=1

s jh j

!

so ψ preserves multiplication.

Remark. Propositions 2.4 and 2.5 show that defining a representation of a group G over a
commutative ring R is equivalent to defining an R[G]-module.
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Simple and Semisimple Modules.

Simple Modules.

Remark. To prove Lemma 2.2, we will be interested in representations of finite groups over
C. We will show that any such representation can be obtained from a finite collection
of irreducible representations (when the corresponding C[G]-module is simple). We will
develop the theory of characters of representations that will be functions G → C. We will
introduce a hermitian product on the vector space CG and show that the characters of
irreducible representations are orthonormal in that product.

Definition. An R-module M is simple iff M is nontrivial and does not have any nontrivial
proper submodules.

Remark. A module over a field is simple iff it is one-dimensional as a vector space. The Z-
module Z is not simple simple since say 2Z is a nontrivial proper submodule. A Z-module
M is simple iff M is a finite abelian group of prime order.

Schur’s Lemma.

Proposition 2.6. Let M and N be simple R-modules. If ϕ : M → N is a nonzero homomor-
phism, then it is an isomorphism.

Proof. The kernel of ϕ is a submodule of M . Since it is not M , so it must be {0}. Thus ϕ is
injective. The image of ϕ is a submodule of N . Since it is not {0}, it must be N . Thus ϕ is
surjective.

Remark. If M is a simple R-module, then it follows that the ring EndR(M) is a division
ring (every nonzero element has an inverse) since every nonzero element is an R-module
isomorphism M → M .

Sum and Direct Sum of Submodules.

Definition. Let M be a module and
�

Mi : i ∈ I
	

be a (possibly infinite) family of submod-
ules. The sum

∑

i∈I Mi is the submodule M ′ of M consisting all sums
∑

i∈I mi with mi ∈ Mi
for each i ∈ I with all but finitely many of mi being equal to zero.

The sum is direct iff the equality 0M =
∑

i∈I mi with mi ∈ Mi for every i ∈ I implies that
every mi are equal to 0Mi

. The direct sum is denoted
⊕

i∈I Mi.

Lemma 2.7. Let M be an R-module and ϕ : M → M be an R-homomorphism such that
ϕ2 = ϕ (ϕ is identity on its image). Then M = im

�

ϕ
�

⊕ ker
�

ϕ
�

.

Proof. Let m ∈ M . Then

ϕ
�

m−ϕ(m)
�

= ϕ(m)−ϕ2(m) = 0,

so m − ϕ(m) ∈ ker
�

ϕ
�

implying that M is the sum of im
�

ϕ
�

and ker
�

ϕ
�

. It remains to
show that the sum is direct.
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Suppose that ϕ(m) +m′ = 0 with ϕ
�

m′
�

= 0. Then

0= ϕ
�

ϕ(m) +m′
�

= ϕ2(m) +ϕ
�

m′
�

= ϕ(m),

and consequently also m′ = 0. Thus the sum is direct.

Semisimple Modules.

Theorem 2.8. Let M be an R-module. The following conditions are equivalent.

1. M is a sum of simple submodules.

2. M is a direct sum of simple submodules.

3. For every submodule N of M there exists a submodule N ′ of M with M = N ⊕N ′ (every
submodule of M is a direct summand).

Definition. An R-module M is semisimple iff it satisfies the conditions of Theorem 2.8.

Remark. Note that 3. is equivalent to:

3’. For every submodule N of M there exists an R-homomorphism ϕ : M → M such that
ϕ2 = ϕ and im

�

ϕ
�

= N .

Proof. 3’. ⇒ 3. By Lemma 2.7 we have M = N ⊕ ker
�

ϕ
�

.
3. ⇒ 3’. Take a submodule N ′ of M such that M = N ⊕ N ′ and define ϕ : M → M

by ϕ(m) = n where m = n + n′ with n ∈ N and n′ ∈ N ′. It remains to show that ϕ is
well-defined and satisfies the required conditions.

Homework 7 (due 9/27).

Finish the proof that 3. ⇒ 3’. in the remark above.

Proof of Theorem 2.8.

1. ⇒ 2. Suppose the M =
∑

i∈I Mi with each Mi being a simple submodule of M . Using
Zorn’s Lemma we show that there exists a maximal subset J ⊆ I with the sum M ′ =

∑

i∈J Mi
being a direct sum. For each i ∈ I the intersection Mi∩M ′ is a submodule of Mi so it is either
equal to Mi or is trivial. However, if it were trivial it would contradict the maximality of J .
It follows that any Mi is a submodule of M ′ implying that M ′ = M . Thus M =

⊕

i∈J Mi.

2. ⇒ 3. Let J ⊆ I be a maximal subset such that the sum N +
∑

i∈J Mi is a direct sum.
Arguing as above, we show that this sum equals M . Let N ′ =

∑

i∈J Mi.
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3. ⇒ 1. Let
�

Mi : i ∈ I
	

be the set of all simple submodules of M . It remains to show that
∑

i∈I Mi = M . Note that it suffices to show that every nonzero submodule of M contains
a simple submodule. Then for N =

∑

i∈I Mi we must have N = M since otherwise there
would be a submodule N ′ 6= {0} of M with M = N ⊕ N ′ so N ′ would contain no simple
submodules producing a contradiction.

Let N be any nonzero submodule of M and N ′′ be a maximal submodule of N . The
existence of N ′′ can be proved using Zorn’s Lemma. There exists a submodule N ′ of M
such that M = N ′′⊕N ′. Then N = N ′′⊕

�

N ′ ∩ N
�

and since N ′′ is a maximal submodule of
N , it follows that N ′ ∩ N is a simple submodule of N .

Submodules and Quotient Modules of Semisimple Modules.

Remark. The first isomorphism theorem holds for R-modules. That is, for any R-homomorphism
ϕ : M → N the image of ϕ is R-isomorphic to ker

�

ϕ
�

. It follows that if M is an R-module
and M = N⊕N ′ for some submodules N and N ′ of M , then N ′ is isomorphic to the quotient
module M/N .

Proof. Let ϕ : M → N ′ be defined by ϕ(m) = n′ iff m= n+ n′ for some n ∈ N and n′ ∈ N ′.
Then ϕ is a homomorphism of R-modules with N = ker

�

ϕ
�

. Thus N ′ is isomorphic to
M/N .

Theorem 2.9. Every submodule and every quotient module of a semisimple module is semisim-
ple.

Proof. Let M be a semisimple R-module and N be a submodule of M . Let
�

Mi : i ∈ I
	

be
the family of all simple submodules of M , let J =

�

i ∈ I : Mi ⊆ N
	

and N ′ =
∑

i∈J Mi. Then
M = N ′ ⊕ N ′′ for some submodule N ′′ of M . Every element n ∈ N is uniquely expressible
as n = n′ + n′′ with n′ ∈ N ′ and n′′ ∈ N ′′. Since N ′ ⊆ N , we have n′′ ∈ N ′′ ∩ N . Thus
N = N ′ ⊕

�

N ′′ ∩ N
�

. If N ′′ ∩ N were nontrivial, it would contain Mi for some i ∈ I r J , a
contradiction. Thus N ′′ ∩ N is trivial and N = N ′ is semisimple.

Then M/N is isomorphic to N ′′ so it is also semisimple.

Free Modules.

Linear Independence in Modules.

Definition. Let M be an R-module and B ⊆ M . We say that the set B is linearly independent
iff for a positive integer n, for any distinct b1, . . . , bn ∈ B and for any r1, . . . , rn ∈ R the
equality r1 b1 + · · ·+ rn bn = 0 implies that r1 = · · ·= rn = 0.

Remark. The empty set is linearly independent in any R-module.

Basis of a Module.

Definition. Let M be an R-module. A basis of M is a subset of M that generates (spans) M
and is linearly independent.

17



Remark. The empty set is a basis of the trivial R-module. If I is a proper nontrivial ideal of
a ring R, then the quotient R-module R/I has no basis since any nonempty subset of R/I is
linearly dependent (if a ∈ I r {0}, then a (r + I) = I equals zero in R/I for any r ∈ R).

Free Modules.

Definition. An R-module M is free iff it has a basis.

Lemma 2.10. An R-module M is free if and only if M =
⊕

i∈I Mi for some set I with each Mi
isomorphic to R as a module over R.

Proof. Assume that M is free and let B =
�

bi : i ∈ I
	

be a basis of M . Then M =
⊕

i∈I Mi
where Mi = Rbi for each i ∈ I . The map ϕi : R → Mi given by ϕi(r) = r bi is an R-
isomorphism. Indeed, ϕi is an R-homomorphism since it clearly preserves addition and

ϕi(rs) = (rs) bi = r
�

sbi

�

= r
�

ϕi(s)
�

.

It is clearly surjective and is injective since the singleton
�

bi

	

is linearly independent.
Suppose that M =

⊕

i∈I Mi for some set I with each Mi isomorphic to R as a module
over R. Let ϕi : R → Mi be an R-isomorphism. Then B =

�

ϕi

�

1R

�

: i ∈ I
	

is a basis of
M .

Definition. When M =
⊕

i∈I Mi for some set I with each Mi isomorphic to R as a module
over R, then we say that M is free over I .

Remark. An R-module M is free over I iff there exists a basis B =
�

bi : i ∈ I
	

of M .

Lemma 2.11. For every set I there exists an R-module that is free over I.

Proof. Let M be the set of all functions f : I → R such that
�

i ∈ I : f (i) 6= 0
	

is finite.

Homework 8 (due 10/2).

Let V be a vector space over R with a countable basis
�

x0, x1, . . .
	

. For example, you can
take V = R[x] and x i = x i for each i = 0, 1, . . . . Let R = EndR(V ) and consider R as a
module over itself. Let

M1 =
�

ϕ ∈ R : ϕ
�

x2i

�

= 0, i = 0, 1, . . .
	

and
M2 =

�

ϕ ∈ R : ϕ
�

x2i+1

�

= 0, i = 0,1, . . .
	

.

Prove that both M1 and M2 are submodules of R that are isomorphic to R as R-modules and
that R= M1 ⊕M2.

Remark. If m1 ∈ M1 and m2 ∈ M2 correspond to 1R under the isomorphisms R→ M1 and
R → M2, then

�

m1, m2

	

is a basis of R as an R-module. The set
�

1R

	

is also a basis of R.
Using induction, for any positive integer n, we can obtain a basis of R as an R-module that
consists of n elements.
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The Invariant Dimension Property.

Definition. Let R be a ring. We say that R has the invariant dimension property if for every
free R-module M , any two bases of M have the same cardinality.

Infinite Dimension is Always Invariant.

Lemma 2.12. Let R be any ring and M be a free R-module with an infinite basis B. Then any
basis of M is infinite.

Proof. Suppose, by way of contradiction, that A⊆ M is finite and generates M . Then each
element a ∈ A is a linear combination of some finite subset Ba of B. The union B′ =

⋃

a∈A Ba
is a finite subset of B that generates M . In particular, any element b ∈ B r B′ is a linear
combination of the elements of B′ which contradicts the linear independence of B.

Lemma 2.13. Let R be any ring, M be a free R-module with infinite bases B1 and B2. Then
B1 and B2 have the same cardinality, that is, there exists a bijection B1→ B2.

Proof. We will use the following facts:

1. If X is an infinite set then X has the same cardinality as the family of all finite subsets
of X .

2. If X is an infinite set and Y is a partition of X consisting of finite nonempty subsets
then Y has the same cardinality as X .

3. If there exist injections X → Y and Y → X then the sets X and Y have the same
cardinality.

Thus it suffices to show that there exists an injection from some partition of B1 consisting
of finite nonempty subsets into the family of all finite subsets of B2.

For each b ∈ B1, let ϕ(b) be the unique finite subset of B2 such that b =
∑

a∈ϕ(b) raa
with ra 6= 0 for every a ∈ ϕ(b). Define an equivalence relation ∼ on B1 so that b ∼ b′ iff
ϕ(b) = ϕ

�

b′
�

. Let P be the set of all equivalence classes of ∼ and let ψ be the function
assigning to an element A ∈ P the finite set ϕ(b) with b ∈ A. Then ψ is an injection from
P into the family of all finite subsets of B2. It remains to show that every A∈ P is finite.

Arguing as in the proof of Lemma 2.12 we notice that if A∈ P then there exists a finite
subset of B1 that spans all the elements of A. Since A⊆ B1 and B1 is linearly independent it
follows that A is finite. Thus ψ is the required injection and the proof is complete.

Division Rings.

Theorem 2.14. Any division ring has the invariant dimension property.

Proof. Let R be a division ring, M be a free R-module and B1, B2 be bases of M . It suffices to
assume that B1 and B2 are finite. Suppose, by way of contradiction, that B1 has n elements
and B2 has m elements with n< m. Assume that the intersection B = B1 ∩ B2 is as large as
possible. Clearly, there exists b ∈ B1 r B. Let b =

∑

a∈B2
raa for some ra ∈ R. There exists
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a0 ∈ B2 r B such that ra0
6= 0. Let B′2 = B2 r

�

a0

	

∪ {b}. Since b =
∑

a∈B2
raa and ra0

6= 0,
we get

a0 = r−1
a0

b−
∑

a∈B2r{a0}
r−1

a0
raa.

Thus B′2 spans every element of B2 hence it spans M . B′2 is linearly independent since b is
not spanned by B2r

�

a0

	

. Thus B′2 is a basis of M , it has m elements and the intersection
B1 ∩ B′2 = B ∪ {b} is larger than B. This contradicts the choice of B1 and B2 as having the
intersection as large as possible.

Commutative Rings.

Definition. Let R be a ring, M be an R-module and I be an ideal of R. Define I M to be the
set of all finite sums

∑

j i jm j with i j ∈ I and m j ∈ M for each j.

Remark. I M is a submodule of M .

Definition. Let R be a ring, M be an R-module and I be an ideal of R. Define scalar
multiplication on M/I M be the elements of the ring R/I as follows:

(r + I) (m+ I M) = rm+ I M .

Remark. The scalar multiplication is well defined. If r1, r2 ∈ R with r1− r2 ∈ I and m1, m2 ∈
M with m1 −m2 ∈ I M , then

r1m1 − r2m2 =
�

r1 − r2

�

m1 + r2

�

m1 −m2

�

∈ I M .

Lemma 2.15. Let R be a ring, M be a free R-module with basis B and I be a proper ideal of
R. Then M/I M is a free (R/I)-module with basis B′ = {b+ I M : b ∈ B} for any b1 6= b2 from
B we have b1 + I M 6= b2 + I M .

Proof. Clearly B′ generates M/I M . Suppose that b1, . . . , bn ∈ B are distinct and
�

r1 + I
� �

b1 + I M
�

+ · · ·+
�

rn + I
� �

bn + I M
�

= I M .

Thus m = r1 b1 + · · · + rn bn ∈ I M . Let i1, . . . , ik ∈ I and m1, . . . , mk ∈ M be such that
m = i1m1 + · · · + ikmk. We can express each m j as a linear combination of the elements
of B with coefficients from R. Thus m is a linear combination of the elements of B with
coefficients from I . Since B is a basis of M , it follows that r1, . . . , rn ∈ I . Thus B′ is linearly
independent over R/I . It also follows that b1+ I M 6= b2+ I M for any b1 6= b2 from B since
otherwise

�

1R + I
� �

b1 + I M
�

+
�

−1R + I
� �

b2 + I M
�

= I M

so 1R ∈ I and I = R contrary to out assumption that I is a proper ideal.

Theorem 2.16. Any commutative ring has the invariant dimension property.

Proof. Let R be a commutative ring. If R is trivial, then any free R-module is trivial so R has
the invariant dimension property. Assume that R is nontrivial, M is an R-module and let
B1 and B2 be any bases of M . Let I be a maximal ideal in R. Then F = R/I is a field and
B′1, B′2 are bases of M/I M over F , where B′i =

�

b+ I M : b ∈ Bi

	

, i = 1, 2. Since F has the
invariant dimension property, the sets B′1 and B′2 have the same cardinality. It follows that
the sets B1 and B2 have the same cardinality.
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Semisimple Rings.

Definition. A ring R is semisimple iff it is semisimple as an R-module.

Remark. Note that any free module over a semisimple ring is semisimple. We will show
later that semisimple rings also have the invariant dimension property.

The Universal Extension Property for Free Modules.

Lemma 2.17. If N is a free R-module with a basis B and M is any R-module, then any function
B→ M can be uniquely extended to an R-homomorphism N → M.

Proof. Given f : B→ M , let ϕ : N → M be defined by

ϕ
�

r1 b1 + · · ·+ rn bn

�

= r1 f
�

b1

�

+ · · ·+ rn f
�

bn

�

.

Remark. Note that if B is any subset of N such that any function from B to an R-module
can be extended uniquely to a homomorphism, then N is free with basis B.

Proof. Let B =
�

bi : i ∈ I
�

, let M be a free module over I and let D =
�

di : i ∈ I
	

be a basis
of M . Let f : B→ M maps bi to di for each i ∈ I and let g : N → M be the unique extension
of f to a homomorphism. It suffices to show that g is an isomorphism.

Arbitrary Modules as Quotients of Free Modules.

Theorem 2.18. Any R-module is isomorphic to a quotient module of a free R-module.

Proof. Let M be an R-module,
�

mi : i ∈ I
	

be any subset of M that generates M and N be
a free module over I . If B =

�

bi : i ∈ I
	

is a basis of N , then let ϕ : N → M be the unique
R-homomorphism that extends the function f : B → M given by f

�

bi

�

= mi. Note that ϕ
is surjective. If N ′ = ker

�

ϕ
�

, then M is isomorphic to N/N ′.

Modules over Semisimple Rings.

Theorem 2.19. Any module over a semisimple ring is semisimple.

Proof. Let R be a semisimple ring and M be an R-module. Then M is isomorphic to N/N ′

for some free R-module N and some submodule N ′ of N . Then N is semisimple implying
that N/N ′ is semisimple.

Modules over Division Rings are Free.

Remark. Let R be a division ring. Then R is a simple R-module and it is the unique (up to
isomorphism) simple R-module. Any R-module over R is semisimple so it is the direct sum
of modules isomorphic to R. Thus any module over a division ring is free.
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Maschke’s Theorem.

Theorem 2.20. Let G be a finite group of order n and F be a field whose characteristic does
not divide n. Then the group ring F[G] is semisimple.

Proof. It suffices to show that for every left ideal N of F[G] there exists an F[G]-homomorphism
ϕ : F[G]→ F[G] such that ϕ2 = ϕ and im

�

ϕ
�

= N . Let N be any left ideal of F[G]. Then
N is a subspace of F[G] as a vector space over F . Let b1, . . . , bm be a basis of N . This
basis can be extended to a basis b1, . . . , bm, bm+1, . . . , bn of F[G] (note that the dimension
of F[G] over F is n). Let π : F[G]→ F[G] be the projection onto N , that is, let

π
�

a1 b1 + · · ·+ an bn

�

= a1 b1 + · · ·+ am bm,

where a1, . . . , an ∈ F . Note that π is an F -homomorphism, but not necessarily an F[G]-
homomorphism. Define ϕ : F[G]→ F[G] as follows:

ϕ(t) =
1

n

∑

g∈G

gπ
�

g−1 t
�

,

for any t ∈ F[G]. Clearly ϕ2 = ϕ and im
�

ϕ
�

= N . It remains to show that ϕ is an F[G]-
homomorphism. Let t ∈ F[G] and h ∈ G. It suffices to show that ϕ(ht) = hϕ(t). We
have

ϕ(ht) =
1

n

∑

g∈G

gπ
�

g−1ht
�

=
1

n

∑

g∈G

h
�

h−1 g
�

π
�

�

h−1 g
�−1

t
�

=
1

n

∑

g∈G

hgπ
�

g−1 t
�

= hϕ(t),

and the proof is complete.

3. The Structure of Semisimple Rings.

Simple Left Ideals.

Definition. A simple left ideal of a ring R is a left ideal that is simple as an R-module.

Remark. Equivalently, the simple left ideals of a ring R are the simple submodules of the
R-module R.

Lemma 3.1. Let L be a simple left ideal of a ring R and E be any simple R-module. If E is not
isomorphic to L, then LE = {0}.
Proof. Note that LE is a submodule of E hence it is either {0} or E. Suppose, by way of
contradiction, that LE = E and let a ∈ E be such that La 6= {0}. Since La is a submodule
of E it is equal to E. The map ϕ : L → E with ϕ(α) = αa is a nonzero homomorphism of
R-modules, hence it is an isomorphism which is a contradiction.
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Homework 9 (due 10/11).

Let V be a vector space over R of countable dimension, say V = R[x], and let R =
EndR(V ). Prove that the ideal I of R consisting of those ϕ ∈ R for which the image of ϕ is
a finitely dimensional subspace of V is maximal.

Remark. It follows from the correspondence theorem for rings that R/I has no proper non-
trivial ideals. It can be proved that the ring R/I is not semisimple.

Semisimple Rings as Products of Simple Rings.

Definition. A ring R is simple iff it is semisimple and all its simple left ideals are R-isomorphic
to each other.

Remark. We will show later that a simple ring has no nontrivial proper ideals and that any
semisimple ring that has no nontrivial proper ideals is simple.

Proposition 3.2. If R is a simple ring, then all simple R-modules are R-isomorphic to each
other and to the unique (up to isomorphism) left ideal of R.

Proof. Let R =
∑

i∈I Li with each Li being a simple left ideal of R and let M be a simple
R-module. Let m ∈ M r {0} and 1R = `i1 + · · ·+ `ik for some i1, . . . , ik ∈ I . Then

m= `i1 m+ · · ·+ `ik m 6= 0

so `i j
m 6= 0 for some j ∈ {1, . . . , k}. Then Li j

M 6= {0} so M is R-isomorphic to Li j
.

Example. Let V be a finitely dimensional vector space over a field F and R = EndF(V ). If
�

b1, . . . , bn

	

is a basis of V and

L =
�

ϕ ∈ EndF(V ) : ϕ
�

bi

�

= 0, i = 2, . . . , n
	

,

then L is a simple left ideal of R. It can be proved that any simple left ideal of R is isomorphic
to L and that R is semisimple. Thus R is a simple ring.

Theorem 3.3. Let R be a semisimple ring. Then there are finitely many two-sided ideals
R1, . . . , Rk of R such that each Ri is a simple ring and R is ring isomorphic to the direct product
∏k

i=1 Ri.

Remark. The operations of addition and multiplication in the ring Ri are inherited from R,
however the multiplicative identity 1Ri

does not have to be equal 1R. Actually, it can’t be
equal 1R unless k = 1.

Proof. Consider the equivalence relation of R-isomorphism on the set of all simple left ideals
of R and let

�

Li : i ∈ I
	

be a set of representatives of the equivalence classes. For each i ∈ I ,
let Ri be the sum of all simple left ideals of R that are isomorphic to Li. Clearly, each Ri is
a left ideal of R.
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Now we show that each Ri is a right ideal. Since R is semisimple, we have R=
∑

i∈I Ri.
If r j ∈ R j for some j ∈ I and r ∈ R, then r = r ′j + r ′ with r ′j ∈ R j and r ′ ∈

∑

i∈Ir{ j} Ri so

r j r = r j r
′
j + r j r

′ = r j r
′
j ∈ R j.

Thus R j is a right ideal.
Since R =

∑

i∈I Ri, we have 1R = e1 + · · · + ek with e j ∈ Ri j
for each j = 1, . . . , k and

some i1, . . . , ik ∈ I . Then R =
∑k

j=1 Ri j
. Note that I =

�

i1, . . . , ik

	

, since otherwise if i ∈
I r

�

i1, . . . , ik

	

, then RiRi j
= {0} for any j = 1, . . . , k implying that RiR = {0} which is a

contradiction. We can thus assume that i j = j for each j = 1, . . . , k so I = {1, . . . , k} and

R=
∑k

j=1 R j.
If r ∈ R j, then

r = re1 + · · ·+ rek = re j.

Similarly e j r = r so e j = 1R j
implying that R j is a a ring for every j = 1, . . . , k. Any left

ideal of R j is a left ideal of R so it is isomorphic to L j implying that R j is a simple ring for
each j = 1, . . . , k.

If 0= r1+· · ·+rk with r j ∈ R j for every j = 1, . . . , k, then multiplying both sides by some
e j we get r j = 0 implying that R=

⊕k
j=1 R j as R-modules. It follows that R is isomorphic to

∏k
j=1 R j as R-modules with the isomorphism ϕ :

∏k
j=1 R j → R defined by

ϕ
�

r1, . . . , rk

�

= r1 + · · ·+ rk.

We show that ϕ is an isomorphism of rings. It remains to show that ϕ preserves multipli-
cation. We have

ϕ
�

r1s1, . . . , rksk

�

= r1s1 + · · ·+ rksk

=
�

r1 + · · ·+ rk

� �

s1 + · · ·+ sk

�

= ϕ
�

r1, . . . , rk

�

ϕ
�

s1, . . . , sk

�

for any r j, s j ∈ R j, j = 1, . . . , k. Thus the proof is complete.

Corollary 3.4. If R is a semisimple ring then any simple R-module is R-isomorphic to one of
the simple left ideals of R. In particular, there are only finitely many simple R-modules up to
R-isomorphism.

The Structure of Simple Rings.

Lemma 3.5. Let R be a simple ring. Then R is a finite direct sum of simple left ideals of R.
Moreover,

1. R has no two-sided ideals except R and {0}.

2. If L1 and L2 are simple left ideals of R, then L2 = L1r for some r ∈ R.
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Remark. If follows that LR= R for any nonzero left ideal L of R.

Proof. Since R is semisimple, R =
⊕

j∈J L j for some simple left ideals L j of R. Since 1R can
be expressed as the sum of finitely many ` j ∈ L j, it follows that J is finite. Since 2. ⇒ 1.,
it remains to prove 2.

Let ϕ : L1 → L2 be an R-isomorphism, let R = L1 ⊕ L′1 (as R-modules) for some left
ideal L′1 of R and let π : R→ L1 be the corresponding projection. Consider the composition
σ = ϕ ◦π : R→ L2 and let r = σ

�

1R

�

. Note that σ is an R-homomorphism. If ` ∈ L1, then

ϕ(`) = σ(`) = σ
�

` · 1R

�

= ` · r.

Thus L2 = L1r.

Homework 10 (due 10/21).

Prove that 2. ⇒ 1. in Lemma 3.5.

The Double Endomorphism Ring.

Remark. Let R be a ring and M be an R-module. Then R′ = EndR(M) is a ring and M has a
natural structure of an R′-module with scalar multiplication given by r ′m = r ′(m) for any
r ′ ∈ R′ and m ∈ M . If r ∈ R, then let ϕr : M → M be given by ϕr(m) = rm. If r ′ ∈ R′ and
r ∈ R, then

r ′
�

ϕr(m)
�

= r ′(rm) = r
�

r ′(m)
�

= ϕr

�

r ′(m)
�

so ϕr ∈ EndR′(M). Moreover, the function R→ R′′ = EndR′(M) assigning ϕr to r ∈ R is a
ring homomorphism.

Definition. We call the ring R′′ the double endomorphism ring of M over R and the homo-
morphism R→ R′′ assigning ϕr to r ∈ R is called the canonical homomorphism.

Rieffel’s Theorem.

Theorem 3.6. Let R be a ring with no nontrivial proper ideals and let L be a nonzero left ideal
of R. If R′′ is the double homomorphism ring of L over R, then the canonical ring homomor-
phism λ : R→ R′′ is an isomorphism.

Proof. λ is nonzero so its kernel is a proper ideal of R. Thus ker (λ) is trivial implying that
λ is injective. It remains to show that λ is surjective.

First we show that λ(L) is a left ideal of R′′. Given r ∈ R let ψr : L → L be the right
multiplication by r, that is let ψr(`) = `r for any ` ∈ L. Then

ψr(s`) = (s`) r = s (`r) = sψr(`)

for any s ∈ R and ` ∈ L implying thatψr ∈ R′ = EndR(L). If `,`′ ∈ L and f ∈ R′′ = EndR′(L),
then

�

f ◦λ(`)
� �

`′
�

= f
�

``′
�

= f
�

ψ`′(`)
�

=ψ`′
�

f (`)
�

= f (`)`′ = ϕ f (`)

�

`′
�
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so f ◦λ(`) = ϕ f (`) ∈ λ(L) implying that λ(L) is a left ideal of R′′.
Since LR is a nonzero two-sided ideal of R it follows that LR = R which implies that

λ(L)λ(R) = λ(R). Since λ(L) is a left ideal of R′′ we have R′′λ(L) = λ(L). Consequently

R′′ = R′′λ(R) = R′′λ(L)λ(R) = λ(L)λ(R) = λ(R)

completing the proof.

4. Complex Representations of Finite Groups.

The Simple Factors of the Group Ring.

Let F be an algebraically closed field of characteristic 0, let G be a finite group and n be
the order of G. Then the group ring F[G] is semisimple so

F[G]∼= R1 × . . .× Rs

for some simple rings R1, . . . , Rs. Let Li be a simple left ideal of Ri for each i = 1, . . . , s.
Each Ri and each Li is a vector space over F . Let di be the dimension of Li over F for each
i = 1, . . . , s.

Lemma 4.1. We have Ri
∼= EndF

�

Li

�

for each i = 1, . . . , s.

Proof. Fix i ∈ {1, . . . , s} and let R′i = EndRi

�

Li

�

. Since Li is a simple Ri-module, the ring R′i
is a division ring. Identifying each element a ∈ F with the scalar multiplication by a we
have F ⊆ R′i. We claim that F = R′i.

Suppose, by way of contradiction, that a ∈ R′ir F . Since a commutes with any element
of F , the subring F[a] of R′i generated by a ∪ F is commutative. F[a] is a subring of a
division ring so it has no zero divisors. Thus F[a] is an integral domain. Any inverse of a
nonzero element of F[a] is in R′i so R′i contains a subring F(a) that is the field of fractions
of F[a]. (Actually F(a) = F[a].) F(a) has finite dimension over F so a is algebraic over
F . Since F is algebraically closed, it follows that a ∈ F which is a contradiction. Thus the
claim is proved.

Since the ring Ri is simple, it has no nontrivial proper two-sided ideals. Moreover, Li is
a nonzero left ideal of Ri. If R′′i = EndR′i

�

Li

�

is the double homomorphism ring of Li over
Ri, then Rieffel’s Theorem implies that the canonical ring homomorphism λ : Ri → R′′i is an
isomorphism. Since R′i

∼= F the proof is complete.

Corollary 4.2. We have
n= d2

1 + · · ·+ d2
s .

Proof. The dimension of F[G] over F is n and the dimension of Ri over F is d2
i for each

i = 1, . . . , s.

Theorem 4.3. The index s is equal to the number of conjugacy classes of G.
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Proof. Let A be the center of F[G], that is, let A be the set of all the elements a ∈ F[G]
such that ab = ba for every b ∈ F[G]. Then A is a subspace of F[G] as a vector space
over F . An element

∑

g∈G ag g ∈ F[G] belongs to A if and only if ag = ah whenever g and h
are conjugates in G. Thus the dimension of A over F is equal to the number of conjugacy
classes of G.

For each i = 1, . . . , s let Ai be the center of Ri. Then A ∼= A1 × . . .× As and each Ai has
dimension 1 over F . Thus the dimension of A over F is equal to s completing the proof.

Homework 12 (due 11/4).

Prove that each Ai has dimension 1 over F .

Examples.

1. Let G = S3. Then s = 3, d1 = d2 = 1 and d3 = 2 are the only solutions of d2
1+d2

2+d2
3 =

6 (up to a permutation of d1, d2, d3. A possible isomorphism ϕ : F[G]→ R1×R2×R3
is given by

ϕ(1 2 3) =

�

[1] , [1] ,

�

−1
2
−
p

3
2p

3
2
−1

2

��

ϕ(2 3) =
�

[1] , [−1] ,
�

1 0
0 −1

��

2. Let G be a cyclic group of order n. Then s = n and d1 = · · · = dn = 1. A possible
isomorphism ϕ : F[G]→ R1 × . . .× Rn is given by

ϕ
�

g
�

=
�

[1] , [ζ] ,
�

ζ2
�

, . . . ,
�

ζn−1
��

where g is a generator of G and ζ is a primitive root of 1 in F of degree n.

Proof of Lemma 2.2 (the Key Result for Burnside’s Theorem).

Algebraic Integers.

Definition. An algebraic integer is a root of a nonzero monic polynomial with integer
coefficients.

Theorem 4.4. The set I of algebraic integers is a subring of C such that I∩Q= Z.

Remark. The proof of Theorem 4.4 will be given later.
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Irreducible Complex Representations and their Characters.

Definition. Let G be a finite group of order n with s conjugacy classes and let

ϕ : C[G]→ R1 × . . .× Rs

be a ring isomorphism, where Ri is the ring of di×di complex matrices for each i = 1, . . . , s.
Let ρi : C[G]→ Ri be the composition πi ◦ϕ, where πi is the projection on the i-th coordi-
nate, i = 1, . . . , s. Let χi : C[G]→ C be the composition tri ◦ρi where tri : Ri → C assigns
to each matrix in Ri its trace (sum of all elements on the main diagonal). Then ρ1, . . . ,ρs
are the irreducible complex representations of G and χ1, . . . ,χs are theirs characters.

Theorem 4.5. For every g ∈ G and every i = 1, . . . , s, the character χi

�

g
�

is the sum of di

roots of unity of degree n. If χi

�

g
�

= diζ for some root of unity ζ, then ρi

�

g
�

is equal to ζ
multiplied by the di × di identity matrix. In particular, χi

�

g
�

is an algebraic integer.

Remark. The proof of Theorem 4.5 will be given later.

Theorem 4.6. If g, h ∈ G are in different conjugacy classes, then

s
∑

i=1

χi

�

g
�

χi

�

h−1
�

= 0.

Remark. The proof of Theorem 4.6 will be given later.

Theorem 4.7. If C is a conjugacy class of G and g ∈ C then |C |χi

�

g
�

/di is an algebraic
integer for every i = 1, . . . , s.

Remark. The proof of Theorem 4.7 will be given later.

Lemma 4.8. If C is a conjugacy class of G such that |C | is relatively prime to di for some
i ∈ {1, . . . , s} and g ∈ C, then either χi

�

g
�

= 0 or ρi

�

g
�

is a constant multiple of the identity
matrix.

Proof. There exist integers m and ` such that mdi + ` |C |= 1. Thus

χi

�

g
�

di
= mχi

�

g
�

+ ` |C |
χi

�

g
�

di

is an algebraic integer. Let ζ ∈ C be a primitive root of unity of degree n and let H be
the Galois group of Q(ζ) over Q. Since χi

�

g
�

is a sum of di roots of unity from the field
Q(ζ), it follow that if h ∈ H then h

�

χi

�

g
��

is also a sum of di roots of unity from Q(ζ). Let
N :Q(ζ)→Q be the norm on Q(ζ) over Q. Let

β = N

�

χi

�

g
�

di

�

=
∏

h∈H

h

�

χi

�

g
�

di

�

=
∏

h∈H

h
�

χi

�

g
��

di
.
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Applying the absolute value and using the inequality
�

�

�

�

�

h
�

χi

�

g
��

di

�

�

�

�

�

≤ 1

we get
�

�β
�

� ≤ 1. Since the ring of algebraic integers is closed under conjugation, it follows

that
�

�β
�

�

2
is an integer. Thus

�

�β
�

�= 0 or
�

�β
�

�= 1.
If
�

�β
�

� = 0, then χi

�

g
�

= 0. Assume that
�

�β
�

� = 1. Since χi

�

g
�

is the sum of di roots of
unity and since roots of unity have absolute value 1, there is a root of unity ξ such that
χi

�

g
�

= diξ. Thus ρi

�

g
�

is the di × di matrix with ξ along the main diagonal and zeros
outside it.

The completion of the Proof of Lemma 2.2

Proof. Assume that G is a finite non-abelian simple group. Suppose, by way of contradiction
that C is a conjugacy class of G of order pa with p being a prime integer and a being a
positive integer. Assume that ρ1 is the unit representation (with ρ1

�

g
�

being the 1 × 1
identity matrix for all g ∈ G). In particular d1 = 1.

We claim that if i ∈ {2, . . . , s} is such that p does not divide di, then χi

�

g
�

= 0 for every
g ∈ C . Suppose that the claim holds. Let J =

�

i ∈ {2, . . . , s} : p|di

	

and let di = pbi for
each i ∈ J . Since

s
∑

i=1

χi

�

g
�

χi

�

1G

�

= 0

for g ∈ C , and since χi

�

1G

�

= di, it follows that

1+ p
∑

i∈J

biχi

�

g
�

= 0.

Since each
∑

i∈J biχi

�

g
�

is an algebraic integer, it follows that 1/p is an algebraic integer
which is a contradiction.

It remains to prove the claim. Suppose that the claim fails. Then there is some i ∈
{2, . . . , s} and g ∈ C such that p does not divide di and χi

�

g
�

6= 0. Then ρi

�

g
�

is a constant
multiple of the identity matrix. Let

H =
�

g ∈ G : ρi

�

g
�

is a constant multiple of the identity matrix
	

.

Then H is a nontrivial normal subgroup of G implying that H = G. Consider the image
ρi(G) ⊆ Ri. It is an abelian group under the multiplication of Ri and ρi restricted to G is
a group homomorphism G → ρi(G). Since ρi is not the trivial representation, it follows
that ker

�

ρi�G
�

6= G. Thus the kernel of ρi�G is trivial implying that ρi�G is injective and
consequently that ρi(G) is isomorphic to G. Since ρi(G) is abelian and G is not abelian,
we have a contradiction. Thus the claim is proved.
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Integral Extensions of Commutative Rings.

Cofactors of a Matrix.

Definition. Let R be a commutative ring and A be a square n× n matrix over R. For each
i, j ∈ {1, . . . , n} let b ji be equal to (−1)i+ j det

�

Ai j

�

, where Ai j is the (n− 1)× (n− 1) matrix
obtained from A by removing the i-th row and the j-th column. The resulting n× n matrix
B with entries b ji is called the matrix of cofactors of A.

Remark. We have AB = BA= det (A) · In, where In is the n× n identity matrix.

Integral Elements.

Definition. Let S be a nontrivial commutative ring, R be a subring of S and a ∈ S. We say
that a is integral over R if there exists a monic polynomial f ∈ R[x] with root a.

Theorem 4.9. Let S be a nontrivial commutative ring, R be a subring of S and a ∈ S. Then
the following conditions are equivalent:

1. a is integral over R;

2. the subring R[a] of S is finitely generated as an R-module.

3. there exists a subring T of S that is finitely generated as an R-module and contains R[a].

Proof. 1.⇒ 2. Assume that a is a root of

f (x) = xn + an−1 xn−1 + · · ·+ a1 x + a0 ∈ R[x].

Then 1R, a, a2, . . . , an−1 generate R[a] as an R-module so R[a] is finitely generated.
2.⇒ 3. Take T = R[a].
3.⇒ 1. Assume that that b1, . . . , bk generate T as an R-module. Consider the function

ϕ : T → T given by ϕ(m) = am. Then ϕ is an R-homomorphism. Let t i j ∈ R be such that

ϕ
�

bi

�

= abi = t i1 b1 + · · ·+ t ik bk

for each i = 1, . . . , k. Consider the matrix

A=













a− t1 1 −t12 −t1 3 · · · −t1 k
−t21 a− t22 −t2 3 · · · −t2 k
−t31 −t32 a− t33 · · · −t3 k

...
...

... . . . ...
−tk 1 −tk 2 −tk 3 · · · a− tk k













and let B be the matrix of cofactors of A. Then the product BA is equal to the identity
matrix multiplied by det (A). Any linear combination of b1, . . . , bk with coefficients taken
from a row of BA is equal to 0. Thus det (A) · bi = 0 for each i = 1, . . . , k. Since 1s is a
linear combination of b1, . . . , bk with coefficients from R, it follows that det (A) = 0. Let
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f (x) ∈ R[x] be the polynomial obtained by calculating the determinant of the following
matrix over R[x]













x − t1 1 −t1 2 −t1 3 · · · −t1 k
−t2 1 x − t22 −t23 · · · −t2 k
−t3 1 −t3 2 x − t33 · · · −t3 k

...
...

... . . . ...
−tk 1 −tk 2 −tk 3 · · · x − tk k













.

Then f is monic and a is a root of f .

Integral Elements Form a Subring.

Theorem 4.10. Let S be a nontrivial commutative ring and R be a subring of S. Let T be the
subset of S consisting of all elements a ∈ S that are integral over R. Then T is a subring of S
containing R.

Proof. Clearly T contains R. Assume that a, b ∈ T . Then R[a] is generated by some
a1, . . . , ak ∈ S as an R-module and R[b] is generated by some b1, . . . , b` as R-module. Then
the products ai b j generate R[a, b] implying that R[a, b] ⊆ T . Thus a + b, a − b, and ab
belong to T .

Corollary 4.11. The algebraic integers form a subring of C.

Proof. Use Theorem 4.10 with S = C and R= Z. Then T is the set of all algebraic integers
so it is a subring of C containing Z.

Integral Elements over a Unique Factorization Domains.

Theorem 4.12. Let R be a unique factorization domain, F be the field of fractions of R and a
be an element of some field extension of F. Then a is integral over R if and only if it is algebraic
over F and its minimal polynomial over F has coefficients in R.

Proof. If a is algebraic over F and its minimal polynomial over F has coefficients in R, then
it is clear that a is integral over R.

Assume that a is integral over R. Let f (x) ∈ R[x] be a monic polynomial with f (a) = 0.
Let g(x) ∈ F[x] be the minimal polynomial of a over F . There exists h(x) ∈ F[x] such
that f (x) = g(x)h(x). Let b ∈ R be such that bg(x) is a primitive polynomial in R[x]. Let
c ∈ F be such that b−1ch(x) is a primitive polynomial in R[x]. By Gauss lemma, it follows
that

c f (x) =
�

bg(x)
� �

b−1ch(x)
�

is primitive in R[x]. Since f (x) is primitive in R[x] it follows that c is a unit in R. Without
loss of generality, we can assume that c = 1. Thus

f (x) =
�

bg(x)
� �

b−1h(x)
�

which implies that b is a unit in R. It follows that g(x) ∈ R[x] and the proof is complete.
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Corollary 4.13. An algebraic integer belongs to Q if and only if it belongs to Z.

Proof. Clearly any integer is an algebraic integer. If a is an algebraic integer in Q, then its
minimal polynomial over Q is x − a. Hence a ∈ Z.

Remark. Theorem 4.4 now follows.

Finitely Dimensional Complex Representations and their Characters.

Trace of Linear Functions.

Lemma 4.14. Let V be a finitely dimensional vector space over a field F and ϕ ∈ EndF(V ).
Let b1, . . . , bn be a basis of V and, for each i, j = 1, . . . , n, let ai j ∈ F be such that

ϕ
�

bi

�

=
n
∑

j=1

ai j b j.

Let b′1, . . . , b′n be also a basis of V and, for each i, j = 1, . . . , n, let a′i j ∈ F be such that

ϕ
�

b′i
�

=
n
∑

j=1

a′i j b
′
j.

Then
a11 + a22 + · · ·+ ann = a′11 + a′22 + · · ·+ a′nn.

Definition. Let V be a finitely dimensional vector space over a field F and ϕ ∈ EndF(V ).
Let b1, . . . , bn be a basis of V and let

ϕ
�

bi

�

=
n
∑

j=1

ai j b j

for each i = 1, . . . , n. The trace of ϕ, denoted tr
�

ϕ
�

is equal to the sum a11+a22+ · · ·+ann.

Remark. The value of the trace of ϕ does not depend on the choice of basis for V .

Characters of Finitely Dimensional Complex Representations.

Definition. Let G be a finite group of order n and V be a finitely dimensional complex
vector space. Let ρ : C[G]→ EndC(V ) be ring homomorphism, that is, let ρ be a finitely
dimensional complex representation of G. The character of ρ, denoted χρ is a map χρ :
C[G]→ C such that χρ(a) is the trace of ρ(a) for each a ∈ C[G]. The representation ρ is
irreducible iff the corresponding C[G]-module on V is simple.
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Remarks

1. Ifρ is irreducible, then there exists a simple left ideal L ofC[G] and aC[G]-isomorphism
V → L.

2. If s is the number of conjugacy classes of G and L1, . . . , Ls are all the simple left
ideals of C[G] up to C[G]-isomorphism, then the corresponding representations ρi :
C[G]→ EndC

�

Li

�

(where a ∈ C[G] is mapped to the left multiplication by a) are all
the irreducible representations of G over C.

3. Let C[G]→ R1× . . .×Rs be a ring isomorphism where R1, . . . , Rs are simple rings with
the simple left ideals of Ri isomorphic to Li for each i. Each Ri is isomorphic to a ring
of di × di matrices over C. If ρ : C[G]→ EndC(V ) is any representation of G, then as
a C[G]-module V is a direct sum of simple C[G]-modules. Thus there exists a basis
of V over C so that the values of ρ are matrices of the form













A1 0 0 · · · 0
0 A2 0 · · · 0
0 0 A3 · · · 0
...

...
... . . .

0 0 0 · · · At













where each Ai is a d j × d j matrix for some j ∈ {1, . . . , s}.

4. If G is abelian, then each di is equal to 1 so there exists a basis of V overC such that the
values of ρ correspond to diagonal matrices. If g ∈ G, then the matrix corresponding
to ρ

�

g
�

has roots of unity of degree n on the main diagonal.

5. If G is any finite group of order n and g ∈ G, then let H be the cyclic subgroup of G
generated by g. Consider the restriction ρ′ of ρ to C[H]. There exists a basis of V
over F so that all the values of ρ′ correspond to diagonal matrices. Then the matrix
corresponding to ρ

�

g
�

= ρ′
�

g
�

has roots of unity of degree n on the main diagonal.

6. If g ∈ G, then χi

�

g
�

is the sum of di roots of unity of degree n. If χi

�

g
�

= diζ for
some root of unity ζ, then there exists a basis of V with respect to which the matrix
corresponding to ρi

�

g
�

is is equal to ζ multiplied by the di × di identity matrix. Such
a matrix commutes with any di× di matrix implying that the form of this matrix does
not depend on the choice of basis for V .

7. The proof of Theorem 4.5 is now complete.

The Regular Representation.

Let G be a finite group of order n. The regular representation of G is the representation
corresponding to the C[G]-module C[G]. Its character is called the regular character.
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Lemma 4.15. Let χ1, . . . ,χs be the characters of the irreducible representations of G and χr
be the character of the regular representation of G. Then

χr =
s
∑

i=1

diχi.

Lemma 4.16. Let χr be the character of the regular representation of G. Then χr

�

g
�

= 0 if
g ∈ Gr

�

1G

	

and χr

�

1G

�

= n.

Proof. Let G =
�

g1, . . . , gn

	

with g1 = 1G and let ρr : C[G]→ EndC(C[G]) be the regular
representation. Note that ρr maps an element c of C[G] to the function C[G] → C[G]
that is the multiplication by c (this function is linear, considering C[G] as a vector space
over C). Consider the elements of G as a basis of C[G] over C. Then χr

�

gi

�

is the trace
of the matrix of ρr

�

gi

�

with respect to that basis. If i 6= 1, then the multiplication by
gi has no fixed points in G implying that every entry on the main diagonal of the matrix
corresponding to ρr

�

gi

�

is 0 and consequently that χr

�

gi

�

= 0. If i = 1, then every entry
on the diagonal is 1 implying that χr

�

g1

�

= n.

Proof of Theorem 4.6.

We want to show that if g, h ∈ G are in different conjugacy classes, then

s
∑

i=1

χi

�

g
�

χi

�

h−1
�

= 0.

If ei is the multiplicative identity of Ri, then

χr

�

eih
−1
�

=
s
∑

j=1

d jχ j

�

eih
−1
�

= diχi

�

eih
−1
�

= diχi

�

h−1
�

=
s
∑

j=1

χ j

�

ei

�

χ j

�

h−1
�

.

Let g1, g2, . . . , g` be all the conjugates of g. Then

c =
∑̀

k=1

gk =
s
∑

i=1

aiei

for some ai ∈ C, i = 1, . . . , s. Now we get

χr

�

ch−1
�

=
∑̀

k=1

χr

�

gkh−1
�

= 0
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and

χr

�

ch−1
�

=
s
∑

i=1

aiχr

�

eih
−1
�

=
s
∑

i=1

ai

s
∑

j=1

χ j

�

ei

�

χ j

�

h−1
�

=
s
∑

j=1

χ j

�

s
∑

i=1

aiei

�

χ j

�

h−1
�

=
s
∑

j=1

χ j

 

∑̀

k=1

gk

!

χ j

�

h−1
�

= `
s
∑

j=1

χ j

�

g
�

χ j

�

h−1
�

.

It follows that
∑s

j=1χ j

�

g
�

χ j

�

h−1
�

= 0.

Proof of Theorem 4.7.

If C is a conjugacy class of G and g ∈ C . We want to show that |C |χi

�

g
�

/di is an algebraic
integer for every i = 1, . . . , s.

Let
�

g1, . . . , g`
	

be the conjugacy class of G containing g. Note that

|C |χi

�

g
�

= `χi

�

g
�

= χi

�

g1

�

+ · · ·+χi

�

g`
�

= χi

�

g1 + · · ·+ g`
�

.

Let C1, . . . , Cs be all the conjugacy classes of G, let ` j =
�

�C j

�

� for every j = 1, . . . , s and let

c j = g j 1 + g j 2 + · · ·+ g j ` j

for every j = 1, . . . , s, where g j 1, . . . , g j ` j
are the elements of the conjugacy class C j. Since

|C |χi

�

g
�

/di = χi

�

c j

�

/di

for some j ∈ {1, . . . , s}, it suffices to show that:

(∗) the submodule of C (over Z) generated by the finite set
�

χi

�

c j

�

/di : j = 1, . . . , s
	

is a subring of C.

Note that for each j ∈ {1, . . . , s} the element c j belongs to the center of the ring C[G] im-
plying that the matrix corresponding to ρi

�

c j

�

is a constant multiple of the identity matrix.
This constant is equal to χi

�

c j

�

/di. The product c j · c j′ for some j, j′ ∈ {1, . . . , s} is also in
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the center of C[G] so it is a linear combination of c1, . . . , cs with integer coefficients. It fol-
lows that ρi

�

c j

�

·ρi

�

c j′
�

is a linear combination of ρi

�

c1

�

, . . . ,ρi

�

cs

�

with the same integer
coefficients and consequently that the product

�

χi

�

c j

�

/di

�

·
�

χi

�

c j′
�

/di

�

is a linear combination of χi

�

c1

�

/di, . . . ,χi

�

cs

�

/di with coefficients from Z. The claim (∗)
follows.

A Divisibility Relation.

Let G be a finite group of order n and ZC(G). We have C[G] ∼= R1 × . . . × Rs where Ri is
the ring of di × di complex matrices. Each Ri corresponds (under this isomorphism) to an
ideal (we denote is by Ri as well) of C[G] which is also a ring. Let ei be the multiplicative
identity of Ri.

Lemma 4.17. For each i = 1, . . . , s, if

ei =
∑

g∈G

ag g ∈ C[G]

with ag ∈ C then

ag =
1

n
χr

�

ei g
−1
�

=
di

n
χi

�

g−1
�

,

where χr is the regular representation of G.

Proof. Let g ∈ G and i ∈ {1, . . . , s} be fixed. Then

χr

�

ei g
−1
�

= χr

�

∑

h∈G

ahhg−1

�

=
∑

h∈G

ahχr

�

hg−1
�

.

Since χr

�

hg−1
�

= 0 for h 6= g and χr

�

hg−1
�

= n when h= g, we get

χr

�

ei g
−1
�

= nag ,

so

ag =
1

n
χr

�

ei g
−1
�

.

Since

χr

�

ei g
−1
�

=
s
∑

j=1

d jχ j

�

ei g
−1
�

and since χ j(a) = 0 for any a ∈ Rk with k 6= j, we get

χr

�

ei g
−1
�

= diχi

�

ei g
−1
�

= diχi

�

g−1
�

and consequently
diχi

�

g−1
�

= nag .

Thus

ag =
di

n
χi

�

g−1
�

.
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Faithful Modules.

Definition. Let R be a ring. An R-module M is faithful iff for every a ∈ Rr {0} there exists
m ∈ M such that am 6= 0.

Remark. Any nontrivial ring is a faithful module over itself.

Theorem 4.18. Let S be a nontrivial commutative ring, R be a subring of S and a ∈ S.
Then a is integral over R iff there exists a faithful R[a]-module that is finitely generated as an
R-module.

Proof. Assume that a is integral over R. Then R[a] is a faithful R[a]-module that is finitely
generated as an R-module.

Assume that M is a faithful R[a]-module that is finitely generated as an R-module.
Assume that that b1, . . . , bk generate M as an R-module. Consider the function ϕ : M → M
given by ϕ(m) = am. Then ϕ is an R-homomorphism. Let t i j ∈ R be such that

ϕ
�

bi

�

= abi = t i1 b1 + · · ·+ t ik bk

for each i = 1, . . . , k. Consider the matrix

A=













a− t11 −t12 −t1 3 · · · −t1 k
−t21 a− t22 −t2 3 · · · −t2 k
−t31 −t3 2 a− t33 · · · −t3 k

...
...

... . . . ...
−tk 1 −tk 2 −tk 3 · · · a− tk k













Arguing as in the proof that 3.⇒ 1. in Theorem 4.9, we conclude that det (A) · bi = 0 for
each i = 1, . . . , k. Thus det (A) ·m= 0 for every m ∈ M . Since M is a faithful R[a]-module
it follows that det (A) = 0. As in the proof that 3.⇒ 1. in Theorem 4.9 if follows that a is
integral over R.

Corollary 4.19. For each i = 1, . . . , s the integer di divides n.

Proof. Let ζ be a primitive root of unity of degree n. Consider C[G] as a Z-module and let
M be the submodule generated by the finite set

�

ζk gei : k ∈ {0, . . . , n− 1} , g ∈ G, i ∈ {1, . . . , s}
	

.

Since n

di
ei =

∑

g∈G

χi

�

g−1
�

gei

and since
χi

�

g−1
�

= ζk1 + ζk2 + · · ·+ ζkdi

for some k1, . . . , kdi
∈ {0, . . . , n− 1}, it follows that the operation of multiplication by n/di

maps elements of M to elements of M . Thus M is a Z
�

n/di

�

-module. Since Z
�

n/di

�

⊆
C it is clear that M is faithful as a Z

�

n/di

�

-module. It follows that n/di is an algebraic
integer.
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Homework 13 (due 12/4).

What is the value of
s
∑

i=1

χi

�

g
�

χi

�

h−1
�

when g, h ∈ G are in the same conjugacy class? Prove the formula you give.

Homework 14 (due 12/6).

Let G be a finite group of order n with s conjugacy classes and let χ1 . . . ,χs be the characters
of the irreducible representations of G over C. Prove that the sum

∑

g∈G

χi

�

g
�

χ j

�

g−1
�

is equal to zero when i 6= j and it is equal to n when i = j.
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