
CHAPTER 2

ON SMALL GRAPHS WITH HIGHLY IMPERFECT POWERS

§2.1. Introduction

A celebrated result first proved by Blanche Descartes (cf. [18] and [19]) is the ex-

istence of triangle-free graphs of arbitrarily high chromatic number. In particular,

there are graphs for which the difference h between their chromatic and clique

numbers is arbitrarily large. Supposing we want the order of these graphs to be

small with respect to h, we cannot hope to have graphs with O(h2) vertices if we

keep the requirement that the graphs should be triangle-free (see [11]). A rather

natural problem suggests itself: can we do any better without any assumption on

the clique number? In fact, this problem has been posed in the literature in the

following more general setting.

Let an integer s ≥ 1 and a graph G be given. A vertex-colouring of G is

said to be a proper Ls-colouring if any two distinct vertices of the same colour are

at a distance greater than s (see Chartrand, Geller and Hedetniemi [14], Kramer

and Kramer [41], [42] and Speranza [56]). Let us denote by χs(G) the smallest

integer χ such that there exists a proper Ls-colouring of G with χ colours. Let

us denote by ωs(G) the maximal cardinality of a subset of V (G) of diameter at

most s. Thus χ1(G) is the ordinary chromatic number of G and ω1(G) its ordinary

clique number. Clearly χs(G) ≥ ωs(G). The main question we shall study in this

chapter is the following problem raised by Gionfriddo and others ([30], [32]). If a
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graph G satisfies χs(G)− ωs(G) ≥ h, then how small can the order |G| of G be?

For s ≥ 1 and h ≥ 0, let us set γs(G) = χs(G)− ωs(G) and

νs(h) = max {n ∈ N : for any graph G, |G| < n implies γs(G) < h} .

We are then interested in estimating the function νs. As one would expect, the

exact value of νs(h) is known only for very few s and h. For instance, ν2(1) = 7

and ν2(2) = 11 are the only exact results for s = 2. Moreover, having established

that 15 ≤ ν2(3) ≤ 18, Gionfriddo [30] asks what the value of ν2(3) is. More

generally, Gionfriddo and Milici [31] have proved that ν2(h) ≤ 6h for h ≥ 3. As

to νs(h) for s ≥ 3, the following estimates are given in [30]. For h ≥ 3,

νs(h) ≤ 1
2
(3s + 1)(h + 1)

if s is odd and

νs(h) ≤ 1
2
(3s + 4)(h + 1)− 2

if s is even. Our main concern in this chapter is to improve the bounds above.

We first show that ν2(h) ≤ 5h for h ≥ 3, proving that ν2(3) = 15. We then study

the growth of νs(h) as a function of h; we shall prove that for fixed s ≥ 1 and

sufficiently large h

2h +
1

3
√

2
(h log h)1/2 ≤ νs(h) ≤ 2h + h1−εs , (1)

where εs > 0 is a constant which depends only on s; in particular νs(h) = (2 +

o(1))h for any fixed s ≥ 1 and h →∞.

Let us also mention that the upper bound in (1) improves previous bounds

for certain related functions [30]. Let us denote by ms(h) the smallest number of

edges in a graph G with γs(G) ≥ h. Let us define δs(h) to be the smallest integer n

such that there is a graph G of diameter s that can be extended to a graph G′

with (i) γs(G′) ≥ h and (ii) |G′| − |G| ≤ n. Upper bounds for ms(h) and δs(h)

trivially follow from (1); it turns out that they are better than those in [30].
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Let us introduce some of the definitions we shall need. We generally follow [11]

for graph-theoretical terms. In particular, given a graph G, a walk in G is a

sequence v0, v1, . . . , v` of vertices of G such that vi−1vi ∈ E(G) for all 1 ≤ i ≤ `.

The length of the walk above is defined to be `; it is said to connect v0 to v` and thus

it is referred to as a v0–v` walk. For convenience’s sake, we write χ(G) = χ1(G),

ω(G) = ω1(G) and γ(G) = γ1(G). The complement of G is denoted by Gc. The

independence number of G is denoted by α(G), hence α(G) = ω(Gc). Given a

graph G and s ≥ 1, we define its sth power Gs to be the graph on V (G) with

two distinct vertices joined to each other iff their distance is at most s. Note

that then χs(G) and ωs(G) are simply the ordinary chromatic and clique numbers

of Gs and thus γs(G) = γ(Gs).

Finally we outline the organisation of this chapter. We shall prove the new

upper bound for ν2(h), h ≥ 3, in Section 2.2. In the following section we consider

some generalities about the case of arbitrary s ≥ 1, and draw some easy corollaries

concerning νs(h) from estimates on certain Ramsey numbers. In particular, we

give the proof of the lower bound in (1). In Section 2.4 we describe the key

result, Theorem 2.9, and then we draw the upper bound in (1) as a corollary. (A

more precise statement of this bound is given in Corollary 2.10.) The proof of

Theorem 2.9 is given in Section 2.5.

The results of this chapter will appear in [39].

31



§2.2. A new simple upper bound for ν2(h)

Let us start by showing a simple construction allowing us to improve the upper

bound on ν2(h) of Gionfriddo and Milici [31]. This construction is in fact a special

case of a much more general construction considered in Sections 2.4 and 2.5.

Theorem 2.1. For every h ≥ 3 we have ν2(h) ≤ 5h.

Proof. Let us fix h ≥ 3. It is enough to construct a graph G with |G| = 5h

and γ2(G) = h. Let C5 be a cycle of order 5 and Kh a complete graph of order h.

Let us define the graph G on V (C5)×V (Kh) by joining the vertices (c, k) to (c′, k′)

iff cc′ ∈ E(C5) and kk′ ∈ E(Kh)

Obviously |G| = 5h. As pointed out in the introduction, γ2(G) = γ(G2) and

so we proceed to compute G2.

We claim that G2 is the complement of the disjoint union of h pentagons, i.e.

cycles of order 5, say C1, C2, . . . , Ch. The claim implies that γ(G2) = h. Indeed,

a maximal clique in G2 has cardinality 2h (two nonconsecutive vertices in each

Ci), and the chromatic number of G2 is 3h (three colours for each Ci). Therefore,

it only remains to check the claim.

Let v1 = (c1, k1), v2 = (c2, k2) be a pair of distinct vertices of G. We shall

show that their distance d(v1, v2) in G is greater than 2 if and only if c1 is adjacent

to c2 in C5 and k1 = k2. Note that this proves the claim. Let us consider the

following three cases.

Case 1. c1c2 ∈ E(C5) and k1 = k2.

By definition (c1, k1) is not adjacent to (c2, k2) in G since k1 = k2. No vertex of G

is adjacent to both (c1, k1) and (c2, k2) since no vertex of C5 is adjacent to both c1

and c2. Therefore d((c1, k1), (c2, k2)) ≥ 3 in G.

Case 2. c1c2 ∈ E(C5) and k1 6= k2.

By definition the vertices (c1, k1) and (c2, k2) are adjacent in G.
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Case 3. c1c2 6∈ E(C5) (including the case c1 = c2).

There is a vertex adjacent to both c1 and c2 in C5, and there is a vertex adjacent

to both k1 and k2 in Kh (since h ≥ 3). So d((c1, k1), (c2, k2)) ≤ 2 in G concluding

the proof of Theorem 2.1.

The theorem above solves the question about the determination of ν2(3),

posed by Gionfriddo in [30]. He has proved that ν2(3) ≥ 15 and from Theorem 2.1

it follows that ν2(3) ≤ 15, so we obtain the result that 15 is the exact value of

ν2(3).

§2.3. Bounds arising from estimates on Ramsey numbers

In this section we start a more systematic study of νs(h) for arbitrary s ≥ 1. Let us

first consider the case s = 1 and remark that certain bounds for Ramsey numbers

give us rather good information about ν1(h). As usual, let us denote by R(s, t)

the smallest positive integer n such that any graph of order at least n has either

a clique of order at least s or an independent set of order at least t. Erdős [22],

with an ingenious probabilistic proof, established that

R(s, 3) ≥ c(s/ log s)2 (2)

for some c > 0. In fact (2) holds for any 0 < c < 1/27 and large enough s, cf. [12],

Chapter XII, §2. The following result is an immediate corollary of (2).

Theorem 2.2. For sufficiently large h,

ν1(h) < 2h + 20h1/2 log h.

Proof. By taking s = b(n/c)1/2 log nc, it can be easily checked that Erdős’s lower

bound for R(s, 3) tells us the following: for any 0 < c < 1/27 there is an in-

teger n0 = n0(c) such that, for any n ≥ n0, there is a graph of order n with
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clique number less than (n/c)1/2 log n and independence number at most 2. Let

us fix c = 1/28 and a large enough h (it will be clear that our inequalities hold

if h ≥ h0, where h0 is an absolute constant). Let n satisfy

n

2
−

(n

c

)1/2

log n ≥ h >
n− 1

2
−

(
n− 1

c

)1/2

log(n− 1) ≥ n

3

and n ≥ n0(c). Let G be a graph of order n with ω(G) < (n/c)1/2 log n and

α(G) ≤ 2. Clearly χ(G) ≥ n/2 and so

γ(G) ≥ n

2
−

(n

c

)1/2

log n ≥ h.

Moreover, by the choice of n,

|G| = n

≤ 2h + 2
(

n− 1
c

)1/2

log(n− 1) + 1

< 2h + 20h1/2 log h.

Hence this G proves the bound in the theorem.

We now turn our attention to arbitrary s ≥ 1. An obvious way of generalising

Theorem 2.2 is to prove the existence of graphs with large order and small clique

and independence numbers which are, furthermore, powers. Neither the proba-

bilistic approach of Erdős in [22] nor a more recent one by Spencer [55] based on

the Erdős–Lovász sieve seems to be directly applicable; we shall use instead an

explicit construction of Erdős [23] which proves that R(s, 3) grows at least as fast

as a power of s.

In order to describe Erdős’s construction, let us recall the definition of the

n-dimensional cube I[n]. It is the graph whose vertices are the 0–1 sequences of

length n, two of them being adjacent iff they differ in exactly one coordinate. The

graph I[n] induces a natural metric on its set of vertices; let us denote this metric

by d. Hence d(x, y), which is usually called the Hamming distance between x and y,
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is simply the number of coordinates in which x and y differ. Erdős’s graph Jr,

r ≥ 1, has as its set of vertices the 0–1 sequences of length 3r + 1, two distinct

vertices being adjacent iff their distance is at most 2r. Thus Jr is the 2rth power

of I[3r + 1].

It is easy to check that in Jr any three distinct vertices span at least one edge.

The fact that it has only small cliques is a consequence of the following theorem

conjectured by Erdős and proved by Kleitman [38].

Theorem 2.3. Let n and r ≥ 1 be integers with n ≥ 2r. Let S ⊂ I[n] be a set

vertices of the n-dimensional cube I[n] with diameter at most 2r. Then

|S| ≤
r∑

i=0

(
n

i

)
.

We thus have the following.

Theorem 2.4.

(i) The independence number of Jr is 2 for all r ≥ 1.

(ii) Set c = (5 log 2 − 3 log 3)/(3 log 2) = ·0817 . . . and let 0 < ε < c. Then, for

r ≥ r0(ε),

ω(Jr) < |Jr|1−ε/2.

In particular, we conclude that

γ(Jr) >
1
2
|Jr|

(
1− |Jr|−c+o(1)

)
(3)

as r →∞. Since Jr has an sth root when s divides r, we immediately notice the

following.

Corollary 2.5. For all s ≥ 1, we have that lim infh νs(h)/h ≤ 2.

Proof. For all s and t ≥ 1, let us define the graph J(s, t) on 0–1 sequences of length

3st + 1 by joining two distinct sequences iff their distance is at most 2t. Clearly

J(s, t)s = Jst for all s and t. This remark coupled with inequality (3) completes

the proof.
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A moment’s thought reveals that the drawback of using the Jr only is that the

set {|Jr| : r ≥ 1} is much too sparse. Indeed, with such an approach we can merely

conclude that lim suph ν1(h)/h ≤ 16. In the next section, we introduce a technique

to generate more graphs F with large γ(F s) and thus improve Corollary 2.5.

Let us now turn to the problem of bounding ν1(h) from below. Trivially,

νs(h) ≥ νt(h) for all h if t divides s; hence the lower bound we shall prove for ν1(h)

bounds νs(h) for arbitrary s ≥ 1 as well. We shall need the following simple lemma.

Lemma 2.6. Let G be a graph. Then for any induced subgraph H of G

|G| ≥ 2γ(G) + ω(G) + |H| − 2χ(H).

Proof. Let us set G′ = G− V (H). Note that

χ(G′) + χ(H) ≥ χ(G) = γ(G) + ω(G),

and so

χ(G′) ≥ γ(G) + ω(G)− χ(H). (4)

Clearly, in a proper minimal colouring of a graph the union of any two colour

classes must span an edge. Hence, in such a colouring, the set of vertices which

are assigned colours which occur only once must span a complete graph. Thus

|G′| ≥ 2χ(G′)− ω(G′).

By (4) we conclude that

|G′| ≥ 2(γ(G) + ω(G)− χ(H))− ω(G′)

≥ 2γ(G) + ω(G)− 2χ(H).

As |G| = |G′|+ |H|, the proof is complete.

A way of applying the lemma above is to take V (H) to be an independent set

of order α(G). Doing so, we conclude that

|G| ≥ 2γ(G) + ω(G) + α(G)− 2

> 2γ(G) + (log |G|)/ log 4, (5)
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where the second inequality follows from the well-known bound of Erdős and

Szekeres

R(s, s) ≤
(

2s− 2
s− 1

)
<

1
6
4ss−1/2,

for s ≥ 4. We can in fact improve the log term in (5) by choosing a better

subgraph H; we shall make use of an upper bound for off-diagonal Ramsey numbers

to find a suitable H.

Ajtai, Komlós and Szemerédi [3] were the first to prove that

R(s, 3) = O(s2/ log s),

and Shearer [52] a little later gave a simple and elegant proof of a slightly stronger

result (see also [12], Chapter XII, §3). The following bound is sufficient for our

purposes:

R(s, 3) ≤ (s− 1)(s− 2)2

(s− 1) log(s− 1)− s + 2
+ 1 ≤ 2s2

log s
(6)

for s large enough. It follows immediately from this bound that any graph

of order n has either three independent vertices or a clique of order at least

(n log n)1/2/3, provided n is sufficiently large.

Theorem 2.7. For all graphs G of sufficiently large order,

|G| > 2γ(G) +
1
6
(|G| log |G|)1/2. (7)

In particular, for all s ≥ 1 and large enough h,

νs(h) > 2h +
1

3
√

2
(h log h)1/2. (8)

Proof. Throughout the proof of (7) we assume that n is a large enough integer.

Let G be a graph of order n, which we may trivially assume is not complete. We

may furthermore assume that

ω(G) <
1
6
(n log n)1/2,
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since otherwise Lemma 2.6 completes the proof: we simply choose H to be two

independent vertices. By the remark following (6), we can find an independent

3-set W0 ⊂ V (G) in G. Define G1 = G−W0 and n1 = |G1| = n−3. We have that

ω(G1) ≤ ω(G) <
1
6
(n log n)1/2 <

1
3
(n1 log n1)1/2.

Hence we can find an independent 3-set W1 in G1. Define G2 = G1 − W1 and

n2 = |G2| = n − 6. In this fashion we obtain G = G0 ⊃ G1 ⊃ · · · ⊃ Gt

with Wi = V (Gi) \ V (Gi+1) an independent 3-set in Gi, 0 ≤ i ≤ t − 1, and

ni = |Gi| = n − 3i for all i. We claim that if t < n/5, and hence nt > 2n/5, we

can still continue the process. Indeed

ω(Gt) ≤ ω(G) <
1
6
(n log n)1/2 <

1
6
((5nt/2) log n)1/2 <

1
3
(nt log nt)1/2,

and again we know that there is an independent 3-set in Gt. Thus we find s =

dn/5e pairwise disjoint independent 3-sets W0, . . . ,Ws−1 in G. Set H to be the

subgraph of G induced by the union of these Wi. Then |H| = 3s and χ(H) ≤ s

and hence |H|− 2χ(H) ≥ s = dn/5e. Therefore an application of Lemma 2.6 with

this H completes the proof of (7).

Finally, given a large enough h, if G is a graph with γ(G) ≥ h then (7) tells

us that
|G| ≥ 2h +

1
6
(|G| log |G|)1/2

> 2h +
1

3
√

2
(h log h)1/2,

which completes the proof of (8), since trivially νs(h) ≥ ν1(h) for all s and h.

We conclude this section by remarking the following. In Theorem 2.2, our

approach in the search for graphs G with large γ(G) is rather crude in the sense

that we guarantee a large χ(G) simply by taking a G with α(G) = 2. Indeed,

by (6), we must have a large clique in such a G and this forces γ(G) down. However,

Theorem 2.7 tells us that this simple approach gives us in fact a reasonable bound.
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§2.4. The main construction and the asymptotic upper bound

Our aim in this section is to introduce a new class of graphs in order to prove our

upper bound (1) for νs(h). We shall make use of the following two operations.

Given two graphs G and H, let us define their (categorical〉) product G×H as the

graph on V (G)× V (H) whose edges are

E(G×H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) and h1h2 ∈ E(H)} .

Also, we define their ∗-product G ∗H as the graph on V (G)× V (H) whose edges

are
E(G ∗H) = {(g1, h1)(g2, h2) : either g1 = g2 and h1h2 ∈ E(H)

or g1g2 ∈ E(G) and h1 = h2}.
In the last section we considered the graphs Jr, as their chromatic numbers are

large and their clique numbers small. The reason χ(Jr) is large is that α(Jr) = 2

or, in other words, their complement Gr = Jc
r is triangle-free. The point of

considering the ∗-product is that G ∗ H is triangle-free if both G and H are.

Moreover, the independence number of G ∗H is trivially at most |H|α(G). Thus,

if H is triangle-free,

γ [(Gr ∗H)c] = χ [(Gr ∗H)c]− ω [(Gr ∗H)c]

≥ |H||Gr|/2− |H|α(Gr)

= (1/2− o(1))|Gr ∗H|,

as r → ∞, by (3). Thus, if we can find a triangle-free H for which Gr ∗H is the

complement of a square, say of F 2, then we shall have a good upper bound for

ν2(γ(F 2)), namely, |F 2| = (2 + o(1))γ(F 2).

Let us define two families of graphs. First, for each q and r ≥ 1, we denote

by Gr,q the graph whose vertices are the 0–1 sequences of length (2q + 1)r + 1,

two of them being adjacent iff they differ in at least 2qr + 1 coordinates. Thus,

for instance, we have Gr,1 = Gr = Jc
r . Secondly, for each k ≥ 1 and ` ≥ 0, set

m = (2` + 1)k + 2 and denote the cycle of order m by Cm; we define Hk,` as

the graph whose vertices are the vertices of Cm, two of them being adjacent in
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our Hk,` iff their distance in Cm is at least `k+1. Note that in Hk,` the neighbours

of a vertex h are the farthest k + 1 points from h in Cm.

It is easy to check that Gr,q is triangle-free for all q and r ≥ 1. Moreover,

Theorem 2.3 gives us the following upper bound for α(Gr,q) = ω(Gc
r,q).

Lemma 2.8. Let q ≥ 1 be fixed and set

ηq =
(

(2q + 1)2q+1

qq(q + 1)q+1

)1/(2q+1)

.

Then, for sufficiently large r,

ω(Gc
r,q) <

1
2
η(2q+1)r+1

q .

For all r and k ≥ 1 and s ≥ 2, let us set

Fr,k,s = Gr,bs/2c ×Hk,b(s−1)/2c.

As usual, a graph with no edges is said to be empty ; we denote the empty graph

of order m by Em. For any graph G, we note that G ∗ Em is simply the disjoint

union of m copies of G. We are now ready to state our key result.

Theorem 2.9. Let r, k ≥ 1 and s ≥ 2. Set q = bs/2c, ` = b(s − 1)/2c and

m = |Hk,`| = (2` + 1)k + 2. Then

(Fr,k,s)
s =

{
(Gr,q ∗ Em)c if s is even

(Gr,q ∗Hk,`)
c

if s is odd.

Theorem 2.9, whose proof is given in the next section, implies the promised

upper bound for νs(h).

Corollary 2.10. Let s ≥ 2 be fixed, q = bs/2c and ηq as defined in Lemma 2.8.

Moreover, set ε0 = ε0(s) = 1 − (log ηq)/ log 2 > 0 and Cs = 4 + s2s+1. Then for

sufficiently large h

νs(h) < 2h + Csh
1/(1+ε0). (9)

Proof. Fix an h and s ≥ 2. We shall assume throughout the proof that h is large

enough; it will be clear that our inequalities hold if h ≥ h0 for some absolute
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constant h0. We shall choose suitable parameters r and k for which F = Fr,k,s

shows that (9) holds.

First, let r ≥ 1 be the minimal integer such that setting n = (2q + 1)r + 1 we

have

2n ≥ h1/(1+ε0). (10)

Now put ` = b(s − 1)/2c and let k ≥ 1 be the minimal integer such that setting

m = (2` + 1)k + 2 we have

m ≥ 21−nh
(
1 + 2(2h)−ε0/(1+ε0)

)
. (11)

Claim. We have

γ [(Fr,k,s)
s] ≥ |(Fr,k,s)

s| /2−mω(Gc
r,q) > h (12)

and

|(Fr,k,s)s| = 2nm < 2h + Csh
1/(1+ε0). (13)

Note that the claim above proves (9); it now remains to check (12) and (13).

Let us start with (12). We first note that Gr,q (r, q ≥ 1) and Hk,` (k, ` ≥
1) are triangle-free (see Lemmas 2.12(i) and 2.13(i)), and hence so are Gr,q ∗
Em and Gr,q ∗ Hk,`. Therefore, by Theorem 2.9, we have that α [(Fr,k,s)

s] =

2 and so χ [(Fr,k,s)
s] ≥ |(Fr,k,s)

s| /2. Secondly, since Gr,q ∗ Em is a spanning

subgraph of Gr,q ∗Hk,`, we trivially have that ω [(Gr,q ∗ Em)c] = α (Gr,q ∗ Em) ≥
α (Gr,q ∗Hk,`) = ω [(Gr,q ∗Hk,`)

c]. Theorem 2.9 then tells us that

ω [(Fr,k,s)
s] ≤ ω [(Gr,q ∗ Em)c]

≤ mω
(
Gc

r,q

)
.

Furthermore, by the definition of ε0 and Lemma 2.8, we know that

ω
(
Gc

r,q

)
< ηn

q /2 = 2n−1(2n)−ε0 .

Hence, by (10) and (11),

γ [(Fr,k,s)
s] = χ [(Fr,k,s)

s]− ω [(Fr,k,s)
s]
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≥ |(Fr,k,s)
s| /2−mω(Gc

r,q)

> m2n−1
(
1− (2n)−ε0

)

≥ h
(
1 + 2(2h)−ε0/(1+ε0)

) (
1− (2n)−ε0

)

≥ h

(
1 +

21/(1+ε0)

hε0/(1+ε0)

)(
1− 1

hε0/(1+ε0)

)

> h,

proving (12).

Inequality (13) follows from the choices of r and k. Indeed, we first note that

by the minimality of r

2n < 22q+1h1/(1+ε0).

By the minimality of k, we have that

(m− (2` + 1))2n < 2h
(
1 + 2(2h)−ε0/(1+ε0)

)
.

Thus
m2n < 2h + 2(2h)1/(1+ε0) + (2` + 1)22q+1h1/(1+ε0)

< 2h + 4h1/(1+ε0) + s2s+1h1/(1+ε0)

= 2h + Csh
1/(1+ε0),

completing the proof of the claim and hence establishing our result.

We now remark that (9) trivially improves some upper bounds for certain

functions mentioned in [30]. Let us recall the following two definitions given in

the introduction. Given s ≥ 1 and h ≥ 0, set

ms(h) = max {m ∈ N : for any graph G, |E(G)| < m implies γs(G) < h}

and

δs(h) = max {n ∈ N : for any graph G, |G| < n + ωs(G) implies γs(G) < h} .

It has been known [30] that for h ≥ 3 one has m2(h) ≤ 13h2 and δ2(h) ≤ 3h.

Moreover, for s ≥ 3,

ms(h) ≤
{

(3s + 1)h2 − 2 if s is odd
(3s + 4)h2 if s is even,

and
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δs(h) ≤
{

s(h + 1) if s is odd
(s + 1)(h + 1)− 1 if s is even.

Corollary 2.10 immediately gives us the following bounds.

Corollary 2.11. Let s be fixed and Cs and ε0 = ε0(s) as in Corollary 2.10. Then

for sufficiently large h

ms(h) ≤
(

νs(h)
2

)

< 2h2 + 3Csh
(2+ε0)/(1+ε0)

and

δs(h) ≤ νs(h) < 2h + Csh
1/(1+ε0)

§2.5. Proof of the key result

In this section we prove Theorem 2.9 . We shall need the following two lemmas

about walks in the graphs Gr,q and Hk,`.

Lemma 2.12. For any r ≥ 1 and q ≥ 1 the following conditions hold.

(i) Any odd closed walk in Gr,q has length at least 2q + 3.

(ii) Let g and g′ be nonadjacent vertices in Gr,q. Then they are connected by a

walk of length 2q. If they are furthermore distinct then they are also connected

by a walk of length 2q + 1.

Proof. (i) Assume g1, g2, . . . , g2j+1 is a walk in Gr,q with j ≤ q. We claim that g1

is not adjacent to g2j+1. Indeed, for i = 1, 2, . . . , 2j we have d(gi, gi+1) ≥ 2qr+1, so

gi and gi+1 agree at no more than r coordinates. Therefore, for i = 1, 2, . . . , 2j−1,

d(gi, gi+2) ≤ 2r,

since if gi and gi+2 disagree at a coordinate j, say, then gi+1 agrees at j either

with gi or else with gi+2. Hence

d (g1, g2j+1) ≤ 2jr ≤ 2qr,
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and g1 is not adjacent to g2j+1 concluding the proof of (i).

(ii) If g and g′ are two nonadjacent vertices in Gr,q then d(g, g′) ≤ 2qr by

definition. Let us construct a walk of length 2q from g to g′. Let C be the set of

coordinates on which g and g′ disagree. Since the cardinality of C is at most 2qr

we can write

C = C1 ∪ C2 ∪ · · · ∪ C2q,

where the Ci are pairwise disjoint and satisfy

0 ≤ |Ci| ≤ r

for all i. Let us consider the walk g = g0, g1, . . . , g2q in Gr,q defined by the condition

that Ci is the set of coordinates on which gi−1 and gi agree. It is easy to check

that g2q = g′, and so we have found the required g–g′ walk.

We now assume that g 6= g′. To find a walk of length 2q + 1 joining g to g′

it is enough to find g′′ adjacent to g′ but not adjacent to g. In order to construct

such a sequence g′′ put D to be a set of coordinates of cardinality r +1 containing

at least one coordinate at which g and g′ disagree. Now let g′′ be equal to g at

each coordinate in D and different from g′ at each coordinate outside D.

The sequence g′′ is not adjacent to g since they can only differ on coordinates

not in D, and so d(g, g′′) ≤ 2qr. On the other hand g′′ differs from g′ on each

coordinate outside D and on at least one coordinate in D, hence d(g′, g′′) ≥ 2qr+1

and so g′′ is adjacent to g′.

Lemma 2.13. For any k ≥ 1 and ` ≥ 0 the following conditions hold.

(i) Any odd closed walk in Hk,` has length at least 2` + 3.

(ii) Let h and h′ be two distinct vertices in Hk,`. Then they are connected both by

a walk of length 2`+1 and by a walk of length 2`+2. If they are furthermore

nonadjacent, then they are also connected by a walk of length 2`

Proof. Let h0 be a fixed vertex of Hk,`. Let Ui be the set of the 2ik + 1 nearest

vertices to h0 in Cm, m = (2` + 1)k + 2, i = 1, . . . , ` (see Fig. 1).
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U1︸ ︷︷ ︸... U2

...



︷︷



... Ui
...︷︷

U`

Fig. 1. The sets Ui in Cm

Note that the complement of U` is the set of vertices adjacent to h0.

It is easy to check that U1 is the set of vertices h of Hk,` such that there is a

walk of length 2 from h0 to h. By induction, Ui is the set of vertices connected to

h0 by a walk of length 2i. So U` is the set of vertices h for which there is a walk

of length 2` from h0 to h.

Since h0 is not adjacent to any vertex of U` there are no walks of length 2`+1

from h0 to itself. This concludes the proof of (i).

It can be easily seen that h0 is the only vertex of Hk,` not adjacent to any

vertex in U`. Hence there is a walk of length 2` + 1 from h0 to any other vertex

of Hk,`. To show that there is a walk of length 2`+2 from h0 to any other vertex h1

of Hk,` let us consider any vertex h2 adjacent to h1 and different from h0 (clearly

h2 exists since the degree of each vertex in Hk,` is at least 2). We know that there

is a walk of length 2` + 1 from h0 to h2 and, since h2 is adjacent to h1, there is a

walk of length 2` + 2 from h0 to h1.

To finish our proof, it is enough to show that if h1 is not adjacent to h0, then

there is a walk of length 2` between them. But this follows from the fact that the
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set of vertices nonadjacent to h0 is U`. Indeed, as remarked above, U` is precisely

the set of vertices connected to h0 by walks of length 2`.

We are now ready to prove Theorem 2.9. Let us once and for all fix r and k ≥
1. We shall analyse the cases s even and s odd separately. For s ≥ 2 even, we

have to prove that

(Fr,k,s)s = (Gr,q ∗ Em)c , (14)

where s = 2q = 2` + 2 and m = (2` + 1)k + 2. On the other hand, for s ≥ 3 odd

we have to prove that

(Fr,k,s)s = (Gr,q ∗Hk,`)
c
, (15)

where s = 2q + 1 = 2` + 1.

Proof of (14). Let us fix an even s ≥ 2 and let q and ` satisfy s = 2q = 2` + 2.

By definition we have

Fr,k,s = Gr,q ×Hk,`.

Let (g1, h1), (g2, h2) be any pair of distinct vertices of Fr,k,s. To prove (14), we

have to show that if g1g2 ∈ E(Gr,q) and h1 = h2 then there are no (g1, h1)–

(g2, h2) walks of length at most s in Fr,k,s. Furthermore, we have to show that

there is such a walk otherwise.

Let us consider the following three cases. We want to show the nonexistence

of our short (g1, h1)–(g2, h2) walk in the first case, and its existence in the last two

cases.

Case 1. g1g2 ∈ E(Gr,q) and h1 = h2.

Let us assume that there is a (g1, h1)–(g2, h2) walk W of length t ≤ s in Fr,k,s.

If t is odd then, by projecting W onto the second coordinate, we get an odd closed

walk of length t ≤ 2` + 1 in Hk,`, contradicting Lemma 2.13(i). On the other

hand, if t is even then, by projecting W onto the first coordinate, we get an even

g1–g2 walk of length t ≤ 2q in Gr,q. Since g1g2 ∈ E(Gr,q) we obtain an odd closed

walk of length t + 1 ≤ 2q + 1 in Gr,q, contradicting Lemma 2.12(i).
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Case 2. g1g2 ∈ E(Gr,q) and h1 6= h2.

By Lemma 2.13(ii), there is a h1–h2 walk of length 2` + 1 ≤ s in Hk,`. Since

g1g2 ∈ E(Gr,q) there clearly is a g1–g2 walk of length 2` + 1 in Gr,q (in fact of

any odd length). Let W be the sequence of vertices of Fr,k,s whose projection

onto the first and the second coordinates are the above walks in Gr,q and in Hk,`.

Clearly W is a (g1, h1)–(g2, h2) walk in Fr,k,s and, since its length is 2` + 1 ≤ s,

the proof of this case is finished.

Case 3. g1g2 /∈ E(Gr,q).

As we have seen above, it is enough to show the existence of two suitable walks

of the same length t ≤ s, say, one connecting g1 to g2 in Gr,q and the other h1

to h2 in Hk,`. Here we can take t = s = 2q = 2` + 2. Indeed, the existence of the

required walk in Gr,q follows from Lemma 2.12(ii). To get a suitable walk in Hk,`

we apply Lemma 2.13(ii) if h1 6= h2 and if, on the other hand, h1 = h2 then we

simply note that s is even and that Hk,` has no isolated vertices.

Proof of (15). Let us fix an odd s ≥ 3 and let q and ` satisfy s = 2q + 1 = 2` + 1.

Let (g1, h1) and (g2, h2) be any pair of distinct vertices of Fr,k,s. To prove (15)

we have to show that if either h1 = h2 and g1g2 ∈ E(Gr,q) or else g1 = g2 and

h1h2 ∈ E(Hk,`), then there are no (g1, h1)–(g2, h2) walks in Fr,k,s of length at

most s. Moreover we also need to show that otherwise there is such a walk.

Let us consider four cases. We shall prove the nonexistence of the appropriate

walks in the first two cases and their existence in the last two.

Case 1. g1g2 ∈ E(Gr,q) and h1 = h2.

This is similar to the Case 1 of the proof of (14). The existence of a (g1, h1)–

(g2, h2) walk of length at most s in Fr,k,s requires either that there should be an

odd closed walk of length at most s = 2` + 1 in Hk,` or else that there should be

an odd closed walk of length at most s + 1 = 2q + 2 in Gr,q. By Lemmas 2.12(i)
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and 2.13(i), neither of the above walks can exist.

Case 2. h1h2 ∈ E(Hk,`) and g1 = g2.

If there is a (g1, h1)–(g2, h2) walk of length t ≤ s in Fr,k,s, then either there is an

odd closed walk of length at most s = 2q + 1 in Gr,q or else there is an odd closed

walk of length at most s + 1 = 2` + 2 in Hk,`, contradicting either Lemma 2.12(i)

or 2.13(i).

Case 3. g1 6= g2 and h1 6= h2.

We can get a (g1, h1)–(g2, h2) walk of length s = 2q + 1 = 2` + 1 in Fr,k,s by

combining apropriate walks in Gr,q and in Hk,`. If g1 is not adjacent to g2 then

the required walk in Gr,q exists by Lemma 2.12(ii), otherwise its existence is

obvious (since s is odd). The existence of a suitable walk in Hk,` follows from

Lemma 2.13(ii).

Case 4. Either g1 = g2 and h1h2 /∈ E(Hk,`) or else h1 = h2 and g1g2 /∈ E(Gr,q).

Now we combine appropriate walks of length s − 1 = 2q = 2` from Gr,q and

from Hk,`. Their existence is either obvious (in the case their endpoints are equal)

or follows from Lemmas 2.12(ii) and 2.13(ii).
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§2.6. Concluding remarks

Although we have managed to estimate νs(h) quite accurately, some interesting

questions concerning the function es(h) = νs(h) − 2h remain. Our results show

that for large enough h

1
3
√

2
(h log h)1/2 < es(h) < h1−εs (16)

where εs > 0 depends only on s. What is clearly unsatisfactory is that the lower

bound does not depend on s. Also, the exponent of h in the upper bound is rather

close to one, and in fact by our methods εs → 0 as s → ∞. It is natural to ask

whether es(h) = O(h1−ε) for some ε > 0 independent of s.

Our proof of the upper bound in (16) is entirely constructive, and the question

whether one can do better by probabilistic techniques naturally arises. Let us make

the following remark, where for the sake of simplicity we restrict our attention to

the case s = 2. It turns out that ε2 in (16) can be taken close to 1/2, provided

there exists a triangle-free graph G of order n, diameter 2, and with α(G) = O(nc)

for some c close to 1/2. Indeed, the proof of (14) (or of the claim in the proof of

Theorem 2.1) implies that G ∗ Ek+2, k ≥ 1, is the complement of a square. By

straightforward computations as in the proof of Corollary 2.10, one then gets an

improvement of the upper bound in (16), if c is not much larger than 1/2.
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