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Abstract. We provide a characterization of classes of filters D for which the
full subcategory fix AD of Conv formed by convergences determined by the
adherence of filters of the class D is simple in Conv. Along the way, we also
elucidate when two classes of filters result in the same category of adherence-
determined convergences. As an application of the main result, we show that
the category of hypotopologies is not simple, thus answering a question from
[25].

1. Introduction

It is well known that a topological space X is Tychonoff (completely regular and
Hausdorff) if and only if X can be embedded into a product RI of some copies of
the real line R. Using the concept of reflectivity in category theory, we say that
the Tychonoff spaces form the epireflective hull of R or that the class of Tychonoff
spaces contains an initially dense member R. We also say that the subcategory of
Tychonoff spaces is simple in the category of all topological spaces.

In this paper, we will consider fundamental subcategories of the category Conv
of convergences and continuous functions. For a systematic study of convergence
spaces, see [9, 10, 11]. A convergence is a relation between points of a set X
and the filters on X. Each topological space X induces a convergence on the set
X by relating a point x to all filters that converge to x (all filters that refine
the neighborhood filter at x). Convergence theory studies this relation in greater
generality and considers the topological convergence only as a special case. The
need to study non-topological convergences was pointed out by Gustave Choquet
in his fundamental paper [5]. It turns out that considering topological problems in
the larger setting of convergence spaces is often illuminating, in a way that can be
compared to using complex numbers to solve a problem formulated in the reals.

The special subclasses of convergence spaces formed by pretopologies and by
pseudotopologies have long been recognized as fundamental: they were already
introduced by Choquet in the pioneering paper [5] and the category PreTop of pre-
topological spaces and PsTop of pseudotopological spaces have special structural
roles with respect to Top: in categorical terms, PreTop is the extensional hull of Top
while PsTop is the quasitopos hull of Top (See, e.g., [17] for details). These two cat-
egories turn out to fit in a larger useful classification introduced by Szymon Dolecki:
adherence-determined convergences [6]. Beyond its categorical unifying power, the
notion turns out to be the key to convergence-theoretic characterizations of various
types of quotient maps (e.g., biquotient, countably biquotient, hereditarily quo-
tient) and of various topological notions (e.g., bisequential, countably bisequential,
Fréchet-Urysohn, etc) in terms of functorial inequalities, which in turn allows to
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unify, generalize, and refine a large spectrum of topological results on preservation
under maps [6], under products (e.g., [12]), on compactness and its variants e.g,
[7, 8, 9, 24], etc. The categories ParaTop and HypoTop, of paratopologies and of
hypotopologies respectively, appear naturally within this classification and fill im-
portant gaps left by the traditional categorical approach in the quest to interpret
classical topological notions categorically.

We are going to investigate the question of simplicity of subcategories of Conv.
In particular, the category Top of topological spaces is simple in Conv. Several sub-
categories of Top are also simple in Conv, see for example [13, 14, 15, 16]. Simplicity
also holds when we enlarge Top to the adherence-determined subcategories PreTop
and ParaTop (see Antoine [2] and Bourdaud [3, 4] for PreTop and [25] for ParaTop).
However, when we enlarge PreTop to PsTop or to the whole Conv, then Eva and
Robert Lowen showed [21] that simplicity fails. The category HypoTop was shown
in [25] not to be simple, under the assumption that measurable cardinals form a
proper class.

In this paper, we give a complete characterization of when one of the fundamen-
tal categories of adherence-determined convergences is simple. Namely, we give a
condition on a class D of filters that characterizes the simplicity of the full subcate-
gory fix AD of Conv formed by convergences determined by the adherence of filters of
the class D. When D is respectively the class of principal filters, of countably-based
filters, of countably complete filters, and of all filters then fix AD is respectively
PreTop, ParaTop, HypoTop and PsTop. As a result, we recover results of [2, 4, 3]
on the simplicity of PreTop, of [25] on the simplicity of ParaTop and of [21] on the
non-simplicity of PsTop. Moreover, we answer the question raised in [25] and prove
in ZFC that HypoTop (and more generally the category of µ-hypotopologies where
µ is an infinite cardinal) is not a simple subcategory of Conv (Corollary 15). To
summarize

class D of filters D-adherence-determined conv. category simple
F of all pseudotopology PsTop X

F1 of countably based paratopology ParaTop X
F∧1 of countably complete hypotopology HypoTop X

F0 of principal pretopology PreTop X

2. Basic definitions

2.1. Categorical terminology. Let us first introduce the general concept of a
simple subcategory in general and in particular for topological categories. For
more details, we refer the reader to [1, 18, 22].

Let A be a full and isomorphism-closed subcategory of a category B with the
embedding functor E : A → B. Given an object B of B, a pair (u,A), (where A is
an object of A and u : B → E(A) is a morphism of B) is called an A-reflection of
B provided that for each object A′ of A and each morphism f : B → E(A′) there
exists a unique morphism g : A → A′ such that f = E(g) ◦ u. The subcategory
A is epireflective in B provided that for every object B of B there exists an A-
reflection (u,A) of B with u being an epimorphism of B. We say that A is simple
in B provided that A is epireflective in B and there exists an object A of A such
that every epireflective (full and isomorphism-closed) subcategory of B containing
A must contain A. We say then that A is the epireflective hull of A in B.
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For example, the epireflective hull of the closed interval [0, 1] in the category of
Hausdorff spaces (and continuous functions), is the subcategory of compact Haus-
dorff spaces, however the epireflective hull of the same interval in the category of
all topological spaces (and continuous functions) is the subcategory of Tychonoff
spaces (completely regular and Hausdorff). This difference is caused by the fact
that in the category of Hausdorff spaces a morphism is an epimorphism if and
only if its image is dense, while in the category of all topological spaces being an
epimorphism is equivalent to being surjective.

Let B be a concrete category over the category Sets of sets and functions, with
the forgetful functor U : B → Sets. A class indexed family (fi : B → Bi)i∈I of
morphisms of B is an initial source provided that if B′ is an object of B and
f : U(B′) → U(B) is a function such that fi ◦ f : B′ → Bi is a morphism of B,
then f is also a morphism of B. We say that B is topological provided that each
structured source (a class indexed family (fi : X → U(Bi))i∈I of functions) has a
unique initial lift, that is, there exists a unique object B of B with U(B) = X such
that fi : B → Bi is a morphism of B for each i ∈ I and (fi : B → Bi)i∈I is an
initial source in B.

For example, the category of all topological spaces is topological, but the category
of Hausdorff spaces is not (1).

Assume that B is a topological category. In such a category epimorphisms are
exactly those morphisms that are surjective functions and a (full and isomorphism-
closed) subcategory A is epireflective in B if and only if A is closed under the
formation of products and extremal subobjects ((f,A′) is an extremal subobject of
A iff f : A′ → A is an embedding). Moreover, for any object A of B, there exists
the epireflective hull of A in B obtained by taking all extremal subobjects of the
powers of A. An explicit condition for A to be simple in B is that there exists
an object A0 of A such that for any object A of A there exists an initial source
(fi : A→ A0)i∈I in A.

In this paper we will be concerned with simplicity of some (full and isomorphism-
closed) subcategories of the category Conv of convergences (and continuous func-
tions).

2.2. Convergence spaces. The context of this paper is that of the category Conv
of convergence spaces and continuous maps. We use the terminology and notations
of [11]. In particular, a convergence ξ on a set X is a relation between points of X
and filters on X, denoted

x ∈ limξ F

whenever x and F are ξ-related, subjected to two simple axioms: x ∈ limξ{x}↑
for every x ∈ X, where {x}↑ denotes the principal ultrafilter including {x}, and
limξ F ⊂ limξ G whenever G is a filter finer than the filter F . If (X, ξ) and (Y, τ) are
two convergence spaces, a map f : X → Y is continuous (from ξ to τ), in symbols
f ∈ C(ξ, τ), if

f(limξ F) ⊂ limτ f [F ],

1To see that, note that the empty structured source on a set X with at least 2 elements has
no initial lift. Otherwise, there would be a topology on X such that for any Hausdorff space Y
any function f : Y → X is continuous. Such topology would have to be antidiscrete, hence not
Hausdorff.
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where f [F ] = {B ⊂ Y : f−(B) ∈ F} is the image filter. Of course, every topology
τ can be seen as a convergence given by x ∈ limτ F if and only if F ≥ Nτ (x),
where Nτ (x) denotes the neighborhood filter of x in the topology τ . This turns the
category Top of topological spaces and continuous maps into a full subcategory of
Conv.

We denote by | · | : Conv → Sets the forgetful functor, so that |ξ| denotes the
underlying set of a convergence ξ and |f | is the underlying function of a morphism,
though we will normally not distinguish notationally the morphism and the un-
derlying function and denote them both by f . If |ξ| = |τ |, we say that ξ is finer
than τ or that τ is coarser than ξ, in symbols, ξ ≥ τ , if the identity map of their
underlying set belongs to C(ξ, τ). This order turns the set of convergences on a
given set into a complete lattice whose greatest element is the discrete topology,
whose least element is the antidiscrete topology, and whose suprema and infima are
given by

(2.1) lim∨
ξ∈Ξ ξ

F =
⋂
ξ∈Ξ

limξ F and lim∧
ξ∈Ξ ξ

F =
⋃
ξ∈Ξ

limξ F .

A point x of a convergence space (X, ξ) is isolated if {x}↑ is the only filter
converging to x in ξ. A convergence is called prime if it has at most one non-
isolated point.

Conv is a concrete topological category; in particular, for every f : X → |τ |,
there is the coarsest convergence on X, called the initial convergence for (f, τ) and
denoted f−τ , making f continuous (to τ), and for every f : |ξ| → Y , there is the
finest convergence on Y , called the final convergence for (f, ξ) and denoted fξ,
making f continuous (from ξ). Note that with these notations

(2.2) f ∈ C(ξ, τ) ⇐⇒ ξ ≥ f−τ ⇐⇒ fξ ≥ τ.

Moreover, the initial lift on X of a structured source (fi : X → |τi|)i∈I turns out
to be

∨
i∈I f

−
i τi and the final lift on Y of a structured sink (fi : |ξi| → Y )i∈I turns

out to be
∧
i∈I fiξi.

Products, subspaces, coproducts (sums) and quotients are then defined as usual
via initial and final structures.

Let Φ be a class of convergences. We say that a convergence η is initially dense
in Φ if and only if for each ξ ∈ Φ there exists a set A of functions from |ξ| to |η|
such that ξ =

∨
f∈A f

−η. Note that if η is initially dense in Φ, then η ∈ Φ and
ξ =

∨
f∈C(ξ,η) f

−η for every ξ ∈ Φ (2). Note that if Φ is the class of objects of some
full and isomorphism closed subcategory A of Conv, then η is initially dense in Φ if
and only if A is the epireflective hull of η in Conv. A class of convergences is simple
provided it includes an initially dense convergence.

2.3. Filters and classes of filters. If P(X) denotes the powerset of X and A ⊂
P(X) then we write

A↑X = A↑ := {B ⊂ X : ∃A ∈ A, A ⊂ B}
A# := {H ⊂ X : ∀A ∈ A, H ∩A 6= ∅}.

2If ξ =
∨
f∈A f

−η then in particular ξ ≥ f−η for every f ∈ A so that, inview of (2.2),
A ⊂ C(ξ, η). Since ξ ≥

∨
f∈C(ξ,η) f

−η ≥
∨
f∈A f

−η is always true, ξ =
∨
f∈A f

−η for some A if
and only if ξ =

∨
f∈C(ξ,η) f

−η.
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The set FX of filters on X is ordered by inclusion. The infimum of a family D ⊂ FX
of filters always exists and is

⋂
D∈DD. On the other hand, the supremum of a pair

of filters may fail to exist in FX. We say that two families A and B of subsets of X
mesh, in symbols A#B, if A ⊂ B#, equivalently, B ⊂ A#. Given F ,G ∈ FX the
supremum F ∨ G of the two filters exist (in FX) if and only if F#G.

Recall that the powerset P(X) = {∅}↑X is the degenerate filter on X and we
denote by FX the set of all (degenerate or proper) filters on X. Then inclusion
turns FX into a complete lattice in which F ∨G = P(X) whenever F and G do not
mesh. Note that, denoting by Rel the category of sets with relations as morphisms,
F : Rel → Rel is a functor that associates with a set X ∈ Ob(Rel) the set FX and
with a relation R ⊂ X × Y the relation FR : FX → FY defined by

(FR)(F) = R[F ] = {R(F ) : F ∈ F}↑Y .

We will denote by D ⊂ F the fact that D is a subfunctor, that is, DX ⊂ FX for
every set X and FR(D) ∈ DY for every D ∈ DX and every relation R ⊂ X ×Y . In
the terminology of [20, 11], we say that D is an F0-composable class of filters. Such
a class must contain all principal filters, in particular every principal ultrafilter.
Moreover, for such a class, if D,L ∈ DX with D#L then D ∨ L ∈ DX, and if
D ∈ DX and X ⊂ Y , then D↑Y ∈ DY (See e.g., [20],[11, Lemma XIV.3.7] for this
and other properties of F0-composable classes). Among such classes, we distinguish
the class F0 of principal filters, F1 of countably based filters and more generally Fκ
of filters with a filter-base of cardinality less than ℵκ, F∧κ of ℵκ-complete filters. In
contrast, the class U of ultrafilters and the class E of filters generated by a sequence
are not F0-composable.

Given F ∈ FX and D a class of filters, we write

D(F) := {D ∈ DX : D ≥ F}.

Accordingly, U(F) 6= ∅ for every filter F and F =
⋂
U∈U(F) U while F# =⋃

U∈U(F) U .
Let ξ be a convergence on a set X and H be a filter on X. We say that H

adheres to x ∈ X (and write x ∈ adhξH) if there exists a filter G that refines H
with x ∈ limξ G. In other words,

(2.3) adhξH :=
⋃

FX3G≥H
limξ G =

⋃
FX3F#H

limξ F =
⋃

U∈U(H)

limξ U .

Let D be a class of filters. A convergence ξ is D-adherence-determined if x ∈
limξ F whenever x ∈ adhξD for each filter D ∈ D such that D is a filter on |ξ| and
D#F .

If D is an F0-composable class of filters, then AD defined on objects by

limAD ξ F =
⋂

D3D#F

adhξD

is a concrete reflector and fix AD = {ξ ∈ Ob(Conv) : ξ = AD ξ} is the subcategory
of D-adherence-determined convergences.
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D AD ξ = AD ξ is a category fix AD

F S pseudotopology PsTop
F1 S1 paratopology ParaTop
F∧1 S∧1 hypotopology HypoTop
F0 S0 pretopology PreTop

3. Main results

3.1. For what classes D and H do we have AD = AH?(3). Given a class D,
define for each set X

D̂X := {H ∈ FX : ∀U ∈ U(H)∃D ∈ DX : H ≤ D ≤ U}

thus defining a new class D̂ (4). By definition D ⊂ D̂, and

(3.1) D ⊂ J⇒ D̂ ⊂ Ĵ.
Moreover,

Lemma 1. Given a class D of filters, D̂ =
̂̂D.

Proof. As D ⊂ D̂, (3.1) implies that D̂ ⊂ ̂̂D. If H ∈ ̂̂D then for every U ∈ U(H)

there is F ∈ D̂ with H ≤ F ≤ U . As F ∈ D̂ and U ∈ U(F) there is D ∈ D with
H ≤ F ≤ D ≤ U and thus H ∈ D̂. �

Theorem 2. Given two classes of filters D and H,

AD ≥ AH ⇐⇒ H ⊂ D̂.

Proof. Assume that H ⊂ D̂ and let x ∈ limAD ξ F and H ∈ H with H#F . Because
H ∈ D̂, there is D ∈ D(H) with D#F . As D ∈ D and D#F , x ∈ adhξD. As
D ≥ H, adhξD ⊂ adhξH. Hence x ∈ limAH ξ F .

Assume conversely that H 6⊂ D̂, that is, there is H0 ∈ H with H0 /∈ D̂, so that
there is U0 ∈ U(H0) such that H0 � D whenever D ∈ D and D ≤ U0. Consider
the prime convergence σ on X ∪ {∞} in which ∞ ∈ limσ F if and only if F and
H0 do not mesh. Then σ = AH σ because H0 ∈ H, but AD σ � σ. Indeed, by
definition ∞ /∈ limσ U0 because H0#U0 but ∞ ∈ limAD σ U0. Indeed, if D ∈ D and
D#U0, equivalently, D ≤ U0 then H0 � D, that is, there is H ∈ H0 with Hc ∈ D#.
As {Hc}↑ does not mesh with H0, ∞ ∈ limσ{Hc}↑ and thus ∞ ∈ adhσD, which
completes the proof that AD σ � σ. As a result, AD � AH. �

Corollary 3. Given two classes of filters D and H,

AD = AH ⇐⇒ Ĥ = D̂.

Proof. Assume AD = AH. In view of Theorem 2, H ⊂ D̂ and D ⊂ Ĥ. In view of
(3.1) and Lemma 1, Ĥ ⊂ ̂̂D = D̂ and D̂ ⊂ ̂̂H = Ĥ so that Ĥ = D̂.

Conversely, if Ĥ = D̂ then D ⊂ D̂ = Ĥ and H ⊂ Ĥ = D̂ so that AD = AH by
Theorem 2. �

3We would like to thank Emilio Angulo-Perkins, Fadoua Chigr, and Jesús González Sandoval
for helpful discussions around the results in this subsection.

4Note that
D̂X = {H ∈ FX : ∀F ∈ FX (F#H ⇒ ∃D ∈ D(H),D#F)} .
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Example 4. Of course, Û = F = F̂. Moreover, F̂0 = F0. To see the latter, assume
that H /∈ F0, so that (kerH)c ∈ H#. Then there is U ∈ U(H∨ (kerH)c). Note that
any D ∈ F0(H) is of the form {D}↑ for D ⊂ kerH, so that D /∈ U . Hence H /∈ F̂0.

Example 5. A topological (or convergence) space (X, ξ) is called bisequential if
for every ultrafilter U with x ∈ limξ U there is D ∈ F1 with D ≤ U and x ∈ limξ D.
In other words, ξ = T ξ is bisequential if and only if each neighborhood filter Nξ(x)

is in F̂1. Naturally, we call filters of F̂1 bisequential filters. As there are bisequential
topological spaces that are not first-countable (5), F1 is a proper subclass of F̂1 but

AF1
= AF̂1

= S1 .

3.2. For what class D is fix AD simple?

Definition 6. A class D of filters is called refinable if there is a set Y such that
for any set X and every D ∈ DX and F ∈ FX with F#D there is L ∈ D(D) with
L#F and there is f : X → Y with D ≤ f−[f [L]].

Lemma 7. If D ≤ f−[f [L]] then

H¬#D ⇒ f [H]¬#f [L].

Proof. If f [H]#f [L], equivalently, H#f−[f [L]] then, in particular, H#D because
D ≤ f−[f [L]]. �

If D is refinable, given Y as in Definition 6, define the convergence space Dג
defined on

Y∞ = Y ∪ {∞0} ∪ {yG : G ∈ DY },
by

Y ∪ {∞0} ⊂ limגD F
for every F ∈ F(Y∞) and yG ∈ limגD F if F and G↑ ∧ {∞0}↑ do not mesh, where
G↑ is the filter generated on Y∞ by G. Note that, by definition, for every G ∈ DY ,

(3.2) yG /∈ adhגDG↑.

Theorem 8. Let D be an F0-composable class of filters. The category fix AD is
simple (in Conv) if and only if D is refinable.

Proof. Assume that D is not refinable and let (Y, τ0) with τ0 = AD τ0. Because D
is not refinable, there is X, D0 ∈ DX and F0 ∈ FX with D0#F0 and for every
L ∈ D(D0) with L#F0 and every f ∈ Y X , we have D � f−[f [L]], that is, there is
DL,f ∈ D0 with DL,f /∈ f−[f [L]], that is, Dc

L,f := X \DL,f belongs to (f−[f [L]])
#,

equivalently,

(3.3) ∃DL,f ∈ D0 : f(Dc
L,f ) ∈ (f [L])#.

Let ξ be the prime convergence on X ∪ {∞} defined by ∞ ∈ limξ F if and only
if F and D0 do not mesh. Note that by definition ∞ /∈ adhξD0. This is easily seen
to be a convergence. Moreover, ξ = AD ξ because if ∞ ∈ adhξL for every L ∈ DX
with L#F then D0¬#F (for otherwise ∞ ∈ adhξD0 because D0 ∈ DX).

In particular, ∞ /∈ limξ F0. We will see that ∞ ∈ lim∨
f∈C(ξ,τ0) f

−τ0 F0 so that
ξ 6=

∨
f∈C(ξ,τ0) f

−τ0 and as a result fix AD is not simple.

5Take for instance the one-point compactification of a discrete set X of cardinality that is not
measurable. See [23, Example 10.15] for details.
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To see this, let f ∈ C(ξ, τ0) and G ∈ DY with G#f [F0]. Then f−[G]#F0. Either
f−[G] and D0 do not mesh or they do. In the former case, ∞ ∈ limξ f

−[G] and
by continuity, f(∞) ∈ limτ0 f [f−[G]]. As f [f−[G]]#G, ∞ ∈ adhτ0G. In the later
case, the filter L := f−[G] ∨ D0 belongs to DX because D is F0-composable. By
(3.3) and continuity of f , f(∞) ∈ adhτ0f [L] because ∞ ∈ limξ{Dc

L,f}↑. Moreover,
f [L] ≥ f [f−[G]] ≥ G so that f(∞) ∈ adhξG. Hence f(∞) ∈ limτ0 f [F0] for every
f ∈ C(ξ, τ0), that is, ∞ ∈ lim∨

f∈C(ξ,τ0) f
−τ0 F0.

Assume now that D is refinable. We will show that Dג is initially dense in fix AD.
We first check that Dג = AD .Dג If y ∈ Y∞ \ limגD F then y = yD for some

D ∈ DY and, and F#(D↑ ∧ {∞0}↑) so that ∞0 ∈
⋂
F∈F,F /∈D# F . If ∞0 ∈ kerF

then {∞0}↑ ∈ DY∞, {∞0}↑#F and yD /∈ adhגD{∞0}↑. Else, there is F0 ∈ F with
∞0 /∈ F0. Since F#(D↑ ∧ {∞0}↑) Then D↑ ∈ DY∞, D↑#F and yD /∈ adhגDD↑.

To see that Dג is initially dense in fix AD, consider ξ = AD ξ on X and suppose
that x /∈ limξ F , so that there isD ∈ DX with F#D and x /∈ adhξD. By refinability,
there is L ∈ D(D) (so that x /∈ adhξL) with L#F and there is f0 : X → Y with
D ≤ f−0 [f0[L]].

Let h : X → Y∞ be defined by h(t) = f0(t) for t /∈ {x} ∪ kerD, h(x) = yG for
G := f0[L] ∈ DY and h(t) = ∞0 for t ∈ kerD. We show that h ∈ C(ξ, (Dג and
h(x) /∈ limגD h[F ] so that ξ ≤

∨
h∈C(ξ,גD) h

.Dג−
To see that h ∈ C(ξ, ,(Dג note that if t ∈ limξH and t 6= x then

h(t) ∈ Y ∪ {∞0} ⊂ limגD h[H],

hence we only need to consider the case x ∈ limξH. Then D and H do not
mesh because x /∈ adhξD. In particular kerD /∈ H#. Moreover h(x) = yG . If
x /∈ kerH, h[H] = f0[H]. In view of Lemma 7, f0[H] and G do not mesh so
yG = h(x) ∈ limגD h[H].

To see that h(x) /∈ limגD h[F ] note that as F#L then f0[F ]#G. Moreover, if
kerD ∈ F then h[F ] = {∞0}↑ does not converge to yG . Else (kerD)c ∈ F# and
h[F ] = f0[F ] meshes with G so h(x) /∈ limגD h[F ]. �

A class D of filters is called fiber-stable if there is a set Y such that for every set
X and every D ∈ DX there is f : X → Y with D ≤ f−[f [D]]. Of course, every
fiber-stable class is also refinable, as we can then take L = D in the definition of
a refinable class. Hence, it is sufficient for fix AD to be simple that the class D be
fiber-stable.

Example 9. The category PreTop of pretopologies is fix AF0
and is simple because

F0 is fiber-stable, hence refinable. Indeed, taking Y = {0, 1}, then for every X
and {A}↑ ∈ FX, {A}↑ ≤ f−[f [{A}↑]] where f(x) = 1 if and only if x ∈ A. That
Prtop is simple is known from [3, II.2]. Note that F0ג

is an initially dense object of
Prtop that is different from the Bourdaud pretopology on 3 points. Indeed, it has
6 points.

Example 10. The category ParaTop of paratopologies is fix AF1
and is simple

because F1 is fiber-stable, hence refinable. Take Y = ω. Given X and D ∈ F1X,
we can deal with D with a two-valued map as in Example 9 if D is principal.
Otherwise, D∨(kerD)c is a non-degenerate free countably based filter and thus has
a decreasing filter base (Hn)n∈ω with H1 = X \kerD. Consider f : X → Y defined
by f(x) = 1 if x ∈ kerD and f(x) = n > 1 if x ∈ Hn−1 \Hn. Then f−[f [D]] ≥ D.
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That Partop is simple is [25, Theorem 1] and F1ג
is a slight simplification of the

initially dense object ג used in [25].

Though fiber-stability is often more practical to check, there are refinable classes
that are not fiber-stable:

Example 11. The class F̂1 is refinable but not fiber-stable. F̂1 is refinable because
AF1 = AF̂1

is simple. To see that F̂1 is not fiber-stable, given any set Y let X be
a set of non-measurable cardinality cardX > cardY . The cofinite filter H on X

is then a bisequential filter (See [23, Example 10.15]), that is, H ∈ F̂1. On the
other hand, there is y ∈ Y with an infinite fiber A = f−(y), so that A#H and thus
f(A) = {y} ∈ (f [H])#. Hence, if x ∈ A then X \ {x} ∈ H but X \ {x} /∈ f−[f [H]].

4. Non-simplicity of the class of µ-hypotopologies

For background on set theory we refer the reader to [19]. Let µ be an infinite
cardinal. A filter H is µ-complete provided

⋂
H′ ∈ H for every H′ ⊆ H with

|H′| < µ. Note that each filter is ℵ0-complete. A convergence ξ on X is a µ-
hypotopology iff it is H-adherence-determined, where H is the class of all µ-complete
filters. In particular, a convergence ξ is a pseudotopology if and only if it is an ℵ0-
hypotopology (is F-adherence-determined with F being the class of all filters) and ξ
is a hypotopology if and only if it is an ℵ1-hypotopology (is H-adherence-determined
for H consisting of all countably complete filters).

Let λ is a regular uncountable cardinal and A ⊆ λ. We say that A is unbounded
in λ if there are no upper bound on A in λ and we say that A is closed in λ if
supA′ ∈ A for any A′ that is bounded in λ (this is equivalent to A being closed in
the order topology on λ). The closed unbounded subsets of λ form a filter base and
the filter on λ generated by them is called the closed unbounded filter on λ. This
filter is λ-complete.

Lemma 12. Let Y be a set, λ > cardY be an uncountable regular cardinal and C
be the closed unbounded filter on λ. Then for each f : λ→ Y there exists a uniform
λ-complete filter Ff on λ such that f [Ff ] = f [C] and Ff does not mesh with C.

Proof. Let f : λ→ Y be arbitrary. Define P := {f−(y) : y ∈ f [λ]} to be the family
of fibers of f with

P0 := {P ∈ P : cardP < λ}
and P1 := P r P0. Note that the regularity of λ implies that cardP0 < λ, where

P0 :=
⋃
P∈P0

P

and so P1 is not empty. We claim that there exists C ∈ C such that both P ∩C and
P r C have cardinality λ for every P ∈ P1. Let P1 be enumerated as {Pξ : ξ < κ}
for some cardinal κ ≤ cardY .

We will use transfinite induction to construct two sequences (Aα)α<λ and (Bα)α<λ
of subsets of λ such that

• any two distinct members of the family {Aα : α < λ} ∪ {Bα : α < λ} are
disjoint.

• for any α < λ we have Aα = {γα,ξ : ξ < κ} and Bα = {δα,ξ : ξ < κ} with
γα,ξ, δα,ξ ∈ Pξ for every ξ < κ
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• cl
(⋃

α<λAα
)
∩
⋃
α<λBα = ∅, where cl is the closure operation in the order

topology on λ.
Taking C := cl

(⋃
α<λAα

)
satisfies the requirements.

Suppose that β < λ is an ordinal such that Aα and Bα are defined for each
α < β and that

• any two distinct members of the family {Aα : α < β} ∪ {Bα : α < β} are
disjoint.

• for any α < β we have Aα = {γα,ξ : ξ < κ} and Bα = {δα,ξ : ξ < κ} with
γα,ξ, δα,ξ ∈ Pξ for every ξ < κ

• cl
(⋃

α<β Aα

)
∩
⋃
α<β Bα = ∅.

For each ξ < κ, the set

P ′ξ := {γα,ξ : α < β} ∪ {δα,ξ : α < β}

is a subset of Pξ of cardinality < λ so there is γβ,ξ ∈ Pξ with γβ,ξ > supP ′ξ. Let
Aβ := {γβ,ξ : ξ < κ}.

For each ξ < κ, let δβ,ξ ∈ Pξ be such that δβ,ξ > supAβ . LetBβ := {δβ,ξ : ξ < β}.
It is clear that the obtained sequences (Aα)α<λ and (Bα)α<λ satisfy the require-
ments.

Let C ∈ C be such that both P ∩ C and P r C have cardinality λ for every
P ∈ P1.

Since cardP0 < λ, it follows that P1 :=
⋃
P∈P1

∈ C so P1 ∩ C ∈ C. Let
h : P1 ∩ C → P1 r C be a bijection such that if x ∈ P ∩ C for some P ∈ P1, then
h(x) ∈ P r C. Extend h to a bijection h : λ → λ by declaring that h(x) := x
whenever x ∈ P0. Let Ff := h[C]. Since h is a bijection and C is a uniform λ-
complete filter on λ, it follows that Ff is uniform and λ-complete. It is clear that
f [Ff ] = f [C]. Since P1 ∩C ∈ C and P1 rC ∈ Ff , it follows that Ff does not mesh
with C. �

Theorem 13. For any infinite cardinal µ the class of µ-hypotopologies is not sim-
ple.

Proof. We show that the class D of µ-complete filters is not refinable, that is, for
every Y there is X (with X = λ ≥ µ a regular uncountable cardinal), and there
is D ∈ DX and F#D (taking D = F = C the closed unbounded filter on λ)
such that for every L ∈ D(D) with L#F and every f : X → Y , D � f−[f [L]].
Indeed, if L ≥ D then for every f : X → Y , take Ff as in Lemma 12 to the effect
thatf [L] ≥ f [D] = f [Ff ] and thus f [L]#f [Ff ], equivalently, Ff#f−[f [L]]. As Ff
does not mesh with D, f−[f [L]] � D. The conclusion follows from Theorem 8. �

Remark 14. Note that Lemma 12 is the key to Theorem 13 and a direct proof based
on this lemma rather than through Theorem 8 is relatively easy: for λ and C as
in Lemma 12, let ξ be a convergence on λ defined by α ∈ limξ F iff F = {α}↑ for
α > 0 and 0 ∈ limξ F iff

⋂
F ⊆ {0} and F does not mesh with C. This convergence

can be shown to be a µ-hypotopology. Now, for every convergence space (Y, τ) and
infinite µ, pick λ ≥ µ uncountable and non-measurable. It is not difficult to verify,
using Lemma 12, that the corresponding convergence ξ satisfies ξ 6=

∨
f∈C(ξ,τ) f

−τ .

The following answers affirmatively [25, Problem 3].

Corollary 15. The class of hypotopologies is not simple.
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Proof. Hypotopologies are ℵ1-hypotopologies. �

Moreover, we recover the main result of [21].

Corollary 16. The class of pseudotopologies is not simple.

Proof. Pseudotopologies are ℵ0-hypotopologies. �

References

[1] J. Adámek, H. Herrlich, and E. Strecker, Abstract and Con-
crete Categories, Heldermann Verlag, free electronic publication, 2007
https://www.heldermann.de/Ebooks/ebook3.htm

[2] P. Antoine, Etude élémentaire des catégories d’ensembles structurés, Bull. Soc. Math. Bel-
gique 18 (1966), 142–164.

[3] G. Bourdaud, Espaces d’Antoine et semi-espaces d’Antoine, Cahiers de topologie et
géométrie différentielle catégoriques 16 (1975), 107–133.

[4] G. Bourdaud, Some cartesian closed topological categories of convergence spaces, Categor-
ical Topology, 93–108, Lecture Notes in Math 540, Springer-Verlag, 1975.

[5] G. Choquet, Convergences, Ann. Univ. Grenoble 23 (1947–48), 55–112.
[6] S. Dolecki, Convergence-theoretic approach to quotient quest, Topology Appl. 73 (1996),

1–21.
[7] S. Dolecki, Convergence-theoretic characterization of compactness, Topology Appl. 125

(2002), 393–417.
[8] S. Dolecki, Erratum to “Convergence-theoretic characterization of compactness”, Topology

Appl. 154 (2007), 1216–1217.
[9] S. Dolecki, An initiation into Convergence Theory, Beyond Topology, 115–161, F. Mynard

and E. Pearl, eds, Contemporary Mathematics 486, AMS, Providence, 2009.
[10] S. Dolecki, A Royal Road to Topology: Convergence of Filters, World Scientific, 2022, to

appear.
[11] S. Dolecki and F. Mynard, Convergence Foundations of Topology, World Scientific, 2016.
[12] S. Dolecki and F. Mynard, Convergence-theoretic mechanisms behind product theorems,

Topology Appl. 104 (2000), 67-99.
[13] D. Hajek and A. Mysior, On non-simplicity of topological categories, Lecture Notes in

Math, vol. 719, Springer-Verlag, Berlin and New York, (1979), 84-93.
[14] D. Hajek and R. Wilson, The non-simplicity of certain categories of topological spaces,

Math. Z. 131 (1973), 357-359.
[15] H. Herrlich, Topologische Reflexionen und Coreflexionen, Lecture Notes in Math., no. 78,

Springer-Verlag, Berlin and New York, (1968).
[16] H. Herrlich, Categorical topology, Gen. Top. Appl. 1 (1971), 1-15.
[17] H. Herrlich and E. Lowen-Colebunders and F. Schwarz, Improving Top: PrTop and

PsTop, Category Theory at work, Helderman Verlag, (1991).
[18] H. Herrlich and G. Strecker, Category theory: an introduction, 3rd ed. Sigma

Series Pure Math., Vol. 1, Heldermann Verlag, free electronic publication, 2007
https://www.heldermann.de/SSPM/SSPM01/sspm01.htm.

[19] T. Jech, Set Theory, Springer, 2003.
[20] F. Jordan and F. Mynard, Compatible relations on filters and stability of local topological

properties under supremum and product, Topology and its Applications 153 (2006), 2386-
2412.

[21] E. Lowen and R. Lowen, On the nonsimplicity of some convergence categories, Proc. Amer.
Math. Soc. 105 (2), (1989) 305–308.

[22] R. Lowen, M. Sioen, S. Verwulgen, Categorical Topology, Beyond Topology, 115–161,
F. Mynard and E. Pearl, eds, Contemporary Mathematics 486, AMS, Providence, 2009.

[23] E. Michael, A quintuple quotient quest, General Topology and its Applications 2 (1972),
91-138.

[24] F. Mynard, Products of Compact Filters and Applications to Classical Product Theorems,
Topology and its Applications 154 (2007), 953-968.

[25] J. Wojciechowski, Three problems in convergence theory, Topology Proceedings, to appear,
https://arxiv.org/abs/2110.03538

https://www.heldermann.de/Ebooks/ebook3.htm
https://www.heldermann.de/SSPM/SSPM01/sspm01.htm
https://arxiv.org/abs/2110.03538


ON SIMPLICITY IN Conv 12

NJCU, Department of Mathematics, 2039 Kennedy Blvd, Jersey City, NJ 07305,
USA

West Virginia University, Department of Mathematics, 94 Beechurst Ave, Mor-
gantown, WV 26506-6310, USA

Email address: fmynard@njcu.edu
Email address: jerzy@math.wvu.edu


	1. Introduction
	2. Basic definitions
	2.1. Categorical terminology
	2.2. Convergence spaces
	2.3. Filters and classes of filters

	3. Main results
	3.1. For what classes D and H do we have AD=AH?(We would like to thank Emilio Angulo-Perkins, Fadoua Chigr, and Jesús González Sandoval for helpful discussions around the results in this subsection.)
	3.2. For what class D is fixAD simple?

	4. Non-simplicity of the class of -hypotopologies
	References

