
CHAPTER 5

REMARKS ON A GENERALIZATION OF RADON’S THEOREM

The well-known theorem of Radon [36] says that, for any A ⊂ Rn satisfying

|A| ≥ n + 2, there are disjoint subsets B and C of A such that their convex hulls

have nonempty intersection. Since, for any A ⊂ Rn satisfying |A| = n + 2 the

convex hull of A is the image of the closure of an (n + 1)-dimensional simplex

under a linear map, Radon’s theorem is an immediate corollary to the following

theorem. The terms used in this chapter are defined in Chapter 4.

Theorem 5.1. Let ∆ ⊂ Rn+1 be an (n + 1)-dimensional simplex and let K be

the simplicial complex containing all faces of ∆. If f : |K| → Rn is a linear map,

then there are two disjoint faces ∆1, ∆2 of ∆ such that f(∆1) ∩ f(∆2) 6= ∅.

Thus the following theorem of Bajmóczy and Bárány [6] can be thought of as

a generalization of Radon’s theorem.

Theorem 5.2. Let ∆ and K be as in Theorem 5.1. If f : |K| → Rn is a continuous

map, then there are two disjoint faces ∆1, ∆2 of ∆ such that f(∆1) ∩ f(∆2) 6= ∅.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and

Ulam [13] in their proof.

Theorem 5.3. For any continuous map h : Sn → Rn there exists x ∈ Sn with

h(x) = h(−x).
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Theorem 5.2 follows immediately from Theorem 5.3 and the following theo-

rem.

Theorem 5.4. Let ∆ and K be as in Theorem 5.1. There exists a continuous

map g : Sn → |K| such that for every x ∈ Sn the supports of g(x) and g(−x) are

disjoint.

In this brief chapter we are going to give a new very simple proof of Theorem 5.4.

We present in it an explicit construction of the function g.

Proof of Theorem 5.4. Assume that ∆ = (x0, . . . , xn+1). Let K1 be the simplicial

complex with {x0, . . . , xn+1} as its set of vertices and all proper faces of ∆ as its

simplices. Let K2 be the barycentric subdivision of K1. Let ω : |K2| → |K2| be a

free Z2-action defined as follows. If T ⊂ {x0, . . . , xn+1} is the skeleton of a simplex

σ of K1 and cσ is the barycentre of σ, then let

ω(cσ) = cσ′ ,

where σ′ is the simplex of K1 whose skeleton T ′ is the complement of T , that is

T ′ = {x0, . . . , xn+1} \ T.

Thus, we have defined ω on the vertices of K2. Let us extend ω linearly to

|K2|, that is for any x ∈ (cσ1 , . . . , cσr ) ∈ K2 having the following barycentric

representation

x =
r∑

i=1

µicσi ,

let

ω (x) =
r∑

i=1

µiω(cσi).

Clearly, ω is well defined and there is a homeomorphism f : Sn → |K2| which is

equivariant with respect to the antipodal map on Sn and ω on |K2|, that is such

that for every x ∈ Sn the following equality holds:

f(−x) = ω(f(x)).
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Therefore, to prove our theorem, it is enough to show the existence of a continuous

map h : |K2| → |K| such that for every x ∈ |K2| the supports of h(x) and h(ω(x))

are disjoint.

Let K3 be the barycentric subdivision of K2. We shall define h on the vertices

of K3 first. Let dA be the barycentre of the simplex A = (cσ1 , . . . , cσr
) of K2. Since

A is a simplex of K2, we can assume that σi is a proper face of σi+1, i = 1, . . . , r−1.

Define

h(dA) = cσ1 .

Now, let us extend h linearly to |K3| = |K2|, that is for x ∈ (dA1 , . . . , dAs) ∈ K3

with the following barycentric representation

x =
s∑

i=1

µidAi ,

let

h (x) =
s∑

i=1

µih (dAi) .

Now, we shall show that for every x ∈ |K2| the supports of h(x) and h(ω(x))

in K are disjoint. Note first that if dA is the barycentre of a simplex A =

(cσ1 , . . . , cσr ), then

ω(dA) = ω

(
1
r

r∑

i=1

cσi

)
=

1
r

r∑

i=1

ω(cσi) = dB

where

B = (ω(cσ1), . . . , ω(cσr )) .

For x ∈ |K2|, let

{A1, . . . , Ar}

be the support of x in K3 and

{B1, . . . , Br}

be the support of ω(x) in K3 where Bi = ω(Ai), i = 1, . . . , r. Let

{σi,1, . . . , σi,si}
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be the skeleton of Ai, i = 1, . . . , r, where σi,j is a proper face of σi,j+1, j =

1, . . . , si − 1. Now let
{
σ′i,1, . . . , σ

′
i,si

}

be the skeleton of Bi, i = 1, . . . , r. Since the skeleton of σ′i,j is the complement of

the skeleton of σi,j , the simplex σ′i,j+1 is a proper face of σ′i,j , for all i = 1, . . . , r

and j = 1, . . . , si − 1.

Since h(Ai) = σi,1, i = 1, . . . , r, the support of h(x) in K2 is the set

{σ1,1, σ2,1, . . . , σr,1} ,

and since h(Bi) = σ′i,si
, i = 1, . . . , r, the support of h(ω(x)) in K2 is the set

{
σ′1,s1

, σ′2,s2
, . . . , σ′r,sr

}
.

We can assume that Ai is a proper face of Ai+1, i = 1, . . . , r. Then σi+1,1 is a

(not necessarily proper) face of σi,1, i = 1, . . . , r, and thus the support of h(x) in

∆n+1 is the skeleton of σ1,1. Since Ai is a proper face of Ai+1, the simplex Bi is a

proper face of Bi+1, i = 1, . . . , r. Therefore, σ′i+1,si+1
is a face of σ′i,si

, i = 1, . . . , r,

and thus the support of h(ω(x)) in K is the skeleton of σ′1,s1
. Now recall that the

skeleton of σ′1,s1
is a complement of the skeleton of σ1,s1 . But the skeleton of σ1,1

is contained in the skeleton of σ1,s1 so the supports of h(x) and h(ω(x)) in K are

disjoint, and the theorem is proved.

97


