Edge-bandwidth of grids and tori

Oleg Pikhurko ${ }^{\text {a, },, 1}$, Jerzy Wojciechowski ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890, USA
${ }^{\mathrm{b}}$ Department of Mathematics, West Virginia University, Morgantown, WV 26506-6310, USA
Received 24 September 2005; received in revised form 1 June 2006; accepted 14 June 2006
Communicated by Ding-Zhu Du

Abstract

The edge-bandwidth of a graph G is the smallest number B^{\prime} for which there is a bijective labeling of $E(G)$ with $\{1, \ldots, e(G)\}$ such that the difference between the labels at any adjacent edges is at most B^{\prime}. Here we compute the edge-bandwidth for rectangular grids: $$
B^{\prime}\left(P_{m} \oplus P_{n}\right)=2 \min (m, n)-1 \quad \text { if } \max (m, n) \geqslant 3,
$$ where \oplus is the Cartesian product and P_{n} denotes the path on n vertices. This settles a conjecture of Calamoneri et al. [New results on edge-bandwidth, Theoret. Comput. Sci. 307 (2003) 503-513]. We also compute the edge-bandwidth of any torus (a product of two cycles) within an additive error of 5 . © 2006 Elsevier B.V. All rights reserved.

Keywords: Edge bandwidth; Graph products; Grids

1. Introduction

We will use the standard notation and terminology on graphs, see e.g. [3]. Also, we denote $[n]=\{1, \ldots, n\}$.
Let G be a graph with n vertices. The bandwidth of G is $B(G)=\min _{\eta}\{B(\eta)\}$, where the minimum is taken over all bijections $\eta: V(G) \rightarrow[n]$ and $B(\eta)$ is the maximum of $|\eta(x)-\eta(y)|$ over all adjacent vertices x, y.

This classical problem was introduced by Harary [12, Problem 16, p. 167] and Harper [14]. It has been extensively studied due to its connections to isoperimetric inequalities [6], VLSI design and other layout problems [10], multicasting [4], multi-channel transmission of data with noise [2], graph searching [13], and others. (For each area, we mentioned a sample recent paper containing further pointers; also we refer the reader to the older surveys by Chinn et al. [7] and Chung [8].)

As a simple example, let us show how graph bandwidth appears in some multi-channel transmission problems. Suppose we want to encode each element $l \in[\mathrm{mn}]$ as a pair $\left(l_{1}, l_{2}\right) \in[\mathrm{m}] \times[n]$ to be transmitted over two channels. We want to minimize b such that if one of the channels fails (and we are told which one) then knowing the remaining

[^0]part l_{i}, we can find an interval of length b containing all possible inputs l. Then the smallest possible b is precisely the bandwidth of the Cartesian product of the cliques K_{m} and K_{n}, see [2].

The edge-bandwidth $B^{\prime}(G)$ is the bandwidth of the line graph of G. In other words, it is the smallest integer B^{\prime} for which there is a bijection between $E(G)$ and $\{1, \ldots, e(G)\}$ such that the difference between the labels at any two adjacent edges is at most B^{\prime}. This parameter was introduced by Hwang and Lagarias [15]. Being just a special case of bandwidth, it is far less studied but recent years witnessed an increase of activity in this area [17,16,11,5,1].

Let us consider $P_{m} \oplus P_{n}$, the $m \times n$-grid, where P_{n} denotes the path of order n and \oplus is the Cartesian product. Computing the (edge-) bandwidth for grids is of interest because these graphs epitomize the two-dimensional nature of many real world problems. Chvátalová [9] proved that $B\left(P_{m} \oplus P_{n}\right)=\min (m, n)$ if $\max (m, n) \geqslant 2$. Calamoneri et al. [5, p. 512] conjectured that

$$
\begin{equation*}
B^{\prime}\left(P_{m} \oplus P_{n}\right)=2 \min (m, n)-1 . \tag{1}
\end{equation*}
$$

The upper bound (an example of an edge labeling) is easy to produce (see Lemma 4 here). Balogh et al. [1] proved that

$$
B^{\prime}\left(P_{n} \oplus P_{n}\right) \geqslant 2 n-\sqrt{n}-1, \quad n \geqslant 2 .
$$

Here we completely settle the conjecture by proving the following results.
Theorem 1. Let F be an arbitrary connected graph of order m and size l. If $n \geqslant \max (l+2+3)$, then

$$
\begin{equation*}
B^{\prime}\left(F \oplus P_{n}\right)=l+m . \tag{2}
\end{equation*}
$$

Theorem 2. For any $n \geqslant 3$, we have $B^{\prime}\left(P_{n} \oplus P_{n}\right)=2 n-1$.
Theorems 1 and 2 imply (1) for any positive m, n except for the pairs (1, 1), (1, 2), and (2,2). The first two cases do not make much sense (namely, $P_{m} \oplus P_{n}$ has at most one edge) while the last case is an exception to (1): $B^{\prime}\left(P_{2} \oplus P_{2}\right)=2$.
We believe that the restriction $n \geqslant l+2$ in Theorem 1 can be weakened to $n \geqslant l+1$ by appropriately modifying our proof of Theorem 2. However, the argument becomes far messier and its length seems to increase considerably. So, in order to keep this paper short and readable, we do the case $F=P_{n}$ only.

Tori, that is, Cartesian products of two cycles, were studied by Li et al. [18] who computed $B\left(C_{m} \oplus C_{n}\right)$ for all m, n. Balogh et al. [1] considered the edge bandwidth of the torus $C_{n} \oplus C_{n}$ and established the following bounds:

$$
\begin{equation*}
4 n-2 \sqrt{2 n}-1 \leqslant B^{\prime}\left(C_{n} \oplus C_{n}\right) \leqslant 4 n, \quad n \geqslant 3 . \tag{3}
\end{equation*}
$$

We have been able to reduce the gap in (3):
Theorem 3. For any $m \geqslant n \geqslant 3$, we have

$$
\begin{equation*}
4 n-5 \leqslant B^{\prime}\left(C_{m} \oplus C_{n}\right) \leqslant 4 n \tag{4}
\end{equation*}
$$

Our proof techniques for Theorems 1-3 are built upon those from [1].
Independently of us, Akhtar, Jiang, Miller, and Pritikin report to have obtained new bounds on the edge-bandwidth of various graph products, in particular the following:

$$
B^{\prime}\left(P_{n} \oplus P_{n}\right) \geqslant 2 n-2 \quad \text { and } \quad B^{\prime}\left(C_{n} \oplus C_{n}\right) \geqslant 4 n-5 \text {, }
$$

as well as the asymptotic result for $B^{\prime}\left(P_{n}^{\oplus d}\right)$, for any fixed $d \geqslant 3$.
Our paper is organized as follows. In Section 2 we provide some further notation and auxiliary results that we will need. The (easy) upper bounds of Theorems 1 and 2 are proved in Lemma 4. Sections 3 and 4 are dedicated to proving the corresponding lower bounds. Theorem 3 is proved in Section 5. Some open problems are mentioned in Section 6.

2. Notation and basics

Let us set up the notation that we will use for the Cartesian product $G=F \oplus H$ of any two graphs F and H of orders m and n, respectively. We will usually assume that $V(F)=[m]$ and $V(H)=[n]$. Thus, G has the vertex set

$$
V(G)=\{(i, j): 1 \leqslant i \leqslant m, 1 \leqslant j \leqslant n\}
$$

and edges

$$
\left\{r_{i, D}: 1 \leqslant i \leqslant m, D \in E(H)\right\} \cup\left\{c_{D, j}: D \in E(F), 1 \leqslant j \leqslant n\right\}
$$

with $r_{i, x y}$ incident to (i, x) and (i, y) and $c_{x y, j}$ incident to (x, j) and (y, j). (We will abbreviate $\{x, y\}$ to $x y$ sometimes.) The edges of the form $r_{i, D}$ are called horizontal and the edges $c_{D, j}$ are vertical. For $i=1, \ldots, m$, the i th row is

$$
R_{i}=\left\{r_{i, D}: D \in E(H)\right\}
$$

and, for $j=1, \ldots, n$, the j th column is

$$
C_{j}=\left\{c_{D, j}: D \in E(F)\right\} .
$$

(Thus, we use matrix-type coordinates.) An edge $D \in E(F)$ gives us the quasi-row

$$
R_{D}^{\prime}=\left\{c_{D, j}: 1 \leqslant j \leqslant n\right\}
$$

and an edge $D \in E(H)$ gives us the quasi-column

$$
C_{D}^{\prime}=\left\{r_{i, D}: 1 \leqslant i \leqslant m\right\}
$$

A line is a row or a column. A quasi-line is a quasi-row or a quasi-column.
If one of the graphs is a path or a cycle, then we assume that it traverses its vertex set in the natural order. For example, the cycle C_{n} visits its vertices in this order: $1,2, \ldots, n-1, n, 1$. If $H=P_{n}$ is a path, then we will denote $r_{i, j}=r_{i,\{j, j+1\}}$ and $C_{j}^{\prime}=C_{\{j, j+1\}}^{\prime}$ for $i \in[m]$ and $j \in[n-1]$. If $H=C_{n}$ is a cycle, then we additionally let $r_{i, n}=r_{i,\{n, 1\}}$ and $C_{n}^{\prime}=C_{\{n, 1\}}^{\prime}$. Likewise we define $c_{i, j}$ and R_{i}^{\prime} if F is a cycle or a path. Since we use different letters R and C, corresponding to the rows and columns, this will not cause any clashes in notation.

For example, for $G=P_{3} \oplus P_{3}$ we see the following picture:

Having introduced the notation we are ready to prove the upper bound in Theorems 1 and 2.
Lemma 4. If F is a graph of order m and size l, then

$$
B^{\prime}\left(F \oplus P_{n}\right) \leqslant l+m .
$$

Proof. Informally speaking, we label columns and quasi-columns from left to right. Here is a formal description. Order the edge set of F arbitrarily: $E(F)=\left\{D_{1}, \ldots, D_{l}\right\}$. A label $(j-1)(l+m)+i \in[n l+(n-1) m]$ with $j \in[n]$ is assigned to $c_{D_{i}, j}$ if $i \in[l]$ and to $r_{i-l, j}$ if $l<i \leqslant l+m$. It is easy to see that for $n \geqslant 3$, the largest difference between adjacent labels is $m+l$; it is achieved for pairs of adjacent horizontal edges.

The support of a set $S \subset E(G)$ is $V(S)=\bigcup_{D \in S} D$. (Thus, for example, for $F \oplus P_{n}$ we have $V\left(R_{i}\right)=\{(i, j): j \in$ [n]\}.) Two subsets of $E(G)$ touch if their supports intersect.

The complement of a given set S of edges of G is $\bar{S}=E(G) \backslash S$. For an edge $D \in \bar{S}$, the distance of D from S is the order of the shortest path in G joining a vertex of D to a vertex of $V(S)$. (For example, if $D \cap V(S) \neq \emptyset$, then their distance is 1.) The t th neighborhood $\sigma^{t}(S)$ of S consists of those edges in \bar{S} that are at distance at most t from S. Note that $\sigma^{t}(S) \cap S=\emptyset$. For $t=1$, we simply say the neighborhood and write $\sigma(S)$.

The following easy observation is a very useful tool for proving lower bounds on edge-bandwidth; see Harper [14] for the vertex-bandwidth version.

Lemma 5. For any edge labeling η of G, any $1 \leqslant j<e(G)$, and any $t \geqslant 1$, we have

$$
\begin{equation*}
B^{\prime}(\eta) \geqslant \frac{\max \left(\left|\sigma^{t}(S)\right|,\left|\sigma^{t}(\bar{S})\right|\right)}{t} \quad \text { where } S=\eta^{-1}([j]) \tag{5}
\end{equation*}
$$

Proof. The edge D_{1} in $\sigma^{t}(S)$ with the largest label, which is at least $j+\left|\sigma^{t}(S)\right|$, can be connected by a path P with at most t vertices to some edge D_{2} in S, which has label at most j. Consider now the path P^{\prime} obtained from P by adding D_{1} at the beginning and D_{2} at the end. At some vertex v of P, the labels on the two edges of P^{\prime} that are adjacent to v differ by at least $\left|\sigma^{t}(S)\right| / t$, as required. The bound given by $\sigma^{t}(\bar{S})$ is proved similarly.

3. Proof of the lower bound in Theorem 1

Our argument has to consider two very similar cases where rows and columns play different roles. To make the proof shorter, we will deal with them in one go. Namely, let $\left\{F, P_{n}\right\}=\left\{F_{1}, F_{2}\right\}$ where we do not specify which is which. For $i=1,2$, let $v_{i}=v\left(F_{i}\right)$ and $e_{i}=e\left(F_{i}\right)$. (Thus, for example, $\left\{v_{1}, v_{2}\right\}=\{m, n\}$.)

Take any edge labeling η of $G=F_{1} \oplus F_{2}$ that achieves the edge-bandwidth. Let s be the smallest number such that $\eta^{-1}([s+1])$ contains two lines as subsets. Let $S=\eta^{-1}([s])$. Note that S contains precisely one line. We can assume without loss of generality that S contains R_{p} for some $p \in\left[v_{1}\right]$.

Let

$$
K=\left\{i \in\left[v_{1}\right]: V(S) \cap V\left(R_{i}\right) \neq \emptyset\right\}
$$

consist of all (indexes of) rows that touch S. Let $k=|K|$.
Suppose first that $k=v_{1}$. Then the neighborhood $\sigma(S)$ contains at least v_{2} vertical edges: for each $j \in\left[v_{2}\right]$, we have $C_{j} \backslash S \neq \emptyset$ while C_{j} touches $R_{p} \subset S$. Also, for each $i \in\left[v_{1}\right] \backslash\{p\}, R_{i} \backslash S \neq \emptyset$ but R_{i} and S touch because $K=\left[v_{1}\right]$. This shows that $\sigma(S)$ has at least $v_{1}-1$ horizontal edges. By Lemma 5 ,

$$
B^{\prime}(G) \geqslant|\sigma(S)| \geqslant v_{1}+v_{2}-1=m+n-1,
$$

which is even strictly greater than the desired bound.
So assume that $k<v_{1}$. Let $Y=\sigma^{v_{1}-k}(S)$ and $Y^{\prime}=Y \backslash \sigma(S)$. To estimate $|Y|$, we break Y into three disjoint sets

$$
Y=\left(\bigcup_{j \in\left[v_{2}\right]}\left(Y \cap C_{j}\right)\right) \cup\left(\bigcup_{D \in E\left(F_{2}\right)}\left(Y^{\prime} \cap C_{D}^{\prime}\right)\right) \cup\left(\bigcup_{i \in\left[v_{1}\right]}\left(\sigma(S) \cap R_{i}\right)\right),
$$

and estimate the cardinality of each of them.
First, for any $j \in\left[v_{2}\right]$ at least $v_{1}-k$ vertices of $V\left(C_{j}\right)$ do not belong to $V(S)$, which implies that $\left|C_{j} \backslash S\right| \geqslant v_{1}-k$. As C_{j} is a connected graph (it is isomorphic to F_{1}), we have

$$
\begin{equation*}
\left|Y \cap C_{j}\right| \geqslant v_{1}-k . \tag{6}
\end{equation*}
$$

Consequently,

$$
\left|\bigcup_{j \in\left[v_{2}\right]}\left(Y \cap C_{j}\right)\right| \geqslant\left(v_{1}-k\right) v_{2}
$$

Our estimate of the second part is given by the following lemma.

Lemma 6. We have

$$
\begin{equation*}
\left|Y^{\prime} \cap C_{D}^{\prime}\right| \geqslant v_{1}-k-1 \tag{7}
\end{equation*}
$$

for every $D \in E\left(F_{2}\right)$.
Proof. Let $D \in E\left(F_{2}\right)$. Note that if $\{i, j\} \in E\left(F_{1}\right)$ is such that $r_{i, D}$ and $r_{j, D}$ are not in S, then the distances from $V(S)$ of $r_{i, D}$ and $r_{j, D}$ differ by at most one. Since $k<v_{1}$ and F_{1} is connected, there is $i \in V\left(F_{1}\right)$ such that the distance of $r_{i, D}$ from $V(S)$ is 2 . It follows, because of the connectivity of F_{1}, that the set of distances of $r_{i, D}$ from $V(S)$ as i runs through $V\left(F_{1}\right)$ under the condition that $r_{i, D} \notin S \cup \sigma(S)$ consists of consecutive integers from 2 up to some integer. Since C_{D}^{\prime}, has at least $v_{1}-k$ elements that do not touch S, it follows that

$$
\left|Y^{\prime} \cap C_{D}^{\prime}\right| \geqslant v_{1}-k-1 .
$$

Finally, since F_{2} is connected, we have $\sigma(S) \cap R_{i} \neq \emptyset$ for each $i \in K \backslash\{p\}$ which implies that

$$
\begin{equation*}
\left|\bigcup_{i \in\left[v_{1}\right]}\left(\sigma(S) \cap R_{i}\right)\right| \geqslant k-1 . \tag{8}
\end{equation*}
$$

Adding all these estimates together, we obtain

$$
\begin{equation*}
|Y| \geqslant\left(v_{1}-k\right) v_{2}+\left(v_{1}-k-1\right) e_{2}+k-1 . \tag{9}
\end{equation*}
$$

Let y denote the right-hand side of (9). If $F_{1}=P_{n}$, then we obtain after routine calculations that

$$
y=(n-k)(m+l-1)+n-l-1 \geqslant(n-k)(m+l-1)+1,
$$

which implies the required bound by Lemma 5. (Recall that $n \geqslant l+2$ by the assumption of Theorem 1.) In the case $F_{1}=F$ we obtain $y=(m-k)(2 n-2)+m-n$. Using the facts that $m-k=v_{1}-k \geqslant 1$ and $m \leqslant l+1 \leqslant n-1$, we obtain the desired bound:

$$
y \geqslant(m-k)(n+m-3)+1 \geqslant(m-k)(l+m-1)+1 .
$$

This finishes the proof of Theorem 1 by Lemma 5 .

4. Proof of the lower bound in Theorem 2

Let $G=P_{n} \oplus P_{n}$. Let us apply the proof of the lower bound of Theorem 1 to G using the same notation. (Thus, $v_{1}=v_{2}=n, e_{1}=e_{2}=n-1$, etc.) Observe that in Section 3 we use the restriction $n \geqslant l+2$ only after (9). Hence, the inequality (9) applies also to G, giving $|Y| \geqslant(n-k)(2 n-2)$. If this inequality is strict, then we immediately obtain the claimed lower bound by Lemma 5. So, let us suppose on the contrary that Theorem 2 is not true. It follows that

$$
\begin{equation*}
B^{\prime}\left(P_{n} \oplus P_{n}\right)=2 n-2, \tag{10}
\end{equation*}
$$

and that (9) and the inequalities which led to it are all equalities. Also we have $k<n$. The overall plan is to get as much structural information about S as possible so that we can derive the final contradiction.

Lemma 7. For every line L we have $|\sigma(S) \cap L| \leqslant 1$.
Proof. If L is a row, then the claim follows from the fact that we have an equality in (8). So suppose that some column $L=C_{j}$ violates the lemma, that is, $\left|\sigma(S) \cap C_{j}\right| \geqslant 2$. As (6) is an equality, we conclude that $C_{j} \backslash S$ has at most (and hence precisely) $n-k$ edges. It follows that $k \leqslant n-2$ and that $C_{j} \backslash S \subset \sigma^{n-k-1}(S)$. Consequently, $C_{D}^{\prime} \backslash S \subset \sigma^{n-k}(S)$ for any edge D of P_{n} containing j. This makes (7) strict, a contradiction.

Let us call a line L compressed if $V(S) \cap V(L)$ is either empty or spans a connected subgraph (that is, a path) that contains at least one endpoint of L. The following claim is an obvious corollary of Lemma 7.

Lemma 8. Every line is compressed.
We know that $V\left(R_{p}\right)$ intersects every set $V(S) \cap V\left(C_{i}\right), i \in[n]$. As $k<n$, there is a row disjoint from every such set. As each column is compressed by Lemma 8, we conclude that the intersections of $V(S)$ with the columns, if projected onto the first coordinate, form a nested family. Furthermore, since each row is compressed, we can choose one of the two canonical ways to label the vertex set of each factor P_{n} by $[n]$, so that for any $i_{1}, i_{2}, j_{1}, j_{2} \in[n]$ we have

$$
\begin{equation*}
i_{1} \leqslant i_{2}, \quad j_{1} \leqslant j_{2}, \quad\left(i_{2}, j_{2}\right) \in V(S) \Rightarrow\left(i_{1}, j_{1}\right) \in V(S) \tag{11}
\end{equation*}
$$

Let us assume that this monotonicity property (11) holds. In particular, since $k<n$, we have $n \notin K$.
We say that a line L is full if $V(L) \subset V(S)$. As $n \notin K$, no column is full but we may have a few full rows. A line L is filled (resp. almost filled) if no edge (resp. exactly one edge) of $L \backslash S$ has both endpoints in $V(S)$. Intuitively, a filled line has as many edges in S as possible given the set $V(S)$.

Lemma 9. Every line that is not full is filled. All full rows are filled or almost filled.
Proof. Suppose that a line L is not filled, that is, there is an edge $\{x, y\} \in \bar{S}$ with $x, y \in V(L) \cap V(S)$. If $V(L) \backslash V(S) \neq \emptyset$, the set $\sigma(S) \cap L$ contains the edge $\{x, y\}$ and at least one more edge. This contradicts Lemma 7. Thus the line L is full, proving the first part.

For any full row L we have $\sigma(S) \cap L=L \backslash S$, implying that the latter set has at most one element, again by Lemma 7 .

Recall the notation that applies to $G=P_{n} \oplus P_{n}$:

$$
r_{i, j}=r_{i,\{j, j+1\}}, \quad c_{i, j}=c_{\{i, i+1\}, j}, \quad R_{i}^{\prime}=R_{\{i, i+1\}}^{\prime}, \quad C_{j}^{\prime}=C_{\{j, j+1\}}^{\prime} .
$$

The following claims are proved by analyzing

$$
Z=\sigma(\bar{S})
$$

the first neighborhood of the complement of S, so it is convenient to put them into a single lemma.
Lemma 10. We have $p=1$. There is at most one almost filled row; moreover, if such a row exists, then it is R_{2}.
Proof. Assume that there is at least one almost filled row. (Otherwise we are done: R_{p} is the only full row and, by (11), $p=1$.)

By Lemma 9 every almost filled row is full. Let $f \geqslant p$ be the largest index such that R_{f} is full. (It is not excluded so far that $f=p$.) We have $f \geqslant 2$ and, by (11), all rows R_{i} with $i \in[f]$ are full.

By Lemma 5 and the assumption (10), we have $|Z| \leqslant 2 n-2$. Observe that for every $j \in[n]$, we have $c_{n-1, j} \in \bar{S}$ (because $n \notin K$) and $c_{1, j} \in S$ (because R_{1} and R_{2} are full while the column C_{j} is filled by Lemma 9). Hence, $Z \cap C_{j} \neq \emptyset$ and, in total, Z contains at least n vertical edges.
Take any edge $\{x, y\} \in E\left(P_{n}\right)$ such that $r_{f, x y} \in S$. Choose the largest $i \geqslant f$ such that $r_{i, x y} \in S$. As $n \notin K$, we have $i<n$. Since R_{i+1} is not full, it is filled by Lemma 9. The edge $r_{i+1, x y}$ is not in S, so at least one of its endpoints is not in $V(S)$; let it be $(i+1, x)$. This means that $c_{i, x} \in \bar{S}$ and $r_{i, x y} \in Z$. By Lemma 9 we have at least $n-2$ choices for $x y$, so Z has at least $n-2$ horizontal edges in rows R_{f}, \ldots, R_{n-1}.

This already gives us that $|Z| \geqslant 2 n-2$. Any row R_{i} with $i \in[f] \backslash\{p\}$ has precisely one missing edge by Lemma 9 . So, in order to prevent extra horizontal edges in Z, we have to assume that $f=2$ and $p=1$, as required.

For $i=1,2,3$, let $D_{i}=\eta^{-1}(s+i), S_{i}=\eta^{-1}([s+i]), Y_{i}=\sigma\left(S_{i}\right)$, and $Z_{i}=\sigma\left(\overline{S_{i}}\right)$. Let

$$
\delta= \begin{cases}1 & \text { if }(2, n) \in V(S) \\ 0 & \text { otherwise } .\end{cases}
$$

Thus, $\delta=0$ if and only if R_{1} is the only full row.
Lemma 11. The edge D_{1} is vertical.

Fig. 1. The structure of S_{1} given by Lemma 13.

Proof. Suppose on the contrary that D_{1} is horizontal. Let it lie in the i th row. By the definition of S, we have $R_{i} \subset S_{1}$. The argument of Lemma 10 shows that Z_{1} has at least $n-1+\delta$ vertical edges (at least one edge per each column C_{i} except C_{n} if $\delta=0$).

Observe that there are no almost filled rows among R_{i+1}, \ldots, R_{n}. (Indeed, we have $i \geqslant 2$ so the existence of such a row contradicts Lemma 10.) Now, the argument of Lemma 10 shows that Z_{1} contains at least one edge from each quasi-column. Furthermore, if $\delta=0$, then the edges $r_{1, n-1}, r_{i, n-1} \in S_{1}$, coming from the same quasi-column C_{n-1}^{\prime}, are both in Z. (Indeed, $(2, n) \notin V(S)$; so $(i, n) \notin V(S)$ by (11); as D_{1} is horizontal, we have $c_{1, n}, c_{i, n} \in \overline{S_{1}}$.) Thus, we have exhibited at least $n-\delta$ horizontal edges in Z_{1}. This gives us the desired contradiction $\left|Z_{1}\right| \geqslant 2 n-1$.

Lemma 12. The edge D_{1} belongs to C_{1}; thus $D_{1}=c_{n-1,1}$.
Proof. If $D_{1}=c_{n-1, n}$, then (11) and Lemmas 9 and 10 imply that $n=3$ and, furthermore, $S=\left\{r_{1,1}, r_{1,2}, D, c_{1,1}\right.$, $\left.c_{1,2}, c_{1,3}\right\}$, where D is either $r_{2,1}$ or $r_{2,2}$. If $D=r_{2,1}$, then $\left|Z_{1}\right|=5$, a contradiction. If $D=r_{2,2}$, then $r_{n, n-1}$ is only choice for $D_{2}=\eta^{-1}(s+2)$ that avoids the contradiction $\left|Z_{2}\right|=5$. But then we obtain a contradiction in the next step: $\left|Z_{3}\right|=5$ for any D_{3}.

So assume that $D_{1} \notin C_{n}$. The set $Y_{1}=\sigma\left(S_{1}\right)$ contains at least $n-1$ vertical edges and at least one edge from each of R_{2}, \ldots, R_{n}. If $D_{1} \notin C_{1}$, then Y_{1} has at least two edges from R_{n}, giving the desired contradiction $\left|Y_{1}\right| \geqslant 2 n-1$.

Now we are able to show that S_{1} must have a very restrictive structure. (The reader may refer to Fig. 1 for an illustration.) Let Σ_{q} consist of all edges of G spanned by $\{(i, j) \in V(G): i+j \leqslant q\}$.

Lemma 13. If $\delta=0$, then $S_{1}=R_{1} \cup C_{1} \cup \Sigma_{q}$ for some $3 \leqslant q \leqslant n+1$. If $\delta=1$, then $S_{1}=R_{1} \cup C_{1} \cup \Sigma_{n+1} \cup\left\{c_{1, n}\right\}$.
Proof. Suppose first that $\delta=0$. All columns and rows are filled with respect to S_{1}. The argument of Lemma 10 shows that Z_{1} contains at least one edge from each quasi-line. Since this already gives at least $2 n-2$ edges, no quasi-line can have two common edges with Z_{1}. It follows that for any $i \geqslant 2$ with $S_{1} \cap R_{i} \neq \emptyset$ we have $\left|S_{1} \cap R_{i+1}\right| \geqslant\left|S_{1} \cap R_{i}\right|-1$: otherwise $\left|R_{i-1}^{\prime} \cap Z_{1}\right| \geqslant 2$. The analogous claim holds for the sizes of $S_{1} \cap C_{j}$. A moment's thought reveals that S_{1} has the required structure.

Let $\delta=1$. Here, R_{2} is the unique almost filled row. Let $r_{2, f}$ be the unique edge of $R_{2} \backslash S_{1}$. Then Z_{1} has a non-empty intersection with each of

$$
C_{1}^{\prime}, \ldots, C_{n-1}^{\prime}\left(\text { except possibly } C_{f}^{\prime}\right) \quad \text { and } \quad R_{2}^{\prime}, \ldots, R_{n-1}^{\prime}
$$

while $\left|Z_{1} \cap R_{1}^{\prime}\right| \geqslant 2$. This already gives us that $\left|Z_{1}\right| \geqslant 2 n-2$. If follows that $f=n-1$ for otherwise $\left|Z_{1} \cap R_{1}^{\prime}\right| \geqslant 3$. Also, we must have $S_{1} \cap C_{n-1}=c_{1, n-1}$ for otherwise we would have $\left|Z_{1} \cap C_{n-2}^{\prime}\right| \geqslant 2$, a contradiction. Working inductively
on $j=n-2, n-3, \ldots, 1$ one argues that

$$
S_{1} \cap C_{j}=\left\{c_{i, j}: i=1, \ldots, n-j\right\}
$$

which implies the claim.
Given so much information about S_{1}, we can directly analyze the next few values of η.
Suppose first that $\delta=1$. Routine considerations show that we have $D_{2}=r_{n, 1}$ for otherwise $Z_{2}=Z_{1} \cup\left\{D_{2}\right\}$ and we obtain the contradiction $\left|Z_{2}\right| \geqslant 2 n-1$. But any edge in Z_{2} touches at least two edges of \bar{S}_{2}. So, as it is easy to see, we have $Z_{3}=Z_{2} \cup\left\{D_{3}\right\}$, a contradiction.

Suppose that $\delta=0$. If $q=n+1$, then to prevent $Z_{2}=Z_{3} \cup\left\{D_{2}\right\}$ we should let D_{2} equal $c_{1, n}$ or $r_{n, 1}$. But either of these choices gives us a situation isomorphic to the one for $\delta=1$, which leads to a contradiction anyway. Finally, if $q \leqslant n$, then we get a contradiction already for S_{2}. Indeed, if D_{2} is $c_{1, q-1}$ or $r_{q-1,1}$, then $\left|Y_{2}\right|=2 n-1$; otherwise $\left|Z_{2}\right|=2 n-1$.

This completes the proof of Theorem 2.

5. Proof of Theorem 3

Since the arguments here are very similar to those in the proof of Theorem 1, we will be rather brief.
The upper bound on $B^{\prime}\left(C_{m} \oplus C_{n}\right)$, for $m \geqslant n$, follows by labeling rows and quasi-rows one by one, moving in both directions along the cycle C_{m}. Namely, the order of rows and quasi-rows is the following:

$$
R_{1}, R_{1}^{\prime}, R_{m}^{\prime}, R_{2}, R_{m}, R_{2}^{\prime}, R_{m-1}^{\prime}, R_{3}, R_{m-1}, \ldots,
$$

while each individual (quasi-)row is labeled in the same fixed cyclic order on C_{n}. It is easy to see that the bandwidth of this labeling is $4 n$.

On the other hand, let $m, n \geqslant 3$ be arbitrary. (We do not specify their relative order.) Take an edge-labeling η of $C_{m} \oplus C_{n}$ that achieves the edge-bandwidth. Let s be the smallest integer such that $S=\eta^{-1}([s])$ contains a whole line minus one edge. Assume without loss of generality that this is a row R_{p}, that is, $\left|R_{p} \backslash S\right|=1$. Let K consist of those $i \in[m]$ such that R_{i} and S touch, and let $k=|K|$. Let $l=\lceil(m-k) / 2\rceil$ and $Y=\sigma^{l}(S)$.

If $k=m$, then $\sigma(S)$ contains at least two edges from each column and at least two edges from every row R_{i} except the row R_{p}, which contributes only one edge. Here $B^{\prime}(\eta) \geqslant 2 m+2 n-1$, giving the required.

So suppose that $k<m$, that is, $l \geqslant 1$. For each $i \in[n]$ we have $\left|C_{i} \backslash S\right| \geqslant m-k+1 \geqslant 2 l$. For any proper edge-subset of a cycle, its first neighborhood has at least 2 elements or catches all remaining edges. Hence, $\left|Y \cap C_{i}\right| \geqslant 2 l$. As each C_{j}^{\prime} has at least $m-k>2 l-2$ elements that do not touch S, we conclude that

$$
\left|Y \cap C_{j}^{\prime}\right| \geqslant 2 l-2+\delta_{j},
$$

where $\delta_{j}=\left|\sigma(S) \cap C_{j}^{\prime} \cap\left(\bigcup_{i \in K} R_{i}\right)\right|$. We have $\sum_{j=1}^{n} \delta_{j} \geqslant 2 k-1$. Indeed, the definition of S implies that for each row R_{i} with $i \in K \backslash\{p\}$ we have $\left|R_{i} \backslash S\right| \geqslant 2$ and thus $\left|\sigma(S) \cap R_{i}\right| \geqslant 2$; also $\left|\sigma(S) \cap R_{p}\right|=1$.

We obtain

$$
\begin{equation*}
|Y| \geqslant 2 l n+(2 l-2) n+2 k-1 \geqslant 2 l n+(2 l-2) n+2(m-2 l)-1=: y . \tag{12}
\end{equation*}
$$

If $m \geqslant n$, then $y=l(4 n-6)+2 m-2 n+2 l-1 \geqslant l(4 n-6)+1$, which implies the required lower bound by Lemma 5 . If $m<n$, then we obtain the desired bound on $|Y|$ as follows:

$$
y=l(4 n-6)+2 m-2 n+2 l-1 \geqslant l(4 m-6)+4(n-m)+2 m-2 n+2 l-1 \geqslant l(4 m-6)+1 .
$$

Theorem 3 is proved.
Remark. From (12) one can also deduce that

$$
\begin{equation*}
B^{\prime}\left(C_{m} \oplus C_{n}\right)=4 \min (m, n) \quad \text { if } \max (m, n) \geqslant 4 \min (m, n)+4 . \tag{13}
\end{equation*}
$$

Indeed, if $m \geqslant n$, then we obtain (using $l=\lceil(m-k) / 2\rceil \leqslant m / 2$) that

$$
y=l(4 n-1)+2 m-2 n-3 l-1 \geqslant l(4 n-1)+2 m-2 n-3 \frac{m}{2}-1 \geqslant l(4 n-1)+1
$$

If $m<n$, then

$$
y=l(4 n-1)+2 m-2 n-3 l-1 \geqslant l(4 m-1)+2 n-2 m-3 \frac{m}{2}-1 \geqslant l(4 m-1)+1
$$

Now, (13) follows from Lemma 5. Also, small improvements on (4) could be obtained for some other ranges of (m, n) but we do not think that this direction is worth pursuing.

6. Open problems

It would be of interest to compute the exact value of the edge-bandwidth for three-dimensional grids. Our Theorem 1, when applied to $F=P_{l} \oplus P_{m}$, gives

$$
B^{\prime}\left(P_{l} \oplus P_{m} \oplus P_{n}\right)=3 l m-m-l \quad \text { if } n \geqslant 2 l m-l-m+2 .
$$

However, the general case is still unsolved. Another open problem is to close the gap in Theorem 3.

Acknowledgments

We thank the anonymous referees and Taijiro Bernstein for helpful comments.

References

[1] J. Balogh, D. Mubayi, A. Pluhár, On the edge-bandwidth of graph products, Theoret. Comput. Sci. 2006, in press, doi: 10.1016/j.tcs.2006.01.046.
[2] T.Y. Berger-Wolf, E.M. Reingold, Index assignment for multichannel communication under failure, IEEE Trans. Inform. Theory 48 (2002) 2656-2668.
[3] B. Bollobás, Modern Graph Theory, Springer, Berlin, 1998.
[4] M.-C. Cai, X. Deng, L. Wang, Minimum k arborescences with bandwidth constraints, Algorithmica 38 (2004) 529-537.
[5] T. Calamoneri, A. Massini, I. Vrť, New results on edge-bandwidth, Theoret. Comput. Sci. 307 (2003) 503-513.
[6] L.S. Chandran, T. Kavitha, C.R. Subramanian, Isoperimetric inequalities and the width parameters of graphs, Computing and Combinatorics, Lecture Notes in Computer Science, Vol. 2697, Springer, Berlin, 2003, pp. 385-393.
[7] P.Z. Chinn, J. Chvátalová, A.K. Dewdney, N.E. Gibbs, The bandwidth problem for graphs and matrices-a survey, J. Graph Theory 6 (1982) 223-254.
[8] F.R.K. Chung, Labelings of graphs, in: Selected Topics in Graph Theory, Vol. 3, Academic Press, San Diego, CA, 1988 , pp. $151-168$.
[9] J. Chvátalová, Optimal labelling of a product of two paths, Discrete Math. 11 (1975) 249-253.
[10] J. Diaz, J. Petit, M. Serna, A survey of graph layout problems, ACM Comput. Surveys 34 (2002) 313-356.
[11] D. Eichhorn, D. Mubayi, K. O’Bryant, D.B. West, The edge-bandwidth of theta graphs, J. Graph Theory 35 (2000) 89-98.
[12] M. Fiedler (Eds.), Theory of graphs and its applications, in: Proceedings of the Symposium Held in Smolenice in June 1963, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1964.
[13] F.V. Fomin, P. Heggernes, J.A. Telle, Graph searching, elimination trees, and a generalization of bandwidth, Algorithmica 41 (2005) $73-87$.
[14] L.H. Harper, Optimal numberings of isoperimetric problems in graphs, J. Combin. Theory 1 (1966) 385-393.
[15] F.K. Hwang, J.C. Lagarias, Minimum range sequences of all k-subsets of a set, Discrete Math. 19 (1977) 257-264.
[16] T. Jiang, D. Mubayi, A. Shastri, D.B. West, Edge-bandwidth of graphs, SIAM J. Discrete Math. 12 (1999) 307-316.
[17] A. Kamath, O. Palmon, S. Plotkin, Routing and admission control in general topology networks with Poisson arrivals, J. Algorithms 27 (1998) 236-258.
[18] Q. Li, M.Q. Tao, Y.Q. Shen, The bandwidth of the discrete tori $C_{m} \times C_{n}$, J. China Univ. Sci. Tech. 11 (1981) 1-16.

[^0]: * Corresponding author.

 E-mail addresses: pikhurko@cmu.edu (O. Pikhurko), jerzy@math.wvu.edu (J. Wojciechowski). URL: http://www.math.cmu.edu/~pikhurko (O. Pikhurko).
 ${ }^{1}$ Partially supported by NSF Grant DMS-0457512.

