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Abstract

The edge-bandwidth of a graph G is the smallest number B ′ for which there is a bijective labeling of E(G) with {1, . . . , e(G)}
such that the difference between the labels at any adjacent edges is at most B ′. Here we compute the edge-bandwidth for rectangular
grids:

B ′(Pm�Pn) = 2 min(m, n) − 1 if max(m, n)�3,

where � is the Cartesian product and Pn denotes the path on n vertices. This settles a conjecture of Calamoneri et al. [New results
on edge-bandwidth, Theoret. Comput. Sci. 307 (2003) 503–513]. We also compute the edge-bandwidth of any torus (a product of
two cycles) within an additive error of 5.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

We will use the standard notation and terminology on graphs, see e.g. [3]. Also, we denote [n] = {1, . . . , n}.
Let G be a graph with n vertices. The bandwidth of G is B(G) = min�{B(�)}, where the minimum is taken over all

bijections � : V (G) → [n] and B(�) is the maximum of |�(x) − �(y)| over all adjacent vertices x, y.
This classical problem was introduced by Harary [12, Problem 16, p. 167] and Harper [14]. It has been extensively

studied due to its connections to isoperimetric inequalities [6], VLSI design and other layout problems [10], multicasting
[4], multi-channel transmission of data with noise [2], graph searching [13], and others. (For each area, we mentioned
a sample recent paper containing further pointers; also we refer the reader to the older surveys by Chinn et al. [7] and
Chung [8].)

As a simple example, let us show how graph bandwidth appears in some multi-channel transmission problems.
Suppose we want to encode each element l ∈ [mn] as a pair (l1, l2) ∈ [m] × [n] to be transmitted over two channels.
We want to minimize b such that if one of the channels fails (and we are told which one) then knowing the remaining
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part li , we can find an interval of length b containing all possible inputs l. Then the smallest possible b is precisely the
bandwidth of the Cartesian product of the cliques Km and Kn, see [2].

The edge-bandwidth B ′(G) is the bandwidth of the line graph of G. In other words, it is the smallest integer B ′
for which there is a bijection between E(G) and {1, . . . , e(G)} such that the difference between the labels at any two
adjacent edges is at most B ′. This parameter was introduced by Hwang and Lagarias [15]. Being just a special case of
bandwidth, it is far less studied but recent years witnessed an increase of activity in this area [17,16,11,5,1].

Let us consider Pm�Pn, the m × n-grid, where Pn denotes the path of order n and � is the Cartesian product.
Computing the (edge-) bandwidth for grids is of interest because these graphs epitomize the two-dimensional nature
of many real world problems. Chvátalová [9] proved that B(Pm�Pn) = min(m, n) if max(m, n)�2. Calamoneri
et al. [5, p. 512] conjectured that

B ′(Pm�Pn) = 2 min(m, n) − 1. (1)

The upper bound (an example of an edge labeling) is easy to produce (see Lemma 4 here). Balogh et al. [1] proved that

B ′(Pn�Pn)�2n − √
n − 1, n�2.

Here we completely settle the conjecture by proving the following results.

Theorem 1. Let F be an arbitrary connected graph of order m and size l. If n� max (l + 2 + 3), then

B ′(F�Pn) = l + m. (2)

Theorem 2. For any n�3, we have B ′(Pn�Pn) = 2n − 1.

Theorems 1 and 2 imply (1) for any positive m, n except for the pairs (1, 1), (1, 2), and (2, 2). The first two cases do
not make much sense (namely, Pm�Pn has at most one edge) while the last case is an exception to (1): B ′(P2�P2) = 2.

We believe that the restriction n� l + 2 in Theorem 1 can be weakened to n� l + 1 by appropriately modifying our
proof of Theorem 2. However, the argument becomes far messier and its length seems to increase considerably. So, in
order to keep this paper short and readable, we do the case F = Pn only.

Tori, that is, Cartesian products of two cycles, were studied by Li et al. [18] who computed B(Cm�Cn) for all m, n.
Balogh et al. [1] considered the edge bandwidth of the torus Cn�Cn and established the following bounds:

4n − 2
√

2n − 1�B ′(Cn�Cn)�4n, n�3. (3)

We have been able to reduce the gap in (3):

Theorem 3. For any m�n�3, we have

4n − 5�B ′(Cm�Cn)�4n. (4)

Our proof techniques for Theorems 1–3 are built upon those from [1].
Independently of us, Akhtar, Jiang, Miller, and Pritikin report to have obtained new bounds on the edge-bandwidth

of various graph products, in particular the following:

B ′(Pn�Pn)�2n − 2 and B ′(Cn�Cn)�4n − 5,

as well as the asymptotic result for B ′(P �d
n ), for any fixed d �3.

Our paper is organized as follows. In Section 2 we provide some further notation and auxiliary results that we will
need. The (easy) upper bounds of Theorems 1 and 2 are proved in Lemma 4. Sections 3 and 4 are dedicated to proving
the corresponding lower bounds. Theorem 3 is proved in Section 5. Some open problems are mentioned in Section 6.

2. Notation and basics

Let us set up the notation that we will use for the Cartesian product G = F�H of any two graphs F and H of orders
m and n, respectively. We will usually assume that V (F) = [m] and V (H) = [n]. Thus, G has the vertex set

V (G) = {(i, j) : 1� i�m, 1�j �n}
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and edges

{ri,D : 1� i�m, D ∈ E(H)} ∪ {cD,j : D ∈ E(F), 1�j �n}
with ri,xy incident to (i, x) and (i, y) and cxy,j incident to (x, j) and (y, j). (We will abbreviate {x, y} to xy sometimes.)
The edges of the form ri,D are called horizontal and the edges cD,j are vertical. For i = 1, . . . , m, the ith row is

Ri = {ri,D : D ∈ E(H)},
and, for j = 1, . . . , n, the jth column is

Cj = {cD,j : D ∈ E(F)}.
(Thus, we use matrix-type coordinates.) An edge D ∈ E(F) gives us the quasi-row

R′
D = {cD,j : 1�j �n},

and an edge D ∈ E(H) gives us the quasi-column

C′
D = {ri,D : 1� i�m}.

A line is a row or a column. A quasi-line is a quasi-row or a quasi-column.
If one of the graphs is a path or a cycle, then we assume that it traverses its vertex set in the natural order. For

example, the cycle Cn visits its vertices in this order: 1, 2, . . . , n − 1, n, 1. If H = Pn is a path, then we will denote
ri,j = ri,{j,j+1} and C′

j = C′{j,j+1} for i ∈ [m] and j ∈ [n − 1]. If H = Cn is a cycle, then we additionally let
ri,n = ri,{n,1} and C′

n = C′{n,1}. Likewise we define ci,j and R′
i if F is a cycle or a path. Since we use different letters R

and C, corresponding to the rows and columns, this will not cause any clashes in notation.
For example, for G = P3�P3 we see the following picture:

C1 C′
1 C2 C′

2 C3

R1 (1, 1) r1,1 (1, 2) r1,2 (1, 3)

R′
1 c1,1 c1,2 c1,3

R2 (2, 1) r2,1 (2, 2) r2,2 (2, 3)

R′
2 c2,1 c2,2 c2,3

R3 (3, 1) r3,1 (3, 2) r3,2 (3, 3)

Having introduced the notation we are ready to prove the upper bound in Theorems 1 and 2.

Lemma 4. If F is a graph of order m and size l, then

B ′(F�Pn)� l + m.

Proof. Informally speaking, we label columns and quasi-columns from left to right. Here is a formal description. Order
the edge set of F arbitrarily: E(F) = {D1, . . . , Dl}. A label (j − 1)(l + m) + i ∈ [nl + (n − 1)m] with j ∈ [n] is
assigned to cDi,j if i ∈ [l] and to ri−l,j if l < i� l + m. It is easy to see that for n�3, the largest difference between
adjacent labels is m + l; it is achieved for pairs of adjacent horizontal edges. �

The support of a set S ⊂ E(G) is V (S) = ⋃
D∈SD. (Thus, for example, for F�Pn we have V (Ri) = {(i, j) : j ∈

[n]}.) Two subsets of E(G) touch if their supports intersect.
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The complement of a given set S of edges of G is S = E(G) \ S. For an edge D ∈ S, the distance of D from S is the
order of the shortest path in G joining a vertex of D to a vertex of V (S). (For example, if D ∩ V (S) �= ∅, then their
distance is 1.) The t th neighborhood �t (S) of S consists of those edges in S that are at distance at most t from S. Note
that �t (S) ∩ S = ∅. For t = 1, we simply say the neighborhood and write �(S).

The following easy observation is a very useful tool for proving lower bounds on edge-bandwidth; see Harper [14]
for the vertex-bandwidth version.

Lemma 5. For any edge labeling � of G, any 1�j < e(G), and any t �1, we have

B ′(�)� max(|�t (S)|, |�t (S)|)
t

where S = �−1([j ]). (5)

Proof. The edge D1 in �t (S) with the largest label, which is at least j + |�t (S)|, can be connected by a path P with at
most t vertices to some edge D2 in S, which has label at most j. Consider now the path P ′ obtained from P by adding
D1 at the beginning and D2 at the end. At some vertex v of P, the labels on the two edges of P ′ that are adjacent to v

differ by at least |�t (S)|/t , as required. The bound given by �t (S) is proved similarly. �

3. Proof of the lower bound in Theorem 1

Our argument has to consider two very similar cases where rows and columns play different roles. To make the proof
shorter, we will deal with them in one go. Namely, let {F, Pn} = {F1, F2} where we do not specify which is which.
For i = 1, 2, let vi = v(Fi) and ei = e(Fi). (Thus, for example, {v1, v2} = {m, n}.)

Take any edge labeling � of G = F1�F2 that achieves the edge-bandwidth. Let s be the smallest number such that
�−1([s + 1]) contains two lines as subsets. Let S = �−1([s]). Note that S contains precisely one line. We can assume
without loss of generality that S contains Rp for some p ∈ [v1].

Let

K = {i ∈ [v1] : V (S) ∩ V (Ri) �= ∅}
consist of all (indexes of) rows that touch S. Let k = |K|.

Suppose first that k = v1. Then the neighborhood �(S) contains at least v2 vertical edges: for each j ∈ [v2], we have
Cj\S �= ∅ while Cj touches Rp ⊂ S. Also, for each i ∈ [v1]\{p}, Ri\S �= ∅ but Ri and S touch because K = [v1].
This shows that �(S) has at least v1 − 1 horizontal edges. By Lemma 5,

B ′(G)� |�(S)|�v1 + v2 − 1 = m + n − 1,

which is even strictly greater than the desired bound.
So assume that k < v1. Let Y = �v1−k(S) and Y ′ = Y\�(S). To estimate |Y |, we break Y into three disjoint sets

Y =
( ⋃

j∈[v2]
(Y ∩ Cj )

)
∪
( ⋃

D∈E(F2)

(Y ′ ∩ C′
D)

)
∪
( ⋃

i∈[v1]
(�(S) ∩ Ri)

)
,

and estimate the cardinality of each of them.
First, for any j ∈ [v2] at least v1 − k vertices of V (Cj ) do not belong to V (S), which implies that |Cj\S|�v1 − k.

As Cj is a connected graph (it is isomorphic to F1), we have

|Y ∩ Cj |�v1 − k. (6)

Consequently,∣∣∣∣∣ ⋃j∈[v2]
(Y ∩ Cj )

∣∣∣∣∣ �(v1 − k)v2.

Our estimate of the second part is given by the following lemma.
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Lemma 6. We have

|Y ′ ∩ C′
D|�v1 − k − 1 (7)

for every D ∈ E(F2).

Proof. Let D ∈ E(F2). Note that if {i, j} ∈ E(F1) is such that ri,D and rj,D are not in S, then the distances from V (S)

of ri,D and rj,D differ by at most one. Since k < v1 and F1 is connected, there is i ∈ V (F1) such that the distance of
ri,D from V (S) is 2. It follows, because of the connectivity of F1, that the set of distances of ri,D from V (S) as i runs
through V (F1) under the condition that ri,D /∈ S ∪ �(S) consists of consecutive integers from 2 up to some integer.
Since C′

D , has at least v1 − k elements that do not touch S, it follows that

|Y ′ ∩ C′
D|�v1 − k − 1. �

Finally, since F2 is connected, we have �(S) ∩ Ri �= ∅ for each i ∈ K\{p} which implies that∣∣∣∣∣ ⋃i∈[v1]
(�(S) ∩ Ri)

∣∣∣∣∣ �k − 1. (8)

Adding all these estimates together, we obtain

|Y |�(v1 − k)v2 + (v1 − k − 1)e2 + k − 1. (9)

Let y denote the right-hand side of (9). If F1 = Pn, then we obtain after routine calculations that

y = (n − k)(m + l − 1) + n − l − 1�(n − k)(m + l − 1) + 1,

which implies the required bound by Lemma 5. (Recall that n� l + 2 by the assumption of Theorem 1.) In the case
F1 = F we obtain y = (m − k)(2n − 2) + m − n. Using the facts that m − k = v1 − k�1 and m� l + 1�n − 1,
we obtain the desired bound:

y�(m − k)(n + m − 3) + 1�(m − k)(l + m − 1) + 1.

This finishes the proof of Theorem 1 by Lemma 5.

4. Proof of the lower bound in Theorem 2

Let G = Pn�Pn. Let us apply the proof of the lower bound of Theorem 1 to G using the same notation. (Thus,
v1 = v2 = n, e1 = e2 = n − 1, etc.) Observe that in Section 3 we use the restriction n� l + 2 only after (9). Hence,
the inequality (9) applies also to G, giving |Y |�(n− k)(2n− 2). If this inequality is strict, then we immediately obtain
the claimed lower bound by Lemma 5. So, let us suppose on the contrary that Theorem 2 is not true. It follows that

B ′(Pn�Pn) = 2n − 2, (10)

and that (9) and the inequalities which led to it are all equalities. Also we have k < n. The overall plan is to get as
much structural information about S as possible so that we can derive the final contradiction.

Lemma 7. For every line L we have |�(S) ∩ L|�1.

Proof. If L is a row, then the claim follows from the fact that we have an equality in (8). So suppose that some column
L = Cj violates the lemma, that is, |�(S) ∩ Cj |�2. As (6) is an equality, we conclude that Cj\S has at most (and
hence precisely) n − k edges. It follows that k�n − 2 and that Cj\S ⊂ �n−k−1(S). Consequently, C′

D\S ⊂ �n−k(S)

for any edge D of Pn containing j. This makes (7) strict, a contradiction. �

Let us call a line L compressed if V (S) ∩ V (L) is either empty or spans a connected subgraph (that is, a path) that
contains at least one endpoint of L. The following claim is an obvious corollary of Lemma 7.
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Lemma 8. Every line is compressed.

We know that V (Rp) intersects every set V (S) ∩ V (Ci), i ∈ [n]. As k < n, there is a row disjoint from every
such set. As each column is compressed by Lemma 8, we conclude that the intersections of V (S) with the columns, if
projected onto the first coordinate, form a nested family. Furthermore, since each row is compressed, we can choose
one of the two canonical ways to label the vertex set of each factor Pn by [n], so that for any i1, i2, j1, j2 ∈ [n] we have

i1 � i2, j1 �j2, (i2, j2) ∈ V (S) ⇒ (i1, j1) ∈ V (S). (11)

Let us assume that this monotonicity property (11) holds. In particular, since k < n, we have n /∈ K .
We say that a line L is full if V (L) ⊂ V (S). As n /∈ K , no column is full but we may have a few full rows. A line L

is filled (resp. almost filled) if no edge (resp. exactly one edge) of L\S has both endpoints in V (S). Intuitively, a filled
line has as many edges in S as possible given the set V (S).

Lemma 9. Every line that is not full is filled. All full rows are filled or almost filled.

Proof. Suppose that a line L is not filled, that is, there is an edge {x, y} ∈ S withx, y ∈ V (L)∩V (S). IfV (L)\V (S) �= ∅,
the set �(S) ∩ L contains the edge {x, y} and at least one more edge. This contradicts Lemma 7. Thus the line L is full,
proving the first part.

For any full row L we have �(S) ∩ L = L\S, implying that the latter set has at most one element, again
by Lemma 7. �

Recall the notation that applies to G = Pn�Pn:

ri,j = ri,{j,j+1}, ci,j = c{i,i+1},j , R′
i = R′{i,i+1}, C′

j = C′{j,j+1}.

The following claims are proved by analyzing

Z = �(S),

the first neighborhood of the complement of S, so it is convenient to put them into a single lemma.

Lemma 10. We have p = 1. There is at most one almost filled row; moreover, if such a row exists, then it is R2.

Proof. Assume that there is at least one almost filled row. (Otherwise we are done: Rp is the only full row and, by
(11), p = 1.)

By Lemma 9 every almost filled row is full. Let f �p be the largest index such that Rf is full. (It is not excluded
so far that f = p.) We have f �2 and, by (11), all rows Ri with i ∈ [f ] are full.

By Lemma 5 and the assumption (10), we have |Z|�2n − 2. Observe that for every j ∈ [n], we have cn−1,j ∈ S

(because n /∈ K) and c1,j ∈ S (because R1 and R2 are full while the column Cj is filled by Lemma 9). Hence,
Z ∩ Cj �= ∅ and, in total, Z contains at least n vertical edges.

Take any edge {x, y} ∈ E(Pn) such that rf,xy ∈ S. Choose the largest i�f such that ri,xy ∈ S. As n /∈ K , we have
i < n. Since Ri+1 is not full, it is filled by Lemma 9. The edge ri+1,xy is not in S, so at least one of its endpoints is not
in V (S); let it be (i + 1, x). This means that ci,x ∈ S and ri,xy ∈ Z. By Lemma 9 we have at least n − 2 choices for
xy, so Z has at least n − 2 horizontal edges in rows Rf , . . . , Rn−1.

This already gives us that |Z|�2n − 2. Any row Ri with i ∈ [f ]\{p} has precisely one missing edge by Lemma 9.
So, in order to prevent extra horizontal edges in Z, we have to assume that f = 2 and p = 1, as required. �

For i = 1, 2, 3, let Di = �−1(s + i), Si = �−1([s + i]), Yi = �(Si), and Zi = �(Si). Let

� =
{

1 if (2, n) ∈ V (S),

0 otherwise.

Thus, � = 0 if and only if R1 is the only full row.

Lemma 11. The edge D1 is vertical.
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(a) (b)

Fig. 1. The structure of S1 given by Lemma 13.

Proof. Suppose on the contrary that D1 is horizontal. Let it lie in the ith row. By the definition of S, we have Ri ⊂ S1.
The argument of Lemma 10 shows that Z1 has at least n − 1 + � vertical edges (at least one edge per each column Ci

except Cn if � = 0).
Observe that there are no almost filled rows among Ri+1, . . . , Rn. (Indeed, we have i�2 so the existence of such

a row contradicts Lemma 10.) Now, the argument of Lemma 10 shows that Z1 contains at least one edge from each
quasi-column. Furthermore, if � = 0, then the edges r1,n−1, ri,n−1 ∈ S1, coming from the same quasi-column C′

n−1,
are both in Z. (Indeed, (2, n) /∈ V (S); so (i, n) /∈ V (S) by (11); as D1 is horizontal, we have c1,n, ci,n ∈ S1.) Thus, we
have exhibited at least n − � horizontal edges in Z1. This gives us the desired contradiction |Z1|�2n − 1. �

Lemma 12. The edge D1 belongs to C1; thus D1 = cn−1,1.

Proof. If D1 = cn−1,n, then (11) and Lemmas 9 and 10 imply that n = 3 and, furthermore, S = {r1,1, r1,2, D, c1,1,

c1,2, c1,3}, where D is either r2,1 or r2,2. If D = r2,1, then |Z1| = 5, a contradiction. If D = r2,2, then rn,n−1 is only
choice for D2 = �−1(s + 2) that avoids the contradiction |Z2| = 5. But then we obtain a contradiction in the next step:
|Z3| = 5 for any D3.

So assume that D1 /∈ Cn. The set Y1 = �(S1) contains at least n − 1 vertical edges and at least one edge from each
of R2, . . . , Rn. If D1 /∈ C1, then Y1 has at least two edges from Rn, giving the desired contradiction |Y1|�2n − 1. �

Now we are able to show that S1 must have a very restrictive structure. (The reader may refer to Fig. 1 for an
illustration.) Let �q consist of all edges of G spanned by {(i, j) ∈ V (G) : i + j �q}.

Lemma 13. If � = 0, then S1 = R1 ∪ C1 ∪ �q for some 3�q �n + 1. If � = 1, then S1 = R1 ∪ C1 ∪ �n+1 ∪ {c1,n}.

Proof. Suppose first that � = 0. All columns and rows are filled with respect to S1. The argument of Lemma 10 shows
that Z1 contains at least one edge from each quasi-line. Since this already gives at least 2n− 2 edges, no quasi-line can
have two common edges with Z1. It follows that for any i�2 with S1 ∩ Ri �= ∅ we have |S1 ∩ Ri+1|� |S1 ∩ Ri | − 1:
otherwise |R′

i−1 ∩Z1|�2. The analogous claim holds for the sizes of S1 ∩Cj . A moment’s thought reveals that S1 has
the required structure.

Let � = 1. Here, R2 is the unique almost filled row. Let r2,f be the unique edge of R2\S1. Then Z1 has a non-empty
intersection with each of

C′
1, . . . , C

′
n−1 (except possibly C′

f ) and R′
2, . . . , R

′
n−1,

while |Z1 ∩R′
1|�2. This already gives us that |Z1|�2n−2. If follows that f = n−1 for otherwise |Z1 ∩R′

1|�3. Also,
we must have S1 ∩ Cn−1 = c1,n−1 for otherwise we would have |Z1 ∩ C′

n−2|�2, a contradiction. Working inductively
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on j = n − 2, n − 3, . . . , 1 one argues that

S1 ∩ Cj = {ci,j : i = 1, . . . , n − j},
which implies the claim. �

Given so much information about S1, we can directly analyze the next few values of �.
Suppose first that � = 1. Routine considerations show that we have D2 = rn,1 for otherwise Z2 = Z1 ∪ {D2} and

we obtain the contradiction |Z2|�2n − 1. But any edge in Z2 touches at least two edges of S2. So, as it is easy to see,
we have Z3 = Z2 ∪ {D3}, a contradiction.

Suppose that � = 0. If q = n + 1, then to prevent Z2 = Z3 ∪ {D2} we should let D2 equal c1,n or rn,1. But either
of these choices gives us a situation isomorphic to the one for � = 1, which leads to a contradiction anyway. Finally,
if q �n, then we get a contradiction already for S2. Indeed, if D2 is c1,q−1 or rq−1,1, then |Y2| = 2n − 1; otherwise
|Z2| = 2n − 1.

This completes the proof of Theorem 2.

5. Proof of Theorem 3

Since the arguments here are very similar to those in the proof of Theorem 1, we will be rather brief.
The upper bound on B ′(Cm�Cn), for m�n, follows by labeling rows and quasi-rows one by one, moving in both

directions along the cycle Cm. Namely, the order of rows and quasi-rows is the following:

R1, R
′
1, R

′
m, R2, Rm, R′

2, R
′
m−1, R3, Rm−1, . . . ,

while each individual (quasi-)row is labeled in the same fixed cyclic order on Cn. It is easy to see that the bandwidth
of this labeling is 4n.

On the other hand, let m, n�3 be arbitrary. (We do not specify their relative order.) Take an edge-labeling � of
Cm�Cn that achieves the edge-bandwidth. Let s be the smallest integer such that S = �−1([s]) contains a whole line
minus one edge. Assume without loss of generality that this is a row Rp, that is, |Rp\S| = 1. Let K consist of those

i ∈ [m] such that Ri and S touch, and let k = |K|. Let l = �(m − k)/2� and Y = �l (S).
If k = m, then �(S) contains at least two edges from each column and at least two edges from every row Ri except

the row Rp, which contributes only one edge. Here B ′(�)�2m + 2n − 1, giving the required.
So suppose that k < m, that is, l�1. For each i ∈ [n] we have |Ci\S|�m − k + 1�2l. For any proper edge-subset

of a cycle, its first neighborhood has at least 2 elements or catches all remaining edges. Hence, |Y ∩ Ci |�2l. As each
C′

j has at least m − k > 2l − 2 elements that do not touch S, we conclude that

|Y ∩ C′
j |�2l − 2 + �j ,

where �j = |�(S) ∩ C′
j ∩ (

⋃
i∈KRi)|. We have

∑n
j=1�j �2k − 1. Indeed, the definition of S implies that for each row

Ri with i ∈ K\{p} we have |Ri\S|�2 and thus |�(S) ∩ Ri |�2; also |�(S) ∩ Rp| = 1.
We obtain

|Y |�2ln + (2l − 2)n + 2k − 1�2ln + (2l − 2)n + 2(m − 2l) − 1 =: y. (12)

If m�n, then y = l(4n−6)+2m−2n+2l −1� l(4n−6)+1, which implies the required lower bound by Lemma 5.
If m < n, then we obtain the desired bound on |Y | as follows:

y = l(4n − 6) + 2m − 2n + 2l − 1� l(4m − 6) + 4(n − m) + 2m − 2n + 2l − 1� l(4m − 6) + 1.

Theorem 3 is proved.

Remark. From (12) one can also deduce that

B ′(Cm�Cn) = 4 min(m, n) if max(m, n)�4 min(m, n) + 4. (13)
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Indeed, if m�n, then we obtain (using l = �(m − k)/2��m/2) that

y = l(4n − 1) + 2m − 2n − 3l − 1� l(4n − 1) + 2m − 2n − 3
m

2
− 1� l(4n − 1) + 1.

If m < n, then

y = l(4n − 1) + 2m − 2n − 3l − 1� l(4m − 1) + 2n − 2m − 3
m

2
− 1� l(4m − 1) + 1.

Now, (13) follows from Lemma 5. Also, small improvements on (4) could be obtained for some other ranges of (m, n)

but we do not think that this direction is worth pursuing.

6. Open problems

It would be of interest to compute the exact value of the edge-bandwidth for three-dimensional grids. Our Theorem 1,
when applied to F = Pl�Pm, gives

B ′(Pl�Pm�Pn) = 3lm − m − l if n�2lm − l − m + 2.

However, the general case is still unsolved. Another open problem is to close the gap in Theorem 3.
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