
CHAPTER 6

AN OBSERVATION ON INTERSECTION DIGRAPHS

OF CONVEX SETS IN THE PLANE

Given a finite family of sets, its intersection graph has a vertex corresponding

to each set, with edges between vertices corresponding to non-disjoint sets. The

notion of intersection graphs is well studied—see an issue of Discrete Mathematics

[20] which is dedicated to papers on this subject. Maehara [45] introduced and

studied a class of intersection digraphs; this notion was later generalized by Sen,

Das, Roy and West [50]. Let D = (V,E) be a digraph and {(Sv, Tv) : v ∈ V }
be a family of ordered pairs of sets. Sen, Das, Roy and West define D to be the

intersection digraph of this family if E = {−→uv : Su ∩ Tv 6= ∅}. Note that this

definition allows loops in our digraph.

By assigning to a vertex of a graph the set of edges incident with it, it is easy

to see that every graph is an intersection graph of finite sets. Let the intersection

number i#(G) of a graph G be the minimum size of a set U such that G is the

intersection graph of subsets of U . Erdös, Goodman and Pósa [24] proved that

i#(G) is equal to the minimum number of complete subgraphs needed to cover all

its edges and that

i#(G) ≤ bn2/4c (1)

for an n-vertex graph G. Equality in (1) is achieved by the complete bipartite

graph G = Kbn/2cdn/2e.
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An analogous construction shows also that every digraph is an intersection

digraph of finite sets. To get a representation of a digraph as an intersection

digraph, it is enough to assign to a vertex v a pair of subsets (Sv, Tv) of the edge-

set, where Sv is the set of edges having their ‘starting point’ at v and Tv is the set

of edges with their ‘terminal point’ at v. By analogy to graphs, Sen, Das, Roy and

West [50] define the intersection number i#(D) of a digraph D as the minimum

size of a set U such that D is the intersection digraph of ordered pairs of subsets of

U . They also define a generalized complete bipartite subgraph (GBS) of a digraph

D as a subdigraph whose vertex-set can be expressed as X ∪ Y (X and Y need

not be disjoint) and whose edge-set is equal to {−→xy : x ∈ X, y ∈ Y }. An easy

result of Sen, Das, Roy and West characterizes the intersection number i#(D) as

the minimum number of GBS’s required to cover the edges of D. They also give

the best possible upper bound on the intersection number of digraphs:

i#(D) ≤ n,

for an n-vertex digraph D.

Given a family of sets, a natural question to ask about intersection graphs and

digraphs is whether all graphs (all digraphs) are intersection graphs (digraphs) of

sets (ordered pairs of sets) from this family. Of special interest are intersection

graphs and digraphs where the sets are required to be convex sets in the Euclidean

space. If the space is one-dimensional then we get interval graphs, characterized in

[28], [29], [44], and interval digraphs, characterized in [50]. In three dimensions all

graphs and digraphs can be represented. With two-dimensional convex sets not all

graphs can be obtained. Wegner [59] gave an example of a graph which is not an

intersection graph of convex sets in the plane. The graph is obtained from K5 by

subdividing each edge. For digraphs Sen, Das, Roy and West [50] observed that an

analogue of Wegner’s counter-example fails and posed the question whether every

digraph is the intersection digraph of ordered pairs of convex sets in the plane. In

this brief chapter we present a simple observation allowing us to give a positive

answer to this question.
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Theorem 6.1. Let D = (V, E) be a digraph. Then there is a family A =

{(Sv, Tv) : v ∈ V } of pairs of convex sets in R2 such that D is the intersection

digraph of A.

Proof. Set n = |V |. Let A ⊂ R2 be a set of n points on a circle, and let f : V → A

be a bijection. Set, for each v ∈ V ,

Sv = {f(v)},

Tv = conv({f(u) : −→uv ∈ E}),

where for B ⊂ R2, conv(B) is the convex hull of B, that is the smallest convex set

containing B. So, for each vertex v of D, the ‘source set’ of v contains one element

of A, namely the one that corresponds to v under f , and the ‘terminal set’ of v

is the convex hull of the elements of A corresponding to all predecessors of v. It

is easy to see that Tv does not contain any other elements of A. So Su ∩ Tv 6= ∅
if and only if f(u) ∈ Tv, which holds if and only if −→uv ∈ E. Therefore D is the

intersection digraph of the family {(Sv, Tv) : v ∈ V }. Of course for each v ∈ V ,

the sets Sv and Tv are convex subsets of R2 so the theorem is proved.
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