
CHAPTER 1

A LOWER BOUND FOR SNAKE-IN-THE-BOX CODES

§1.1. Introduction

Given a natural number d, let the d-dimensional cube I[d] be the graph defined as

follows. Let the vertex set of I[d] be the set of all d-tuples of binary digits, and for

vertices x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) of I[d], let (x, y) be an edge

of I[d] if x and y differ in exactly one coordinate.

Let G1 and G2 be graphs. We say that G1 is an induced subgraph of G2 if G1

is a subgraph of G2, and if for every pair of vertices x and y of G1 such that (x, y)

is an edge of G2, (x, y) is also an edge of G1.

A snake-in-the-box code, or a snake, is an induced cycle in I[d] for a certain

integer d. For each d ∈ N, let S(d) be the length of the longest snake in I[d].

Snakes were introduced by Kautz [37] as a type of error-checking code for

a certain analogue-to-digital conversion system. Consider the following problem.

We want to encode the position of a rotating wheel using ordered d-tuples of binary

digits in such a way that a small error resulting in changing one digit does little

harm. Thus, we would like to partition the circle which is the boundary of the

wheel into many segments of equal length, assigning a d-tuple of binary digits to

each of them so that the following conditions are satisfied:

(i) different d-tuples are assigned to different segments,

(ii) if a d-tuple x is assigned to a segment A, then any d-tuple differing in one
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coordinate from x is either assigned to one of the neighbours of A or is not

assigned to any segment at all, thus allowing the error to be detected.

Ideally then, we would use a snake of length S(d) for the encoding. Clearly, we then

want to bound S(d) from below (preferably by giving an explicit construction).

Let us first review the lower bounds for S(d) that have already been obtained.

Kautz [37] showed that

S(d) ≥ λ
√

2d.

This bound was later improved by Ramanujacharyulu and Menon [46], who proved

that

S(d) ≥ (3/2)d,

whilst Brown (unpublished, quoted by Danzer and Klee [15]) and Singleton [51]

got

S(d) ≥ λ( 4
√

6)d.

Abbott [1] obtained

S(d) ≥ λ(
√

5/2)d,

and later Vasil’ev [58] showed that

S(d) ≥ 2d

d
when d is a power of 2,

and further,

S(d) ≥ (1− ε(d))
2d−1

d
with ε(d) → 0 as d →∞.

Finally, Danzer and Klee [15] proved that

S(d) ≥ 2d+1

d
when d is a power of 2,

and

S(d) ≥ 7
4

2d

d− 1
for all d ≥ 5.

In this chapter we shall prove a linear lower bound for S(d), namely

S(d) ≥ 9
64

2d;

see also [60].
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§1.2. The Main Lemma

Our aim in this section is to state and prove Lemma 1.3, which will provide a

construction of long snakes, leading to the proof of the lower bound stated in the

introduction to this chapter.

Let us first introduce some notation. If F is a subgraph of I[d], then let us

denote by F (0) the subgraph of I[d + 1] obtained as the image of F under the

embedding

ψ0 : I[d] → I[d + 1]

such that

ψ0[(v1, . . . , vd)] = (v1, . . . , vd, 0).

Analogously, let F (1) be the image of F under

ψ1 : I[d] → I[d + 1]

such that

ψ1[(v1, . . . , vd)] = (v1, . . . , vd, 1).

For each d ≥ 2, let

Rd : [2d + 1, 2d+1] → [2d]

be the order reversing bijection, i.e. let

Rd(i) = 2d+1 + 1− i.

Now, for each d ≥ 2, we shall define a function

Hd : [2d] → V (I[d])

such that if

Hd = (Hd(1), . . . , Hd(2d),Hd(1)),

then Hd is a Hamiltonian cycle in I[d]. Set

H2 = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),
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and

Hd+1(i) =
{

(Hd(i))(0) if 1 ≤ i ≤ 2d,
(Hd ◦Rd(i))(1) if 2d + 1 ≤ i ≤ 2d+1.

(1)

In other words, Hd+1 is obtained by taking Hd
(0)

and Hd
(1)

, removing the edges

connecting their last vertices with their first vertices, joining the first vertex of

Hd
(0)

with the first vertex of Hd
(1)

, and analogously the last with the last.

The Hamiltonian cycle Hd will be used later to construct a snake in I[d + i]

for a certain integer i, so we are interested in describing when an edge of I[d] is

not an edge of Hd. The following lemma gives such a description in an inductive

way.

Lemma 1.1. For each d ≥ 2, if 1 ≤ i < j ≤ 2d+1 and

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]) \ E(Hd+1),

then exactly one of the following conditions holds:

(i) 1 ≤ i < j ≤ 2d, (i, j) 6= (1, 2d) and (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd),

(ii) i = 1 and j = 2d,

(iii) 2d + 1 ≤ i < j ≤ 2d+1, (i, j) 6= (2d + 1, 2d+1) and (Hd ◦ Rd(i),Hd ◦ Rd(j)) ∈
E(I[d]) \ E(Hd),

(iv) i = 2d + 1 and j = 2d+1,

(v) 2 ≤ i ≤ 2d − 1 and i = Rd(j).

Proof. It is obvious that the conditions (i)–(v) are mutually exclusive, so assuming

that

(Hd+1(i),Hd+1(j)) ∈ E(i[d + 1]) \ E(Hd+1),

it is enough to show that one of them is satisfied. If the last coordinates of Hd+1(i)

and Hd+1(j) are both equal to 0, then by (1) we have 1 ≤ i < j ≤ 2d. If (ii) does

not hold, then it follows from (i) that (Hd(i),Hd(j)) is not an edge of Hd and thus

(i) is satisfied.

13



e1
1

a1

e2
1

•

e1
2

a2 e2
2•

e1
3 a3 e2

3
b1 • • • b2

e1
4 a4

e2
4

•
e1
5

a5

e2
5

•

Fig. 1. The graph G

If the last coordinates of Hd+1(i) and Hd+1(j) are both equal to 1, then (1)

above implies that 2d + 1 ≤ i < j ≤ 2d+1; similarly as above we conclude that

either (iii) or (iv) is satisfied.

The remaining case to consider is when the last coordinate of Hd+1(i) is equal

to 0 and the last coordinate of Hd+1(j) is equal to 1. Then it follows from (1) that

1 ≤ i ≤ 2d and 2d + 1 ≤ j ≤ 2d+1. Since

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]),

Hd+1(i) and Hd+1(j) differ only at the last coordinate, and thus (1) implies that

Hd(i) = Hd ◦Rd(j).

Since Hd is a bijection, we have i = Rd(j), and because

(Hd+1(i),Hd+1(j)) 6∈ E(Hd+1),

we get 2 ≤ i ≤ 2d − 1. Thus (v) is satisfied, and the lemma is proved.

Let G be the complete bipartite graph K2,5, with the vertex set A∪B where

A = {a1, . . . , a5} and B = {b1, b2}, and the edge set E1 ∪ E2 where E1 = {e1
i =

(ai, b1) : 1 ≤ i ≤ 5} and E2 = {e2
i = (ai, b2) : 1 ≤ i ≤ 5} (see Fig. 1).
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We shall use the graph G in our construction of a snake. In order to present

the construction, let us introduce some operations on the set of edges of G. Let

S5 be the set of permutations on the set [1, 5]. Given a permutation σ ∈ S5, let

ϕσ and ϕ+
σ be permutations on the set of edges of G such that we have

ϕσ(ej
i ) = ej

σ(i),

and

ϕ+
σ (ej

i ) = e3−j
σ(i),

for i = 1, . . . , 5 and j = 1, 2. Note that ϕσ permutes the edges in E1 and E2 by

permuting their endpoints belonging to A according to σ, and ϕ+
σ also transposes

their endpoints belonging to B. Therefore, for each e, e′ ∈ E(G) and σ ∈ S5, the

edges e and e′ have the same number of vertices in common as the edges ϕσ(e) and

ϕσ(e′), and the same as the edges ϕ+
σ (e) and ϕ+

σ (e′). If e and e′ have one vertex

in common, then it belongs to A if and only if the common vertex of ϕσ(e) and

ϕσ(e′) belongs to A, and if and only if the common vertex of ϕ+
σ (e) and ϕ+

σ (e′)

belongs to A.

Let us consider the following permutations of the set [1, 5].

σ1 = (3 5),

σ2 = (1 3)(2 4 5),

σ3 = (1 2)(4 5).

We have the folowing lemma.

Lemma 1.2. For each e ∈ E(G) the edges ϕσ1(e) and ϕ+
σ2

(e) are vertex–disjoint,

and the edges ϕσ1(e) and ϕ+
σ3

(e) are vertex–disjoint.

Proof. By symmetry it is enough to prove the lemma for e ∈ E1. The following
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table shows all possible cases:

e ϕσ1(e) ϕ+
σ2

(e) ϕ+
σ3

(e)

e1
1 e1

1 e2
3 e2

2

e1
2 e1

2 e2
4 e2

1

e1
3 e1

5 e2
1 e2

3

e1
4 e1

4 e2
5 e2

5

e1
5 e1

3 e2
2 e2

4

It is clear that in every row of the above table the edge in the second column is

vertex disjoint from the edges in both the third and fourth columns. Thus the

lemma is proved.

Now we can state our key lemma. We claim in it the existence, for each

d ≥ 2, of a closed walk of length 2d in G which will provide a construction of long

snakes. We shall ‘combine’ our walk with the cycle Hd in an appropriate way.

The walk will start from a vertex belonging to the set {a1, . . . , a5}, will not use

any edge twice in turn and will possess the following property with respect to the

Hamiltonian cycle Hd; if we regard this walk and the Hamiltonian cycle Hd as

sequences of length 2d, the walk as a sequence of edges, and Hd as a sequence of

vertices, then any two edges corresponding to two nonconsecutive vertices of Hd

which are neighbours in I[d] will be vertex–disjoint.

Lemma 1.3. For every d ≥ 2 there is a function Φd : [2d] → E(G) such that

(i) if 1 ≤ i ≤ 2d − 1, j = i + 1, or i = 2d, j = 1, then Φd(i) and Φd(j) have

exactly one vertex in common, and

(ii) if (Hd(i),Hd(j)) ∈ E(I[d]) \E(Hd), then Φd(i) and Φd(j) are vertex disjoint.

Proof. To prove the lemma we shall use induction on d, and we shall prove a

statement which is stronger than the lemma itself. We shall show that there are

functions

Φk,l
d : [2d] → E(G)
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for each d ≥ 2, and

(k, l) ∈ I = {(1, 1), (1, 3), (1, 4), (2, 3), (2, 4)}

such that each of the following conditions holds:

(2) Φk,l
d (1) = e1

k and Φk,l
d (2d) = e2

l ,

(3) if 1 ≤ i ≤ 2d − 1, then Φk,l
d (i) and Φk,l

d (i + 1) have exactly one vertex vi in

common such that vi ∈ A for i even and vi ∈ B for i odd,

(4) if 2 ≤ i ≤ 2d − 1 and (k, l) 6= (1, 1) 6= (k′, l′), then Φk,l
d (i) = Φk′,l′

d (i),

(5) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then Φk,l
d (i) and Φk,l

d (j) are vertex–

disjoint.

In other words, the function Φk,l
d will describe a walk in G starting from the

vertex ak and the edge e1
k, ending in the edge e2

l and the vertex al, and having

all the properties we require for the walk described by the function Φd, i.e. it

will not use any edge twice in turn, and any of its edges corresponding to two

nonconsecutive vertices of Hd which are neighbours in I[d] will be vertex–disjoint.

Also, given d ≥ 2, all the walks described by Φk,l
d , for (k, l) ∈ I \{(1, 1)}, will differ

only at the first and the last vertices.

The construction of such functions will complete the proof of Lemma 1.3

because if we set Φd = Φ1,1
d , then (ii) will follow from (5), and (i) will follow from

(2) and (3).

Set

(Φk,l
2 (1), Φk,l

2 (2), Φk,l
2 (3),Φk,l

2 (4)) = (e1
k, e1

5, e
2
5, e

2
l ).

If (k, l) 6= (1, 1), then let

Φk,l
d+1(i) =

{
ϕσ1 ◦ Φk,3

d (i) if 1 ≤ i ≤ 2d,

ϕ+
σ2
◦ Φσ−1

2 (l),4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

and set

Φ1,1
d+1(i) =

{
ϕσ1 ◦ Φ1,3

d (i) if 1 ≤ i ≤ 2d,
ϕ+

σ3
◦ Φ2,4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

where Rd is the order reversing bijection.
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In the inductive construction given above, the walk w corresponding to Φk,l
d+1,

(k, l) 6= (1, 1), is obtained from the walks w1 and w2 described by Φk,3
d and

Φσ−1
2 (l),4

d . To obtain w, we permute the edges of w1 with ϕσ1 , and the edges

of w2 with ϕ+
σ2

, getting w′1 and w′2; then we reverse the order of edges of w′2,

getting w′′2 , and finally we identify the last vertex of w′1 with the first vertex of

w′′2 .

It can be checked directly that for d = 2 conditions (2)–(5) are satisfied.

Given d ≥ 2, let us assume that conditions (2)–(5) are satisfied for d. We shall

prove that they are satisfied for d + 1.

Proof of Condition (2). If (k, l) ∈ I \ {(1, 1)}, then

Φk,l
d+1(1) = ϕσ1 ◦ Φk,3

d (1) = ϕσ1(e
1
k) = e1

k,

and

Φk,l
d+1(2

d+1) = ϕ+
σ2
◦ Φσ−1

2 (l),4

d ◦Rd(2d+1) = ϕ+
σ2
◦ Φσ−1

2 (l),4

d (1) = ϕ+
σ2

(e1
σ−1
2 (l)

) = e2
l .

For (k, l) = (1, 1) we have

Φ1,1
d+1(1) = ϕσ1 ◦ Φ1,3

d (1) = ϕσ1(e
1
1) = e1

1,

and

Φ1,1
d+1(2

d+1) = ϕ+
σ3
◦ Φ2,4

d ◦Rd(2d+1) = ϕ+
σ3
◦ Φ2,4

d (1) = ϕ+
σ3

(e1
2) = e2

1.

Thus condition (2) is satisfied for d + 1.

Proof of Condition (3). We have to show that if 1 ≤ i ≤ 2d+1 − 1, then Φk,l
d+1(i)

and Φk,l
d+1(i+1) have exactly one vertex in common, which belongs to A for i even

and to B for i odd. If i 6= 2d, then condition (3) follows from condition (3) of

the induction hypothesis and the definition of the permutations ϕσ and ϕ+
σ , for

σ ∈ S5. If i = 2d and (k, l) 6= (1, 1), then the edges

Φk,l
d+1(2

d) = ϕσ1 ◦ Φk,3
d (2d) = ϕσ1(e

2
3) = e2

5, (6)
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and

Φk,l
d+1(i+1) = ϕ+

σ2
◦Φσ−1

2 (l),4

d ◦Rd(2d+1) = ϕ+
σ2
◦Φσ−1

2 (l),4

d (2d) = ϕ+
σ2

(e2
4) = e1

5, (7)

have the vertex a5 in common, so (3) holds. For (k, l) = (1, 1), the edges

Φ1,1
d+1(i) = ϕσ1 ◦ Φ1,3

d (2d) = ϕσ1(e
2
3) = e2

5, (8)

and

Φ1,1
d+1(i + 1) = ϕ+

σ3
◦ Φ2,4

d ◦Rd(2d + 1) = ϕ+
σ3
◦ Φ2,4

d (2d) = ϕ+
σ3

(e2
4) = e1

5, (9)

have the vertex a5 in common also. Thus condition (3) is satisfied for d + 1.

Proof of Condition (4). We have to show that if 2 ≤ i ≤ 2d+1 − 1 and (k, l) 6=
(1, 1) 6= (k′, l′) then Φk,l

d+1(i) = Φk′,l′

d+1(i). If 2d 6= i 6= 2d + 1, then this follows from

condition (4) of the induction hypothesis; otherwise by (6)

Φk,l
d+1(2

d) = e2
5 = Φk′,l′

d+1(2d),

and by (7)

Φk,l
d+1(2

d + 1) = e1
5 = Φk′,l′

d+1(2d + 1).

Thus condition (4) is satisfied for d + 1.

Proof of Condition (5). Let us fix i < j such that

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]) \ E(Hd+1).

We have to show that for each (k, l) ∈ I, Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

First let us assume that (k, l) 6= (1, 1). By our assumption about i and j, we

can apply Lemma 1.1. If condition (i) of Lemma 1.1 is satisfied, then by condition

(5) of the induction hypothesis, Φk,3
d (i) and Φk,3

d (j) are vertex–disjoint. By the

definition of ϕσ and ϕ+
σ , for σ ∈ S5, we conclude that Φk,l

d+1(i) and Φk,l
d+1(j) are

vertex–disjoint.
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If condition (iii) of Lemma 1.1 holds, then by condition (5) of the induction hy-

pothesis, Φσ−1
2 (l),4

d (Rd(i)) and Φσ−1
2 (l),4

d (Rd(j)) are vertex disjoint. So analogously

to the above we conclude that Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

If condition (ii) of Lemma 1.1 holds, then i = 1 and j = 2d. By condition (2),

we have

Φk,l
d+1(1) = e1

k,

and by (6),

Φk,l
d+1(2

d) = e2
5.

If condition (iv) of Lemma 1.1 holds, then i = 2d + 1 and j = 2d+1. By (7) we

have

Φk,l
d+1(i) = e1

5,

and by condition (2),

Φk,l
d+1(j) = e2

l .

In both cases the required edges are vertex–disjoint.

Assume now that condition (v) of Lemma 1.1 holds. By condition (4) of the

induction hypothesis, we have

Φk,3
d (i) = Φσ−1

2 (l),4

d (i) = e,

for some e ∈ E(G). Hence

Φk,l
d+1(i) = ϕσ1 ◦ Φk,3

d (i) = ϕσ1(e),

and

Φk,l
d+1(j) = ϕ+

σ2
◦ Φσ−1

2 (l),4

d ◦Rd(j) = ϕ+
σ2

(e).

By Lemma 1.2, the edges Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

If (k, l) = (1, 1), then the argument is exactly the same as above. We use the

condition (5) of the induction hypotesis for Φ1,3
d (i) and Φ1,3

d (j) when condition (i)

of Lemma 1.1 is satisfied, and for Φ2,4
d (Rd(i)) and Φ2,4

d (Rd(j)) when condition (iii)

of Lemma 1.1 is satisfied.
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If condition (ii) of Lemma 1.1 is satisfied, then i = 1 and j = 2d. By condition

(2) we have

Φ1,1
d+1(i) = e1

1,

and by (8),

Φ1,1
d+1(j) = e2

5.

If condition (iv) of Lemma 1.1 is satisfied, then i = 2d + 1 and j = 2d+1. By

(9) we have

Φ1,1
d+1(i) = e2

1,

and by condition (2),

Φ1,1
d+1(j) = e1

5.

In both cases we get vertex–disjoint edges.

Finally, if condition (v) of Lemma 1.1 is satisfied, then by the condition (4)

of the induction hypothesis we have

Φ1,1
d+1(i) = ϕσ1(e),

and

Φ1,1
d+1(j) = ϕ+

σ3
(e),

for a certain edge e ∈ E(G). By Lemma 1.2, the edges Φ1,1
d+1(i) and Φ1,1

d+1(j) are

vertex–disjoint, and the proof of the lemma is finished.
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§1.3. The Lower Bound

In this section we are going to give a construction of long snakes Cd in I[d], for

d ≥ 7, which will allow us to prove the main result of this chapter, Theorem

1.6. The construction of Cd+5, for d ≥ 2, will combine the Hamiltonian cycle

Hd defined in Section 1.2 and a sequence of induced paths P d
i = (v1

i , v2
i , . . . , vri

i ),

i = 1, . . . , 2d, in I[5], which will be defined in this section. In the sequel, given d,

if either 1 ≤ i ≤ 2d − 1 and j = i + 1, or i = 2d and j = 1, then we shall say that

j is the successor of i. The paths P d
i , 1 ≤ i ≤ 2d will satisfy the following two

conditions:

(10) if j is the successor of i, then the paths P d
i and P d

j have exactly the vertex

vri
i = v1

j in common,

(11) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then the paths P d
i and P d

j are vertex–

disjoint.

Let us first assume that the induced paths P d
i , i = 1, . . . , 2d, satisfying conditions

(10) and (11) are given. Let us regard I[d + 5] as I[d] × I[5]. To construct the

induced cycle Cd+5 in I[d+5], we consider I[d+5] as the d-dimensional cube I[d],

with each vertex being a copy of I[5]. Let us take the path P d
j in the copy of I[5]

corresponding to the vertex Hd(j) in I[d], j = 1, . . . , 2d; see Figure 2 for the case

d = 3 where the edges of the Hamiltonian cycle Hd are denoted by bolder lines.

Then, let us join the vertex vri
i from the i-th copy of I[5] with the vertex v1

j from

the jth copy of I[5] for all i, j ∈ {1, . . . , 2d}, such that j is a successor of i. Hence,

we have

Cd+5 =
((

Hd(1), v1
1

)
,
(
Hd(1), v2

1

)
, . . . ,

(
Hd(1), vr1

1

)
,

(
Hd(2), v1

2

)
,
(
Hd(2), v2

2

)
, . . . ,

(
Hd(2), vr2

2

)
,

...
(
Hd(2d), v1

2d

)
,
(
Hd(2d), v2

2d

)
, . . . ,

(
Hd(2d), vr2d

2d

)
,
(
Hd(1), v1

1

))
.

Clearly Cd+5 is a cycle. The following lemma states that it is an induced cycle in

I[d + 5].
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Fig. 2. The cycle C8

Lemma 1.4. For every d ≥ 2, the cycle Cd+5 is an induced subgraph of I[d + 5].

Proof. Assume that

(
(Hd(i), vk

i ), (Hd(j), v`
j)

) ∈ E(I[d + 5]). (12)

To prove the lemma we shall show that

(
(Hd(i), vk

i ), (Hd(j), v`
j)

) ∈ E(Cd+5). (13)

Indeed, by (12) we have either Hd(i) = Hd(j) or vk
i = v`

j . If Hd(i) = Hd(j), then

since Hd is an injection, we have i = j. It also follows from (12) that vk
i and v`

j

are neighbours in I[5]. Since the path P d
i = P d

j is an induced graph in I[5], we

have

(vk
i , v`

j) ∈ E(P d
i ).

Thus, (13) follows from the definition of Cd+5.
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If vk
i = v`

j , then it follows from (12) that Hd(i) and Hd(j) are neighbours in

I[d]. For supposing that

(Hd(i),Hd(j)) 6∈ E(Hd),

we get

(Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd),

which contradicts (11). Thus

(Hd(i),Hd(j)) ∈ E(Hd),

and we may assume that j is the successor of i. By (10), we have k = ri and ` = 1,

so (13) follows from the definition of Cd+5. Thus the lemma is proved.

Now we shall define the induced paths P d
i , i = 1, . . . , 2d, satisfying conditions

(10) and (11). We shall use the graph G defined in Section 1.2 and the function

Φd from Lemma 1.3. First let us define the following subdivision G′ of G. Let G′

be obtained by subdividing the edge e1
k of G with two new vertices c1

k and c2
k in

such a way that we get the path (b1, c
1
k, c2

k, ak), and subdividing the edge e2
k of G

with three new vertices c4
k, c5

k and c6
k, giving rise to the path (ak, c4

k, c5
k, c6

k, b2), for

each k ≤ 5. To have a uniform notation, set c3
k = ak. Let

ξ : V [G′] → V (I[5])

be the injection defined as follows. Set

ξ(b1) = (0, 0, 0, 0, 0),

ξ(c1
1) = (1, 0, 0, 0, 0),

ξ(c2
1) = (1, 1, 0, 0, 0),

ξ(c3
1) = (1, 1, 0, 1, 0),

ξ(c4
1) = (0, 1, 0, 1, 0),

ξ(c5
1) = (0, 1, 1, 1, 0),

ξ(c6
1) = (0, 1, 1, 1, 1),

ξ(b2) = (1, 1, 1, 1, 1).
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To obtain the image of ξ on cj
k, 2 ≤ k ≤ 5, 1 ≤ j ≤ 6, we shall apply a cyclic

permutation on the coordinates of the image of cj
1, namely if ξ(ci

1) = (α1, . . . , α5),

then let

ξ(ci
k) = (αk, . . . , α5, α1, . . . , αk−1).

Let the path P d
i , i = 1, . . . , 2d, be the image under ξ of the path of G′ which

is the subdivision of the edge Φd(i), where Φd is the function whose existence is

claimed in Lemma 1.3. Thus, if Φd(i) = (ak, b1), 1 ≤ k ≤ 5, then we have

P d
i = (ξ(b1), ξ(c1

k), ξ(c2
k), ξ(c3

k)),

and if Φd(i) = (ak, b2), 1 ≤ k ≤ 5, then we have

P d
i = (ξ(c3

k), ξ(c4
k), ξ(c5

k), ξ(c6
k), ξ(b2)).

We can now prove the following lemma.

Lemma 1.5. Given d ≥ 2, the paths P d
i , 1 ≤ i ≤ 2d, are induced graphs in I[d]

and they satisfy conditions (10) and (11) above.

Proof. Assume that Φd(i) = (a1, b1). Then P d
i is equal to the following path:

(
(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 0, 1, 0)

)
(14)

which is clearly an induced path in I[5]. Similarly if Φd(i) = (a1, b2), then P d
i is

equal to the folowing path:

(
(1, 1, 0, 1, 0), (0, 1, 0, 1, 0), (0, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)

)
(15)

which is also an induced path in I[5].

If Φd(i) = (ak, b`), 2 ≤ k ≤ 5 and 1 ≤ ` ≤ 2, then it follows from the definition

of ξ that P d
i is obtained either from the path (14) or from (15) after applying a

certain cyclic permutation on the coordinates of each vertex. Since both the paths

(14) and (15) are induced in I[5], then P d
i is also an induced path in I[5].
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Note that to prove conditions (10) and (11), it is enough to show that for every

i, j = 1, . . . , 2d if the edge Φd(i) has one common vertex with the edge Φd(j), then

the path P d
i has one common vertex with the path P d

j , and if the edges Φd(i)

and Φd(j) are vertex–disjoint then so are the paths P d
i and P d

j . Indeed having

established the above facts, condition (10) follows from Lemma 1.3(i) and condition

(11) follows from Lemma 1.3(ii).

Now we shall prove the above observation. Assume that 1 ≤ i, j ≤ 2d and

that Φd(i) has one common vertex with Φd(j). If this common vertex is a1 then

we can assume that Φd(i) = (a1, b1) and Φd(j) = (a1, b2). Then P d
i is equal to

the path (14) and P d
j is equal to the path (15). It is thus clear that P d

i and P d
j

have exactly the vertex (1, 1, 0, 1, 0) in common. If the common vertex of Φd(i)

and Φd(j) is ak, 2 ≤ k ≤ 5, then it follows from the definition of ξ that P d
i and

P d
j have only one vertex in common, which is obtained after a cyclic permutation

of the coordinates of the vertex (1, 1, 0, 1, 0).

If the common vertex of Φd(i) and Φd(j) is b1, then it follows from the def-

inition of ξ that the coordinates of each vertex of P d
i are obtained by a cyclic

permutation of the coordinates of the corresponding vertex of the path (14). The

same is true for the vertex P d
j , but the cyclic permutation that is applied is dif-

ferent. However, it is clear for every vertex of the path (14) except the first

(0, 0, 0, 0, 0), that two different cyclic permutations give different results. Thus P d
i

and P d
j have only the vertex (0, 0, 0, 0, 0) in common. Analogously, if the common

vertex of Φd(i) and Φd(j) is b2, then P d
i and P d

j have only the vertex (1, 1, 1, 1, 1)

in common.

Thus the lemma is proved.

Now we are ready to prove our main result of this chapter.

Theorem 1.6. For each d0 ≥ 2, the length S(d0) of the longest induced cycle in
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I[d0] satisfies

S(d0) ≥ 9
64

2d0 .

Proof. It is known (see [16], [27], [37]) that S(2) = 4, S(3) = 6, S(4) = 8,

S(5) = 14, S(6) = 26, so we can assume that d0 ≥ 7.

Let us fix d0 = d + 5, d ≥ 2. It is clear from the definition of the paths P d
i ,

1 ≤ i ≤ 2d, that the length of P d
i is 4 for i ≡ 1 or 2 mod 4, and the length of P d

i is

5 for i ≡ 3 or 0 mod 4. Thus it follows from the definition of Cd+5 that its length

is equal to

4 · 2d−1 + 5 · 2d−1 =
9
64

2d+5.

It follows from Lemma 1.4 that Cd+5 is an induced cycle in I[d + 5], so the proof

of the theorem is complete.

§1.4. Further Remarks

There is still a gap between the lower bound for the length of snake-in-the-box

codes proved in this chapter and the best known upper bound. This best upper

bound is due to Solov’jeva [54], who improved the following earlier bound of Deimer

[17]:

S(d) ≤ 2d−1 − 2d−1

d(d− 5) + 7
, for d ≥ 7.

by proving that

S(d) ≤ 2d−1(1− 2
d2 − d + 2

) for d ≥ 7.

We believe that the upper bound can be further improved to the form of c2d,

where c is a constant smaller than 1/2.

I was informed by the referees of [60] that the lower bound of the form λ2d

was first obtained by Evdokimov [25]. He showed that

S(d) ≥ 2−112d,
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but he stated that after certain changes in his construction, the constant λ can be

increased to 2−9S(8).

The idea of his proof is similar to that used in the present proof, in the sense

that the snake in I[d] = I[d − d0] × I[d0] (where d0 is a constant) is constructed

in such a way that its projection on I[d− d0] is a Hamiltonian cycle. However the

rest of the construction is quite different.

Glagolev and Evdokimov [33] proved a theorem about the chromatic number

of a certain infinite graph, and stated that it can be used to further increase the

constant λ so that λ ∈ ( 3
16 , 1

4 ). In addition, one of the referees of [60] informed me

also that in his dissertation, Evdokimov [26] proved that S(d) ≥ 0.26 · 2d.

Recently Abbot and Katchalski [2] found a completely different way of proving

a lower bound of the form λ2d. They use induction in a way resembling the proof

of Danzer and Klee [15], but they construct the so-called accessible snake, which

is a snake with some additional paths between its vertices, which allows them to

keep the induction going without decreasing the ratio of vertices used by the snake

(which could not be avoided in the proof of Danzer and Klee).

28


