CHAPTER 5

REMARKS ON A GENERALIZATION OF RADON'S THEOREM

The well-known theorem of Radon [36] says that, for any $A \subset \mathbb{R}^{n}$ satisfying $|A| \geq n+2$, there are disjoint subsets B and C of A such that their convex hulls have nonempty intersection. Since, for any $A \subset \mathbb{R}^{n}$ satisfying $|A|=n+2$ the convex hull of A is the image of the closure of an ($n+1$)-dimensional simplex under a linear map, Radon's theorem is an immediate corollary to the following theorem. The terms used in this chapter are defined in Chapter 4.

Theorem 5.1. Let $\Delta \subset \mathbb{R}^{n+1}$ be an $(n+1)$-dimensional simplex and let K be the simplicial complex containing all faces of Δ. If $f:|K| \rightarrow \mathbb{R}^{n}$ is a linear map, then there are two disjoint faces Δ_{1}, Δ_{2} of Δ such that $f\left(\Delta_{1}\right) \cap f\left(\Delta_{2}\right) \neq \emptyset$.

Thus the following theorem of Bajmóczy and Bárány [6] can be thought of as a generalization of Radon's theorem.

Theorem 5.2. Let Δ and K be as in Theorem 5.1. If $f:|K| \rightarrow \mathbb{R}^{n}$ is a continuous map, then there are two disjoint faces Δ_{1}, Δ_{2} of Δ such that $f\left(\Delta_{1}\right) \cap f\left(\Delta_{2}\right) \neq \emptyset$.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and Ulam [13] in their proof.

Theorem 5.3. For any continuous map $h: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n}$ there exists $x \in \mathbb{S}^{n}$ with $h(x)=h(-x)$.

Theorem 5.2 follows immediately from Theorem 5.3 and the following theorem.

Theorem 5.4. Let Δ and K be as in Theorem 5.1. There exists a continuous map $g: \mathbb{S}^{n} \rightarrow|K|$ such that for every $x \in \mathbb{S}^{n}$ the supports of $g(x)$ and $g(-x)$ are disjoint.

In this brief chapter we are going to give a new very simple proof of Theorem 5.4. We present in it an explicit construction of the function g.

Proof of Theorem 5.4. Assume that $\Delta=\left(x_{0}, \ldots, x_{n+1}\right)$. Let K_{1} be the simplicial complex with $\left\{x_{0}, \ldots, x_{n+1}\right\}$ as its set of vertices and all proper faces of Δ as its simplices. Let K_{2} be the barycentric subdivision of K_{1}. Let $\omega:\left|K_{2}\right| \rightarrow\left|K_{2}\right|$ be a free Z_{2}-action defined as follows. If $T \subset\left\{x_{0}, \ldots, x_{n+1}\right\}$ is the skeleton of a simplex σ of K_{1} and c_{σ} is the barycentre of σ, then let

$$
\omega\left(c_{\sigma}\right)=c_{\sigma^{\prime}}
$$

where σ^{\prime} is the simplex of K_{1} whose skeleton T^{\prime} is the complement of T, that is

$$
T^{\prime}=\left\{x_{0}, \ldots, x_{n+1}\right\} \backslash T
$$

Thus, we have defined ω on the vertices of K_{2}. Let us extend ω linearly to $\left|K_{2}\right|$, that is for any $x \in\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right) \in K_{2}$ having the following barycentric representation

$$
x=\sum_{i=1}^{r} \mu_{i} c_{\sigma_{i}}
$$

let

$$
\omega(x)=\sum_{i=1}^{r} \mu_{i} \omega\left(c_{\sigma_{i}}\right)
$$

Clearly, ω is well defined and there is a homeomorphism $f: \mathbb{S}^{n} \rightarrow\left|K_{2}\right|$ which is equivariant with respect to the antipodal map on \mathbb{S}^{n} and ω on $\left|K_{2}\right|$, that is such that for every $x \in \mathbb{S}^{n}$ the following equality holds:

$$
f(-x)=\omega(f(x))
$$

Therefore, to prove our theorem, it is enough to show the existence of a continuous map $h:\left|K_{2}\right| \rightarrow|K|$ such that for every $x \in\left|K_{2}\right|$ the supports of $h(x)$ and $h(\omega(x))$ are disjoint.

Let K_{3} be the barycentric subdivision of K_{2}. We shall define h on the vertices of K_{3} first. Let d_{A} be the barycentre of the simplex $A=\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right)$ of K_{2}. Since A is a simplex of K_{2}, we can assume that σ_{i} is a proper face of $\sigma_{i+1}, i=1, \ldots, r-1$. Define

$$
h\left(d_{A}\right)=c_{\sigma_{1}} .
$$

Now, let us extend h linearly to $\left|K_{3}\right|=\left|K_{2}\right|$, that is for $x \in\left(d_{A_{1}}, \ldots, d_{A_{s}}\right) \in K_{3}$ with the following barycentric representation

$$
x=\sum_{i=1}^{s} \mu_{i} d_{A_{i}}
$$

let

$$
h(x)=\sum_{i=1}^{s} \mu_{i} h\left(d_{A_{i}}\right) .
$$

Now, we shall show that for every $x \in\left|K_{2}\right|$ the supports of $h(x)$ and $h(\omega(x))$ in K are disjoint. Note first that if d_{A} is the barycentre of a simplex $A=$ $\left(c_{\sigma_{1}}, \ldots, c_{\sigma_{r}}\right)$, then

$$
\omega\left(d_{A}\right)=\omega\left(\frac{1}{r} \sum_{i=1}^{r} c_{\sigma_{i}}\right)=\frac{1}{r} \sum_{i=1}^{r} \omega\left(c_{\sigma_{i}}\right)=d_{B}
$$

where

$$
B=\left(\omega\left(c_{\sigma_{1}}\right), \ldots, \omega\left(c_{\sigma_{r}}\right)\right)
$$

For $x \in\left|K_{2}\right|$, let

$$
\left\{A_{1}, \ldots, A_{r}\right\}
$$

be the support of x in K_{3} and

$$
\left\{B_{1}, \ldots, B_{r}\right\}
$$

be the support of $\omega(x)$ in K_{3} where $B_{i}=\omega\left(A_{i}\right), i=1, \ldots, r$. Let

$$
\left\{\sigma_{i, 1}, \ldots, \sigma_{i, s_{i}}\right\}
$$

be the skeleton of $A_{i}, i=1, \ldots, r$, where $\sigma_{i, j}$ is a proper face of $\sigma_{i, j+1}, j=$ $1, \ldots, s_{i}-1$. Now let

$$
\left\{\sigma_{i, 1}^{\prime}, \ldots, \sigma_{i, s_{i}}^{\prime}\right\}
$$

be the skeleton of $B_{i}, i=1, \ldots, r$. Since the skeleton of $\sigma_{i, j}^{\prime}$ is the complement of the skeleton of $\sigma_{i, j}$, the simplex $\sigma_{i, j+1}^{\prime}$ is a proper face of $\sigma_{i, j}^{\prime}$, for all $i=1, \ldots, r$ and $j=1, \ldots, s_{i}-1$.

Since $h\left(A_{i}\right)=\sigma_{i, 1}, i=1, \ldots, r$, the support of $h(x)$ in K_{2} is the set

$$
\left\{\sigma_{1,1}, \sigma_{2,1}, \ldots, \sigma_{r, 1}\right\}
$$

and since $h\left(B_{i}\right)=\sigma_{i, s_{i}}^{\prime}, i=1, \ldots, r$, the support of $h(\omega(x))$ in K_{2} is the set

$$
\left\{\sigma_{1, s_{1}}^{\prime}, \sigma_{2, s_{2}}^{\prime}, \ldots, \sigma_{r, s_{r}}^{\prime}\right\}
$$

We can assume that A_{i} is a proper face of $A_{i+1}, i=1, \ldots, r$. Then $\sigma_{i+1,1}$ is a (not necessarily proper) face of $\sigma_{i, 1}, i=1, \ldots, r$, and thus the support of $h(x)$ in Δ^{n+1} is the skeleton of $\sigma_{1,1}$. Since A_{i} is a proper face of A_{i+1}, the simplex B_{i} is a proper face of $B_{i+1}, i=1, \ldots, r$. Therefore, $\sigma_{i+1, s_{i+1}}^{\prime}$ is a face of $\sigma_{i, s_{i}}^{\prime}, i=1, \ldots, r$, and thus the support of $h(\omega(x))$ in K is the skeleton of $\sigma_{1, s_{1}}^{\prime}$. Now recall that the skeleton of $\sigma_{1, s_{1}}^{\prime}$ is a complement of the skeleton of $\sigma_{1, s_{1}}$. But the skeleton of $\sigma_{1,1}$ is contained in the skeleton of $\sigma_{1, s_{1}}$ so the supports of $h(x)$ and $h(\omega(x))$ in K are disjoint, and the theorem is proved.

