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INTRODUCTION

Cycles are very simple combinatorial structures, yet there are many interesting

problems concerning them. The major part of this dissertation is concerned with

problems about cycles.

One very natural question about cycles goes as follows: given a graph G, what

is the length of the longest induced cycle in G? In Chapter 1 we deal with this

question when G is the d-dimensional hypercube (also called the cube). Since the

vertices of the d-dimensional cube can be considered as d-tuples of binary digits,

a long induced cycle in the d-dimensional cube can be applied as a type of error-

checking code as explained in the introduction to Chapter 1 (see also Kautz [37]).

The main result of Chapter 1 is a very natural explicit construction of an induced

cycle of length (9/64)2d in the d-dimensional cube.

The first lower bound for the maximal possible length of an induced cycle

in the d-dimensional cube was given by Kautz [37]. He proved that such cycles

can have length greater than λ
√

2d, where λ is a constant. This bound was later

improved many times leading eventually to the bound given by Danzer and Klee

[15], who proved the lower bound 2d+1/d when d is a power of 2, and (7/4)2d/(d−1)

for all d ≥ 5. The best upper bound at present is 2d−1(1 − 2/(d2 − d + 2)) for

d ≥ 7, given by Solov’jeva [54].

We improve the bound of Danzer and Klee by giving a construction that

can be outlined as follows. We regard the d-dimensional cube I[d] as the (d −
5)-dimensional cube with vertices being copies of the 5-dimensional cube. Our

induced cycle visits every vertex of the (d − 5)-dimensional cube exactly once,

thus it is an ‘expansion’ of a Hamiltonian cycle in I[d−5]. The Hamiltonian cycle
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in I[d−5] is constructed by induction in a way that allows us to give an exact and

simple characterization of the pairs of vertices of I[d− 5] which are connected by

an edge but are not consecutive in the cycle. This is crucial since for each such

pair (x, y) the ‘expansion’ of the Hamiltonian cycle in I[d− 5] to an induced cycle

in I[d] cannot use the same vertex of I[5] in both of its copies corresponding to

the vertices x and y.

Having constructed the Hamiltonian cycle in I[d−5] and having characterized

the ‘bad’ edges of I[d−5], we embed a certain subdivision of the complete bipartite

graph K2,5 into I[5]. To construct our ‘expansion’ of the Hamiltonian cycle, we

use at each copy of I[5] one of the paths obtained as the images of the edges of

K2,5.

In Chapter 2, which presents joint work with Yoshiharu Kohayakawa, we

consider the following colouring problem. Let an integer s ≥ 1 and a graph G be

given. Let us denote by χs(G) the smallest integer χ for which there exists a vertex-

colouring of G with χ colours such that any two distinct vertices of the same colour

are at distance greater than s. Note that χ1(G) is the usual chromatic number

of G, and hence χs(G) is a very natural generalization of χ1(G). Let us denote

by ωs(G) the maximal cardinality of a subset of the vertices of G with diameter at

most s. Clearly χs(G) ≥ ωs(G). For s ≥ 1 and h ≥ 0 set γs(G) = χs(G)− ωs(G)

and

νs(h) = max {n ∈ N : for any graph G, |G| < n implies γs(G) < h} .

Gionfriddo [30] has given estimates for νs(h). We improve the recent bound

ν2(h) ≤ 6h (h ≥ 3) of Gionfriddo and Milici [31] to ν2(h) ≤ 5h (h ≥ 3). More gen-

erally, we give the following tight bounds for arbitrary s ≥ 1 and large enough h :

2h +
1

3
√

2
(h log h)1/2 ≤ νs(h) ≤ 2h + h1−εs ,

where εs > 0 depends only on s. The upper bound is proved entirely by construc-

tive methods.
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In Chapter 3 we consider a problem concerning colourings of cycles. Before we

state the problem let us present some background. In 1963 Ringel [47] conjectured

that for any natural number n and any tree T with n edges, the complete graph

K2n+1 could be decomposed into 2n + 1 subgraphs isomorphic to the tree T .

Later Kotzig (reported by Rosa [48]) strengthened Ringel’s conjecture by adding a

condition of cyclic symmetry on the decomposition. This Ringel-Kotzig conjecture

remains open, and so does its weaker version due to Ringel.

In connection with the Ringel-Kotzig conjecture, Rosa [48] studied four classes

of labellings of graphs, i.e. assignments of natural numbers to their vertices and

edges satisfying the condition that the label of an edge is the absolute value of

the difference of the labels of its end-points. Showing that one of Rosa’s classes

of labellings could be used to label all trees would prove the Ringel-Kotzig conjec-

ture. The smallest class of Rosa’s labellings for which it is still unknown whether

they can be used to label all trees is the class of β-labellings, also called graceful

labellings. The condition for a labelling of a graph with n edges to be graceful is

that the labels of its vertices should be distinct elements of the set [0, n] ⊂ N and

that the labels of its edges should be distinct elements of [1, n] ⊂ N.

Since the conjecture whether all trees can be labelled gracefully has proved

to be very difficult, Bloom [10] defined an analogous notion, namely that of min-

imally k-equitable labellings of graphs, where k is a natural number. A labelling

of a graph on n vertices is minimally k-equitable if the labels of vertices are dis-

tinct elements of [1, n] ⊂ N and every edge label occurs either k-times or does

not occur at all. Thus for trees graceful labellings are essentially equivalent to

minimally 1-equitable labellings. Bloom was mainly interested in minimally k-

equitable labellings of cycles. The obvious necessary condition for the cycle Cn to

have a minimally k-equitable labelling is that k should be a proper divisor of n

(i.e. different from 1 and n).

Bloom [10] has asked whether this simple necessary divisibility condition is

in fact sufficient. In Chapter 3 we answer Bloom’s question in the positive. The
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proof we give is constructive. We consider three cases; k odd, k ≡ 2 mod 4, and

k ≡ 0 mod 4. In each case the proof goes by induction on m = n/k. When

performing our construction we look into the problem from a different point of

view. Instead of trying to label the vertices of the cycle Cn, we try to build a cycle

on the vertex-set {1, 2, . . . , n} using edges of k different lengths, where the length

of an edge is the absolute value of its end-points. This approach proves to be very

useful.

We start from a simple observation that for k odd and n = 2k, it is enough

to connect i with i + k, i = 1, 2, . . . , k and j with j + 1, j = 1, 3, 5, . . . , 2k− 1. We

give a similar but a bit more complicated construction for n = mk, m = 3, 4, 5.

Then we apply induction. In the inductive step we subdivide edges of a certain

length in such a way that we get edges of two different lengths (k edges of each)

and also different from the lengths of other edges. In each of the two remaining

cases the proof is analogous; they differ only in the first step of the construction.

In Chapter 4 we consider a problem concerned with an ‘opened’ coloured

cycle, i.e. a coloured path. Assume that the vertices of a path N are coloured with

the integers 1, 2, . . . , t. We shall call such a path N an opened t-coloured necklace.

Suppose we want to cut only a small number of edges of our necklace and use the

obtained segments to partition the set of vertices of N into k classes such that,

for each colour i, the vertices of colour i are partitioned evenly between them. Let

us call such a partition a k-splitting and let its size be the minimal number of cuts

required to obtain it. The problem of calculating the size of a k-splitting has some

applications to VLSI circuit design, as noted by Bhatt and Leiserson [9] and Bhatt

and Leighton [8].

If the vertices of each colour are consecutive in N , then for any k-splitting of

N , each segment of vertices of one colour must be cut at k−1 points at least. Thus

any k-splitting of N has size at least t(k−1). Goldberg and West [34] proved that

this trivial lower bound is also an upper bound for 2-splittings, and they posed

a question about the general case of arbitrary k. Alon and West [5] conjectured
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that t(k−1) is an upper bound on the size of k-splittings for any k and t. Alon [4]

proved this conjecture. His proof uses many techniques from algebraic topology.

In Chapter 4 we present a different, more combinatorial, proof of Alon’s result

using a theorem from algebraic topology only as a starting point. In our proof,

the main tool is a new very natural generalization of the Borsuk-Ulam antipodal

theorem which says that for any continuous map h : Sm → Rm, there is a point

x ∈ Sm such that h(x) = h(−x).

To formulate our generalization we first define a generalization Sm(p−1)
p of

the m-dimensional `1-sphere Sm = Sm
2 , for any prime number p. If we think of

the set R of reals as two half-lines with a common end-point 0, then its natural

generalization is the set R+,p of p half-lines having a common end-point (we denote

it also by 0). In analogy to Sm
2 being the set of points of Rm+1 which are at

distance 1 from the point (0, 0, . . . , 0) ∈ Rm+1, we define Sm(p−1)
p as the set of

points of Rm(p−1)+1
+,p = (R+,p)

m(p−1)+1 which are at distance 1 from (0, 0, . . . , 0) ∈
Rm(p−1)+1

+,p .

As an analogue of the antipodal map on Sm
2 , we have a very natural free

Zp-action ω on Sm(p−1)
p . Note that the antipodal map swaps the two half-lines

in every coordinate of x ∈ Sm
2 ; in the general case we define ω to permute the

half-lines cyclicly in every coordinate. Our generalization of the Borsuk-Ulam

antipodal theorem says that for any continuous map

h : Sm(p−1)
p → Rm

there is a point x ∈ Sm(p−1)
p such that

h(x) = h(ω(x)) = . . . = h(ωp−1(x)).

This theorem easily implies Alon’s result.

In Chapter 5 we again consider a problem connected with the Borsuk-Ulam

antipodal theorem. Bajmóczy and Bárány [6] proved that if ∆ is the closure

of an (n + 1)-dimensional simplex and f : ∆ → Rn is a continuous map, then
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there are two disjoint faces of ∆ whose images intersect. Since the Borsuk-Ulam

theorem says that for any continuous map h : Sn → Rn there exists x ∈ Sn with

h(x) = h(−x), to prove the Bajmóczy-Bárány theorem it is enough to show that

there is a continuous map g : Sn → ∆ such that for every x ∈ Sn the supports of

g(x) and g(−x) are disjoint. In Chapter 5 we give a very natural construction of

such a function g.

Finally, in Chapter 6 we present a simple observation allowing us to give a

positive answer to a question posed by Sen, Das, Roy and West [50]. They asked

whether each digraph can be represented as an intersection digraph of convex sets

in two dimensional Euclidean space. Sen, Das, Roy and West defined intersection

digraphs as digraphs with ordered pairs of sets assigned to vertices, where −→uv is a

directed edge when the ‘source set’ of u intersects the ‘terminal set’ of v.
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CHAPTER 1

A LOWER BOUND FOR SNAKE-IN-THE-BOX CODES

§1.1. Introduction

Given a natural number d, let the d-dimensional cube I[d] be the graph defined as

follows. Let the vertex set of I[d] be the set of all d-tuples of binary digits, and for

vertices x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) of I[d], let (x, y) be an edge

of I[d] if x and y differ in exactly one coordinate.

Let G1 and G2 be graphs. We say that G1 is an induced subgraph of G2 if G1

is a subgraph of G2, and if for every pair of vertices x and y of G1 such that (x, y)

is an edge of G2, (x, y) is also an edge of G1.

A snake-in-the-box code, or a snake, is an induced cycle in I[d] for a certain

integer d. For each d ∈ N, let S(d) be the length of the longest snake in I[d].

Snakes were introduced by Kautz [37] as a type of error-checking code for

a certain analogue-to-digital conversion system. Consider the following problem.

We want to encode the position of a rotating wheel using ordered d-tuples of binary

digits in such a way that a small error resulting in changing one digit does little

harm. Thus, we would like to partition the circle which is the boundary of the

wheel into many segments of equal length, assigning a d-tuple of binary digits to

each of them so that the following conditions are satisfied:

(i) different d-tuples are assigned to different segments,

(ii) if a d-tuple x is assigned to a segment A, then any d-tuple differing in one
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coordinate from x is either assigned to one of the neighbours of A or is not

assigned to any segment at all, thus allowing the error to be detected.

Ideally then, we would use a snake of length S(d) for the encoding. Clearly, we then

want to bound S(d) from below (preferably by giving an explicit construction).

Let us first review the lower bounds for S(d) that have already been obtained.

Kautz [37] showed that

S(d) ≥ λ
√

2d.

This bound was later improved by Ramanujacharyulu and Menon [46], who proved

that

S(d) ≥ (3/2)d,

whilst Brown (unpublished, quoted by Danzer and Klee [15]) and Singleton [51]

got

S(d) ≥ λ( 4
√

6)d.

Abbott [1] obtained

S(d) ≥ λ(
√

5/2)d,

and later Vasil’ev [58] showed that

S(d) ≥ 2d

d
when d is a power of 2,

and further,

S(d) ≥ (1− ε(d))
2d−1

d
with ε(d) → 0 as d →∞.

Finally, Danzer and Klee [15] proved that

S(d) ≥ 2d+1

d
when d is a power of 2,

and

S(d) ≥ 7
4

2d

d− 1
for all d ≥ 5.

In this chapter we shall prove a linear lower bound for S(d), namely

S(d) ≥ 9
64

2d;

see also [60].
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§1.2. The Main Lemma

Our aim in this section is to state and prove Lemma 1.3, which will provide a

construction of long snakes, leading to the proof of the lower bound stated in the

introduction to this chapter.

Let us first introduce some notation. If F is a subgraph of I[d], then let us

denote by F (0) the subgraph of I[d + 1] obtained as the image of F under the

embedding

ψ0 : I[d] → I[d + 1]

such that

ψ0[(v1, . . . , vd)] = (v1, . . . , vd, 0).

Analogously, let F (1) be the image of F under

ψ1 : I[d] → I[d + 1]

such that

ψ1[(v1, . . . , vd)] = (v1, . . . , vd, 1).

For each d ≥ 2, let

Rd : [2d + 1, 2d+1] → [2d]

be the order reversing bijection, i.e. let

Rd(i) = 2d+1 + 1− i.

Now, for each d ≥ 2, we shall define a function

Hd : [2d] → V (I[d])

such that if

Hd = (Hd(1), . . . , Hd(2d),Hd(1)),

then Hd is a Hamiltonian cycle in I[d]. Set

H2 = ((0, 0), (0, 1), (1, 1), (1, 0), (0, 0)),
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and

Hd+1(i) =
{

(Hd(i))(0) if 1 ≤ i ≤ 2d,
(Hd ◦Rd(i))(1) if 2d + 1 ≤ i ≤ 2d+1.

(1)

In other words, Hd+1 is obtained by taking Hd
(0)

and Hd
(1)

, removing the edges

connecting their last vertices with their first vertices, joining the first vertex of

Hd
(0)

with the first vertex of Hd
(1)

, and analogously the last with the last.

The Hamiltonian cycle Hd will be used later to construct a snake in I[d + i]

for a certain integer i, so we are interested in describing when an edge of I[d] is

not an edge of Hd. The following lemma gives such a description in an inductive

way.

Lemma 1.1. For each d ≥ 2, if 1 ≤ i < j ≤ 2d+1 and

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]) \ E(Hd+1),

then exactly one of the following conditions holds:

(i) 1 ≤ i < j ≤ 2d, (i, j) 6= (1, 2d) and (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd),

(ii) i = 1 and j = 2d,

(iii) 2d + 1 ≤ i < j ≤ 2d+1, (i, j) 6= (2d + 1, 2d+1) and (Hd ◦ Rd(i),Hd ◦ Rd(j)) ∈
E(I[d]) \ E(Hd),

(iv) i = 2d + 1 and j = 2d+1,

(v) 2 ≤ i ≤ 2d − 1 and i = Rd(j).

Proof. It is obvious that the conditions (i)–(v) are mutually exclusive, so assuming

that

(Hd+1(i),Hd+1(j)) ∈ E(i[d + 1]) \ E(Hd+1),

it is enough to show that one of them is satisfied. If the last coordinates of Hd+1(i)

and Hd+1(j) are both equal to 0, then by (1) we have 1 ≤ i < j ≤ 2d. If (ii) does

not hold, then it follows from (i) that (Hd(i),Hd(j)) is not an edge of Hd and thus

(i) is satisfied.
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Fig. 1. The graph G

If the last coordinates of Hd+1(i) and Hd+1(j) are both equal to 1, then (1)

above implies that 2d + 1 ≤ i < j ≤ 2d+1; similarly as above we conclude that

either (iii) or (iv) is satisfied.

The remaining case to consider is when the last coordinate of Hd+1(i) is equal

to 0 and the last coordinate of Hd+1(j) is equal to 1. Then it follows from (1) that

1 ≤ i ≤ 2d and 2d + 1 ≤ j ≤ 2d+1. Since

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]),

Hd+1(i) and Hd+1(j) differ only at the last coordinate, and thus (1) implies that

Hd(i) = Hd ◦Rd(j).

Since Hd is a bijection, we have i = Rd(j), and because

(Hd+1(i),Hd+1(j)) 6∈ E(Hd+1),

we get 2 ≤ i ≤ 2d − 1. Thus (v) is satisfied, and the lemma is proved.

Let G be the complete bipartite graph K2,5, with the vertex set A∪B where

A = {a1, . . . , a5} and B = {b1, b2}, and the edge set E1 ∪ E2 where E1 = {e1
i =

(ai, b1) : 1 ≤ i ≤ 5} and E2 = {e2
i = (ai, b2) : 1 ≤ i ≤ 5} (see Fig. 1).
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We shall use the graph G in our construction of a snake. In order to present

the construction, let us introduce some operations on the set of edges of G. Let

S5 be the set of permutations on the set [1, 5]. Given a permutation σ ∈ S5, let

ϕσ and ϕ+
σ be permutations on the set of edges of G such that we have

ϕσ(ej
i ) = ej

σ(i),

and

ϕ+
σ (ej

i ) = e3−j
σ(i),

for i = 1, . . . , 5 and j = 1, 2. Note that ϕσ permutes the edges in E1 and E2 by

permuting their endpoints belonging to A according to σ, and ϕ+
σ also transposes

their endpoints belonging to B. Therefore, for each e, e′ ∈ E(G) and σ ∈ S5, the

edges e and e′ have the same number of vertices in common as the edges ϕσ(e) and

ϕσ(e′), and the same as the edges ϕ+
σ (e) and ϕ+

σ (e′). If e and e′ have one vertex

in common, then it belongs to A if and only if the common vertex of ϕσ(e) and

ϕσ(e′) belongs to A, and if and only if the common vertex of ϕ+
σ (e) and ϕ+

σ (e′)

belongs to A.

Let us consider the following permutations of the set [1, 5].

σ1 = (3 5),

σ2 = (1 3)(2 4 5),

σ3 = (1 2)(4 5).

We have the folowing lemma.

Lemma 1.2. For each e ∈ E(G) the edges ϕσ1(e) and ϕ+
σ2

(e) are vertex–disjoint,

and the edges ϕσ1(e) and ϕ+
σ3

(e) are vertex–disjoint.

Proof. By symmetry it is enough to prove the lemma for e ∈ E1. The following
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table shows all possible cases:

e ϕσ1(e) ϕ+
σ2

(e) ϕ+
σ3

(e)

e1
1 e1

1 e2
3 e2

2

e1
2 e1

2 e2
4 e2

1

e1
3 e1

5 e2
1 e2

3

e1
4 e1

4 e2
5 e2

5

e1
5 e1

3 e2
2 e2

4

It is clear that in every row of the above table the edge in the second column is

vertex disjoint from the edges in both the third and fourth columns. Thus the

lemma is proved.

Now we can state our key lemma. We claim in it the existence, for each

d ≥ 2, of a closed walk of length 2d in G which will provide a construction of long

snakes. We shall ‘combine’ our walk with the cycle Hd in an appropriate way.

The walk will start from a vertex belonging to the set {a1, . . . , a5}, will not use

any edge twice in turn and will possess the following property with respect to the

Hamiltonian cycle Hd; if we regard this walk and the Hamiltonian cycle Hd as

sequences of length 2d, the walk as a sequence of edges, and Hd as a sequence of

vertices, then any two edges corresponding to two nonconsecutive vertices of Hd

which are neighbours in I[d] will be vertex–disjoint.

Lemma 1.3. For every d ≥ 2 there is a function Φd : [2d] → E(G) such that

(i) if 1 ≤ i ≤ 2d − 1, j = i + 1, or i = 2d, j = 1, then Φd(i) and Φd(j) have

exactly one vertex in common, and

(ii) if (Hd(i),Hd(j)) ∈ E(I[d]) \E(Hd), then Φd(i) and Φd(j) are vertex disjoint.

Proof. To prove the lemma we shall use induction on d, and we shall prove a

statement which is stronger than the lemma itself. We shall show that there are

functions

Φk,l
d : [2d] → E(G)
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for each d ≥ 2, and

(k, l) ∈ I = {(1, 1), (1, 3), (1, 4), (2, 3), (2, 4)}

such that each of the following conditions holds:

(2) Φk,l
d (1) = e1

k and Φk,l
d (2d) = e2

l ,

(3) if 1 ≤ i ≤ 2d − 1, then Φk,l
d (i) and Φk,l

d (i + 1) have exactly one vertex vi in

common such that vi ∈ A for i even and vi ∈ B for i odd,

(4) if 2 ≤ i ≤ 2d − 1 and (k, l) 6= (1, 1) 6= (k′, l′), then Φk,l
d (i) = Φk′,l′

d (i),

(5) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then Φk,l
d (i) and Φk,l

d (j) are vertex–

disjoint.

In other words, the function Φk,l
d will describe a walk in G starting from the

vertex ak and the edge e1
k, ending in the edge e2

l and the vertex al, and having

all the properties we require for the walk described by the function Φd, i.e. it

will not use any edge twice in turn, and any of its edges corresponding to two

nonconsecutive vertices of Hd which are neighbours in I[d] will be vertex–disjoint.

Also, given d ≥ 2, all the walks described by Φk,l
d , for (k, l) ∈ I \{(1, 1)}, will differ

only at the first and the last vertices.

The construction of such functions will complete the proof of Lemma 1.3

because if we set Φd = Φ1,1
d , then (ii) will follow from (5), and (i) will follow from

(2) and (3).

Set

(Φk,l
2 (1), Φk,l

2 (2), Φk,l
2 (3),Φk,l

2 (4)) = (e1
k, e1

5, e
2
5, e

2
l ).

If (k, l) 6= (1, 1), then let

Φk,l
d+1(i) =

{
ϕσ1 ◦ Φk,3

d (i) if 1 ≤ i ≤ 2d,

ϕ+
σ2
◦ Φσ−1

2 (l),4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

and set

Φ1,1
d+1(i) =

{
ϕσ1 ◦ Φ1,3

d (i) if 1 ≤ i ≤ 2d,
ϕ+

σ3
◦ Φ2,4

d ◦Rd(i) if 2d + 1 ≤ i ≤ 2d+1,

where Rd is the order reversing bijection.
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In the inductive construction given above, the walk w corresponding to Φk,l
d+1,

(k, l) 6= (1, 1), is obtained from the walks w1 and w2 described by Φk,3
d and

Φσ−1
2 (l),4

d . To obtain w, we permute the edges of w1 with ϕσ1 , and the edges

of w2 with ϕ+
σ2

, getting w′1 and w′2; then we reverse the order of edges of w′2,

getting w′′2 , and finally we identify the last vertex of w′1 with the first vertex of

w′′2 .

It can be checked directly that for d = 2 conditions (2)–(5) are satisfied.

Given d ≥ 2, let us assume that conditions (2)–(5) are satisfied for d. We shall

prove that they are satisfied for d + 1.

Proof of Condition (2). If (k, l) ∈ I \ {(1, 1)}, then

Φk,l
d+1(1) = ϕσ1 ◦ Φk,3

d (1) = ϕσ1(e
1
k) = e1

k,

and

Φk,l
d+1(2

d+1) = ϕ+
σ2
◦ Φσ−1

2 (l),4

d ◦Rd(2d+1) = ϕ+
σ2
◦ Φσ−1

2 (l),4

d (1) = ϕ+
σ2

(e1
σ−1
2 (l)

) = e2
l .

For (k, l) = (1, 1) we have

Φ1,1
d+1(1) = ϕσ1 ◦ Φ1,3

d (1) = ϕσ1(e
1
1) = e1

1,

and

Φ1,1
d+1(2

d+1) = ϕ+
σ3
◦ Φ2,4

d ◦Rd(2d+1) = ϕ+
σ3
◦ Φ2,4

d (1) = ϕ+
σ3

(e1
2) = e2

1.

Thus condition (2) is satisfied for d + 1.

Proof of Condition (3). We have to show that if 1 ≤ i ≤ 2d+1 − 1, then Φk,l
d+1(i)

and Φk,l
d+1(i+1) have exactly one vertex in common, which belongs to A for i even

and to B for i odd. If i 6= 2d, then condition (3) follows from condition (3) of

the induction hypothesis and the definition of the permutations ϕσ and ϕ+
σ , for

σ ∈ S5. If i = 2d and (k, l) 6= (1, 1), then the edges

Φk,l
d+1(2

d) = ϕσ1 ◦ Φk,3
d (2d) = ϕσ1(e

2
3) = e2

5, (6)
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and

Φk,l
d+1(i+1) = ϕ+

σ2
◦Φσ−1

2 (l),4

d ◦Rd(2d+1) = ϕ+
σ2
◦Φσ−1

2 (l),4

d (2d) = ϕ+
σ2

(e2
4) = e1

5, (7)

have the vertex a5 in common, so (3) holds. For (k, l) = (1, 1), the edges

Φ1,1
d+1(i) = ϕσ1 ◦ Φ1,3

d (2d) = ϕσ1(e
2
3) = e2

5, (8)

and

Φ1,1
d+1(i + 1) = ϕ+

σ3
◦ Φ2,4

d ◦Rd(2d + 1) = ϕ+
σ3
◦ Φ2,4

d (2d) = ϕ+
σ3

(e2
4) = e1

5, (9)

have the vertex a5 in common also. Thus condition (3) is satisfied for d + 1.

Proof of Condition (4). We have to show that if 2 ≤ i ≤ 2d+1 − 1 and (k, l) 6=
(1, 1) 6= (k′, l′) then Φk,l

d+1(i) = Φk′,l′

d+1(i). If 2d 6= i 6= 2d + 1, then this follows from

condition (4) of the induction hypothesis; otherwise by (6)

Φk,l
d+1(2

d) = e2
5 = Φk′,l′

d+1(2d),

and by (7)

Φk,l
d+1(2

d + 1) = e1
5 = Φk′,l′

d+1(2d + 1).

Thus condition (4) is satisfied for d + 1.

Proof of Condition (5). Let us fix i < j such that

(Hd+1(i),Hd+1(j)) ∈ E(I[d + 1]) \ E(Hd+1).

We have to show that for each (k, l) ∈ I, Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

First let us assume that (k, l) 6= (1, 1). By our assumption about i and j, we

can apply Lemma 1.1. If condition (i) of Lemma 1.1 is satisfied, then by condition

(5) of the induction hypothesis, Φk,3
d (i) and Φk,3

d (j) are vertex–disjoint. By the

definition of ϕσ and ϕ+
σ , for σ ∈ S5, we conclude that Φk,l

d+1(i) and Φk,l
d+1(j) are

vertex–disjoint.
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If condition (iii) of Lemma 1.1 holds, then by condition (5) of the induction hy-

pothesis, Φσ−1
2 (l),4

d (Rd(i)) and Φσ−1
2 (l),4

d (Rd(j)) are vertex disjoint. So analogously

to the above we conclude that Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

If condition (ii) of Lemma 1.1 holds, then i = 1 and j = 2d. By condition (2),

we have

Φk,l
d+1(1) = e1

k,

and by (6),

Φk,l
d+1(2

d) = e2
5.

If condition (iv) of Lemma 1.1 holds, then i = 2d + 1 and j = 2d+1. By (7) we

have

Φk,l
d+1(i) = e1

5,

and by condition (2),

Φk,l
d+1(j) = e2

l .

In both cases the required edges are vertex–disjoint.

Assume now that condition (v) of Lemma 1.1 holds. By condition (4) of the

induction hypothesis, we have

Φk,3
d (i) = Φσ−1

2 (l),4

d (i) = e,

for some e ∈ E(G). Hence

Φk,l
d+1(i) = ϕσ1 ◦ Φk,3

d (i) = ϕσ1(e),

and

Φk,l
d+1(j) = ϕ+

σ2
◦ Φσ−1

2 (l),4

d ◦Rd(j) = ϕ+
σ2

(e).

By Lemma 1.2, the edges Φk,l
d+1(i) and Φk,l

d+1(j) are vertex–disjoint.

If (k, l) = (1, 1), then the argument is exactly the same as above. We use the

condition (5) of the induction hypotesis for Φ1,3
d (i) and Φ1,3

d (j) when condition (i)

of Lemma 1.1 is satisfied, and for Φ2,4
d (Rd(i)) and Φ2,4

d (Rd(j)) when condition (iii)

of Lemma 1.1 is satisfied.
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If condition (ii) of Lemma 1.1 is satisfied, then i = 1 and j = 2d. By condition

(2) we have

Φ1,1
d+1(i) = e1

1,

and by (8),

Φ1,1
d+1(j) = e2

5.

If condition (iv) of Lemma 1.1 is satisfied, then i = 2d + 1 and j = 2d+1. By

(9) we have

Φ1,1
d+1(i) = e2

1,

and by condition (2),

Φ1,1
d+1(j) = e1

5.

In both cases we get vertex–disjoint edges.

Finally, if condition (v) of Lemma 1.1 is satisfied, then by the condition (4)

of the induction hypothesis we have

Φ1,1
d+1(i) = ϕσ1(e),

and

Φ1,1
d+1(j) = ϕ+

σ3
(e),

for a certain edge e ∈ E(G). By Lemma 1.2, the edges Φ1,1
d+1(i) and Φ1,1

d+1(j) are

vertex–disjoint, and the proof of the lemma is finished.
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§1.3. The Lower Bound

In this section we are going to give a construction of long snakes Cd in I[d], for

d ≥ 7, which will allow us to prove the main result of this chapter, Theorem

1.6. The construction of Cd+5, for d ≥ 2, will combine the Hamiltonian cycle

Hd defined in Section 1.2 and a sequence of induced paths P d
i = (v1

i , v2
i , . . . , vri

i ),

i = 1, . . . , 2d, in I[5], which will be defined in this section. In the sequel, given d,

if either 1 ≤ i ≤ 2d − 1 and j = i + 1, or i = 2d and j = 1, then we shall say that

j is the successor of i. The paths P d
i , 1 ≤ i ≤ 2d will satisfy the following two

conditions:

(10) if j is the successor of i, then the paths P d
i and P d

j have exactly the vertex

vri
i = v1

j in common,

(11) if (Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd), then the paths P d
i and P d

j are vertex–

disjoint.

Let us first assume that the induced paths P d
i , i = 1, . . . , 2d, satisfying conditions

(10) and (11) are given. Let us regard I[d + 5] as I[d] × I[5]. To construct the

induced cycle Cd+5 in I[d+5], we consider I[d+5] as the d-dimensional cube I[d],

with each vertex being a copy of I[5]. Let us take the path P d
j in the copy of I[5]

corresponding to the vertex Hd(j) in I[d], j = 1, . . . , 2d; see Figure 2 for the case

d = 3 where the edges of the Hamiltonian cycle Hd are denoted by bolder lines.

Then, let us join the vertex vri
i from the i-th copy of I[5] with the vertex v1

j from

the jth copy of I[5] for all i, j ∈ {1, . . . , 2d}, such that j is a successor of i. Hence,

we have

Cd+5 =
((

Hd(1), v1
1

)
,
(
Hd(1), v2

1

)
, . . . ,

(
Hd(1), vr1

1

)
,

(
Hd(2), v1

2

)
,
(
Hd(2), v2

2

)
, . . . ,

(
Hd(2), vr2

2

)
,

...
(
Hd(2d), v1

2d

)
,
(
Hd(2d), v2

2d

)
, . . . ,

(
Hd(2d), vr2d

2d

)
,
(
Hd(1), v1

1

))
.

Clearly Cd+5 is a cycle. The following lemma states that it is an induced cycle in

I[d + 5].
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v1
1 , . . . , vr1

1 v1
6 , . . . , vr6

6

v1
8 , . . . , vr8

8 v1
7 , . . . , vr7

7

v1
2 , . . . , vr2

2 v1
5 , . . . , vr5

5

v1
3 , . . . , vr3

3 v1
4 , . . . , vr4

4

Fig. 2. The cycle C8

Lemma 1.4. For every d ≥ 2, the cycle Cd+5 is an induced subgraph of I[d + 5].

Proof. Assume that

(
(Hd(i), vk

i ), (Hd(j), v`
j)

) ∈ E(I[d + 5]). (12)

To prove the lemma we shall show that

(
(Hd(i), vk

i ), (Hd(j), v`
j)

) ∈ E(Cd+5). (13)

Indeed, by (12) we have either Hd(i) = Hd(j) or vk
i = v`

j . If Hd(i) = Hd(j), then

since Hd is an injection, we have i = j. It also follows from (12) that vk
i and v`

j

are neighbours in I[5]. Since the path P d
i = P d

j is an induced graph in I[5], we

have

(vk
i , v`

j) ∈ E(P d
i ).

Thus, (13) follows from the definition of Cd+5.
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If vk
i = v`

j , then it follows from (12) that Hd(i) and Hd(j) are neighbours in

I[d]. For supposing that

(Hd(i),Hd(j)) 6∈ E(Hd),

we get

(Hd(i),Hd(j)) ∈ E(I[d]) \ E(Hd),

which contradicts (11). Thus

(Hd(i),Hd(j)) ∈ E(Hd),

and we may assume that j is the successor of i. By (10), we have k = ri and ` = 1,

so (13) follows from the definition of Cd+5. Thus the lemma is proved.

Now we shall define the induced paths P d
i , i = 1, . . . , 2d, satisfying conditions

(10) and (11). We shall use the graph G defined in Section 1.2 and the function

Φd from Lemma 1.3. First let us define the following subdivision G′ of G. Let G′

be obtained by subdividing the edge e1
k of G with two new vertices c1

k and c2
k in

such a way that we get the path (b1, c
1
k, c2

k, ak), and subdividing the edge e2
k of G

with three new vertices c4
k, c5

k and c6
k, giving rise to the path (ak, c4

k, c5
k, c6

k, b2), for

each k ≤ 5. To have a uniform notation, set c3
k = ak. Let

ξ : V [G′] → V (I[5])

be the injection defined as follows. Set

ξ(b1) = (0, 0, 0, 0, 0),

ξ(c1
1) = (1, 0, 0, 0, 0),

ξ(c2
1) = (1, 1, 0, 0, 0),

ξ(c3
1) = (1, 1, 0, 1, 0),

ξ(c4
1) = (0, 1, 0, 1, 0),

ξ(c5
1) = (0, 1, 1, 1, 0),

ξ(c6
1) = (0, 1, 1, 1, 1),

ξ(b2) = (1, 1, 1, 1, 1).
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To obtain the image of ξ on cj
k, 2 ≤ k ≤ 5, 1 ≤ j ≤ 6, we shall apply a cyclic

permutation on the coordinates of the image of cj
1, namely if ξ(ci

1) = (α1, . . . , α5),

then let

ξ(ci
k) = (αk, . . . , α5, α1, . . . , αk−1).

Let the path P d
i , i = 1, . . . , 2d, be the image under ξ of the path of G′ which

is the subdivision of the edge Φd(i), where Φd is the function whose existence is

claimed in Lemma 1.3. Thus, if Φd(i) = (ak, b1), 1 ≤ k ≤ 5, then we have

P d
i = (ξ(b1), ξ(c1

k), ξ(c2
k), ξ(c3

k)),

and if Φd(i) = (ak, b2), 1 ≤ k ≤ 5, then we have

P d
i = (ξ(c3

k), ξ(c4
k), ξ(c5

k), ξ(c6
k), ξ(b2)).

We can now prove the following lemma.

Lemma 1.5. Given d ≥ 2, the paths P d
i , 1 ≤ i ≤ 2d, are induced graphs in I[d]

and they satisfy conditions (10) and (11) above.

Proof. Assume that Φd(i) = (a1, b1). Then P d
i is equal to the following path:

(
(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (1, 1, 0, 0, 0), (1, 1, 0, 1, 0)

)
(14)

which is clearly an induced path in I[5]. Similarly if Φd(i) = (a1, b2), then P d
i is

equal to the folowing path:

(
(1, 1, 0, 1, 0), (0, 1, 0, 1, 0), (0, 1, 1, 1, 0), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)

)
(15)

which is also an induced path in I[5].

If Φd(i) = (ak, b`), 2 ≤ k ≤ 5 and 1 ≤ ` ≤ 2, then it follows from the definition

of ξ that P d
i is obtained either from the path (14) or from (15) after applying a

certain cyclic permutation on the coordinates of each vertex. Since both the paths

(14) and (15) are induced in I[5], then P d
i is also an induced path in I[5].
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Note that to prove conditions (10) and (11), it is enough to show that for every

i, j = 1, . . . , 2d if the edge Φd(i) has one common vertex with the edge Φd(j), then

the path P d
i has one common vertex with the path P d

j , and if the edges Φd(i)

and Φd(j) are vertex–disjoint then so are the paths P d
i and P d

j . Indeed having

established the above facts, condition (10) follows from Lemma 1.3(i) and condition

(11) follows from Lemma 1.3(ii).

Now we shall prove the above observation. Assume that 1 ≤ i, j ≤ 2d and

that Φd(i) has one common vertex with Φd(j). If this common vertex is a1 then

we can assume that Φd(i) = (a1, b1) and Φd(j) = (a1, b2). Then P d
i is equal to

the path (14) and P d
j is equal to the path (15). It is thus clear that P d

i and P d
j

have exactly the vertex (1, 1, 0, 1, 0) in common. If the common vertex of Φd(i)

and Φd(j) is ak, 2 ≤ k ≤ 5, then it follows from the definition of ξ that P d
i and

P d
j have only one vertex in common, which is obtained after a cyclic permutation

of the coordinates of the vertex (1, 1, 0, 1, 0).

If the common vertex of Φd(i) and Φd(j) is b1, then it follows from the def-

inition of ξ that the coordinates of each vertex of P d
i are obtained by a cyclic

permutation of the coordinates of the corresponding vertex of the path (14). The

same is true for the vertex P d
j , but the cyclic permutation that is applied is dif-

ferent. However, it is clear for every vertex of the path (14) except the first

(0, 0, 0, 0, 0), that two different cyclic permutations give different results. Thus P d
i

and P d
j have only the vertex (0, 0, 0, 0, 0) in common. Analogously, if the common

vertex of Φd(i) and Φd(j) is b2, then P d
i and P d

j have only the vertex (1, 1, 1, 1, 1)

in common.

Thus the lemma is proved.

Now we are ready to prove our main result of this chapter.

Theorem 1.6. For each d0 ≥ 2, the length S(d0) of the longest induced cycle in
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I[d0] satisfies

S(d0) ≥ 9
64

2d0 .

Proof. It is known (see [16], [27], [37]) that S(2) = 4, S(3) = 6, S(4) = 8,

S(5) = 14, S(6) = 26, so we can assume that d0 ≥ 7.

Let us fix d0 = d + 5, d ≥ 2. It is clear from the definition of the paths P d
i ,

1 ≤ i ≤ 2d, that the length of P d
i is 4 for i ≡ 1 or 2 mod 4, and the length of P d

i is

5 for i ≡ 3 or 0 mod 4. Thus it follows from the definition of Cd+5 that its length

is equal to

4 · 2d−1 + 5 · 2d−1 =
9
64

2d+5.

It follows from Lemma 1.4 that Cd+5 is an induced cycle in I[d + 5], so the proof

of the theorem is complete.

§1.4. Further Remarks

There is still a gap between the lower bound for the length of snake-in-the-box

codes proved in this chapter and the best known upper bound. This best upper

bound is due to Solov’jeva [54], who improved the following earlier bound of Deimer

[17]:

S(d) ≤ 2d−1 − 2d−1

d(d− 5) + 7
, for d ≥ 7.

by proving that

S(d) ≤ 2d−1(1− 2
d2 − d + 2

) for d ≥ 7.

We believe that the upper bound can be further improved to the form of c2d,

where c is a constant smaller than 1/2.

I was informed by the referees of [60] that the lower bound of the form λ2d

was first obtained by Evdokimov [25]. He showed that

S(d) ≥ 2−112d,
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but he stated that after certain changes in his construction, the constant λ can be

increased to 2−9S(8).

The idea of his proof is similar to that used in the present proof, in the sense

that the snake in I[d] = I[d − d0] × I[d0] (where d0 is a constant) is constructed

in such a way that its projection on I[d− d0] is a Hamiltonian cycle. However the

rest of the construction is quite different.

Glagolev and Evdokimov [33] proved a theorem about the chromatic number

of a certain infinite graph, and stated that it can be used to further increase the

constant λ so that λ ∈ ( 3
16 , 1

4 ). In addition, one of the referees of [60] informed me

also that in his dissertation, Evdokimov [26] proved that S(d) ≥ 0.26 · 2d.

Recently Abbot and Katchalski [2] found a completely different way of proving

a lower bound of the form λ2d. They use induction in a way resembling the proof

of Danzer and Klee [15], but they construct the so-called accessible snake, which

is a snake with some additional paths between its vertices, which allows them to

keep the induction going without decreasing the ratio of vertices used by the snake

(which could not be avoided in the proof of Danzer and Klee).
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CHAPTER 2

ON SMALL GRAPHS WITH HIGHLY IMPERFECT POWERS

§2.1. Introduction

A celebrated result first proved by Blanche Descartes (cf. [18] and [19]) is the ex-

istence of triangle-free graphs of arbitrarily high chromatic number. In particular,

there are graphs for which the difference h between their chromatic and clique

numbers is arbitrarily large. Supposing we want the order of these graphs to be

small with respect to h, we cannot hope to have graphs with O(h2) vertices if we

keep the requirement that the graphs should be triangle-free (see [11]). A rather

natural problem suggests itself: can we do any better without any assumption on

the clique number? In fact, this problem has been posed in the literature in the

following more general setting.

Let an integer s ≥ 1 and a graph G be given. A vertex-colouring of G is

said to be a proper Ls-colouring if any two distinct vertices of the same colour are

at a distance greater than s (see Chartrand, Geller and Hedetniemi [14], Kramer

and Kramer [41], [42] and Speranza [56]). Let us denote by χs(G) the smallest

integer χ such that there exists a proper Ls-colouring of G with χ colours. Let

us denote by ωs(G) the maximal cardinality of a subset of V (G) of diameter at

most s. Thus χ1(G) is the ordinary chromatic number of G and ω1(G) its ordinary

clique number. Clearly χs(G) ≥ ωs(G). The main question we shall study in this

chapter is the following problem raised by Gionfriddo and others ([30], [32]). If a
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graph G satisfies χs(G)− ωs(G) ≥ h, then how small can the order |G| of G be?

For s ≥ 1 and h ≥ 0, let us set γs(G) = χs(G)− ωs(G) and

νs(h) = max {n ∈ N : for any graph G, |G| < n implies γs(G) < h} .

We are then interested in estimating the function νs. As one would expect, the

exact value of νs(h) is known only for very few s and h. For instance, ν2(1) = 7

and ν2(2) = 11 are the only exact results for s = 2. Moreover, having established

that 15 ≤ ν2(3) ≤ 18, Gionfriddo [30] asks what the value of ν2(3) is. More

generally, Gionfriddo and Milici [31] have proved that ν2(h) ≤ 6h for h ≥ 3. As

to νs(h) for s ≥ 3, the following estimates are given in [30]. For h ≥ 3,

νs(h) ≤ 1
2
(3s + 1)(h + 1)

if s is odd and

νs(h) ≤ 1
2
(3s + 4)(h + 1)− 2

if s is even. Our main concern in this chapter is to improve the bounds above.

We first show that ν2(h) ≤ 5h for h ≥ 3, proving that ν2(3) = 15. We then study

the growth of νs(h) as a function of h; we shall prove that for fixed s ≥ 1 and

sufficiently large h

2h +
1

3
√

2
(h log h)1/2 ≤ νs(h) ≤ 2h + h1−εs , (1)

where εs > 0 is a constant which depends only on s; in particular νs(h) = (2 +

o(1))h for any fixed s ≥ 1 and h →∞.

Let us also mention that the upper bound in (1) improves previous bounds

for certain related functions [30]. Let us denote by ms(h) the smallest number of

edges in a graph G with γs(G) ≥ h. Let us define δs(h) to be the smallest integer n

such that there is a graph G of diameter s that can be extended to a graph G′

with (i) γs(G′) ≥ h and (ii) |G′| − |G| ≤ n. Upper bounds for ms(h) and δs(h)

trivially follow from (1); it turns out that they are better than those in [30].

30



Let us introduce some of the definitions we shall need. We generally follow [11]

for graph-theoretical terms. In particular, given a graph G, a walk in G is a

sequence v0, v1, . . . , v` of vertices of G such that vi−1vi ∈ E(G) for all 1 ≤ i ≤ `.

The length of the walk above is defined to be `; it is said to connect v0 to v` and thus

it is referred to as a v0–v` walk. For convenience’s sake, we write χ(G) = χ1(G),

ω(G) = ω1(G) and γ(G) = γ1(G). The complement of G is denoted by Gc. The

independence number of G is denoted by α(G), hence α(G) = ω(Gc). Given a

graph G and s ≥ 1, we define its sth power Gs to be the graph on V (G) with

two distinct vertices joined to each other iff their distance is at most s. Note

that then χs(G) and ωs(G) are simply the ordinary chromatic and clique numbers

of Gs and thus γs(G) = γ(Gs).

Finally we outline the organisation of this chapter. We shall prove the new

upper bound for ν2(h), h ≥ 3, in Section 2.2. In the following section we consider

some generalities about the case of arbitrary s ≥ 1, and draw some easy corollaries

concerning νs(h) from estimates on certain Ramsey numbers. In particular, we

give the proof of the lower bound in (1). In Section 2.4 we describe the key

result, Theorem 2.9, and then we draw the upper bound in (1) as a corollary. (A

more precise statement of this bound is given in Corollary 2.10.) The proof of

Theorem 2.9 is given in Section 2.5.

The results of this chapter will appear in [39].

31



§2.2. A new simple upper bound for ν2(h)

Let us start by showing a simple construction allowing us to improve the upper

bound on ν2(h) of Gionfriddo and Milici [31]. This construction is in fact a special

case of a much more general construction considered in Sections 2.4 and 2.5.

Theorem 2.1. For every h ≥ 3 we have ν2(h) ≤ 5h.

Proof. Let us fix h ≥ 3. It is enough to construct a graph G with |G| = 5h

and γ2(G) = h. Let C5 be a cycle of order 5 and Kh a complete graph of order h.

Let us define the graph G on V (C5)×V (Kh) by joining the vertices (c, k) to (c′, k′)

iff cc′ ∈ E(C5) and kk′ ∈ E(Kh)

Obviously |G| = 5h. As pointed out in the introduction, γ2(G) = γ(G2) and

so we proceed to compute G2.

We claim that G2 is the complement of the disjoint union of h pentagons, i.e.

cycles of order 5, say C1, C2, . . . , Ch. The claim implies that γ(G2) = h. Indeed,

a maximal clique in G2 has cardinality 2h (two nonconsecutive vertices in each

Ci), and the chromatic number of G2 is 3h (three colours for each Ci). Therefore,

it only remains to check the claim.

Let v1 = (c1, k1), v2 = (c2, k2) be a pair of distinct vertices of G. We shall

show that their distance d(v1, v2) in G is greater than 2 if and only if c1 is adjacent

to c2 in C5 and k1 = k2. Note that this proves the claim. Let us consider the

following three cases.

Case 1. c1c2 ∈ E(C5) and k1 = k2.

By definition (c1, k1) is not adjacent to (c2, k2) in G since k1 = k2. No vertex of G

is adjacent to both (c1, k1) and (c2, k2) since no vertex of C5 is adjacent to both c1

and c2. Therefore d((c1, k1), (c2, k2)) ≥ 3 in G.

Case 2. c1c2 ∈ E(C5) and k1 6= k2.

By definition the vertices (c1, k1) and (c2, k2) are adjacent in G.

32



Case 3. c1c2 6∈ E(C5) (including the case c1 = c2).

There is a vertex adjacent to both c1 and c2 in C5, and there is a vertex adjacent

to both k1 and k2 in Kh (since h ≥ 3). So d((c1, k1), (c2, k2)) ≤ 2 in G concluding

the proof of Theorem 2.1.

The theorem above solves the question about the determination of ν2(3),

posed by Gionfriddo in [30]. He has proved that ν2(3) ≥ 15 and from Theorem 2.1

it follows that ν2(3) ≤ 15, so we obtain the result that 15 is the exact value of

ν2(3).

§2.3. Bounds arising from estimates on Ramsey numbers

In this section we start a more systematic study of νs(h) for arbitrary s ≥ 1. Let us

first consider the case s = 1 and remark that certain bounds for Ramsey numbers

give us rather good information about ν1(h). As usual, let us denote by R(s, t)

the smallest positive integer n such that any graph of order at least n has either

a clique of order at least s or an independent set of order at least t. Erdős [22],

with an ingenious probabilistic proof, established that

R(s, 3) ≥ c(s/ log s)2 (2)

for some c > 0. In fact (2) holds for any 0 < c < 1/27 and large enough s, cf. [12],

Chapter XII, §2. The following result is an immediate corollary of (2).

Theorem 2.2. For sufficiently large h,

ν1(h) < 2h + 20h1/2 log h.

Proof. By taking s = b(n/c)1/2 log nc, it can be easily checked that Erdős’s lower

bound for R(s, 3) tells us the following: for any 0 < c < 1/27 there is an in-

teger n0 = n0(c) such that, for any n ≥ n0, there is a graph of order n with
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clique number less than (n/c)1/2 log n and independence number at most 2. Let

us fix c = 1/28 and a large enough h (it will be clear that our inequalities hold

if h ≥ h0, where h0 is an absolute constant). Let n satisfy

n

2
−

(n

c

)1/2

log n ≥ h >
n− 1

2
−

(
n− 1

c

)1/2

log(n− 1) ≥ n

3

and n ≥ n0(c). Let G be a graph of order n with ω(G) < (n/c)1/2 log n and

α(G) ≤ 2. Clearly χ(G) ≥ n/2 and so

γ(G) ≥ n

2
−

(n

c

)1/2

log n ≥ h.

Moreover, by the choice of n,

|G| = n

≤ 2h + 2
(

n− 1
c

)1/2

log(n− 1) + 1

< 2h + 20h1/2 log h.

Hence this G proves the bound in the theorem.

We now turn our attention to arbitrary s ≥ 1. An obvious way of generalising

Theorem 2.2 is to prove the existence of graphs with large order and small clique

and independence numbers which are, furthermore, powers. Neither the proba-

bilistic approach of Erdős in [22] nor a more recent one by Spencer [55] based on

the Erdős–Lovász sieve seems to be directly applicable; we shall use instead an

explicit construction of Erdős [23] which proves that R(s, 3) grows at least as fast

as a power of s.

In order to describe Erdős’s construction, let us recall the definition of the

n-dimensional cube I[n]. It is the graph whose vertices are the 0–1 sequences of

length n, two of them being adjacent iff they differ in exactly one coordinate. The

graph I[n] induces a natural metric on its set of vertices; let us denote this metric

by d. Hence d(x, y), which is usually called the Hamming distance between x and y,
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is simply the number of coordinates in which x and y differ. Erdős’s graph Jr,

r ≥ 1, has as its set of vertices the 0–1 sequences of length 3r + 1, two distinct

vertices being adjacent iff their distance is at most 2r. Thus Jr is the 2rth power

of I[3r + 1].

It is easy to check that in Jr any three distinct vertices span at least one edge.

The fact that it has only small cliques is a consequence of the following theorem

conjectured by Erdős and proved by Kleitman [38].

Theorem 2.3. Let n and r ≥ 1 be integers with n ≥ 2r. Let S ⊂ I[n] be a set

vertices of the n-dimensional cube I[n] with diameter at most 2r. Then

|S| ≤
r∑

i=0

(
n

i

)
.

We thus have the following.

Theorem 2.4.

(i) The independence number of Jr is 2 for all r ≥ 1.

(ii) Set c = (5 log 2 − 3 log 3)/(3 log 2) = ·0817 . . . and let 0 < ε < c. Then, for

r ≥ r0(ε),

ω(Jr) < |Jr|1−ε/2.

In particular, we conclude that

γ(Jr) >
1
2
|Jr|

(
1− |Jr|−c+o(1)

)
(3)

as r →∞. Since Jr has an sth root when s divides r, we immediately notice the

following.

Corollary 2.5. For all s ≥ 1, we have that lim infh νs(h)/h ≤ 2.

Proof. For all s and t ≥ 1, let us define the graph J(s, t) on 0–1 sequences of length

3st + 1 by joining two distinct sequences iff their distance is at most 2t. Clearly

J(s, t)s = Jst for all s and t. This remark coupled with inequality (3) completes

the proof.
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A moment’s thought reveals that the drawback of using the Jr only is that the

set {|Jr| : r ≥ 1} is much too sparse. Indeed, with such an approach we can merely

conclude that lim suph ν1(h)/h ≤ 16. In the next section, we introduce a technique

to generate more graphs F with large γ(F s) and thus improve Corollary 2.5.

Let us now turn to the problem of bounding ν1(h) from below. Trivially,

νs(h) ≥ νt(h) for all h if t divides s; hence the lower bound we shall prove for ν1(h)

bounds νs(h) for arbitrary s ≥ 1 as well. We shall need the following simple lemma.

Lemma 2.6. Let G be a graph. Then for any induced subgraph H of G

|G| ≥ 2γ(G) + ω(G) + |H| − 2χ(H).

Proof. Let us set G′ = G− V (H). Note that

χ(G′) + χ(H) ≥ χ(G) = γ(G) + ω(G),

and so

χ(G′) ≥ γ(G) + ω(G)− χ(H). (4)

Clearly, in a proper minimal colouring of a graph the union of any two colour

classes must span an edge. Hence, in such a colouring, the set of vertices which

are assigned colours which occur only once must span a complete graph. Thus

|G′| ≥ 2χ(G′)− ω(G′).

By (4) we conclude that

|G′| ≥ 2(γ(G) + ω(G)− χ(H))− ω(G′)

≥ 2γ(G) + ω(G)− 2χ(H).

As |G| = |G′|+ |H|, the proof is complete.

A way of applying the lemma above is to take V (H) to be an independent set

of order α(G). Doing so, we conclude that

|G| ≥ 2γ(G) + ω(G) + α(G)− 2

> 2γ(G) + (log |G|)/ log 4, (5)
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where the second inequality follows from the well-known bound of Erdős and

Szekeres

R(s, s) ≤
(

2s− 2
s− 1

)
<

1
6
4ss−1/2,

for s ≥ 4. We can in fact improve the log term in (5) by choosing a better

subgraph H; we shall make use of an upper bound for off-diagonal Ramsey numbers

to find a suitable H.

Ajtai, Komlós and Szemerédi [3] were the first to prove that

R(s, 3) = O(s2/ log s),

and Shearer [52] a little later gave a simple and elegant proof of a slightly stronger

result (see also [12], Chapter XII, §3). The following bound is sufficient for our

purposes:

R(s, 3) ≤ (s− 1)(s− 2)2

(s− 1) log(s− 1)− s + 2
+ 1 ≤ 2s2

log s
(6)

for s large enough. It follows immediately from this bound that any graph

of order n has either three independent vertices or a clique of order at least

(n log n)1/2/3, provided n is sufficiently large.

Theorem 2.7. For all graphs G of sufficiently large order,

|G| > 2γ(G) +
1
6
(|G| log |G|)1/2. (7)

In particular, for all s ≥ 1 and large enough h,

νs(h) > 2h +
1

3
√

2
(h log h)1/2. (8)

Proof. Throughout the proof of (7) we assume that n is a large enough integer.

Let G be a graph of order n, which we may trivially assume is not complete. We

may furthermore assume that

ω(G) <
1
6
(n log n)1/2,
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since otherwise Lemma 2.6 completes the proof: we simply choose H to be two

independent vertices. By the remark following (6), we can find an independent

3-set W0 ⊂ V (G) in G. Define G1 = G−W0 and n1 = |G1| = n−3. We have that

ω(G1) ≤ ω(G) <
1
6
(n log n)1/2 <

1
3
(n1 log n1)1/2.

Hence we can find an independent 3-set W1 in G1. Define G2 = G1 − W1 and

n2 = |G2| = n − 6. In this fashion we obtain G = G0 ⊃ G1 ⊃ · · · ⊃ Gt

with Wi = V (Gi) \ V (Gi+1) an independent 3-set in Gi, 0 ≤ i ≤ t − 1, and

ni = |Gi| = n − 3i for all i. We claim that if t < n/5, and hence nt > 2n/5, we

can still continue the process. Indeed

ω(Gt) ≤ ω(G) <
1
6
(n log n)1/2 <

1
6
((5nt/2) log n)1/2 <

1
3
(nt log nt)1/2,

and again we know that there is an independent 3-set in Gt. Thus we find s =

dn/5e pairwise disjoint independent 3-sets W0, . . . ,Ws−1 in G. Set H to be the

subgraph of G induced by the union of these Wi. Then |H| = 3s and χ(H) ≤ s

and hence |H|− 2χ(H) ≥ s = dn/5e. Therefore an application of Lemma 2.6 with

this H completes the proof of (7).

Finally, given a large enough h, if G is a graph with γ(G) ≥ h then (7) tells

us that
|G| ≥ 2h +

1
6
(|G| log |G|)1/2

> 2h +
1

3
√

2
(h log h)1/2,

which completes the proof of (8), since trivially νs(h) ≥ ν1(h) for all s and h.

We conclude this section by remarking the following. In Theorem 2.2, our

approach in the search for graphs G with large γ(G) is rather crude in the sense

that we guarantee a large χ(G) simply by taking a G with α(G) = 2. Indeed,

by (6), we must have a large clique in such a G and this forces γ(G) down. However,

Theorem 2.7 tells us that this simple approach gives us in fact a reasonable bound.
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§2.4. The main construction and the asymptotic upper bound

Our aim in this section is to introduce a new class of graphs in order to prove our

upper bound (1) for νs(h). We shall make use of the following two operations.

Given two graphs G and H, let us define their (categorical〉) product G×H as the

graph on V (G)× V (H) whose edges are

E(G×H) = {(g1, h1)(g2, h2) : g1g2 ∈ E(G) and h1h2 ∈ E(H)} .

Also, we define their ∗-product G ∗H as the graph on V (G)× V (H) whose edges

are
E(G ∗H) = {(g1, h1)(g2, h2) : either g1 = g2 and h1h2 ∈ E(H)

or g1g2 ∈ E(G) and h1 = h2}.
In the last section we considered the graphs Jr, as their chromatic numbers are

large and their clique numbers small. The reason χ(Jr) is large is that α(Jr) = 2

or, in other words, their complement Gr = Jc
r is triangle-free. The point of

considering the ∗-product is that G ∗ H is triangle-free if both G and H are.

Moreover, the independence number of G ∗H is trivially at most |H|α(G). Thus,

if H is triangle-free,

γ [(Gr ∗H)c] = χ [(Gr ∗H)c]− ω [(Gr ∗H)c]

≥ |H||Gr|/2− |H|α(Gr)

= (1/2− o(1))|Gr ∗H|,

as r → ∞, by (3). Thus, if we can find a triangle-free H for which Gr ∗H is the

complement of a square, say of F 2, then we shall have a good upper bound for

ν2(γ(F 2)), namely, |F 2| = (2 + o(1))γ(F 2).

Let us define two families of graphs. First, for each q and r ≥ 1, we denote

by Gr,q the graph whose vertices are the 0–1 sequences of length (2q + 1)r + 1,

two of them being adjacent iff they differ in at least 2qr + 1 coordinates. Thus,

for instance, we have Gr,1 = Gr = Jc
r . Secondly, for each k ≥ 1 and ` ≥ 0, set

m = (2` + 1)k + 2 and denote the cycle of order m by Cm; we define Hk,` as

the graph whose vertices are the vertices of Cm, two of them being adjacent in
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our Hk,` iff their distance in Cm is at least `k+1. Note that in Hk,` the neighbours

of a vertex h are the farthest k + 1 points from h in Cm.

It is easy to check that Gr,q is triangle-free for all q and r ≥ 1. Moreover,

Theorem 2.3 gives us the following upper bound for α(Gr,q) = ω(Gc
r,q).

Lemma 2.8. Let q ≥ 1 be fixed and set

ηq =
(

(2q + 1)2q+1

qq(q + 1)q+1

)1/(2q+1)

.

Then, for sufficiently large r,

ω(Gc
r,q) <

1
2
η(2q+1)r+1

q .

For all r and k ≥ 1 and s ≥ 2, let us set

Fr,k,s = Gr,bs/2c ×Hk,b(s−1)/2c.

As usual, a graph with no edges is said to be empty ; we denote the empty graph

of order m by Em. For any graph G, we note that G ∗ Em is simply the disjoint

union of m copies of G. We are now ready to state our key result.

Theorem 2.9. Let r, k ≥ 1 and s ≥ 2. Set q = bs/2c, ` = b(s − 1)/2c and

m = |Hk,`| = (2` + 1)k + 2. Then

(Fr,k,s)
s =

{
(Gr,q ∗ Em)c if s is even

(Gr,q ∗Hk,`)
c

if s is odd.

Theorem 2.9, whose proof is given in the next section, implies the promised

upper bound for νs(h).

Corollary 2.10. Let s ≥ 2 be fixed, q = bs/2c and ηq as defined in Lemma 2.8.

Moreover, set ε0 = ε0(s) = 1 − (log ηq)/ log 2 > 0 and Cs = 4 + s2s+1. Then for

sufficiently large h

νs(h) < 2h + Csh
1/(1+ε0). (9)

Proof. Fix an h and s ≥ 2. We shall assume throughout the proof that h is large

enough; it will be clear that our inequalities hold if h ≥ h0 for some absolute
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constant h0. We shall choose suitable parameters r and k for which F = Fr,k,s

shows that (9) holds.

First, let r ≥ 1 be the minimal integer such that setting n = (2q + 1)r + 1 we

have

2n ≥ h1/(1+ε0). (10)

Now put ` = b(s − 1)/2c and let k ≥ 1 be the minimal integer such that setting

m = (2` + 1)k + 2 we have

m ≥ 21−nh
(
1 + 2(2h)−ε0/(1+ε0)

)
. (11)

Claim. We have

γ [(Fr,k,s)
s] ≥ |(Fr,k,s)

s| /2−mω(Gc
r,q) > h (12)

and

|(Fr,k,s)s| = 2nm < 2h + Csh
1/(1+ε0). (13)

Note that the claim above proves (9); it now remains to check (12) and (13).

Let us start with (12). We first note that Gr,q (r, q ≥ 1) and Hk,` (k, ` ≥
1) are triangle-free (see Lemmas 2.12(i) and 2.13(i)), and hence so are Gr,q ∗
Em and Gr,q ∗ Hk,`. Therefore, by Theorem 2.9, we have that α [(Fr,k,s)

s] =

2 and so χ [(Fr,k,s)
s] ≥ |(Fr,k,s)

s| /2. Secondly, since Gr,q ∗ Em is a spanning

subgraph of Gr,q ∗Hk,`, we trivially have that ω [(Gr,q ∗ Em)c] = α (Gr,q ∗ Em) ≥
α (Gr,q ∗Hk,`) = ω [(Gr,q ∗Hk,`)

c]. Theorem 2.9 then tells us that

ω [(Fr,k,s)
s] ≤ ω [(Gr,q ∗ Em)c]

≤ mω
(
Gc

r,q

)
.

Furthermore, by the definition of ε0 and Lemma 2.8, we know that

ω
(
Gc

r,q

)
< ηn

q /2 = 2n−1(2n)−ε0 .

Hence, by (10) and (11),

γ [(Fr,k,s)
s] = χ [(Fr,k,s)

s]− ω [(Fr,k,s)
s]
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≥ |(Fr,k,s)
s| /2−mω(Gc

r,q)

> m2n−1
(
1− (2n)−ε0

)

≥ h
(
1 + 2(2h)−ε0/(1+ε0)

) (
1− (2n)−ε0

)

≥ h

(
1 +

21/(1+ε0)

hε0/(1+ε0)

)(
1− 1

hε0/(1+ε0)

)

> h,

proving (12).

Inequality (13) follows from the choices of r and k. Indeed, we first note that

by the minimality of r

2n < 22q+1h1/(1+ε0).

By the minimality of k, we have that

(m− (2` + 1))2n < 2h
(
1 + 2(2h)−ε0/(1+ε0)

)
.

Thus
m2n < 2h + 2(2h)1/(1+ε0) + (2` + 1)22q+1h1/(1+ε0)

< 2h + 4h1/(1+ε0) + s2s+1h1/(1+ε0)

= 2h + Csh
1/(1+ε0),

completing the proof of the claim and hence establishing our result.

We now remark that (9) trivially improves some upper bounds for certain

functions mentioned in [30]. Let us recall the following two definitions given in

the introduction. Given s ≥ 1 and h ≥ 0, set

ms(h) = max {m ∈ N : for any graph G, |E(G)| < m implies γs(G) < h}

and

δs(h) = max {n ∈ N : for any graph G, |G| < n + ωs(G) implies γs(G) < h} .

It has been known [30] that for h ≥ 3 one has m2(h) ≤ 13h2 and δ2(h) ≤ 3h.

Moreover, for s ≥ 3,

ms(h) ≤
{

(3s + 1)h2 − 2 if s is odd
(3s + 4)h2 if s is even,

and
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δs(h) ≤
{

s(h + 1) if s is odd
(s + 1)(h + 1)− 1 if s is even.

Corollary 2.10 immediately gives us the following bounds.

Corollary 2.11. Let s be fixed and Cs and ε0 = ε0(s) as in Corollary 2.10. Then

for sufficiently large h

ms(h) ≤
(

νs(h)
2

)

< 2h2 + 3Csh
(2+ε0)/(1+ε0)

and

δs(h) ≤ νs(h) < 2h + Csh
1/(1+ε0)

§2.5. Proof of the key result

In this section we prove Theorem 2.9 . We shall need the following two lemmas

about walks in the graphs Gr,q and Hk,`.

Lemma 2.12. For any r ≥ 1 and q ≥ 1 the following conditions hold.

(i) Any odd closed walk in Gr,q has length at least 2q + 3.

(ii) Let g and g′ be nonadjacent vertices in Gr,q. Then they are connected by a

walk of length 2q. If they are furthermore distinct then they are also connected

by a walk of length 2q + 1.

Proof. (i) Assume g1, g2, . . . , g2j+1 is a walk in Gr,q with j ≤ q. We claim that g1

is not adjacent to g2j+1. Indeed, for i = 1, 2, . . . , 2j we have d(gi, gi+1) ≥ 2qr+1, so

gi and gi+1 agree at no more than r coordinates. Therefore, for i = 1, 2, . . . , 2j−1,

d(gi, gi+2) ≤ 2r,

since if gi and gi+2 disagree at a coordinate j, say, then gi+1 agrees at j either

with gi or else with gi+2. Hence

d (g1, g2j+1) ≤ 2jr ≤ 2qr,
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and g1 is not adjacent to g2j+1 concluding the proof of (i).

(ii) If g and g′ are two nonadjacent vertices in Gr,q then d(g, g′) ≤ 2qr by

definition. Let us construct a walk of length 2q from g to g′. Let C be the set of

coordinates on which g and g′ disagree. Since the cardinality of C is at most 2qr

we can write

C = C1 ∪ C2 ∪ · · · ∪ C2q,

where the Ci are pairwise disjoint and satisfy

0 ≤ |Ci| ≤ r

for all i. Let us consider the walk g = g0, g1, . . . , g2q in Gr,q defined by the condition

that Ci is the set of coordinates on which gi−1 and gi agree. It is easy to check

that g2q = g′, and so we have found the required g–g′ walk.

We now assume that g 6= g′. To find a walk of length 2q + 1 joining g to g′

it is enough to find g′′ adjacent to g′ but not adjacent to g. In order to construct

such a sequence g′′ put D to be a set of coordinates of cardinality r +1 containing

at least one coordinate at which g and g′ disagree. Now let g′′ be equal to g at

each coordinate in D and different from g′ at each coordinate outside D.

The sequence g′′ is not adjacent to g since they can only differ on coordinates

not in D, and so d(g, g′′) ≤ 2qr. On the other hand g′′ differs from g′ on each

coordinate outside D and on at least one coordinate in D, hence d(g′, g′′) ≥ 2qr+1

and so g′′ is adjacent to g′.

Lemma 2.13. For any k ≥ 1 and ` ≥ 0 the following conditions hold.

(i) Any odd closed walk in Hk,` has length at least 2` + 3.

(ii) Let h and h′ be two distinct vertices in Hk,`. Then they are connected both by

a walk of length 2`+1 and by a walk of length 2`+2. If they are furthermore

nonadjacent, then they are also connected by a walk of length 2`

Proof. Let h0 be a fixed vertex of Hk,`. Let Ui be the set of the 2ik + 1 nearest

vertices to h0 in Cm, m = (2` + 1)k + 2, i = 1, . . . , ` (see Fig. 1).
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︷ ︷
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... Ui
...︷︷

U`

Fig. 1. The sets Ui in Cm

Note that the complement of U` is the set of vertices adjacent to h0.

It is easy to check that U1 is the set of vertices h of Hk,` such that there is a

walk of length 2 from h0 to h. By induction, Ui is the set of vertices connected to

h0 by a walk of length 2i. So U` is the set of vertices h for which there is a walk

of length 2` from h0 to h.

Since h0 is not adjacent to any vertex of U` there are no walks of length 2`+1

from h0 to itself. This concludes the proof of (i).

It can be easily seen that h0 is the only vertex of Hk,` not adjacent to any

vertex in U`. Hence there is a walk of length 2` + 1 from h0 to any other vertex

of Hk,`. To show that there is a walk of length 2`+2 from h0 to any other vertex h1

of Hk,` let us consider any vertex h2 adjacent to h1 and different from h0 (clearly

h2 exists since the degree of each vertex in Hk,` is at least 2). We know that there

is a walk of length 2` + 1 from h0 to h2 and, since h2 is adjacent to h1, there is a

walk of length 2` + 2 from h0 to h1.

To finish our proof, it is enough to show that if h1 is not adjacent to h0, then

there is a walk of length 2` between them. But this follows from the fact that the
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set of vertices nonadjacent to h0 is U`. Indeed, as remarked above, U` is precisely

the set of vertices connected to h0 by walks of length 2`.

We are now ready to prove Theorem 2.9. Let us once and for all fix r and k ≥
1. We shall analyse the cases s even and s odd separately. For s ≥ 2 even, we

have to prove that

(Fr,k,s)s = (Gr,q ∗ Em)c , (14)

where s = 2q = 2` + 2 and m = (2` + 1)k + 2. On the other hand, for s ≥ 3 odd

we have to prove that

(Fr,k,s)s = (Gr,q ∗Hk,`)
c
, (15)

where s = 2q + 1 = 2` + 1.

Proof of (14). Let us fix an even s ≥ 2 and let q and ` satisfy s = 2q = 2` + 2.

By definition we have

Fr,k,s = Gr,q ×Hk,`.

Let (g1, h1), (g2, h2) be any pair of distinct vertices of Fr,k,s. To prove (14), we

have to show that if g1g2 ∈ E(Gr,q) and h1 = h2 then there are no (g1, h1)–

(g2, h2) walks of length at most s in Fr,k,s. Furthermore, we have to show that

there is such a walk otherwise.

Let us consider the following three cases. We want to show the nonexistence

of our short (g1, h1)–(g2, h2) walk in the first case, and its existence in the last two

cases.

Case 1. g1g2 ∈ E(Gr,q) and h1 = h2.

Let us assume that there is a (g1, h1)–(g2, h2) walk W of length t ≤ s in Fr,k,s.

If t is odd then, by projecting W onto the second coordinate, we get an odd closed

walk of length t ≤ 2` + 1 in Hk,`, contradicting Lemma 2.13(i). On the other

hand, if t is even then, by projecting W onto the first coordinate, we get an even

g1–g2 walk of length t ≤ 2q in Gr,q. Since g1g2 ∈ E(Gr,q) we obtain an odd closed

walk of length t + 1 ≤ 2q + 1 in Gr,q, contradicting Lemma 2.12(i).
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Case 2. g1g2 ∈ E(Gr,q) and h1 6= h2.

By Lemma 2.13(ii), there is a h1–h2 walk of length 2` + 1 ≤ s in Hk,`. Since

g1g2 ∈ E(Gr,q) there clearly is a g1–g2 walk of length 2` + 1 in Gr,q (in fact of

any odd length). Let W be the sequence of vertices of Fr,k,s whose projection

onto the first and the second coordinates are the above walks in Gr,q and in Hk,`.

Clearly W is a (g1, h1)–(g2, h2) walk in Fr,k,s and, since its length is 2` + 1 ≤ s,

the proof of this case is finished.

Case 3. g1g2 /∈ E(Gr,q).

As we have seen above, it is enough to show the existence of two suitable walks

of the same length t ≤ s, say, one connecting g1 to g2 in Gr,q and the other h1

to h2 in Hk,`. Here we can take t = s = 2q = 2` + 2. Indeed, the existence of the

required walk in Gr,q follows from Lemma 2.12(ii). To get a suitable walk in Hk,`

we apply Lemma 2.13(ii) if h1 6= h2 and if, on the other hand, h1 = h2 then we

simply note that s is even and that Hk,` has no isolated vertices.

Proof of (15). Let us fix an odd s ≥ 3 and let q and ` satisfy s = 2q + 1 = 2` + 1.

Let (g1, h1) and (g2, h2) be any pair of distinct vertices of Fr,k,s. To prove (15)

we have to show that if either h1 = h2 and g1g2 ∈ E(Gr,q) or else g1 = g2 and

h1h2 ∈ E(Hk,`), then there are no (g1, h1)–(g2, h2) walks in Fr,k,s of length at

most s. Moreover we also need to show that otherwise there is such a walk.

Let us consider four cases. We shall prove the nonexistence of the appropriate

walks in the first two cases and their existence in the last two.

Case 1. g1g2 ∈ E(Gr,q) and h1 = h2.

This is similar to the Case 1 of the proof of (14). The existence of a (g1, h1)–

(g2, h2) walk of length at most s in Fr,k,s requires either that there should be an

odd closed walk of length at most s = 2` + 1 in Hk,` or else that there should be

an odd closed walk of length at most s + 1 = 2q + 2 in Gr,q. By Lemmas 2.12(i)
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and 2.13(i), neither of the above walks can exist.

Case 2. h1h2 ∈ E(Hk,`) and g1 = g2.

If there is a (g1, h1)–(g2, h2) walk of length t ≤ s in Fr,k,s, then either there is an

odd closed walk of length at most s = 2q + 1 in Gr,q or else there is an odd closed

walk of length at most s + 1 = 2` + 2 in Hk,`, contradicting either Lemma 2.12(i)

or 2.13(i).

Case 3. g1 6= g2 and h1 6= h2.

We can get a (g1, h1)–(g2, h2) walk of length s = 2q + 1 = 2` + 1 in Fr,k,s by

combining apropriate walks in Gr,q and in Hk,`. If g1 is not adjacent to g2 then

the required walk in Gr,q exists by Lemma 2.12(ii), otherwise its existence is

obvious (since s is odd). The existence of a suitable walk in Hk,` follows from

Lemma 2.13(ii).

Case 4. Either g1 = g2 and h1h2 /∈ E(Hk,`) or else h1 = h2 and g1g2 /∈ E(Gr,q).

Now we combine appropriate walks of length s − 1 = 2q = 2` from Gr,q and

from Hk,`. Their existence is either obvious (in the case their endpoints are equal)

or follows from Lemmas 2.12(ii) and 2.13(ii).
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§2.6. Concluding remarks

Although we have managed to estimate νs(h) quite accurately, some interesting

questions concerning the function es(h) = νs(h) − 2h remain. Our results show

that for large enough h

1
3
√

2
(h log h)1/2 < es(h) < h1−εs (16)

where εs > 0 depends only on s. What is clearly unsatisfactory is that the lower

bound does not depend on s. Also, the exponent of h in the upper bound is rather

close to one, and in fact by our methods εs → 0 as s → ∞. It is natural to ask

whether es(h) = O(h1−ε) for some ε > 0 independent of s.

Our proof of the upper bound in (16) is entirely constructive, and the question

whether one can do better by probabilistic techniques naturally arises. Let us make

the following remark, where for the sake of simplicity we restrict our attention to

the case s = 2. It turns out that ε2 in (16) can be taken close to 1/2, provided

there exists a triangle-free graph G of order n, diameter 2, and with α(G) = O(nc)

for some c close to 1/2. Indeed, the proof of (14) (or of the claim in the proof of

Theorem 2.1) implies that G ∗ Ek+2, k ≥ 1, is the complement of a square. By

straightforward computations as in the proof of Corollary 2.10, one then gets an

improvement of the upper bound in (16), if c is not much larger than 1/2.
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CHAPTER 3

EQUITABLE LABELLINGS OF CYCLES

§3.1. Introduction

A labelling of the vertices of a graph G is an assignment of distinct natural numbers

to the vertices of G. Every labelling induces a natural labelling of the edges: the

label of an edge (x, y) is the absolute value of the difference of the labels of x and

y. There are many natural questions one can ask about labellings. In particular,

Bloom [10] defined a labelling of the vertices of a graph to be k-equitable if in

the induced labelling of its edges, every label occurs exactly k times, if at all.

Furthermore, a k-equitable labelling of a graph of order n is said to be minimal if

the vertices are labelled with 1, 2, . . . , n. A graph is minimally k-equitable if it has

a minimal k-equitable labelling.

Let us now restrict our attention to cycles. Let Cn be the cycle on n vertices.

Given natural numbers n and k, n ≥ 3, if the cycle Cn is k-equitable then obviously

k must be a divisor of n. It is also obvious that k 6= n. If the stronger assumption

that Cn is minimally k-equitable holds, then in the appropriate edge-labelling the

largest label is at most n−1. Since there are n edges in the cycle Cn, we conclude

that k 6= 1. Thus a necessary condition for Cn to be minimally k-equitable is that

k should be a proper divisor of n, i.e. different from 1 and n. Bloom [10] posed

the question of whether this necessary condition is also sufficient. In this chapter

we settle this problem by giving a positive answer to the above question.
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The problem of minimally k-equitable labellings for cycles is connected with

the very difficult conjecture of Ringel and Kotzig concerning decompositions of

complete graphs with odd number of vertices into subgraphs isomorphic to trees.

This is the main reason why Bloom raised the problem on k-equitable labellings

of cycles. Let us briefly describe the Ringel-Kotzig conjecture and its connection

with labellings.

In 1963 Ringel [47] conjectured that for any natural number n and any (n +

1)-vertex tree T , the complete graph K2n+1 could be decomposed into 2n + 1

subgraphs isomorphic to T . As reported by Rosa [48], Kotzig strengthened Ringel’s

conjecture as follows. Let S(K2n+1) be the set of all subgraphs of K2n+1. Assume

that the vertices of K2n+1 are the numbers 0, 1, . . . , 2n, and let the unit rotation

R : S(K2n+1) → S(K2n+1) be defined by

R
[(

V (G), E(G)
)]

=
({

s(v) : v ∈ V (G)
}
,
{
(s(u), s(v)) : (u, v) ∈ E(G)

})
,

where s(v) = v + 1 mod 2n + 1, 0 ≤ v ≤ 2n. Assume that we are given a graph G

with n edges. Let us say that K2n+1 can be cyclically G-decomposed if there is a

subgraph G′ of K2n+1 isomorphic to G such that the set {G′, R(G′), . . . , R2n(G′)}
is a decomposition of K2n+1, i.e. E(G′)∪E(R(G′))∪. . .∪E(R2n(G′)) is a partition

of E(K2n+1). The Ringel-Kotzig conjecture asserts that K2n+1 can be cyclically

T -decomposed for any tree T with n edges.

For an edge (u, v) of K2n+1, let the reduced label L(u, v) of (u, v) be defined

by

L(u, v) =
{ |u− v|, if |u− v| ≤ n,

2n + 1− |u− v|, if |u− v| > n.

Let G′ be a subgraph of K2n+1 isomorphic to G generating a cyclic G-decomposi-

tion of K2n+1. Observe that the reduced labels of the edges of G′ are all distinct

elements of the set [1, n] ⊂ N. Rosa [48] defined a labelling of a graph G with n

edges to be a ρ-labelling if the vertices of G are assigned n distinct integers from

the set {0, 1, . . . , 2n} in such a way that for any pair of distinct edges (u, v) and
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(u′, v′) of G we have

{|u− v|, 2n + 1− |u− v|} ∩ {|u′ − v′|, 2n + 1− |u′ − v′|} = ∅.

With the above definitions the Ringel-Kotzig conjecture is equivalent to saying

that every tree has a ρ-labelling.

Rosa [48] has also defined another class of labellings; these are the β-labellings,

more often refered to as graceful labellings. The requirement for a labelling of a

graph G with n edges to be graceful is that the vertices of G should be labelled with

integers from the set {0, 1, . . . , n} in such a way that in the induced edge-labelling

the edges of G are labelled with distinct integers. The conjecture that any tree can

be labelled gracefully is thus clearly stronger then the Ringel-Kotzig conjecture,

and even this is still open. For problems connected with graceful labellings see

also [21], [35], [40], [49], [53], [57].

Note that in the case of trees the graceful labellings are essentially the minimal

1-equitable labellings. In the case of cycles these two notions are different. We

can easily see that no cycle has a minimal 1-equitable labelling and that the cycle

Cn has a graceful labelling if and only if the sum 1 + 2 + . . . + n is even, i.e. if and

only if n ≡ 3 or 0 mod 4.

We shall now turn to the main problem we are concerned with in this chapter.

Let us first introduce the terminology we shall use. We shall call a graph G an

integer graph if its vertex set is a finite subset of N, and we shall call G a [p, q]-graph

if p is the smallest vertex of G and q is the largest vertex of G. If such a graph is

a cycle, we shall call it an integer cycle. If e = (v1, v2) is an edge of G, we will say

that e has length |v1 − v2|. Let M = (ai,j) be an s× 2 matrix with integer entries

for which there is a partition E(G) = E1 ∪ . . .∪Es such that, for i = 1, . . . , s, ai,1

is the cardinality of the set Ei and all the edges in Ei have length ai,2. Then, we

will call M a distribution of edges of G.

Let G be a graph, and k a positive integer. Observe that G has a k-equitable

labelling if G is isomorphic to an integer graph G′ with either 0 or k edges of
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Fig. 1. The graph C(p, q; r).

any length. We will call such G′ a k-equitable representation of G. Note that G′

is a k-equitable representation of a graph if and only if G′ has a distribution of

edges with the first column having all entries equal to k and the second column

having all entries different. Note also that G is minimally k-equitable if there is a

k-equitable representation of G which is a [j, |V (G)| + j − 1]-graph for a certain

integer j. Then, we shall call G′ a minimal k-equitable representation of G.

We are going to prove the following theorem.

Theorem 3.1. If k and m are integers greater than 1, then the cycle Cmk is

minimally k-equitable.

The proof of Theorem 3.1 will be broken down into several lemmas. Their

proofs will contain several constructions of integer cycles. First we shall define the

notions needed for these constructions. Let p, q and r be integers such that r is

greater than 2 and odd, and p+ r ≤ q. Let C(p, q; r) (see Fig. 1.) be a graph with

the vertex set [p, p + r − 1] ∪ [q, q + r − 1], and the edge set

{(p + i, q + i) : i = 0, 1, . . . , r − 1} ∪ {(p + i, p + i + 1) : i = 0, 2, 4, . . . , r − 3}

∪{(p + r − 1, q)} ∪ {(q + i, q + i + 1) : i = 1, 3, 5, . . . , r − 2}.

It follows immediately from the definition that C(p, q; r) is a cycle with the
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following distribution of edges:




r q − p
r − 1 1

1 q − p− r + 1


 . (1)

Let C be an integer cycle. We will say that C is (k1, k2; t)-outer if it satisfies

the following three conditions.

(i) k1 ≥ 0, k2 ≥ 0 and k1 + k2 > 0,

(ii) the set V1 of the k1 smallest and the set V2 of the k2 largest vertices of C are

disjoint segments in N,

(iii) every edge of length t has exactly one endvertex in V1 ∪ V2, and every vertex

in V1 ∪ V2 is an endvertex of exactly one edge of length t.

Now we shall define a certain operation on outer cycles. Let C be a (k1, k2; t)-

outer cycle, V1 = [p, p + k1 − 1] be the set of the k1 smallest vertices of C, and

V2 = [q − k2 + 1, q] be the set of the k2 largest vertices of C. Given a positive

integer d, let the (k1, k2; t; d)-extension C ′ of C be an integer graph with the vertex

set V (C ′) = V (C)∪ [p− d− k2 + 1, p− d]∪ [q + d, q + d + k1 − 1] and the edge set

defined as follows:

E(C ′) = E(C)\{(p + i, p + t + i) : i = 0, . . . , k1 − 1}

\{(q − i, q − t− i) : i = 0, . . . , k2 − 1}

∪{(p + i, q + d + i) : i = 0, . . . , k1 − 1}

∪{(p + t + i, q + d + i) : i = 0, . . . , k1 − 1}

∪{(q − i, p− d− i) : i = 0, . . . , k2 − 1}

∪{(q − t− i, p− d− i) : i = 0, . . . , k2 − 1}.
What does this apparently complicated construction do? It subdivides every edge

of length t with one of the new vertices to get two edges of lengths q − p + d and

q − p − t + d. The set of new vertices is the union of two segments V ′
1 and V ′

2 of

cardinalities k1 and k2 accordingly. The segment V ′
1 is placed above the segment

[p, q] in the distance d from q, and V ′
2 is placed below [p, q] in the distance d from
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Fig. 2. The operation of taking the (k1, k2; t; d)-extension.

p. The vertices from the set V ′
1 are used to subdivide edges with an endpoint in V1

and the vertices from the set V ′
2 are used to subdivide the edges with an endpoint

in V2 (see Fig. 2).

Therefore, assuming that the following matrix is a distribution of edges of C:




a1 b1

a2 b2
...

...
ai bi

k1 + k2 t
ai+1 bi+1

ai+2 bi+2

...
...

as bs




,
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C ′ has clearly the following distribution of edges:




a1 b1

a2 b2
...

...
ai bi

k1 + k2 q − p + d
k1 + k2 q − p− t + d
ai+1 bi+1

ai+2 bi+2

...
...

as bs




. (2)

Note that since C is a [p, q]-graph, it does not have edges of length q−p+d. Thus,

immediately from the definition, we get that C ′ is a (k2, k1; q− p + d)-outer cycle.

Also, if C has no edges of length q − p− t + d or if q − p− t + d = t, then C ′ is a

(k2, k1; q − p− t + d)-outer cycle as well.

To prove Theorem 3.1, we shall consider the following two cases.

(i) k is odd,

(ii) k is even.

Case (i) will be proved in Lemmas 3.2 and 3.3 in section 3.2, and case (ii) will be

proved in Lemmas 3.4 and 3.5 in section 3.3.
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§3.2. The case k odd

The following lemma takes care of the subcase m ∈ [2, 4] of case (i).

Lemma 3.2. If k is an odd integer greater than 2, and m is 2, 3 or 4, then the

cycle Cmk is minimally k-equitable.

Proof. To get a minimal k-equitable representation of C2k, it is enough to take

the cycle C(1, k + 1; k) which is a [1, 2k]-graph and, by (1), has the following

distribution of edges: (
k k
k 1

)
.

Now, let us consider the case m = 3. Let C be the (k, 0; k; 1)-extension of C(1, k+

1; k). As a result of this operation each edge of length k got subdivided into

two edges of lengths 2k and k. Indeed, by (2), C is a cycle with the following

distribution of edges: 


k 2k
k k
k 1


 .

C is also clearly a [1, 3k]-graph, and thus a minimal k-equitable representation

of C3k. Therefore, to finish the proof of our lemma it remains to settle the case

m = 4.

Unfortunately, we cannot continue the above construction. We have to start

from the begining with a [2k + 1, 4k]-graph G1 = C(2k + 1, 3k + 3; k − 2) having,

by (1), the following distribution of edges:


k − 2 k + 2
k − 3 1

1 5


 .

Clearly, G1 is a (0, k − 2; k + 2)-outer cycle. Let G2 be the (0, k − 2; k + 2; 2)-

extension of it. This way, each edge of length k + 2 of G1 got subdivided into two

edges of lengths 2k + 1 and k− 1 (see (2)). Thus, G2 is a cycle with the following

distribution of edges: 


k − 2 2k + 1
k − 2 k − 1
k − 3 1

1 5


 .
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Fig. 3. The graph G3.

Let G3 be obtained from G2 by adding the segment S = [2, k − 1] to the set

of vertices and subdividing each edge of G2 of length k − 1 with an appropriate

vertex from S such that the resulting edges have lengths k and 2k− 1, see Fig. 3.

Thus, G3 is a cycle and has the following distribution of edges:




k − 2 2k + 1
k − 2 2k − 1
k − 2 k
k − 3 1

1 5




To get a minimal k-equitable representation of C4k we must get rid of the edge of

length 5 and create new edges of lengths 2k + 1, 2k − 1, k and 1. We have also

to remove the gaps from our graph. The graph G3 is arranged in such a way that

both this aims can be easily achieved. Let C be obtained from G3 by adding the

set {1, k, k + 1, 2k, 3k− 1, 3k, 3k + 1, 3k + 2} to the set of vertices and subdividing

the edge (3k − 2, 3k + 3) with the new vertices in such a way that we get the
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Fig. 4. The subdivision of G3.

following new edges, see Fig. 4.

e1 = (3k − 2, 3k − 1),

e2 = (3k − 1, k),

e3 = (k, 3k + 1),

e4 = (3k + 1, 3k),

e5 = (3k, 2k),

e6 = (2k, 1),

e7 = (1, k + 1),

e8 = (k + 1, 3k + 2),

e9 = (3k + 2, 3k + 3).

Note that the edges e3 and e8 have length 2k + 1, the edges e2 and e6 have

length 2k− 1, the edges e5 and e7 have length k and the edges e1, e4 and e9 have

length 1. Thus, the cycle C has the following distribution of edges:



k 2k + 1
k 2k − 1
k k
k 1


 .

Since C is a [1, 4k]-graph, it is a minimal k-equitable representation of C4k, and

so C4k is minimally k-equitable.
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Fig. 5. The graph G3.

The next lemma finishes the case k odd.

Lemma 3.3. If k is an odd integer greater than 2, and m > 4, then the cycle

Cmk is minimally k-equitable.

Proof. The construction for m = 4 in the proof of Lemma 3.2 cannot be extended

by simple subdivision to give a minimal k-equitable representation of C5m. We

must again start from the begining. Let us start, similarly as for m = 2, 3, with

G1 = C(3k + 1, 4k + 1, k) having the following distribution of edges:
(

k k
k 1

)
.

Now, let us subdivide the edges of length k, but unlike in the case k = 3 in Lemma

3.2, let us get a graph with a gap of one integer inside it by defining G2 to be the

(0, k; k; 2)-extension of G1. G2 has, thus, the following distribution of edges:



k 2k + 1
k k + 1
k 1


 ,

and is a (0, k; 2k + 1)-outer cycle. Continuing with another subdivision, this time

of the edges of length 2k + 1, let G3 be the (0, k; 2k + 1; 1)-extension of G2, see

Fig. 5.

60



· · · · · ·
. . . . . .· · · · · ·

· · ·...
...

...

◦ · · · ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦ ◦
1 k−1 k 2k−1 2k 3k−1 3k

...
...

...· · ·. . . . . .
· · ·
· · · · · ·

Fig. 6. The subdivision of G3.

Note that the cycle G3 has the following distribution of edges:




k 3k + 1
k k + 1
k k
k 1


 .

Now, we shall subdivide the edges of length k in such a way that we remove the gap

inside our graph. Let C be obtained from G3 by adding the set [1, k− 1]∪{3k} to

the set of vertices, subdividing the edge (k, 2k) with the vertex 3k and subdividing

every other edge of length k with the apropriate vertex in the segment [1, k − 1]

such that we get edges of lengths k and 2k, see Fig. 6.

Thus, the cycle C has the following distribution of edges:




k 3k + 1
k 2k
k k + 1
k k
k 1


 .

Since C is a [1, 5k]-graph, it is a minimal k-equitable representation of C5k.

Now, at last, we are at a point from which we can continue by induction. To

finish the proof of the lemma, we shall construct by induction a family of cycles

C(m), for m = 5, 6, . . ., such that C(m) is a minimal k-equitable representation of

Ckm. To keep the induction going, we shall also make sure that the cycle C(m)

has the additional property of being (0, k; (m + 1)k/2 + 1)-outer for m odd and
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(k, 0; (m− 2)k/2− 1)-outer for m even. It will also have the following distribution

of edges: 


k 5k
k 6k
...

...
k (m− 2)k
k (m− 1)k
k (m + 1)k/2 + 1
k 2k
k k + 1
k k
k 1




when m is odd and the following:



k 5k
k 6k
...

...
k (m− 2)k
k (m− 1)k
k (m− 2)k/2− 1
k 2k
k k + 1
k k
k 1




when m is even.

Let C(5) be the cycle C constructed above. It is clearly a (0, k; 3k + 1)-

outer cycle with the appropriate distribution of edges. We shall perform the

induction by subdividing each edge of C(m) of length (m + 1)k/2 + 1, for m

odd, to get two edges of lengths mk = ((m + 1) − 1)k and (m − 1)k/2 − 1 =

((m + 1) − 2)k/2 − 1. Analogously, for m even, we shall subdivide each edge of

C(m) of length (m− 2)k/2− 1 to get two edges of lengths mk and (m+2)k/2+1.

So assume that the cycle C(m) with the required properties is constructed. If

m is odd, then C(m) is a (0, k; (m + 1)k/2 + 1)-outer cycle. Let C(m+1) be the

(0, k; (m + 1)k/2 + 1; 1)-extension of C(m). Since C(m) does not have edges of

length (m− 1)k/2− 1 = ((m + 1)− 2)k/2− 1, it follows from (2) that C(m+1) is

an (k, 0; ((m+1)−2)k/2−1)-outer cycle as required. Also by (2), C(m+1) has the

required distribution of edges, and is thus a k-equitable representation of C(m+1)k.
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Since the last parameter in the extension operation by which C(m+1) is defined is

equal to 1, C(m+1) is a [j, j +(m+1)k−1]-graph for a certain integer j and hence

a minimal k-equitable representation of C(m+1)k.

If m is even, then C(m) is a (k, 0; (m − 2)k/2)-outer cycle, so let C(m+1) be

the (k, 0; (m− 2)k/2; 1)-extension of it. By an argument similar to the above one,

C(m+1) has the required properties.
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§3.3. The case k even

We shall break this case into two cases depending on the divisibility of k by 4. Let

us first consider the case k ≡ 2 mod 4.

Lemma 3.4. If k ≡ 2 mod 4 and m > 1, then the cycle Cmk is minimally

k-equitable.

Proof. Let us assume that k is fixed. We shall prove the lemma by induction on m.

Unlike in the case k odd, we can start the induction from m = 2. Thus, we shall

construct a family of cycles C(m), for m = 2, 3, . . ., such that C(m) is a minimal k-

equitable representation of Cmk. The cycle C(m) will have the additional property

of being (k/2, k/2; (m−1)k/2+1)-outer for m even and (k/2, k/2; mk/2−1)-outer

for m odd. It will also have the following distribution of edges:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k (m− 1)k/2 + 1
k 1




when m is even and the following:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k mk/2− 1
k 1




when m is odd.

The cycle C(2) is constructed as follows. If k = 2, then set C(2) = (1, 2, 4, 3).

For k > 2, let us take two cycles G1 = C(1, k/2 + 2; k/2) and G2 = C(k, 3k/2 +

1; k/2). By (1), both G1 and G2 have the following distribution of edges:



k/2 k/2 + 1
k/2− 1 1

1 2


 .
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Fig. 7. The cycle C(2).

The cycles G1 and G2 have two common vertices k and k + 1 and one common

edge e0 = (k, k + 1). Let C be the cycle obtained by taking the union of G1 and

G2 with the edge e0 removed. Thus, C has the following distribution of edges.




k k/2 + 1
k − 4 1

2 2




Let C(2) be obtained from C by adding the set {k/2 + 1, 3k/2} to the vertex set,

and subdividing the edge (k/2, k/2 + 2) with the vertex k/2 + 1 and the edge

(3k/2− 1, 3k/2 + 1) with 3k/2, see Fig. 7.

The cycle C(2) satisfies the required conditions because it is (k/2, k/2; k/2+1)-

outer, it is a [1, 2k]-graph, and it has the following distribution of edges.

(
k k/2 + 1
k 1

)

Let us assume that the cycle C(m) is constructed, and that it satisfies the

required conditions. In the process of induction, for m even, we shall subdivide

each edge of C(m) of length (m − 1)k/2 + 1 to get two edges of lengths mk =
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((m + 1) − 1)k and (m + 1)k/2 − 1. Analogously, for m odd, we shall subdivide

each edge of C(m) of length mk/2−1 to get two edges of lengths mk and mk/2+1 =

((m + 1)− 1)k/2 + 1.

If m is even, then C(m) is a (k/2, k/2; (m−1)k/2+1)-outer cycle. Let C(m+1)

be the (k/2, k/2; (m − 1)k/2 + 1; 1)-extension of it. Since if (m + 1)k/2 − 1 6=
(m−1)k/2+1, then C(m) does not have edges of length (m+1)k/2−1, C(m+1) is

a (k/2, k/2; (m+1)k/2−1)-outer cycle by (2). It also follows from (2) that C(m+1)

has the required distribution of edges and hence it is a k-equitable representation

of C(m+1)k. Clearly, C(m+1) is a [j, j + (m + 1)k− 1]-graph for a certain integer j,

and so is a minimal k-equitable representation of C(m+1)k.

If m is odd, then let C(m+1) be the (k/2, k/2; mk/2 − 1)-extension of C(m).

Similarly as above, it can be verified that all the required conditions are satisfied.

Now we shall consider the case k ≡ 0 mod 4.

Lemma 3.5. If k ≡ 0 mod 4 and m > 1, then the cycle Cmk is minimally

k-equitable.

Proof. Let us assume that k is fixed. Similarly as in the proof of Lemma 3.4,

we shall use induction on m, and we shall construct a family of cycles C(m), for

m = 2, 3, . . ., such that C(m) is a minimal k-equitable representation of Cmk. Now,

the cycle C(m) will have the additional property of being (k1, k2; (m− 1)k/2 + 1)-

outer for m even and (k2, k1; mk/2− 1)-outer for m odd, where k1 = k/2 + 1 and

k2 = k/2 − 1. As in the construction used to prove Lemma 3.4, it will have the
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following distribution of edges:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k (m− 1)k/2 + 1
k 1




when m is even and the following:



k 2k
k 3k
...

...
k (m− 2)k
k (m− 1)k
k mk/2− 1
k 1




when m is odd.

The cycle C(2) is constructed in a way which is a slight modification of the

method used to prove lemma 3.4. Let G1 = C(1, k/2 + 2; k1) and G2 = C(k +

1, 3k/2+2; k2). Note that k1 and k2 are odd integers. By (1), G1 has the following

distribution of edges: (
k/2 + 1 k/2 + 1
k/2 + 1 1

)
,

and G2 the following: 


k/2− 1 k/2 + 1
k/2− 2 1

1 3


 .

The cycles G1 and G2 have two common vertices k +1 and k +2 and one common

edge e0 = (k + 1, k + 2). Let C be the cycle obtained by taking the union of G1

and G2 with the edge e0 removed. Thus, C has the following distribution of edges.



k k/2 + 1
k − 3 1

1 3




Let C(2) be obtained from C by adding the set {3k/2, 3k/2 + 1} to the vertex set,

and subdividing the edge (3k/2− 1, 3k/2+2) with the vertices 3k/2 and 3k/2+1

as to get three edges of length 1, see Fig. 8.
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Fig. 8. The cycle C(2).

Hence, the cycle C(2) satisfies the required conditions because it is (k1, k2; k/2+1)-

outer, it is a [1, 2k]-graph, and it has the following distribution of edges.

(
k k/2 + 1
k 1

)

Let us assume that the cycle C(m) is constructed and that it satisfies the

required conditions. The induction goes almost exactly as in the proof of Lemma

3.4. The only difference is that the endpoints of the edges to be subdivided do

not lie symmetrically at both ends of the segment of all vertices, but there are k1

of them at one end and k2 of them at the other.

If m is even, then C(m) is a (k1, k2; (m − 1)k/2) + 1)-outer cycle thus let

C(m+1) be the (k1, k2; (m− 1)k/2 + 1; 1)-extension of it. If m is odd, then C(m) is

(k2, k1;mk/2 − 1)-outer so let C(m+1) be obtained by taking the (k2, k1;mk/2 −
1; 1)-extension of it. Similarly as in the proof of Lemma 3.4, it can be shown that

all the required conditions are satisfied.
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CHAPTER 4

SPLITTING NECKLACES AND A GENERALIZATION OF

THE BORSUK-ULAM ANTIPODAL THEOREM

§4.1. Introduction

Let t be a natural number. An opened t-coloured necklace is a sequence of elements

(beads) from the integer segment [1, t]. Let N be an opened t-coloured necklace.

A splitting of N is a partition N1 ∪ N2 ∪ . . . ∪ N` of the set of beads of N such

that for every colour i, 1 ≤ i ≤ t, the beads of colour i are spread evenly between

the sets Nj , i.e. all of the sets Nj contain the same number of beads of colour i.

A splitting of N which is a partition into k sets is called a k-splitting. The size of

the splitting of N is the minimal number of cutpoints of N needed to partition it

into segments preserved by the splitting.

Note that if the beads of each colour are consecutive in N , then any k-splitting

cuts each segment of one colour beads at k−1 points at least, and hence has size at

least t(k−1). The following natural question arises: is this trivial lower bound also

an upper bound? In other words, if N is an opened t-coloured necklace admitting

a k-splitting, does N have a k-splitting of size t(k − 1)? Somewhat surprisingly

the answer to this question is ‘yes’.

Let us now briefly describe the history of this problem. Bhatt and Leiserson

[9] and Bhatt and Leighton [8] pointed out that this problem has some applications

to VLSI circuit design. Goldberg and West [34] proved that for every t, an opened
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t-coloured necklace admitting a 2-splitting has a 2-splitting of size t. They also

raised the question about the general upper bound for k-splittings. Alon and

West [5] gave a very short proof of the above upper bound for 2-splittings using

the Borsuk-Ulam antipodal theorem; they also conjectured that t(k−1) is an upper

bound for k-splittings. Alon [4] proved the t(k − 1) upper bound for k-splittings

using involved methods of algebraic topology. In this chapter we are going to give

another proof of Alon’s result. Our proof will be more elementary and will use a

classical result of algebraic topology (Lemma 4.10) only as a starting point; after

that the argument will be purely combinatorial.

Theorem 4.1. (N. Alon [4]) Every necklace with kai beads of colour i, 1 ≤ i ≤ t,

has a k-splitting of size at most t(k − 1).

To prove Theorem 4.1 we shall formulate and prove a new, very natural

generalization of the Borsuk-Ulam antipodal theorem. From this generalization

we shall immediately obtain a continuous version of Theorem 4.1 implying, as in

Alon [4], Theorem 4.1 itself.

To formulate our generalization of the Borsuk-Ulam antipodal theorem, we

must introduce some more terminology. Let R+ be the metric space of nonnegative

reals with the natural metric. Given a natural number n, let R+,n be obtained by

taking the product of R+ with the integer segment [0, n− 1] ⊂ N and identifying

the points (0, 0), (0, 1), . . ., (0, n− 1) to a single point denoted 0. The metric µ on

R+,n is defined as follows:

µ
(
(x, i), (y, i)

)
= |x− y|

and

µ
(
(x, i), (y, j)

)
= x + y

for x, y ∈ R+, 0 ≤ i, j ≤ n − 1, and i 6= j. Thus R+,n is the union of n half-lines

with a common endpoint and equipped with the natural metric.
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Given a natural number m, let Rm
+,n be the product

R+,n × R+,n × . . .× R+,n︸ ︷︷ ︸
m times

with the metric µ defined by

µ
((

x1, x2, . . . , xm

)
,
(
y1, y2, . . . , ym

))
=

m∑

i=1

µ
(
xi, yi

)
.

Let O be the point (0, 0, . . . , 0) ∈ Rm
+,n, and let Sm−1

n be the unit sphere in

Rm
+,n with the centre at O, i.e. let

Sm−1
n =

{
x ∈ Rm

+,n : µ(x,O) = 1
}

.

Let η : [0, n− 1] → [0, n− 1] be the function of taking the cyclic successor, i.e. let

η(i) = (i + 1) mod n, i = 0, 1, . . . , n− 1. Let ω : Sm−1
n → Sm−1

n be defined by

ω
((

x1, i1
)
,
(
x2, i2

)
, . . . ,

(
xm, im

))
=

((
x1, η(i1)

)
,
(
x2, η(i2)

)
, . . . ,

(
xm, η(im)

))
.

We are now ready to state our generalization of the Borsuk-Ulam’s theorem.

Theorem 4.2. If p is a prime and m is any natural number, then for any contin-

uous map

h : Sm(p−1)
p → Rm

there exists an x ∈ Sm(p−1)
p such that

h(x) = h
(
ω(x)

)
= . . . = h

(
ωp−1(x)

)
.

Note that for p = 2, Sm(p−1)
p is naturally homeomorphic to Sm, the `1-sphere in

Rm+1, with the map ω on Sm
2 corresponding to the antipodal map on Sm. Thus if

p = 2, Theorem 4.2 is a reformulation of the Borsuk-Ulam antipodal theorem. In

Section 4.4 (Lemma 4.12), we shall give another description of Sm(p−1)
p by defining

a triangulation of it.

The rest of this chapter is partitioned as follows. In Section 4.2, we prove

Theorem 4.1 using Theorem 4.2; in Section 4.3, we prove the main lemma needed

in the proof of Theorem 4.2, whose proof is given in Section 4.4.
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§4.2. Continuous Splittings

In this section we shall prove Theorem 4.3, which easily implies Theorem 4.1,

and is in fact a continuous version of it. We shall show that Theorem 4.3 follows

immediately from Theorem 4.2. Now, let us introduce the terminology needed

to formulate Theorem 4.3. Let I = [0, 1] be the real unit interval. An interval

m-colouring is a function from I to the integer segment [1,m] such that the set of

points mapped to i, 1 ≤ i ≤ m, is (Lebesgue) measurable. A k-splitting of size r of

such a colouring is a partition I = F1∪ . . .∪Fk satisfying the following conditions:

(i) There is a sequence of numbers 0 = y0 ≤ y1 ≤ . . . ≤ yr ≤ yr+1 = 1 such

that for each of the segments (yi, yi+1), 0 ≤ i ≤ m, and each of the sets Fj ,

1 ≤ j ≤ k, (yi, yi+1) is either contained in Fj or is disjoint from it.

(ii) The measure of the set of points mapped to i, 1 ≤ i ≤ m, which are contained

in Fj , 1 ≤ j ≤ k, is precisely 1/k of the total measure of the points of the

colour i.

Theorem 4.3. (Alon [4]) If p is a prime number, then every interval m-colouring

has a p-splitting of size m(p− 1).

The proof of this result given by Alon uses a generalization of the Borsuk-Ulam

antipodal theorem due to Bárány, Shlosman and Szücs [7], and another topological

result of Bárány, Shlosman and Szücs ([7] Statement A′). We shall show that our

new generalization of the Borsuk-Ulam antipodal theorem is strong enough to

imply Theorem 4.3 immediately.

Proof of Theorem 4.3. Let f : I → [1,m] be an interval m-colouring. We shall

define a continuous map h : Sm(p−1)
p → Rm and apply Theorem 4.2. Let q =

m(p− 1) + 1. Given

x = (x1, x2, . . . , xq) ∈ Sm(p−1)
p

where

xi = (xi, ki) ,
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i = 1, 2, . . . , q, xi ∈ R+, 0 ≤ ki ≤ p− 1, let

I = F
(x)
0 ∪ F

(x)
1 ∪ . . . ∪ F

(x)
p−1

be a splitting of size m(p − 1) of f defined as follows. Let 0 = y0 ≤ y1 ≤ . . . ≤
yq−1 ≤ yq = 1 be the sequence or reals satisfying

yi − yi−1 = xi,

for i = 1, . . . , q. Note that
q∑

i=1

xi = 1.

Let

J (x)
s = {i : 1 ≤ i ≤ q, ki = s} ,

and

F (x)
s =

⋃

i∈J
(x)
s

(yi+1, yi),

s = 0, 1, . . . , p − 1. In other words the partition I = F
(x)
0 ∪ F

(x)
1 ∪ . . . ∪ F

(x)
p−1

is obtained by cutting I into consecutive segments of lengths x1, x2, . . . , xq and

putting the i-th segment into the set F
(x)
ki

. Let h(x) = (r1, r2, . . . , rm) ∈ Rm be

such that ri, 1 ≤ i ≤ m, is the measure of the set of points contained in F
(x)
0

which are mapped to i by f . Clearly h is continuous.

By Theorem 4.2, there exists x ∈ Sm(p−1)
p such that

h(x) = h(ω(x)) = . . . = h(ωp−1(x)). (1)

We claim that the partition I = F
(x)
0 ∪ F

(x)
1 ∪ . . . ∪ F

(x)
p−1 is a p-splitting of f . To

prove the claim we shall show that

h(ωj(x)) = (r(j)
1 , r

(j)
2 , . . . , r(j)

m ),

0 ≤ j ≤ p− 1, where r
(j)
i , 1 ≤ i ≤ m, is the measure of the set of points contained

in F
(x)
η−j(0) which are mapped to i by f . This will finish the proof of the theorem

since it follows from (1) that, for 1 ≤ i ≤ m, we have

r
(0)
i = r

(1)
i = . . . = r

(p−1)
i .
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Note that for j = 0, 1, . . . , p− 1 we have

ωj(x) =
(
x1, x2, . . . , xq

)

where

xi =
(
xi, η

j(ki)
)
,

i = 1, 2, . . . , q. Thus

J (ωj(x))
s =

{
i : 1 ≤ i ≤ q, ηj(ki) = s

}

=
{
i : 1 ≤ i ≤ q, ki = η−j(s)

}
= J

(x)
η−j(s).

Therefore

F
(ωj(x))
0 =

⋃

k∈J
(y)

η−j(0)

(yk+1, yk) = F
(x)
η−j(0),

and

h(ωj(x)) = (r(j)
1 , r

(j)
2 , . . . , r(j)

m ) ∈ Rm

where ri, 1 ≤ i ≤ m, is the measure of the set of points contained in F
(x)
η−j(0) which

are mapped to i by f . This completes our proof.

Note that in Theorem 4.3 we assume that p is prime. Unlike in the case of Theorem

4.2 this assumption is not essential. We are now going to present Alon’s proofs

that Theorem 4.3 implies its generalized version, Corollary 4.4, and that Corollary

4.4 implies Theorem 4.1.

Corollary 4.4. (Alon [4]) For any natural numbers k and m, every interval m-

colouring has a k-splitting of size m(k − 1).

Proof. (Alon [4]) We shall use induction on the number of prime factors of k. If

k is prime then Corollary 4.4 follows from Theorem 4.3. Let k = k1k2 where

k1, k2 6= 1, and assume that every interval m-colouring has a k′-splitting of size

m(k′ − 1) for any integer k′ having less primes in its factorization than k has.

74



Let f : I → [1,m] be an interval m-colouring. We shall show that f has a

k-splitting of size k(m − 1). By our induction assumption f has a k1-splitting

I = F1 ∪ F2 ∪ . . . ∪ Fk1 of size m(k1 − 1). By point (i) of the definition of

splittings for interval colourings there is a sequence of numbers 0 = y0 ≤ y1 ≤
. . . ≤ ym(k1−1) ≤ ym(k1−1)+1 = 1 such that for each of the segments Ii = (yi, yi+1),

0 ≤ i ≤ m(k1 − 1), and each of the sets Fj , 1 ≤ j ≤ k1, Ii is either contained in

Fj or is disjoint from it. Clearly we can assume that all Ii are nonempty since

otherwise we can change our sequence of numbers yj by deleting repeating ones,

and adding new.

For j = 1, 2, . . . , k1, let fj : I → [1,m] be the interval m-colouring obtained

as follows. Let us place the intervals Ii contained in Fj next to each other getting

an interval Aj , and let αj : I → Aj be the affine map taking 0 to the smaller

endpoint of Aj and 1 to its bigger endpoint. Now set fj = f ◦ αj . By the

inductive assumption there is a k2-splitting of fj of size m(k2−1), j = 1, 2, . . . , k1.

Transforming these k2-splittings into partitions of Fj , for j = 1, 2, . . . , k1, we get

a partition of I into k = k1k2 sets which is a k-splitting of f of size

m(k1 − 1) + k1(m(k2 − 1)) = m(k − 1).

Thus the proof of the theorem is complete.

Proof of Theorem 4.1. (Alon [4]) Let f : I → [1, t] be the interval t-colouring

obtained by partitioning I into s = k
∑t

i=1 ai segments of equal length (called

in the future by small segments) and colouring the i-th small segment with the

colour of the i-th bead of the necklace. By Corollary 4.4 there is a k-splitting

I = F1 ∪F2 ∪ . . .∪Fk of size t(k− 1) of f . This splitting can be transformed into

a k-splitting of size t(k − 1) of the necklace provided that the cuts do not occur

inside the small segments. We shall show by induction on the number of this ‘bad’

cuts that the k-splitting of size t(k− 1) of f can be transformed into a k-splitting

of size t(k − 1) of f without any ‘bad’ cuts.
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If there are no ‘bad’ cuts then we are done. Assume that there are k > 0

‘bad’ cuts and that the result holds for any number k′ < k of ‘bad’ cuts. Let i,

1 ≤ i ≤ t, be a colour such that the number of ‘bad’ cuts occuring inside small

segments of colour i is positive. Let us define a multigraph with {Fj : 1 ≤ j ≤ k}
as the vertex set and (Fj , F`) being an edge if there is a ‘bad’ cut occuring inside

a small segment of colour i and between a segment contained in Fj and a segment

contained in F`. Since for every j, 1 ≤ j ≤ k, the measure of points of colour i

contained in Fj is a multiple of the length of a small segment, there are no vertices

of degree 1 in our multigraph. Therefore it contains a cycle. By shifting the cuts

corresponding to this cycle along the small segments in which they occur, we can

decrease the number of ‘bad’ cuts at least by 1 getting again a k-splitting of f of

size t(k − 1). This completes the proof of the induction step, and hence the proof

of the theorem.

§4.3. The Main Lemma

Our aim in this section is to prove Lemma 4.11 from which we shall deduce The-

orem 4.2 in the next section. First, let us introduce some more terminology. If

x0, x1, . . . , xk are points in Rm such that {x1 − x0, x2 − x0, . . . , xk − x0} is a lin-

early independent set of k vectors in Rm, then we say that these points are affinely

independent. Let 0 ≤ k ≤ m, and x0, x1, . . . , xk be affinely independent points in

Rm. The k-simplex ∆ = (x0, x1, . . . , xk) is the following subset of Rm:
{

x =
k∑

i=0

µixi :
k∑

i=0

µi = 1, µi > 0

}
. (2)

Since the points x0, x1, . . . , xk are affinely independent, the reals µi, 0 ≤ i ≤ k,

are uniquely determined by x and x0, x1, . . . , xk. We shall call the sum in (2)

the barycentric representation of x with respect to (x0, x1, . . . , xk). The points

x0, . . . , xk are the vertices of ∆; the skeleton of ∆ is the set of all its vertices, and

k is the dimension of ∆. A simplex ∆1 is a face of a simplex ∆2 if the skeleton of
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∆1 is a subset of the skeleton of ∆2.

A simplicial complex K is a finite set of disjoint simplices such that every face

of every simplex of K is also a simplex of K. The body |K| of the simplicial

complex K is the union of all its simplices; the complex K is then also called a

simplicial decomposition of |K|.
If {x1, x2, . . . , xk} is the set of vertices of the simplicial complex K and x ∈

|K|, then there are unique reals µ1, µ2, . . . , µk such that

x =
k∑

i=1

µixi, (3)

where µi ≥ 0 for every i = 1, 2, . . . , k,

k∑

i=1

µi = 1,

and the set {xi : µi > 0} is a simplex of K. We shall call the sum (3) the barycentric

representation of x with respect to K, or just the barycentric representation of x

if the complex is clear from the context.

The simplicial complex K ′ is a subcomplex of the simplicial complex K if the

set of simplices of K ′ is a subset of the set of simplices of K, in particular the set

of vertices of K ′ is a subset of the set of vertices of K.

Let ω be a continuous function from a subset X of Rm to itself, and k be a

natural number. We shall say that ω is a Zk-action if the set {ω0, ω, ω2, . . . , ωk−1},
where ω0 is the identity map on X, is a k-element cyclic group under composition.

We shall also say that such an action is free if for every x ∈ X all the elements x,

ω(x), ω2(x), . . ., ωk−1(x) are different.

Let ‖ · ‖ : Rm → R be the `1-norm on Rm, namely for x = (x1, x2, . . . , xm) ∈
Rm, let

‖x‖ =
m∑

i=1

|xi|.

Let

Bm = {x ∈ Rm : ‖x‖ ≤ 1}
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be the m-dimensional unit ball and let

Sm =
{
x ∈ Rm+1 : ‖x‖ = 1

}

be the m-dimensional unit sphere.

Let p be a fixed prime number. For each natural number n, we are going to

define a simplicial complex Xn,p such that |Xn,p| is homeomorphic to the topolog-

ical space obtained by identifying the boundaries of p disjoint copies of the ball

B(p−1)n. Also, each of the complexes Xn,p will be equipped with a free Zp-action

ω. We shall prove that for any continuous map h : |Xn,p| → Rn, there exists an

x ∈ |Xn,p| such that h(x) = h(ω(x)) = . . . = h(ωp−1(x)).

Before we define the family of complexes Xn,p, let us define the family of

complexes Yn,p in R(p−1)n. For a given positive integer n and i = 1, . . . , n, let

x0
n,i = (0, 0, . . . , 0︸ ︷︷ ︸

(p−1)(i−1)

,−1,−1, . . . ,−1︸ ︷︷ ︸
p−1

, 0, 0, . . . , 0︸ ︷︷ ︸
(p−1)(n−i)

) ∈ R(p−1)n,

and

xj
n,i = (0, 0, . . . , 0︸ ︷︷ ︸

(p−1)(i−1)

, 0, 0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, 0, . . . , 0︸ ︷︷ ︸
p−j−1

, 0, 0, . . . , 0︸ ︷︷ ︸
(p−1)(n−i)

) ∈ R(p−1)n,

for j = 1, 2, . . . , p− 1. Set

Tn,i =
{

xj
n,i : j = 0, 1, . . . , p− 1

}

and let ∆n,i be the simplex with the skeleton Tn,i, i = 1, . . . , n, and let
n⋃

i=1

Tn,i

be the set of vertices of Yn,p. Let T be the skeleton of a simplex of Yn,p if and

only if for every i = 1, . . . , n we have

|T ∩ Tn,i| ≤ p− 1. (4)

The elements of Yn,p are indeed simplices since for any set T satisfying (4), the

elements of T are affinely independent.

Our aim now is to show that Yn,p is a simplicial decomposition of a subset

of R(p−1)n which is homeomorphic to the sphere S(p−1)n−1. Let us first prove the

following lemma.
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Lemma 4.5. Yn,p is a simplicial complex.

Proof. To prove that Yn,p is a simplicial complex it is enough to show that the

simplices of Yn,p are pairwise disjoint. Let ∆1 and ∆2 be a pair of distinct simplices

of Yn,p, and suppose that there is an a ∈ ∆1 ∩∆2. Let T1 and T2 be the skeletons

of ∆1 and ∆2 respectively. As a ∈ ∆1 we have

a =
n∑

i=1

p−1∑

j=0

µi,jx
j
n,i (5)

where µi,j ≥ 0, 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1,

n∑

i=1

p−1∑

j=0

µi,j = 1,

and

T1 =
{

xj
n,i : 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1, µi,j > 0

}
.

Analogously, as a ∈ ∆2 we have

a =
n∑

i=1

p−1∑

j=0

µ′i,jx
j
n,i (6)

where µ′i,j ≥ 0, 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1,

n∑

i=1

p−1∑

j=0

µ′i,j = 1,

and

T2 =
{

xj
n,i : 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1, µ′i,j > 0

}
.

Thus, (5) and (6) are the barycentric representations of a with respect to ∆1 and

∆2 respectively. Since ∆1 6= ∆2, we have T1 6= T2, and thus there are i0 and j0,

1 ≤ i0 ≤ n, 0 ≤ j0 ≤ p− 1, such that µi0,j0 6= µ′i0,j0
.

Assume a = (a1, a2, . . . , a(p−1)n) ∈ R(p−1)n, and let

b = (b1, . . . , bp−1) = (a(p−1)(i0−1)+1, a(p−1)(i0−1)+2, . . . , a(p−1)i0)
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be the image of a under the projection onto the i0-th component of R(p−1)n =

Rp−1 × . . .× Rp−1. We have

b =
p−1∑

j=0

µi0,jx
j
n,i0

=
p−1∑

j=0

µ′i0,jx
j
n,i0

.

We shall obtain a contradiction by showing that µi0,j = µ′i0,j , 0 ≤ j ≤ p− 1.

By the definition of Yn,p, not all of µi0,j , 0 ≤ j ≤ p− 1, can be positive since

∆1 is a simplex of Yn,p, and hence

µi0,0 = −min {0, b1, b2, . . . , bp−1} ,

and

µi0,j = bj + µi0,0,

for j = 1, . . . , p − 1. Analogously, since ∆2 is a simplex of Yn,p, not all of µ′i0,j ,

0 ≤ j ≤ p− 1, can be positive and we have

µ′i0,0 = −min {0, b1, b2, . . . , bp−1} ,

and

µ′i0,j = bj + µ′i0,0,

for j = 1, . . . , p− 1. Thus µi0,j = µ′i0,j , j = 0, . . . , p− 1, as required.

Let Xn,p be the subcomplex of Yn+1,p such that T is the skeleton of a simplex

of Xn,p if and only if

|T ∩ Tn+1,n+1| ≤ 1.

Now, we are going to prove that |Yn,p| is homeomorphic to S(p−1)n−1 which implies

that |Xn,p| is homeomorphic to the topological space obtained by identifying the

boundaries of p disjoint copies of the ball B(p−1)n.

In the proof we shall need the following two lemmas. Let K be a simplicial

complex and let x be a vertex of K. We say that K is an x-cone if for every
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simplex ∆ of K with skeleton T , say, T ∪ {x} is also the skeleton of a simplex of

K. Furthermore, for an x-cone K let K ′ be the simplicial complex such that ∆ is

a simplex of K ′ if ∆ is a simplex of K and x is not a vertex of ∆. Then, we shall

say that K is an x-cone over K ′. Lemmas 4.6 and 4.7 clearly hold.

Lemma 4.6. If K is an x-cone over K ′, and |K ′| is homeomorphic to the sphere

Sk or to the ball Bk, then |K| is homeomorphic to Bk+1.

Lemma 4.7. Let K1 and K2 be simplicial complexes such that |K1| and |K2|
are both homeomorphic to the ball Bk+1, K1 ∪ K2 is a simplicial complex and

|K1 ∩K2| is homeomorphic to the sphere Sk. Then |K1 ∪K2| is homeomorphic to

the sphere Sk+1.

We can now prove the following lemma.

Lemma 4.8. |Yn,p| is homeomorphic to S(p−1)n−1.

Proof. We shall use induction on n. For n = 1, |Yn,p| is the boundary of a (p− 1)-

dimensional simplex so Yn,p is homeomorphic to Sp−2.

Given n ≥ 1, assume that |Yn,p| is homeomorphic to S(p−1)n−1. Let Y
(α)
n,p ,

α = 0, 1, . . . , p − 1, and Y
(α)

n,p, α = 0, 1, . . . , p − 2, be subcomplexes of Yn+1,p

defined as follows. Let

{
xj

n+1,i : i = 1, . . . , n, j = 0, . . . , p− 1
}
∪

{
xj

n+1,n+1 : j = 0, . . . , α
}

be the set of vertices of both Y
(α)
n,p and Y

(α)

n,p. Let T be the skeleton of a simplex

of Y
(α)
n,p if and only if

∣∣∣T ∩
{

xj
n+1,n+1 : j = 0, . . . , α

}∣∣∣ ≤ α,

and ∆ be a simplex of Y
(α)

n,p if and only if ∆ is a simplex of Yn+1,p. Note that

Y
(p−1)
n,p = Yn+1,p. We shall show that |Y (α)

n,p| is homeomorphic to the ball B(p−1)n+α,

α = 0, . . . , p − 2, and |Y (α)
n,p | is homeomorphic to the sphere S(p−1)n+α−1, α =
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0, . . . , p − 1, thus in particular that |Yn+1,p| is homeomorphic to S(p−1)(n+1)−1.

We shall use induction on α.

Let us consider the case α = 0. Clearly, Y
(0)

n,p is an x0
n+1,n+1-cone over Yn,p.

Hence, by Lemma 4.6, |Y (0)

n,p| is homeomorphic to B(p−1)n since |Yn,p| is homeo-

morphic to S(p−1)n−1. |Y (0)
n,p | is homeomorphic to S(p−1)n−1 since Y

(0)
n,p = Yn,p.

Given α, 0 ≤ α ≤ p − 3, assume that |Y (α)

n,p| is homeomorphic to B(p−1)n+α.

Clearly, Y
(α+1)

n,p is an xα+1
n+1,n+1-cone over Y

(α)

n,p. Hence, by Lemma 4.6, |Y (α+1)

n,p | is

homeomorphic to B(p−1)n+α+1 since |Y (α)

n,p| is homeomorphic to B(p−1)n+α. Thus,

we get that |Y (α)

n,p| is homeomorphic to B(p−1)n+α for all α = 0, . . . , p− 2.

Now, given α, 0 ≤ α ≤ p − 2, assume that |Y (α)
n,p | is homeomorphic to

S(p−1)n+α−1. Let K be a subcomplex of Y
(α+1)
n,p with the same set of vertices

and such that T is the skeleton of a simplex of K if and only if

∣∣∣T ∩
{

xj
n+1,n+1 : j = 0, . . . , α

}∣∣∣ ≤ α.

We claim that |K| is homeomorphic to the ball B(p−1)n+α. Indeed, K is an

xα+1
n+1,n+1-cone over Y

(α)
n,p . Thus, by Lemma 4.6, |K| is homeomorphic to B(p−1)n+α

since |Y (α)
n,p | is homeomorphic to S(p−1)n+α−1.

Now, observe that

Y (α+1)
n,p = Y

(α)

n,p ∪K,

and

Y
(α)

n,p ∩K = Y (α)
n,p .

Thus, by Lemma 4.7, |Y (α+1)
n,p | is homeomorphic to S(p−1)n+α since |Y (α)

n,p| and

|K| are both homeomorphic to B(p−1)n+α and |Y (α)

n,p ∩ K| is homeomorphic to

S(p−1)n+α−1. Therefore, |Y (α)
n,p | is homeomorphic to S(p−1)n+α−1 for all α =

0, . . . , p− 1 and the lemma is proved.

By using Lemmas 4.6 and 4.7, it is straightforward to verify that |Xn,p| is

homeomorphic to the topological space obtained by identifying the boundaries of

p disjoint copies of the ball B(p−1)n.
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Let us now define a free Zp-action ωn on the complex Yn,p. Assume that

y ∈ |Yn,p| has the following barycentric representation:

y =
n∑

i=1

p−1∑

j=0

µj
ix

j
n,i.

Then set

ωn(y) =
n∑

i=1

p−1∑

j=0

µ
(j+1) mod p
i xj

n,i.

Note that if xj
n,i is a vertex of Yn,p, then

ωn(xj
n,i) = x

(j−1) mod p
n,i .

The map ωn is clearly a Zp-action; moreover we have the following lemma.

Lemma 4.9. The map ωn is a free action.

Proof. Since p is a prime, it is enough to show that ωn(y) 6= y for all y ∈ |Yn,p|.
Suppose there is a y ∈ |Yn,p| such that ωn(y) = y. Let T be the skeleton of the

simplex ∆ containing y, and let Tn,i have a nonempty intersection with T . By

the definition of Yn,p, T ∩ Tn,i has at most p − 1 elements. Since p is prime,

ω(T )∩Tn,i = ω(T ∩Tn,i) 6= T ∩Tn,i. Hence the simplices of Yn,p containing y and

ω(y) are different. This contradiction completes the proof of the lemma.

Note that ωn+1 restricted to the complex Xn,p is a Zp-free action on Xn,p.

In the sequel, we shall drop the subscript from ωn when the domain is clear from

the context.

Let M1 and M2 be two metric spaces and let α1, α2 : M1 → M2 be continuous

maps. If

H : M1 × [0, 1] → M2

is a continuous map such that

H(x, 0) = α1(x)
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and

H(x, 1) = α2(x),

for all x ∈ M1, then we say that H is a homotopy from α1 to α2. If there is a

homotopy from α1 to a constant map, then we say that α1 is null homotopic. If θ

is a free action on the sphere Sk and α is a map from Sk to Sk, then we say that α

is equivariant with respect to θ if α◦θ = θ ◦α. The following lemma ([43] Theorem

8.3, p.42, and [7] Lemma 2) will be needed in the proof of the main result of this

section, Lemma 4.11.

Lemma 4.10. Suppose that k ≥ 1, p ≥ 2, and we are given a free Zp-action

on the sphere Sk. Then there is no equivariant map α : Sk → Sk which is null

homotopic.

The following lemma is analogous to the generalization of the Borsuk-Ulam an-

tipodal theorem due to Bárány, Shlosman and Szücs. The difference is in the

definition of the action ω, and the proof given here is more elementary as well.

Lemma 4.11. For any continuous map h : |Xn,p| → Rn, there exists an x ∈ |Xn,p|
such that h(x) = h(ω(x)) = . . . = h(ωp−1(x)).

Proof. Suppose there is a continuous map h : |Xn,p| → Rn such that for no x ∈
|Xn,p| we have h(x) = h(ω(x)) = . . . = h(ωp−1(x)). We shall get a contradiction

with Lemmas 4.8 and 4.10 by obtaining a map α : |Yn,p| → |Yn,p| equivariant with

respect to ω and null homotopic.

Let us first define a map f : |Xn,p| → |Yn,p|. For x ∈ |Xn,p|, assume

h(x) = (r0
1, . . . , r

0
n),

h(ω(x)) = (r1
1, . . . , r

1
n),

...

h(ωp−1(x)) = (rp−1
1 , . . . , rp−1

n ).
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For i = 1, . . . , n, set ri = min{r0
i , . . . , rp−1

i } and let

r =
n∑

i=1

p−1∑

j=0

(rj
i − ri).

By our assumption about h, r > 0 and hence we can set sj
i = (rj

i −ri)/r. Let f(x)

be defined as follows:

f(x) =
n∑

i=1

p−1∑

j=0

sj
ix

j
n,i.

Since for all i and j, 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1, we have sj
i ≥ 0 and

n∑

i=1

p−1∑

j=0

sj
i = 1,

to show that f(x) ∈ |Yn,p| it is clearly enough to show that

T = {xj
n,i : 1 ≤ i ≤ n, 0 ≤ j ≤ p− 1, sj

i > 0}

is the skeleton of a simplex of Yn,p. But we indeed have that |T ∩ Tn,i| ≤ p − 1

for every i = 1, 2, . . . , n, since ri is one of r0
i , . . . , rp−1

i and hence at least one of

s0
i , . . . , s

p−1
i must be equal to 0.

Let α be the restriction of f to |Yn,p|. We shall show that α is equivariant

with respect to ω. Let x ∈ |Yn,p| and assume that α(x) ∈ |Yn,p| has the following

barycentric representation:

α(x) =
n∑

i=1

p−1∑

j=0

sj
ix

j
n,i.

By the definition of ω, we have that

ω(α(x)) =
n∑

i=1

p−1∑

j=0

s
(j+1) mod p
i xj

n,i. (7)

Assume that α(ω(x)) ∈ |Yn,p| has the following barycentric representation:

α(ω(x)) =
n∑

i=1

p−1∑

j=0

sj
ix

j
n,i. (8)
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From the definition of f it follows that

sj
i = s

(j+1) mod p
i ,

for i = 1, . . . , n and j = 0, . . . , p− 1. Therefore (7) and (8) imply that ω(α(x)) =

α(ω(x)), and α is equivariant with respect to ω.

To finish the proof of Lemma 4.11, it is enough to show that α is null homo-

topic. We shall define a homotopy from α to a constant map using the extension

f of α. Let H : |Yn,p| × [0, 1] → |Yn,p| be defined as follows. For y ∈ |Yn,p| with

the following barycentric representation

y =
n∑

i=1

p−1∑

j=0

µj
ix

j
n,i,

and t ∈ [0, 1], set

H(y, t) = f




n∑

i=1

p−1∑

j=0

(1− t)µj
ix

j
n+1,n+1 + tx0

n+1,i


 .

Thus

H(y, 0) = f(y) = α(y),

and

H(y, 1) = f(x0
n+1,n+1)

for all y ∈ |Yn,p|. So H is a homotopy from α to a constant map proving that α

is null homotopic.
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§4.4. Proof of the Generalization of the Borsuk-Ulam Theorem

In this section we are going to prove Theorem 4.2. We shall define an equivariant

map

ζ : |Xm,p| → Sm(p−1)
p

and apply Lemma 4.10.

Given a positive integer m, let q = (p−1)m+1 and let Zm,p be the subcomplex

of the simplicial complex Yq,p such that T is the skeleton of a simplex of Zm,p if

and only if

|T ∩ Tq,i| ≤ 1

for every i = 1, . . . , q. It is clear that if we restrict the action ω on Yq,p to Zm,p,

we get a free Zp-action on Zm,p. We shall denote it also by ω.

We shall define the function ζ as the composition of two equivariant maps

γ : |Xm,p| → |Zm,p|,

and

g : |Zm,p| → Sm(p−1)
p .

The map g is easy to define because there is a straightforward equivariant map

from |Zm,p| to Sm(p−1)
p which happens to be a homeomorphism. The hard part is

to define the function γ.

Lemma 4.12. There exists a homeomorphism

g : |Zm,p| → Sm(p−1)
p

which is equivariant with respect to the action ω on |Zm,p| and ω on Sm(p−1)
p .

Proof. The map g we are to define has to satisfy g ◦ ω = ω ◦ g where ω acts on

|Zm,p| on the left-hand side and on Sm(p−1)
p on the right-hand side. Let x ∈ |Zm,p|

have the following barycentric representation with respect to Zm,p:

x =
q∑

i=1

p−1∑

j=0

µi,jx
j
q,i.
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It follows from the definition of Zm,p that for every i, 1 ≤ i ≤ q, there is at most

one j, 0 ≤ j ≤ p− 1, such that µi,j > 0. Set

g(x) =
((

µ1,j1 , j1
)
,
(
µ2,j2 , j2

)
, . . . ,

(
µq,jq

, jq

)) ∈ Rq
+,p

where ji, 1 ≤ i ≤ q, is such that µi,j = 0 for all j 6= ji, 0 ≤ j ≤ p− 1.

Since
q∑

i=1

µi,ji
= 1,

we have g(x) ∈ Sm(p−1)
p . It is straightforward to verify that g is a homeomorphism

and that g ◦ ω = ω ◦ g. Thus the lemma is proved.

Before we define the function γ, we need some more preliminary lemmas. Given

a prime p, let

P = 2[0,p−1] \ {∅, [0, p− 1]}

be the set of all subsets of [0, p − 1] ⊂ N which are nonempty and different from

[0, p− 1].

Let η : [0, p−1] → [0, p−1] be the function defined in Section 4.1; η(i) = (i+1)

mod p and let Θ : P → P be defined by

Θ(A) = {η(a) : a ∈ A} .

We are going to define a function ϕ : P → [0, p− 1] satisfying

ϕ(Θ(A)) = η(ϕ(A)).

If A ∈ P , then set

ξ(A) =
∑

i∈A

2i,

and let

BA =
{
ξ(A), ξ(Θ(A)), ξ(Θ2(A)), . . . , ξ(Θp−1(A))

}
.

The following lemma holds.
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Lemma 4.13. BA contains p different numbers.

Proof. Suppose that ξ(Θj(A)) = ξ(Θj+k(A)) and 1 ≤ k ≤ p−1. Since p is a prime,

k is relatively prime to p, and hence ξ(A) = ξ(Θ(A)). But this is possible only

when A = ∅ or A = [0, p − 1]. Since 1 ≤ |A| ≤ p − 1, the resulting contradiction

finishes the proof of the lemma.

We can now define ϕ. Let

ϕ(A) = η−j(max(Θj(A)))

where j is such that

ξ(Θj(A)) = max(BA).

By Lemma 4.13, ϕ is well defined; also we have the folowing lemma.

Lemma 4.14. The function ϕ is such that for all A ∈ P we have

ϕ(Θ(A)) = η(ϕ(A)).

Proof. We have

ϕ(A) = η−j(max(Θj(A)))

where j satisfies

ξ(Θj(A)) = max(BA).

We also have

ϕ(Θ(A)) = η−j′(max(Θj′(Θ(A))))

where j′ satisfies

ξ(Θj′(Θ(A))) = max(BΘ(A)).

Since BΘ(A) = BA, we have j′ = (j − 1) mod p and hence

ϕ(Θ(A)) = η−j+1(max(Θj(A))) = η(ϕ(A)).

Thus the proof of the lemma is complete.
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If K is a simplicial complex, then the barycentric subdivision K ′ of K is the sim-

plicial decomposition of |K| obtained as follows. For a simplex ∆ = (x0, . . . , xk) ∈
K, let

c∆ =
1

k + 1

k∑

i=0

xi

be the barycentre of ∆. Let K ′ consist of all simplices (c∆0 , . . . , c∆k
) such that

∆i ∈ K, i = 0, 1, . . . , k, and ∆i is a proper face of ∆i+1, i = 0, 1, . . . , k − 1.

We are now going to define the quasi barycentric subdivision X ′
m,p of Xm,p.

Let Ai, 1 ≤ i ≤ m + 1, be the set of simplices ∆ of Xm,p such that the vertices of

∆ are contained in Tm+1,i. Let

{
c∆ : ∆ ∈

m+1⋃

i=1

Ai

}

be the set of vertices of X ′
m,p where c∆ is the barycentre of ∆. Let T be the

skeleton of a simplex of X ′
m,p if and only if for every i, 1 ≤ i ≤ m + 1, we have

{c∆ ∈ T : ∆ ∈ Ai} = {c∆0 , . . . , c∆k
}

where ∆i is a proper face of ∆i+1, i = 0, 1, . . . , k−1. It is straightforward to verify

the following lemma.

Lemma 4.15. X ′
m,p is a simplicial decomposition of |Xm,p|.

We shall define γ : |Xm,p| → |Zm,p| on the vertices of X ′
m,p first. The map γ

restricted to the vertices of X ′
m,p will take its values in the set of vertices of Zm,p.

Given a vertex c∆ of X ′
m,p, let i, 1 ≤ i ≤ m + 1, be such that ∆ ∈ Ai. Let T be

the skeleton of ∆ and

A =
{

j : 0 ≤ j ≤ p− 1, xj
m+1,i ∈ T

}
.

By the definition of Xm,p, we have

1 ≤ |A| ≤ p− 1
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if 1 ≤ i ≤ m, and

|A| = 1

if i = m + 1. Set

γ(c∆) = x
ϕ(A)
q,(p−1)(i−1)+|A| .

We shall now show that γ maps skeletons of simplices of X ′
m,p to skeletons of

simplices of Zm,p.

Lemma 4.16. If (c∆0 , . . . , c∆k
) is a simplex of X ′

m,p, then (γ(c∆0), . . . , γ(c∆k
))

is a simplex of Zm,p.

Proof. Assume that (c∆0 , . . . , c∆k
) is a simplex of X ′

m,p and

γ(c∆i) = xai
q,ri

for i = 0, . . . , k. By the definition of Zm,p, to prove that (xa0
q,r0

, . . . , xak
q,rk

) is a

simplex of Zm,p we have to show that all r0, . . . , rk are distinct. Suppose rj = r`

and 0 ≤ j ≤ ` ≤ k. There is exactly one i and one s, 1 ≤ i ≤ m+1, 1 ≤ s ≤ p− 1,

such that

rj = r` = (p− 1)(i− 1) + s.

Hence, by the definition of γ, we have

c∆j , c∆`
∈ Ai

and

|Tj | = |T`| = s

where Tj and T` are skeletons of ∆j and ∆` respectively. This contradicts the

definition of X ′
m,p since, according to this definition, ∆j is a proper face of ∆`.

Thus the lemma is proved.

We now extend γ linearly to |X ′
m,p|. If x ∈ (c∆0 , . . . , c∆k

) ∈ X ′
m,k has the

following barycentric representation

x =
k∑

i=0

µic∆i ,
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then let

γ(x) =
k∑

i=0

µiγ(c∆i
).

Lemma 4.17. The map γ is equivariant with respect to ω.

Proof. We have to show that for every x ∈ |Xm,p| we have

γ(ω(x)) = ω(γ(x)).

It is enough to prove this equality for x being a vertex of X ′
m,p. Let x = c∆ be

the barycentre of ∆ ∈ Ai, let T be the skeleton of ∆ and set

A =
{

j : 0 ≤ j ≤ p− 1, xj
m+1,i ∈ T

}
.

If ω(c∆) = c∆′ , then by the definition of ω, we have ∆′ ∈ Ai. If T ′ is the skeleton

of ∆′, then {
j : 0 ≤ j ≤ p− 1, xj

m+1,i ∈ T ′
}

= Θ(A).

Therefore we have

γ(ω(x)) = x
ϕ(Θ(A))
q,(p−1)(i−1)+|Θ(A)| .

Since |Θ(A)| = |A| and ϕ(Θ(A)) = η(ϕ(A)), we have

γ(ω(x)) = x
η(ϕ(A))
q,(p−1)(i−1)+|A| .

We also have

ω(γ(x)) = x
η(ϕ(A))
q,(p−1)(i−1)+|A| ,

so

γ(ω(x)) = ω(γ(x)),

as required.

We are now ready to prove Theorem 4.2.
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Proof of Theorem 4.2. Let h : Sm(p−1)
p → Rm be a continuous function. Let

g : |Zm,p| → Sm(p−1)
p be a homeomorphism satisfying g ◦ ω = ω ◦ g (see Lemma

4.12). Let us consider the function

h ◦ g ◦ γ : |Xm,p| → Rm.

By Lemma 4.11 there exists y ∈ |Xm,p| satisfying

h ◦ g ◦ γ(y) = h ◦ g ◦ γ(ω(y)) = . . . = h ◦ g ◦ γ(ωp−1(y)).

Let x = g ◦ γ(y). Since g ◦ γ(ω(y)) = ω(x), we have

h(x) = h(ω(x)) = . . . = h(ωp−1(x)),

and the proof of Theorem 4.2 is complete.

§4.5. Concluding remark

Although our proof of Theorem 4.1 is much more combinatorial than the original

one given by Alon [4], it is still based upon a result from algebraic topology. It

would be desirable to find a purely combinatorial proof. Probably the way to give

such a proof would be to find a purely combinatorial proof of our generalization of

the Borsuk-Ulam antipodal theorem (Theorem 4.2). Recall that the Borsuk-Ulam

theorem has a purely combinatorial proof which perhaps could be generalized.
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CHAPTER 5

REMARKS ON A GENERALIZATION OF RADON’S THEOREM

The well-known theorem of Radon [36] says that, for any A ⊂ Rn satisfying

|A| ≥ n + 2, there are disjoint subsets B and C of A such that their convex hulls

have nonempty intersection. Since, for any A ⊂ Rn satisfying |A| = n + 2 the

convex hull of A is the image of the closure of an (n + 1)-dimensional simplex

under a linear map, Radon’s theorem is an immediate corollary to the following

theorem. The terms used in this chapter are defined in Chapter 4.

Theorem 5.1. Let ∆ ⊂ Rn+1 be an (n + 1)-dimensional simplex and let K be

the simplicial complex containing all faces of ∆. If f : |K| → Rn is a linear map,

then there are two disjoint faces ∆1, ∆2 of ∆ such that f(∆1) ∩ f(∆2) 6= ∅.

Thus the following theorem of Bajmóczy and Bárány [6] can be thought of as

a generalization of Radon’s theorem.

Theorem 5.2. Let ∆ and K be as in Theorem 5.1. If f : |K| → Rn is a continuous

map, then there are two disjoint faces ∆1, ∆2 of ∆ such that f(∆1) ∩ f(∆2) 6= ∅.

Bajmóczy and Bárány use the following antipodal theorem of Borsuk and

Ulam [13] in their proof.

Theorem 5.3. For any continuous map h : Sn → Rn there exists x ∈ Sn with

h(x) = h(−x).
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Theorem 5.2 follows immediately from Theorem 5.3 and the following theo-

rem.

Theorem 5.4. Let ∆ and K be as in Theorem 5.1. There exists a continuous

map g : Sn → |K| such that for every x ∈ Sn the supports of g(x) and g(−x) are

disjoint.

In this brief chapter we are going to give a new very simple proof of Theorem 5.4.

We present in it an explicit construction of the function g.

Proof of Theorem 5.4. Assume that ∆ = (x0, . . . , xn+1). Let K1 be the simplicial

complex with {x0, . . . , xn+1} as its set of vertices and all proper faces of ∆ as its

simplices. Let K2 be the barycentric subdivision of K1. Let ω : |K2| → |K2| be a

free Z2-action defined as follows. If T ⊂ {x0, . . . , xn+1} is the skeleton of a simplex

σ of K1 and cσ is the barycentre of σ, then let

ω(cσ) = cσ′ ,

where σ′ is the simplex of K1 whose skeleton T ′ is the complement of T , that is

T ′ = {x0, . . . , xn+1} \ T.

Thus, we have defined ω on the vertices of K2. Let us extend ω linearly to

|K2|, that is for any x ∈ (cσ1 , . . . , cσr ) ∈ K2 having the following barycentric

representation

x =
r∑

i=1

µicσi ,

let

ω (x) =
r∑

i=1

µiω(cσi).

Clearly, ω is well defined and there is a homeomorphism f : Sn → |K2| which is

equivariant with respect to the antipodal map on Sn and ω on |K2|, that is such

that for every x ∈ Sn the following equality holds:

f(−x) = ω(f(x)).
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Therefore, to prove our theorem, it is enough to show the existence of a continuous

map h : |K2| → |K| such that for every x ∈ |K2| the supports of h(x) and h(ω(x))

are disjoint.

Let K3 be the barycentric subdivision of K2. We shall define h on the vertices

of K3 first. Let dA be the barycentre of the simplex A = (cσ1 , . . . , cσr
) of K2. Since

A is a simplex of K2, we can assume that σi is a proper face of σi+1, i = 1, . . . , r−1.

Define

h(dA) = cσ1 .

Now, let us extend h linearly to |K3| = |K2|, that is for x ∈ (dA1 , . . . , dAs) ∈ K3

with the following barycentric representation

x =
s∑

i=1

µidAi ,

let

h (x) =
s∑

i=1

µih (dAi) .

Now, we shall show that for every x ∈ |K2| the supports of h(x) and h(ω(x))

in K are disjoint. Note first that if dA is the barycentre of a simplex A =

(cσ1 , . . . , cσr ), then

ω(dA) = ω

(
1
r

r∑

i=1

cσi

)
=

1
r

r∑

i=1

ω(cσi) = dB

where

B = (ω(cσ1), . . . , ω(cσr )) .

For x ∈ |K2|, let

{A1, . . . , Ar}

be the support of x in K3 and

{B1, . . . , Br}

be the support of ω(x) in K3 where Bi = ω(Ai), i = 1, . . . , r. Let

{σi,1, . . . , σi,si}
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be the skeleton of Ai, i = 1, . . . , r, where σi,j is a proper face of σi,j+1, j =

1, . . . , si − 1. Now let
{
σ′i,1, . . . , σ

′
i,si

}

be the skeleton of Bi, i = 1, . . . , r. Since the skeleton of σ′i,j is the complement of

the skeleton of σi,j , the simplex σ′i,j+1 is a proper face of σ′i,j , for all i = 1, . . . , r

and j = 1, . . . , si − 1.

Since h(Ai) = σi,1, i = 1, . . . , r, the support of h(x) in K2 is the set

{σ1,1, σ2,1, . . . , σr,1} ,

and since h(Bi) = σ′i,si
, i = 1, . . . , r, the support of h(ω(x)) in K2 is the set

{
σ′1,s1

, σ′2,s2
, . . . , σ′r,sr

}
.

We can assume that Ai is a proper face of Ai+1, i = 1, . . . , r. Then σi+1,1 is a

(not necessarily proper) face of σi,1, i = 1, . . . , r, and thus the support of h(x) in

∆n+1 is the skeleton of σ1,1. Since Ai is a proper face of Ai+1, the simplex Bi is a

proper face of Bi+1, i = 1, . . . , r. Therefore, σ′i+1,si+1
is a face of σ′i,si

, i = 1, . . . , r,

and thus the support of h(ω(x)) in K is the skeleton of σ′1,s1
. Now recall that the

skeleton of σ′1,s1
is a complement of the skeleton of σ1,s1 . But the skeleton of σ1,1

is contained in the skeleton of σ1,s1 so the supports of h(x) and h(ω(x)) in K are

disjoint, and the theorem is proved.
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CHAPTER 6

AN OBSERVATION ON INTERSECTION DIGRAPHS

OF CONVEX SETS IN THE PLANE

Given a finite family of sets, its intersection graph has a vertex corresponding

to each set, with edges between vertices corresponding to non-disjoint sets. The

notion of intersection graphs is well studied—see an issue of Discrete Mathematics

[20] which is dedicated to papers on this subject. Maehara [45] introduced and

studied a class of intersection digraphs; this notion was later generalized by Sen,

Das, Roy and West [50]. Let D = (V,E) be a digraph and {(Sv, Tv) : v ∈ V }
be a family of ordered pairs of sets. Sen, Das, Roy and West define D to be the

intersection digraph of this family if E = {−→uv : Su ∩ Tv 6= ∅}. Note that this

definition allows loops in our digraph.

By assigning to a vertex of a graph the set of edges incident with it, it is easy

to see that every graph is an intersection graph of finite sets. Let the intersection

number i#(G) of a graph G be the minimum size of a set U such that G is the

intersection graph of subsets of U . Erdös, Goodman and Pósa [24] proved that

i#(G) is equal to the minimum number of complete subgraphs needed to cover all

its edges and that

i#(G) ≤ bn2/4c (1)

for an n-vertex graph G. Equality in (1) is achieved by the complete bipartite

graph G = Kbn/2cdn/2e.
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An analogous construction shows also that every digraph is an intersection

digraph of finite sets. To get a representation of a digraph as an intersection

digraph, it is enough to assign to a vertex v a pair of subsets (Sv, Tv) of the edge-

set, where Sv is the set of edges having their ‘starting point’ at v and Tv is the set

of edges with their ‘terminal point’ at v. By analogy to graphs, Sen, Das, Roy and

West [50] define the intersection number i#(D) of a digraph D as the minimum

size of a set U such that D is the intersection digraph of ordered pairs of subsets of

U . They also define a generalized complete bipartite subgraph (GBS) of a digraph

D as a subdigraph whose vertex-set can be expressed as X ∪ Y (X and Y need

not be disjoint) and whose edge-set is equal to {−→xy : x ∈ X, y ∈ Y }. An easy

result of Sen, Das, Roy and West characterizes the intersection number i#(D) as

the minimum number of GBS’s required to cover the edges of D. They also give

the best possible upper bound on the intersection number of digraphs:

i#(D) ≤ n,

for an n-vertex digraph D.

Given a family of sets, a natural question to ask about intersection graphs and

digraphs is whether all graphs (all digraphs) are intersection graphs (digraphs) of

sets (ordered pairs of sets) from this family. Of special interest are intersection

graphs and digraphs where the sets are required to be convex sets in the Euclidean

space. If the space is one-dimensional then we get interval graphs, characterized in

[28], [29], [44], and interval digraphs, characterized in [50]. In three dimensions all

graphs and digraphs can be represented. With two-dimensional convex sets not all

graphs can be obtained. Wegner [59] gave an example of a graph which is not an

intersection graph of convex sets in the plane. The graph is obtained from K5 by

subdividing each edge. For digraphs Sen, Das, Roy and West [50] observed that an

analogue of Wegner’s counter-example fails and posed the question whether every

digraph is the intersection digraph of ordered pairs of convex sets in the plane. In

this brief chapter we present a simple observation allowing us to give a positive

answer to this question.
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Theorem 6.1. Let D = (V, E) be a digraph. Then there is a family A =

{(Sv, Tv) : v ∈ V } of pairs of convex sets in R2 such that D is the intersection

digraph of A.

Proof. Set n = |V |. Let A ⊂ R2 be a set of n points on a circle, and let f : V → A

be a bijection. Set, for each v ∈ V ,

Sv = {f(v)},

Tv = conv({f(u) : −→uv ∈ E}),

where for B ⊂ R2, conv(B) is the convex hull of B, that is the smallest convex set

containing B. So, for each vertex v of D, the ‘source set’ of v contains one element

of A, namely the one that corresponds to v under f , and the ‘terminal set’ of v

is the convex hull of the elements of A corresponding to all predecessors of v. It

is easy to see that Tv does not contain any other elements of A. So Su ∩ Tv 6= ∅
if and only if f(u) ∈ Tv, which holds if and only if −→uv ∈ E. Therefore D is the

intersection digraph of the family {(Sv, Tv) : v ∈ V }. Of course for each v ∈ V ,

the sets Sv and Tv are convex subsets of R2 so the theorem is proved.
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