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Abstract

In this note it is proved that the class of paratopologies is simple and that under
the assumption that the measurable cardinals form a proper class, the class of hypo-
topologies is not simple. Moreover, an example is given of a Hausdorff convergence
with idempotent set adherence (subdiagonal convergence) that is not weakly diagonal.

1 Introduction.
One way to describe a topological space is to consider the neighborhood filters of points and
the convergence relation between points and filters defined using the neighborhood filters.
Convergence theory studies this relation in greater generality and considers the topological
convergence only as a special case. The need to study non-topological convergences was
pointed out by Gustave Choquet in his fundamental paper [5], where he investigates natural
convergences on the family of closed subsets of a topological space and concludes that some
of them are not topological unless the underlying topology is locally compact.

The exact collection of axioms required for a convergence space to satisfy varies in the
literature. We follow the definition of Dolecki in [9] (see also [11, 10]). A convergence ξ on a
nonempty set X is a relation between the elements of X and the filters on X. Given a filter
F on X and x ∈ X, we write x ∈ limξ F when (x,F) ∈ ξ and we require that limξ F ⊆ limξ G
whenever F ⊆ G and that x ∈ limξ {x}↑ for every x ∈ X, where {x}↑ := {A ⊆ X : x ∈ A}
is the principal ultrafilter generated by x. In particular, any topology on a set X induces a
convergence τ defined by x ∈ limτ F if and only if U ∈ F for every open set U ⊆ X with
x ∈ U . Any convergence obtained in such a way is called topological or just a topology.

Convergences more general than topologies, called pretopologies, had been already con-
sidered by Hausdorff [12], Sierpiński [17] and Čech [4]. A convergence is a pretopology when
filters convergent to a point x are refinements of a single vicinity filter at x. However, a break-
through was made by Choquet in [5] who introduced a still larger class of pseudotopologies,
by requiring that x ∈ limξ F whenever x ∈ limξ U for every ultrafilter U containing F .

As discovered by Dolecki [7], pseudotopologies arise in a natural way when we consider
the property of compactness. Analogous considerations for the property of countable com-
pactness lead to paratopologies and for the Lindelöf property to hypotopologies (see [7]).



Those classes of convergences are defined as H-adherence-determined convergences for suit-
ably chosen classes H of filters.

Let ξ be a convergence on a set X and H be a filter on X. We say that H adheres to
x ∈ X (and write x ∈ adhξH) if there exists a filter G that refines H with x ∈ limξ G. Given
filters F and H, we say that F and H mesh (in symbols F # H) iff F ∩H 6= ∅ for every
F ∈ F and H ∈ H. Note that if ξ is a convergence on some set X, then X is uniquely
determined by ξ. We will denote such X by |ξ|.

Let H be a class of filters including all principal filters. A convergence ξ is H-adherence-
determined if x ∈ limξ F whenever x ∈ adhξH for each filter H ∈ H such that H is a
filter on |ξ| and H # F . Note that a convergence is a pseudotopology if and only if it is
H-adherence-determined, where H is the class of all filters and it is a pretopology when we
consider the smallest possible class H consisting of principal filters only.

If we take H to be the class of all countably based filters, then we get the class of
paratopologies. This class was introduced by Dolecki [6] to enable a unification (with the aid of
one formula) of various classes of quotient maps (corresponding to parameters in the formula).
In particular, the class of hereditary quotient maps corresponds to the class of pretopologies
and the class of biquotient maps to pseudotopologies. The class of paratopologies is obtained
in this correspondence when we consider countably biquotient maps.

If H is the class of all countably complete filters (those that are closed under countable
intersections), then the obtained class of H-adherence-determined convergences is the class
of hypotopologies. This class of convergences was introduced by Dolecki [7] to enable another
unification procedure.

It turns out that each topology τ can be represented as the initial convergence with respect
to continuous maps from τ to the Sierpiński topology on a set with two elements. The same
is true for pretopologies ξ when we consider maps from ξ to the Bourdaud pretopology (see
Antoine [1] and Bourdaud [2, 3]). However, as proved by Eva and Robert Lowen [16], there
is no initially dense pseudotopology and the same negative result holds for the class of all
convergences. In this paper we will investigate this property for the classes of paratopologies
and hypotopologies.

To formally define the concept of an initial convergence, let’s recall that if ξ and η are
convergences and f : |ξ| → |η| (where |ξ| and |η| are the ground sets for the convergences ξ
and η, respectively) then f is continuous from ξ to η (we write f ∈ C(ξ, η)) if f(x) ∈ limη f [F ]
for every filter F onX and every x ∈ limξ F . If η is a convergence, X is a set and f : X → |η|,
then the relation f−η between X and FX (all the filters on X) relating x to F if and only if
f(x) ∈ limξ f [F ] is a convergence on X. In other words, ξ := f−η is the coarsest convergence
on X that makes f continuous from ξ to η.

Let Φ be a class of convergences. We say that a convergence η is initially dense in Φ iff for
each ξ ∈ Φ there exists a set A of continuous functions from ξ to η such that ξ =

⋂
f∈A f

−η.
Note that if η is initially dense in Φ, then η ∈ Φ and that ξ =

⋂
f∈A f

−η means that ξ
is the coarsest convergence on |ξ| for which all functions in A are continuous. A class of
convergences is simple provided it includes an initially dense convergence.

As a well known example, recall that a topological space is completely regular if and only
if it is homeomorphic to a subspace of RX for some set X. Using the terminology introduced
above, that is equivalent to saying that the standard topology on the set of real numbers
is initially dense in the class of completely regular topologies. In particular, the class of
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completely regular topologies is simple.
We will prove that:

Theorem 1. The class of paratopologies is simple.

To state our result about hypotopologies, we need to recall the concept of a measur-
able cardinal (see [13]). A measurable cardinal is a cardinal κ admitting a κ-complete free
ultrafilter (a free ultrafilter closed under intersections of fewer than κ members).

We are going to show:

Theorem 2. Assume that for each cardinal there exists a larger measurable cardinal. Then
the class of hypotopologies is not simple.

The assumption that measurable cardinals form a proper class is a very strong set-
theoretic assumption. It would be desirable to find a proof requiring weaker assumptions.
In particular, Theorem 2 suggests the following question.

Problem 3. Can it be proved in ZFC that the class of hypotopologies is not simple?

Another property of convergences studied in this paper is diagonality. Diagonal conver-
gences were defined by Kowalsky [14] (see also [9, 10, 11]). This property is important since
a topology can be characterized as a diagonal pretopology. Another way to characterize
topologies is to say that a topology is a pretopology ξ with idempotent set adherence, that
is, such that

adhξ(adhξA) = adhξA

for every A ⊆ |ξ|, where
adhξA := adhξ {F ⊆ X : A ⊆ F} .

The convergences with idempotent set adherence are called subdiagonal by Dolecki [10]. It
is true in general that each diagonal convergence is subdiagonal.

In [15], Eva Lowen-Colebunders introduced and investigated convergences ξ such that
every filter has a closed adherence, that is, such that

adhξ(adhξF) = adhξF

for every filter F on |ξ|. She formulated a condition, called weak diagonality, which is a
weakening of the diagonality property of Kowalsky and proved that a convergence is weakly
diagonal if and only if filters have closed adherences.

Note that each weakly diagonal convergence is subdiagonal. Moreover, the definition of
weak diagonality implies that diagonal convergences are weakly diagonal. Thus if ξ is a
pretopology, then all three of these concepts are equivalent to ξ being a topology. Example
1.5 in [15] shows that there exists a subdiagonal convergence which is not weakly diagonal.
In that example, however, the convergence is not Hausdorff. We say that a convergence is
Hausdorff provided that each filter has at most one limit.

We will prove the following result.

Theorem 4. There exists a Hausdorff subdiagonal convergence that is not weakly diagonal.
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2 Proof of Theorem 1.
Let X = ω∪{∞0,∞1,∞2}, where∞0,∞1,∞2 are distinct and do not belong to ω. Let ג be
the convergence on X such that a filter F converges to x iff either x 6=∞2 orK∪{∞1,∞2} ∈
F , for some finite K ⊆ ω. Note that, in particular, ∞2 ∈ limגF if and only if there is finite
F ∈ F with ∞0 /∈ F .

We verify that ג is a paratopology. Indeed, assume x ∈ X r limגF . Then x = ∞2 and
∞0 ∈ F for every finite F ∈ F . We want a countably based filter H such that F # H and
x /∈ adhגH. If ∞0 ∈

⋂
F , then H := {∞0}↑ satisfies the requirements. Otherwise, all sets

in F are infinite and we can use the cofinite filter on X as H.
We will show that ג is initially dense in the class Φ of paratopologies. Let η be a

paratopology on a set Y . We need to find a set C of continuous functions from η to ג such
that η =

⋂
f∈C f

.ג−
Let B be the collection of all countable families

B = {B0, B1, . . . } ,

of subsets of Y , where B0 ⊇ B1 ⊇ B2 ⊇ . . . . For each B ∈ B, let fB : Y → X be defined by

fB(y) =


n if y ∈ Bn rBn+1 for some n ∈ ω
∞0 if y ∈ Bn for every n ∈ ω
∞1 if y ∈ adhηHr

⋃
n∈ω Bn, where H is the filter generated by B

∞2 otherwise.

Let
C := {fB : B ∈ B} .

It remains to verify that η =
⋂
f∈C f

.ג− Let F be a filter on Y and y ∈ Y . It suffices to
show that y ∈ limη F if and only if f(y) ∈ limג f [F ] for every f ∈ C.

Claim. Assume that y ∈ limη F . Then f(y) ∈ limג f [F ] for every f ∈ C.

Proof. Let f = fB ∈ C with
B = {B0, B1, . . . } ∈ B,

where B0 ⊇ B1 ⊇ B2 ⊇ . . . , and let H be the filter generated by B. If F and H do not
mesh, then there is F ∈ F and n ∈ ω such that F ∩ Bm = ∅ for every m > n. Taking
K := {k ∈ ω : k ≤ n} we have K ∪ {∞1,∞2} ∈ f [F ] so f(y) ∈ limג f [F ]. If F # H, then
y ∈ adhגH so

f(y) ∈ X r {∞2} ⊆ limגf [F ].

Claim. Assume that y /∈ limη F . Then f(y) /∈ limג f [F ] for some f ∈ C.

Proof. Let H be a countably based filter such that F # H and y /∈ adhηH. Since y /∈ adhηH,
there is H ∈ H with y /∈ H. Let

B = {B0, B1, . . . } ∈ B,
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with B0 ⊇ B1 ⊇ B2 ⊇ . . . , be a base for H with B0 ⊆ H. Since y /∈ B0 ∪ adhηH, it follows
that fB(y) =∞2.

It remains to show that ∞2 /∈ limג fB[F ]. Suppose, for a contradiction, that ∞2 ∈
limג fB[F ]. Then there is F ∈ F such that ∞0 /∈ fB(F ) and fB(F ) ∩ ω is finite.

Let B :=
⋂
n∈NBn. Since ∞0 /∈ fB(F ), it follows that F ∩ B = ∅. Since fB(F ) ∩ ω

is finite, there is n ∈ ω such that m /∈ fB(F ) for every m ≥ n. Since F # H, we have
F ∩ Bn 6= ∅. As F ∩ B = ∅, it follows that there is m ≥ n with F ∩ (Bm rBm+1) 6= ∅.
Since m ∈ fB(F ) for such m, we get a contradiction.

3 Proof of Theorem 2.
We modify the argument from [16]. Assume that for each cardinal there exists a larger
measurable cardinal. A filter F on a set X is uniform iff each member of F has the same
cardinality as X.

Lemma 5. Let X and Y be sets such that X is uncountable and cardX > cardY . Then
for each uniform countably complete ultrafilter U on X and each f : X → Y there exists a
uniform countably complete ultrafilter W on X such that W 6= U and f [U ] = f [W ].

Proof. Let P := {f−(y) : y ∈ f(X)} with P0 := {A ∈ P : cardA ≤ ℵ0} and P1 := P r P0.
Note that cardP0 < cardX, where

P0 :=
⋃
P∈P0

P

and so P1 is not empty.
For each P ∈ P1, let P = AP ∪BP with AP ∩BP = ∅ and cardAP = cardBP . Let

A := P0 ∪
⋃
P∈P1

AP and B := P0 ∪
⋃
P∈P1

BP .

Then A ∪ B = X ∈ U and A ∩ B = P0 /∈ U since U is uniform. Thus exactly one of A and
B belongs to U . Let h : A → B be a bijection such that h(x) = x for each x ∈ P0 and h
maps AP onto BP for each P ∈ P1. Then W := h[U ] is a countably complete ultrafilter on
X with U 6=W and f [U ] = f [W ] as required.

Lemma 6. Let X be a set of measurable cardinality. Then there exists a uniform countably
complete ultrafilter on X.

Proof. Let κ := cardX. Since κ is measurable, there exists a free κ-complete ultrafilter U
on X. Since U is free, X r {x} ∈ U for every x ∈ X. Since U is κ-complete, if A ⊆ X has
cardinality smaller than κ, then

X r A =
⋂
x∈A

(X r {x}) ∈ U ,

so A /∈ U . Thus U is uniform.
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Lemma 7. Let U be a uniform countably complete ultrafilter on an uncountable set X and
x∞ ∈ X. Define a convergence ξ = ξ(U , x∞) on X by x ∈ limξ F iff F = {x}↑ for
x ∈ X r {x∞} and x∞ ∈ limξ F iff

⋂
F ⊆ {x∞} and F * U . Then ξ is a hypotopology.

Proof. Let F be a filter on X and x ∈ X r limξ F . We need to find a countably complete
filter H on X such that H # F but x /∈ adhξH. If x 6= x∞, then F 6= {x}↑. Taking any
A ∈ {x}↑ r F makes H := (X r A)↑ to be as required.

Assume x = x∞. If there is y ∈
⋂
F with y 6= x, then H := {y}↑ satisfies the require-

ments. If
⋂
F ⊆ {x}, then F ⊆ U and H := U satisfies the requirements.

Proof of Theorem 2. Let η be a convergence on a set Y . Let X be such that cardX
is a measurable cardinal with cardX > cardY and let U be a uniform countably complete
ultrafilter on X. Let ξ := ξ(U , x∞) be the hypotopology on X as in Lemma 7 for some
x∞ ∈ X. By Lemma 5, for every map f ∈ Y X there is a uniform countably complete
ultrafilter Wf on X with Wf 6= U and f [U ] = f [Wf ]. Then limξ U = ∅ and x∞ ∈ limξWf

for each f ∈ Y X . Thus
ξ 6=

⋂
f∈C (ξ,τ)

f−η.

4 Proof of Theorem 4.
Let Xn be a countably infinite set for each n ∈ ω with Xn ∩Xm = ∅ whenever n 6= m. Let
y0, y1, . . . be distinct with {y0, y1, . . . } ∩Xn = ∅ for each n ∈ ω. Let

z /∈ {y0, y1, . . . } ∪
⋃
n∈ω

Xn

and
X :=

⋃
n∈ω

Xn ∪ {y0, y1, . . . } ∪ {z} .

We define a Hausdorff pseudotopology ξ on X as follows. If x ∈
⋃
n∈ωXn, then the principal

ultrafilter {x}↑ is the only filter on X that converge to x. A free ultrafilter U on X converges
to yn for n ∈ ω iff U refines the cofinite filter on Xn. A free ultrafilter U on X converges
to z iff U refines the cofinite filter on {y0, y1, . . . } or there exists a sequence x0, x1, . . . with
xn ∈ Xn for each n ∈ ω and U refines the cofinite filter on {x0, x1, . . . }.
Claim. The convergence ξ is subdiagonal.

Proof. Let A ⊆ X and x ∈ X be such that x ∈ adhξ (adhξA). If x ∈
⋃
n∈ωXn, then

x ∈ adhξA.
Assume that x = yn for some n ∈ ω. Since x ∈ adhξ (adhξA), it follows that x ∈ adhξA

or Xn ∩ adhξA is infinite. Note that

Xn ∩ adhξA = Xn ∩ A,

and that if Xn ∩ A is infinite, then x ∈ adhξA. Therefore x ∈ adhξA.
Assume that x = z and x /∈ adhξA. Then the set {n ∈ ω : A ∩Xn 6= ∅} is finite, implying

that the set {n ∈ ω : yn ∈ adhξA} is also finite which contradicts x ∈ adhξ (adhξA).
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Claim. The convergence ξ is not weakly diagonal.

Proof. Let F be the free filter on X such that for A ⊆ X we have A ∈ F iff Xn r A finite
for every n ∈ ω. We show that

z ∈ adhξ (adhξF) r adhξF .

Indeed, z ∈ adhξ (adhξF) since yn ∈ adhξF for each n ∈ ω and z ∈ adhξ {y0, y1, . . . }.
However, z /∈ adhξF since for every ultrafilter U that converges to z either {y0, y1, . . . } ∈ U
or there is a sequence x0, x1, . . . with xn ∈ Xn for every n ∈ ω and {x0, x1, . . . } ∈ U . If the
former holds, then U does not refine F . If the latter holds, then U does not refine F either
since ⋃

n∈ω

(Xn r {xn}) ∈ F r U .

Thus ξ is not weakly diagonal.
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