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INTRODUCTION

Cycles are very simple combinatorial structures, yet there are many interesting

problems concerning them. The major part of this dissertation is concerned with

problems about cycles.

One very natural question about cycles goes as follows: given a graph G, what

is the length of the longest induced cycle in G? In Chapter 1 we deal with this

question when G is the d-dimensional hypercube (also called the cube). Since the

vertices of the d-dimensional cube can be considered as d-tuples of binary digits,

a long induced cycle in the d-dimensional cube can be applied as a type of error-

checking code as explained in the introduction to Chapter 1 (see also Kautz [37]).

The main result of Chapter 1 is a very natural explicit construction of an induced

cycle of length (9/64)2d in the d-dimensional cube.

The first lower bound for the maximal possible length of an induced cycle

in the d-dimensional cube was given by Kautz [37]. He proved that such cycles

can have length greater than λ
√

2d, where λ is a constant. This bound was later

improved many times leading eventually to the bound given by Danzer and Klee

[15], who proved the lower bound 2d+1/d when d is a power of 2, and (7/4)2d/(d−1)

for all d ≥ 5. The best upper bound at present is 2d−1(1 − 2/(d2 − d + 2)) for

d ≥ 7, given by Solov’jeva [54].

We improve the bound of Danzer and Klee by giving a construction that

can be outlined as follows. We regard the d-dimensional cube I[d] as the (d −
5)-dimensional cube with vertices being copies of the 5-dimensional cube. Our

induced cycle visits every vertex of the (d − 5)-dimensional cube exactly once,

thus it is an ‘expansion’ of a Hamiltonian cycle in I[d−5]. The Hamiltonian cycle
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in I[d−5] is constructed by induction in a way that allows us to give an exact and

simple characterization of the pairs of vertices of I[d− 5] which are connected by

an edge but are not consecutive in the cycle. This is crucial since for each such

pair (x, y) the ‘expansion’ of the Hamiltonian cycle in I[d− 5] to an induced cycle

in I[d] cannot use the same vertex of I[5] in both of its copies corresponding to

the vertices x and y.

Having constructed the Hamiltonian cycle in I[d−5] and having characterized

the ‘bad’ edges of I[d−5], we embed a certain subdivision of the complete bipartite

graph K2,5 into I[5]. To construct our ‘expansion’ of the Hamiltonian cycle, we

use at each copy of I[5] one of the paths obtained as the images of the edges of

K2,5.

In Chapter 2, which presents joint work with Yoshiharu Kohayakawa, we

consider the following colouring problem. Let an integer s ≥ 1 and a graph G be

given. Let us denote by χs(G) the smallest integer χ for which there exists a vertex-

colouring of G with χ colours such that any two distinct vertices of the same colour

are at distance greater than s. Note that χ1(G) is the usual chromatic number

of G, and hence χs(G) is a very natural generalization of χ1(G). Let us denote

by ωs(G) the maximal cardinality of a subset of the vertices of G with diameter at

most s. Clearly χs(G) ≥ ωs(G). For s ≥ 1 and h ≥ 0 set γs(G) = χs(G)− ωs(G)

and

νs(h) = max {n ∈ N : for any graph G, |G| < n implies γs(G) < h} .

Gionfriddo [30] has given estimates for νs(h). We improve the recent bound

ν2(h) ≤ 6h (h ≥ 3) of Gionfriddo and Milici [31] to ν2(h) ≤ 5h (h ≥ 3). More gen-

erally, we give the following tight bounds for arbitrary s ≥ 1 and large enough h :

2h +
1

3
√

2
(h log h)1/2 ≤ νs(h) ≤ 2h + h1−εs ,

where εs > 0 depends only on s. The upper bound is proved entirely by construc-

tive methods.
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In Chapter 3 we consider a problem concerning colourings of cycles. Before we

state the problem let us present some background. In 1963 Ringel [47] conjectured

that for any natural number n and any tree T with n edges, the complete graph

K2n+1 could be decomposed into 2n + 1 subgraphs isomorphic to the tree T .

Later Kotzig (reported by Rosa [48]) strengthened Ringel’s conjecture by adding a

condition of cyclic symmetry on the decomposition. This Ringel-Kotzig conjecture

remains open, and so does its weaker version due to Ringel.

In connection with the Ringel-Kotzig conjecture, Rosa [48] studied four classes

of labellings of graphs, i.e. assignments of natural numbers to their vertices and

edges satisfying the condition that the label of an edge is the absolute value of

the difference of the labels of its end-points. Showing that one of Rosa’s classes

of labellings could be used to label all trees would prove the Ringel-Kotzig conjec-

ture. The smallest class of Rosa’s labellings for which it is still unknown whether

they can be used to label all trees is the class of β-labellings, also called graceful

labellings. The condition for a labelling of a graph with n edges to be graceful is

that the labels of its vertices should be distinct elements of the set [0, n] ⊂ N and

that the labels of its edges should be distinct elements of [1, n] ⊂ N.

Since the conjecture whether all trees can be labelled gracefully has proved

to be very difficult, Bloom [10] defined an analogous notion, namely that of min-

imally k-equitable labellings of graphs, where k is a natural number. A labelling

of a graph on n vertices is minimally k-equitable if the labels of vertices are dis-

tinct elements of [1, n] ⊂ N and every edge label occurs either k-times or does

not occur at all. Thus for trees graceful labellings are essentially equivalent to

minimally 1-equitable labellings. Bloom was mainly interested in minimally k-

equitable labellings of cycles. The obvious necessary condition for the cycle Cn to

have a minimally k-equitable labelling is that k should be a proper divisor of n

(i.e. different from 1 and n).

Bloom [10] has asked whether this simple necessary divisibility condition is

in fact sufficient. In Chapter 3 we answer Bloom’s question in the positive. The
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proof we give is constructive. We consider three cases; k odd, k ≡ 2 mod 4, and

k ≡ 0 mod 4. In each case the proof goes by induction on m = n/k. When

performing our construction we look into the problem from a different point of

view. Instead of trying to label the vertices of the cycle Cn, we try to build a cycle

on the vertex-set {1, 2, . . . , n} using edges of k different lengths, where the length

of an edge is the absolute value of its end-points. This approach proves to be very

useful.

We start from a simple observation that for k odd and n = 2k, it is enough

to connect i with i + k, i = 1, 2, . . . , k and j with j + 1, j = 1, 3, 5, . . . , 2k− 1. We

give a similar but a bit more complicated construction for n = mk, m = 3, 4, 5.

Then we apply induction. In the inductive step we subdivide edges of a certain

length in such a way that we get edges of two different lengths (k edges of each)

and also different from the lengths of other edges. In each of the two remaining

cases the proof is analogous; they differ only in the first step of the construction.

In Chapter 4 we consider a problem concerned with an ‘opened’ coloured

cycle, i.e. a coloured path. Assume that the vertices of a path N are coloured with

the integers 1, 2, . . . , t. We shall call such a path N an opened t-coloured necklace.

Suppose we want to cut only a small number of edges of our necklace and use the

obtained segments to partition the set of vertices of N into k classes such that,

for each colour i, the vertices of colour i are partitioned evenly between them. Let

us call such a partition a k-splitting and let its size be the minimal number of cuts

required to obtain it. The problem of calculating the size of a k-splitting has some

applications to VLSI circuit design, as noted by Bhatt and Leiserson [9] and Bhatt

and Leighton [8].

If the vertices of each colour are consecutive in N , then for any k-splitting of

N , each segment of vertices of one colour must be cut at k−1 points at least. Thus

any k-splitting of N has size at least t(k−1). Goldberg and West [34] proved that

this trivial lower bound is also an upper bound for 2-splittings, and they posed

a question about the general case of arbitrary k. Alon and West [5] conjectured
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that t(k−1) is an upper bound on the size of k-splittings for any k and t. Alon [4]

proved this conjecture. His proof uses many techniques from algebraic topology.

In Chapter 4 we present a different, more combinatorial, proof of Alon’s result

using a theorem from algebraic topology only as a starting point. In our proof,

the main tool is a new very natural generalization of the Borsuk-Ulam antipodal

theorem which says that for any continuous map h : Sm → Rm, there is a point

x ∈ Sm such that h(x) = h(−x).

To formulate our generalization we first define a generalization Sm(p−1)
p of

the m-dimensional `1-sphere Sm = Sm
2 , for any prime number p. If we think of

the set R of reals as two half-lines with a common end-point 0, then its natural

generalization is the set R+,p of p half-lines having a common end-point (we denote

it also by 0). In analogy to Sm
2 being the set of points of Rm+1 which are at

distance 1 from the point (0, 0, . . . , 0) ∈ Rm+1, we define Sm(p−1)
p as the set of

points of Rm(p−1)+1
+,p = (R+,p)

m(p−1)+1 which are at distance 1 from (0, 0, . . . , 0) ∈
Rm(p−1)+1

+,p .

As an analogue of the antipodal map on Sm
2 , we have a very natural free

Zp-action ω on Sm(p−1)
p . Note that the antipodal map swaps the two half-lines

in every coordinate of x ∈ Sm
2 ; in the general case we define ω to permute the

half-lines cyclicly in every coordinate. Our generalization of the Borsuk-Ulam

antipodal theorem says that for any continuous map

h : Sm(p−1)
p → Rm

there is a point x ∈ Sm(p−1)
p such that

h(x) = h(ω(x)) = . . . = h(ωp−1(x)).

This theorem easily implies Alon’s result.

In Chapter 5 we again consider a problem connected with the Borsuk-Ulam

antipodal theorem. Bajmóczy and Bárány [6] proved that if ∆ is the closure

of an (n + 1)-dimensional simplex and f : ∆ → Rn is a continuous map, then
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there are two disjoint faces of ∆ whose images intersect. Since the Borsuk-Ulam

theorem says that for any continuous map h : Sn → Rn there exists x ∈ Sn with

h(x) = h(−x), to prove the Bajmóczy-Bárány theorem it is enough to show that

there is a continuous map g : Sn → ∆ such that for every x ∈ Sn the supports of

g(x) and g(−x) are disjoint. In Chapter 5 we give a very natural construction of

such a function g.

Finally, in Chapter 6 we present a simple observation allowing us to give a

positive answer to a question posed by Sen, Das, Roy and West [50]. They asked

whether each digraph can be represented as an intersection digraph of convex sets

in two dimensional Euclidean space. Sen, Das, Roy and West defined intersection

digraphs as digraphs with ordered pairs of sets assigned to vertices, where −→uv is a

directed edge when the ‘source set’ of u intersects the ‘terminal set’ of v.
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