
CHAPTER 3

EQUITABLE LABELLINGS OF CYCLES

§3.1. Introduction

A labelling of the vertices of a graph G is an assignment of distinct natural numbers

to the vertices of G. Every labelling induces a natural labelling of the edges: the

label of an edge (x, y) is the absolute value of the difference of the labels of x and

y. There are many natural questions one can ask about labellings. In particular,

Bloom [10] defined a labelling of the vertices of a graph to be k-equitable if in

the induced labelling of its edges, every label occurs exactly k times, if at all.

Furthermore, a k-equitable labelling of a graph of order n is said to be minimal if

the vertices are labelled with 1, 2, . . . , n. A graph is minimally k-equitable if it has

a minimal k-equitable labelling.

Let us now restrict our attention to cycles. Let Cn be the cycle on n vertices.

Given natural numbers n and k, n ≥ 3, if the cycle Cn is k-equitable then obviously

k must be a divisor of n. It is also obvious that k 6= n. If the stronger assumption

that Cn is minimally k-equitable holds, then in the appropriate edge-labelling the

largest label is at most n−1. Since there are n edges in the cycle Cn, we conclude

that k 6= 1. Thus a necessary condition for Cn to be minimally k-equitable is that

k should be a proper divisor of n, i.e. different from 1 and n. Bloom [10] posed

the question of whether this necessary condition is also sufficient. In this chapter

we settle this problem by giving a positive answer to the above question.

50



The problem of minimally k-equitable labellings for cycles is connected with

the very difficult conjecture of Ringel and Kotzig concerning decompositions of

complete graphs with odd number of vertices into subgraphs isomorphic to trees.

This is the main reason why Bloom raised the problem on k-equitable labellings

of cycles. Let us briefly describe the Ringel-Kotzig conjecture and its connection

with labellings.

In 1963 Ringel [47] conjectured that for any natural number n and any (n +

1)-vertex tree T , the complete graph K2n+1 could be decomposed into 2n + 1

subgraphs isomorphic to T . As reported by Rosa [48], Kotzig strengthened Ringel’s

conjecture as follows. Let S(K2n+1) be the set of all subgraphs of K2n+1. Assume

that the vertices of K2n+1 are the numbers 0, 1, . . . , 2n, and let the unit rotation

R : S(K2n+1) → S(K2n+1) be defined by

R
[(

V (G), E(G)
)]

=
({

s(v) : v ∈ V (G)
}
,
{
(s(u), s(v)) : (u, v) ∈ E(G)

})
,

where s(v) = v + 1 mod 2n + 1, 0 ≤ v ≤ 2n. Assume that we are given a graph G

with n edges. Let us say that K2n+1 can be cyclically G-decomposed if there is a

subgraph G′ of K2n+1 isomorphic to G such that the set {G′, R(G′), . . . , R2n(G′)}
is a decomposition of K2n+1, i.e. E(G′)∪E(R(G′))∪. . .∪E(R2n(G′)) is a partition

of E(K2n+1). The Ringel-Kotzig conjecture asserts that K2n+1 can be cyclically

T -decomposed for any tree T with n edges.

For an edge (u, v) of K2n+1, let the reduced label L(u, v) of (u, v) be defined

by

L(u, v) =
{ |u− v|, if |u− v| ≤ n,

2n + 1− |u− v|, if |u− v| > n.

Let G′ be a subgraph of K2n+1 isomorphic to G generating a cyclic G-decomposi-

tion of K2n+1. Observe that the reduced labels of the edges of G′ are all distinct

elements of the set [1, n] ⊂ N. Rosa [48] defined a labelling of a graph G with n

edges to be a ρ-labelling if the vertices of G are assigned n distinct integers from

the set {0, 1, . . . , 2n} in such a way that for any pair of distinct edges (u, v) and
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(u′, v′) of G we have

{|u− v|, 2n + 1− |u− v|} ∩ {|u′ − v′|, 2n + 1− |u′ − v′|} = ∅.

With the above definitions the Ringel-Kotzig conjecture is equivalent to saying

that every tree has a ρ-labelling.

Rosa [48] has also defined another class of labellings; these are the β-labellings,

more often refered to as graceful labellings. The requirement for a labelling of a

graph G with n edges to be graceful is that the vertices of G should be labelled with

integers from the set {0, 1, . . . , n} in such a way that in the induced edge-labelling

the edges of G are labelled with distinct integers. The conjecture that any tree can

be labelled gracefully is thus clearly stronger then the Ringel-Kotzig conjecture,

and even this is still open. For problems connected with graceful labellings see

also [21], [35], [40], [49], [53], [57].

Note that in the case of trees the graceful labellings are essentially the minimal

1-equitable labellings. In the case of cycles these two notions are different. We

can easily see that no cycle has a minimal 1-equitable labelling and that the cycle

Cn has a graceful labelling if and only if the sum 1 + 2 + . . . + n is even, i.e. if and

only if n ≡ 3 or 0 mod 4.

We shall now turn to the main problem we are concerned with in this chapter.

Let us first introduce the terminology we shall use. We shall call a graph G an

integer graph if its vertex set is a finite subset of N, and we shall call G a [p, q]-graph

if p is the smallest vertex of G and q is the largest vertex of G. If such a graph is

a cycle, we shall call it an integer cycle. If e = (v1, v2) is an edge of G, we will say

that e has length |v1 − v2|. Let M = (ai,j) be an s× 2 matrix with integer entries

for which there is a partition E(G) = E1 ∪ . . .∪Es such that, for i = 1, . . . , s, ai,1

is the cardinality of the set Ei and all the edges in Ei have length ai,2. Then, we

will call M a distribution of edges of G.

Let G be a graph, and k a positive integer. Observe that G has a k-equitable

labelling if G is isomorphic to an integer graph G′ with either 0 or k edges of
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Fig. 1. The graph C(p, q; r).

any length. We will call such G′ a k-equitable representation of G. Note that G′

is a k-equitable representation of a graph if and only if G′ has a distribution of

edges with the first column having all entries equal to k and the second column

having all entries different. Note also that G is minimally k-equitable if there is a

k-equitable representation of G which is a [j, |V (G)| + j − 1]-graph for a certain

integer j. Then, we shall call G′ a minimal k-equitable representation of G.

We are going to prove the following theorem.

Theorem 3.1. If k and m are integers greater than 1, then the cycle Cmk is

minimally k-equitable.

The proof of Theorem 3.1 will be broken down into several lemmas. Their

proofs will contain several constructions of integer cycles. First we shall define the

notions needed for these constructions. Let p, q and r be integers such that r is

greater than 2 and odd, and p+ r ≤ q. Let C(p, q; r) (see Fig. 1.) be a graph with

the vertex set [p, p + r − 1] ∪ [q, q + r − 1], and the edge set

{(p + i, q + i) : i = 0, 1, . . . , r − 1} ∪ {(p + i, p + i + 1) : i = 0, 2, 4, . . . , r − 3}

∪{(p + r − 1, q)} ∪ {(q + i, q + i + 1) : i = 1, 3, 5, . . . , r − 2}.

It follows immediately from the definition that C(p, q; r) is a cycle with the
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following distribution of edges:




r q − p
r − 1 1

1 q − p− r + 1


 . (1)

Let C be an integer cycle. We will say that C is (k1, k2; t)-outer if it satisfies

the following three conditions.

(i) k1 ≥ 0, k2 ≥ 0 and k1 + k2 > 0,

(ii) the set V1 of the k1 smallest and the set V2 of the k2 largest vertices of C are

disjoint segments in N,

(iii) every edge of length t has exactly one endvertex in V1 ∪ V2, and every vertex

in V1 ∪ V2 is an endvertex of exactly one edge of length t.

Now we shall define a certain operation on outer cycles. Let C be a (k1, k2; t)-

outer cycle, V1 = [p, p + k1 − 1] be the set of the k1 smallest vertices of C, and

V2 = [q − k2 + 1, q] be the set of the k2 largest vertices of C. Given a positive

integer d, let the (k1, k2; t; d)-extension C ′ of C be an integer graph with the vertex

set V (C ′) = V (C)∪ [p− d− k2 + 1, p− d]∪ [q + d, q + d + k1 − 1] and the edge set

defined as follows:

E(C ′) = E(C)\{(p + i, p + t + i) : i = 0, . . . , k1 − 1}

\{(q − i, q − t− i) : i = 0, . . . , k2 − 1}

∪{(p + i, q + d + i) : i = 0, . . . , k1 − 1}

∪{(p + t + i, q + d + i) : i = 0, . . . , k1 − 1}

∪{(q − i, p− d− i) : i = 0, . . . , k2 − 1}

∪{(q − t− i, p− d− i) : i = 0, . . . , k2 − 1}.
What does this apparently complicated construction do? It subdivides every edge

of length t with one of the new vertices to get two edges of lengths q − p + d and

q − p − t + d. The set of new vertices is the union of two segments V ′
1 and V ′

2 of

cardinalities k1 and k2 accordingly. The segment V ′
1 is placed above the segment

[p, q] in the distance d from q, and V ′
2 is placed below [p, q] in the distance d from
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Fig. 2. The operation of taking the (k1, k2; t; d)-extension.

p. The vertices from the set V ′
1 are used to subdivide edges with an endpoint in V1

and the vertices from the set V ′
2 are used to subdivide the edges with an endpoint

in V2 (see Fig. 2).

Therefore, assuming that the following matrix is a distribution of edges of C:




a1 b1

a2 b2
...

...
ai bi

k1 + k2 t
ai+1 bi+1

ai+2 bi+2

...
...

as bs




,
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C ′ has clearly the following distribution of edges:




a1 b1

a2 b2
...

...
ai bi

k1 + k2 q − p + d
k1 + k2 q − p− t + d
ai+1 bi+1

ai+2 bi+2

...
...

as bs




. (2)

Note that since C is a [p, q]-graph, it does not have edges of length q−p+d. Thus,

immediately from the definition, we get that C ′ is a (k2, k1; q− p + d)-outer cycle.

Also, if C has no edges of length q − p− t + d or if q − p− t + d = t, then C ′ is a

(k2, k1; q − p− t + d)-outer cycle as well.

To prove Theorem 3.1, we shall consider the following two cases.

(i) k is odd,

(ii) k is even.

Case (i) will be proved in Lemmas 3.2 and 3.3 in section 3.2, and case (ii) will be

proved in Lemmas 3.4 and 3.5 in section 3.3.
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§3.2. The case k odd

The following lemma takes care of the subcase m ∈ [2, 4] of case (i).

Lemma 3.2. If k is an odd integer greater than 2, and m is 2, 3 or 4, then the

cycle Cmk is minimally k-equitable.

Proof. To get a minimal k-equitable representation of C2k, it is enough to take

the cycle C(1, k + 1; k) which is a [1, 2k]-graph and, by (1), has the following

distribution of edges: (
k k
k 1

)
.

Now, let us consider the case m = 3. Let C be the (k, 0; k; 1)-extension of C(1, k+

1; k). As a result of this operation each edge of length k got subdivided into

two edges of lengths 2k and k. Indeed, by (2), C is a cycle with the following

distribution of edges: 


k 2k
k k
k 1


 .

C is also clearly a [1, 3k]-graph, and thus a minimal k-equitable representation

of C3k. Therefore, to finish the proof of our lemma it remains to settle the case

m = 4.

Unfortunately, we cannot continue the above construction. We have to start

from the begining with a [2k + 1, 4k]-graph G1 = C(2k + 1, 3k + 3; k − 2) having,

by (1), the following distribution of edges:


k − 2 k + 2
k − 3 1

1 5


 .

Clearly, G1 is a (0, k − 2; k + 2)-outer cycle. Let G2 be the (0, k − 2; k + 2; 2)-

extension of it. This way, each edge of length k + 2 of G1 got subdivided into two

edges of lengths 2k + 1 and k− 1 (see (2)). Thus, G2 is a cycle with the following

distribution of edges: 


k − 2 2k + 1
k − 2 k − 1
k − 3 1

1 5


 .
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Fig. 3. The graph G3.

Let G3 be obtained from G2 by adding the segment S = [2, k − 1] to the set

of vertices and subdividing each edge of G2 of length k − 1 with an appropriate

vertex from S such that the resulting edges have lengths k and 2k− 1, see Fig. 3.

Thus, G3 is a cycle and has the following distribution of edges:




k − 2 2k + 1
k − 2 2k − 1
k − 2 k
k − 3 1

1 5




To get a minimal k-equitable representation of C4k we must get rid of the edge of

length 5 and create new edges of lengths 2k + 1, 2k − 1, k and 1. We have also

to remove the gaps from our graph. The graph G3 is arranged in such a way that

both this aims can be easily achieved. Let C be obtained from G3 by adding the

set {1, k, k + 1, 2k, 3k− 1, 3k, 3k + 1, 3k + 2} to the set of vertices and subdividing

the edge (3k − 2, 3k + 3) with the new vertices in such a way that we get the
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Fig. 4. The subdivision of G3.

following new edges, see Fig. 4.

e1 = (3k − 2, 3k − 1),

e2 = (3k − 1, k),

e3 = (k, 3k + 1),

e4 = (3k + 1, 3k),

e5 = (3k, 2k),

e6 = (2k, 1),

e7 = (1, k + 1),

e8 = (k + 1, 3k + 2),

e9 = (3k + 2, 3k + 3).

Note that the edges e3 and e8 have length 2k + 1, the edges e2 and e6 have

length 2k− 1, the edges e5 and e7 have length k and the edges e1, e4 and e9 have

length 1. Thus, the cycle C has the following distribution of edges:



k 2k + 1
k 2k − 1
k k
k 1


 .

Since C is a [1, 4k]-graph, it is a minimal k-equitable representation of C4k, and

so C4k is minimally k-equitable.
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Fig. 5. The graph G3.

The next lemma finishes the case k odd.

Lemma 3.3. If k is an odd integer greater than 2, and m > 4, then the cycle

Cmk is minimally k-equitable.

Proof. The construction for m = 4 in the proof of Lemma 3.2 cannot be extended

by simple subdivision to give a minimal k-equitable representation of C5m. We

must again start from the begining. Let us start, similarly as for m = 2, 3, with

G1 = C(3k + 1, 4k + 1, k) having the following distribution of edges:
(

k k
k 1

)
.

Now, let us subdivide the edges of length k, but unlike in the case k = 3 in Lemma

3.2, let us get a graph with a gap of one integer inside it by defining G2 to be the

(0, k; k; 2)-extension of G1. G2 has, thus, the following distribution of edges:



k 2k + 1
k k + 1
k 1


 ,

and is a (0, k; 2k + 1)-outer cycle. Continuing with another subdivision, this time

of the edges of length 2k + 1, let G3 be the (0, k; 2k + 1; 1)-extension of G2, see

Fig. 5.
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Fig. 6. The subdivision of G3.

Note that the cycle G3 has the following distribution of edges:




k 3k + 1
k k + 1
k k
k 1


 .

Now, we shall subdivide the edges of length k in such a way that we remove the gap

inside our graph. Let C be obtained from G3 by adding the set [1, k− 1]∪{3k} to

the set of vertices, subdividing the edge (k, 2k) with the vertex 3k and subdividing

every other edge of length k with the apropriate vertex in the segment [1, k − 1]

such that we get edges of lengths k and 2k, see Fig. 6.

Thus, the cycle C has the following distribution of edges:




k 3k + 1
k 2k
k k + 1
k k
k 1


 .

Since C is a [1, 5k]-graph, it is a minimal k-equitable representation of C5k.

Now, at last, we are at a point from which we can continue by induction. To

finish the proof of the lemma, we shall construct by induction a family of cycles

C(m), for m = 5, 6, . . ., such that C(m) is a minimal k-equitable representation of

Ckm. To keep the induction going, we shall also make sure that the cycle C(m)

has the additional property of being (0, k; (m + 1)k/2 + 1)-outer for m odd and
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(k, 0; (m− 2)k/2− 1)-outer for m even. It will also have the following distribution

of edges: 


k 5k
k 6k
...

...
k (m− 2)k
k (m− 1)k
k (m + 1)k/2 + 1
k 2k
k k + 1
k k
k 1




when m is odd and the following:



k 5k
k 6k
...

...
k (m− 2)k
k (m− 1)k
k (m− 2)k/2− 1
k 2k
k k + 1
k k
k 1




when m is even.

Let C(5) be the cycle C constructed above. It is clearly a (0, k; 3k + 1)-

outer cycle with the appropriate distribution of edges. We shall perform the

induction by subdividing each edge of C(m) of length (m + 1)k/2 + 1, for m

odd, to get two edges of lengths mk = ((m + 1) − 1)k and (m − 1)k/2 − 1 =

((m + 1) − 2)k/2 − 1. Analogously, for m even, we shall subdivide each edge of

C(m) of length (m− 2)k/2− 1 to get two edges of lengths mk and (m+2)k/2+1.

So assume that the cycle C(m) with the required properties is constructed. If

m is odd, then C(m) is a (0, k; (m + 1)k/2 + 1)-outer cycle. Let C(m+1) be the

(0, k; (m + 1)k/2 + 1; 1)-extension of C(m). Since C(m) does not have edges of

length (m− 1)k/2− 1 = ((m + 1)− 2)k/2− 1, it follows from (2) that C(m+1) is

an (k, 0; ((m+1)−2)k/2−1)-outer cycle as required. Also by (2), C(m+1) has the

required distribution of edges, and is thus a k-equitable representation of C(m+1)k.
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Since the last parameter in the extension operation by which C(m+1) is defined is

equal to 1, C(m+1) is a [j, j +(m+1)k−1]-graph for a certain integer j and hence

a minimal k-equitable representation of C(m+1)k.

If m is even, then C(m) is a (k, 0; (m − 2)k/2)-outer cycle, so let C(m+1) be

the (k, 0; (m− 2)k/2; 1)-extension of it. By an argument similar to the above one,

C(m+1) has the required properties.
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§3.3. The case k even

We shall break this case into two cases depending on the divisibility of k by 4. Let

us first consider the case k ≡ 2 mod 4.

Lemma 3.4. If k ≡ 2 mod 4 and m > 1, then the cycle Cmk is minimally

k-equitable.

Proof. Let us assume that k is fixed. We shall prove the lemma by induction on m.

Unlike in the case k odd, we can start the induction from m = 2. Thus, we shall

construct a family of cycles C(m), for m = 2, 3, . . ., such that C(m) is a minimal k-

equitable representation of Cmk. The cycle C(m) will have the additional property

of being (k/2, k/2; (m−1)k/2+1)-outer for m even and (k/2, k/2; mk/2−1)-outer

for m odd. It will also have the following distribution of edges:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k (m− 1)k/2 + 1
k 1




when m is even and the following:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k mk/2− 1
k 1




when m is odd.

The cycle C(2) is constructed as follows. If k = 2, then set C(2) = (1, 2, 4, 3).

For k > 2, let us take two cycles G1 = C(1, k/2 + 2; k/2) and G2 = C(k, 3k/2 +

1; k/2). By (1), both G1 and G2 have the following distribution of edges:



k/2 k/2 + 1
k/2− 1 1

1 2


 .
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Fig. 7. The cycle C(2).

The cycles G1 and G2 have two common vertices k and k + 1 and one common

edge e0 = (k, k + 1). Let C be the cycle obtained by taking the union of G1 and

G2 with the edge e0 removed. Thus, C has the following distribution of edges.




k k/2 + 1
k − 4 1

2 2




Let C(2) be obtained from C by adding the set {k/2 + 1, 3k/2} to the vertex set,

and subdividing the edge (k/2, k/2 + 2) with the vertex k/2 + 1 and the edge

(3k/2− 1, 3k/2 + 1) with 3k/2, see Fig. 7.

The cycle C(2) satisfies the required conditions because it is (k/2, k/2; k/2+1)-

outer, it is a [1, 2k]-graph, and it has the following distribution of edges.

(
k k/2 + 1
k 1

)

Let us assume that the cycle C(m) is constructed, and that it satisfies the

required conditions. In the process of induction, for m even, we shall subdivide

each edge of C(m) of length (m − 1)k/2 + 1 to get two edges of lengths mk =
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((m + 1) − 1)k and (m + 1)k/2 − 1. Analogously, for m odd, we shall subdivide

each edge of C(m) of length mk/2−1 to get two edges of lengths mk and mk/2+1 =

((m + 1)− 1)k/2 + 1.

If m is even, then C(m) is a (k/2, k/2; (m−1)k/2+1)-outer cycle. Let C(m+1)

be the (k/2, k/2; (m − 1)k/2 + 1; 1)-extension of it. Since if (m + 1)k/2 − 1 6=
(m−1)k/2+1, then C(m) does not have edges of length (m+1)k/2−1, C(m+1) is

a (k/2, k/2; (m+1)k/2−1)-outer cycle by (2). It also follows from (2) that C(m+1)

has the required distribution of edges and hence it is a k-equitable representation

of C(m+1)k. Clearly, C(m+1) is a [j, j + (m + 1)k− 1]-graph for a certain integer j,

and so is a minimal k-equitable representation of C(m+1)k.

If m is odd, then let C(m+1) be the (k/2, k/2; mk/2 − 1)-extension of C(m).

Similarly as above, it can be verified that all the required conditions are satisfied.

Now we shall consider the case k ≡ 0 mod 4.

Lemma 3.5. If k ≡ 0 mod 4 and m > 1, then the cycle Cmk is minimally

k-equitable.

Proof. Let us assume that k is fixed. Similarly as in the proof of Lemma 3.4,

we shall use induction on m, and we shall construct a family of cycles C(m), for

m = 2, 3, . . ., such that C(m) is a minimal k-equitable representation of Cmk. Now,

the cycle C(m) will have the additional property of being (k1, k2; (m− 1)k/2 + 1)-

outer for m even and (k2, k1; mk/2− 1)-outer for m odd, where k1 = k/2 + 1 and

k2 = k/2 − 1. As in the construction used to prove Lemma 3.4, it will have the
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following distribution of edges:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k (m− 1)k/2 + 1
k 1




when m is even and the following:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k mk/2− 1
k 1




when m is odd.

The cycle C(2) is constructed in a way which is a slight modification of the

method used to prove lemma 3.4. Let G1 = C(1, k/2 + 2; k1) and G2 = C(k +

1, 3k/2+2; k2). Note that k1 and k2 are odd integers. By (1), G1 has the following

distribution of edges: (
k/2 + 1 k/2 + 1
k/2 + 1 1

)
,

and G2 the following: 


k/2− 1 k/2 + 1
k/2− 2 1

1 3


 .

The cycles G1 and G2 have two common vertices k +1 and k +2 and one common

edge e0 = (k + 1, k + 2). Let C be the cycle obtained by taking the union of G1

and G2 with the edge e0 removed. Thus, C has the following distribution of edges.



k k/2 + 1
k − 3 1

1 3




Let C(2) be obtained from C by adding the set {3k/2, 3k/2 + 1} to the vertex set,

and subdividing the edge (3k/2− 1, 3k/2+2) with the vertices 3k/2 and 3k/2+1

as to get three edges of length 1, see Fig. 8.
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· · ·· · ·
. . . . . .

· · ·· · ·
...

...
...

...

◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸ ︸
1 k/2+2 k+2

k+1 3k/2−1 3k/2+2 2k︷ ︷ ︷ ︷ ︷ ︷︷ ︷︷ ︷ ︷ ︷ ︷ ︷◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦

...
...

...
...

· · ·· · ·. . . . . .
· · ·· · ·

Fig. 8. The cycle C(2).

Hence, the cycle C(2) satisfies the required conditions because it is (k1, k2; k/2+1)-

outer, it is a [1, 2k]-graph, and it has the following distribution of edges.

(
k k/2 + 1
k 1

)

Let us assume that the cycle C(m) is constructed and that it satisfies the

required conditions. The induction goes almost exactly as in the proof of Lemma

3.4. The only difference is that the endpoints of the edges to be subdivided do

not lie symmetrically at both ends of the segment of all vertices, but there are k1

of them at one end and k2 of them at the other.

If m is even, then C(m) is a (k1, k2; (m − 1)k/2) + 1)-outer cycle thus let

C(m+1) be the (k1, k2; (m− 1)k/2 + 1; 1)-extension of it. If m is odd, then C(m) is

(k2, k1;mk/2 − 1)-outer so let C(m+1) be obtained by taking the (k2, k1;mk/2 −
1; 1)-extension of it. Similarly as in the proof of Lemma 3.4, it can be shown that

all the required conditions are satisfied.
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