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Abstract. Every labeling of the vertices of a graph with distinct natural numbers induces a

natural labeling of its edges: the label of an edge (x, y) is the absolute value of the difference

of the labels of x and y. By analogy with graceful labelings, we say that a labeling of the

vertices of a graph of order n is minimally k-equitable if the vertices are labelled with

1, 2, . . . , n and in the induced labeling of its edges every label either occurs exactly k times

or does not occur at all. For m ≥ 3, let C ′m (denoted also in the literature by Cm ◦ K1

and called a corona graph) be a graph with 2m vertices such that there is a partition of

them into sets U and V of cardinality m, with the property that U spans a cycle, V is

independent and the edges joining U to V form a matching. Let P be the set of all pairs

(m, k) of positive integers such that k is a proper divisor of 2m (i.e., a divisor different from

2m and 1) and k is odd if m is odd. We show that C ′m is minimally k-equitable if and only

if (m, k) ∈ P.

1. Introduction

A labeling of a graph G is an assignment of distinct natural numbers to the vertices of

G. Every labeling induces a natural labeling of the edges: the label of an edge (x, y) is the

absolute value of the difference of the labels of x and y. Bloom [4] defined a labeling of

a graph to be k-equitable if in the induced labeling of its edges, every label occurs exactly

k times, if at all. Furthermore, a k-equitable labeling of a graph of order n is said to be

minimal if the vertices are labelled with 1, 2, . . . , n. A graph is minimally k-equitable if it

has a minimal k-equitable labeling.

The notion of minimally k-equitable labelings is a generalization of special labelings of

trees called graceful. A labeling of a tree is graceful if and only if it is minimally 1-equitable.

(Note that the induced labels of the edges must be then 1, 2, . . . , n− 1.) Graceful labelings

were defined by Rosa [6] in connection with a famous and very difficult conjecture of Ringel

and Kotzig (see Ringel [5]) concerning decompositions of complete graphs with odd number
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of vertices into subgraphs isomorphic to trees. The open conjecture that every tree has a

graceful labeling implies the conjecture of Ringel and Kotzig.

The notion of minimal k-equitability was first applied to cycles. Let Cn be the cycle

on n vertices. Given natural numbers n and k, n ≥ 3, it is easy to see that if the cycle

Cn is minimally k-equitable, then k is a proper divisor of n (that is, k divides n, k 6= n,

and k 6= 1). Answering a question posed by Bloom [4], Wojciechowski [7] proved that this

necessary condition is also sufficient.

Barrientos, Dejter and Hevia [3] proved a number of results concerning k-equitability of

forests.

Another class of graphs to which the concept of minimal k-equitability was recently applied

is the class of graphs whose vertices could be partitioned into two sets U and V such that U

induces a cycle, V induces no edges, and the edges between U and V form a matching (in

particular, U and V are of the same cardinality). We will call such graphs hairy cycles and

denote them by C ′
m (m is the cardinality of U).

There is a general construction that, given graphs G and H, produces the corona graph

G ◦H. The hairy cycle C ′
m is obtained by applying that construction to the cycle Cm and

the graph K1 consisting of a single vertex. Therefore C ′
m is the corona graph Cm ◦K1.

Again it is easy to see that given natural numbers m and k, m ≥ 3, if the hairy cycle C ′
m

is minimally k-equitable, then k is a proper divisor of 2m which is the number of vertices of

C ′
m. Going a little further, we get the following result.

Proposition 1.1. Let m ≥ 3 and k ≥ 1 be integers. If m is odd and the hairy cycle C ′
m is

minimally k-equitable, then k is also odd.

Proof. Assume that m ≥ 3 is arbitrary and the hairy cycle C ′
m is minimally k-equitable. Let

U and V be the sets that form a partition of the vertex set of C ′
m such that U spans a cycle,

V spans no edges, and the edges between U and V form a matching. Let E be the set of

edges of the cycle spanned by U and F be the set of the edges of the matching.. Let

g : U ∪ V → {1, 2, . . . , 2m}
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be any labeling of C ′
m, and h : E ∪ F → N be the induced labeling of the edges of C ′

m. It is

clear that
∑

e∈E h(e) is even.

We claim that

(1)
∑
e∈F

h(e) ≡ m mod 2.

If h(e) = 1 for every e ∈ F , then
∑

e∈F h(e) = m so (1) holds. Otherwise, there are vertices

u ∈ U and v ∈ V such that |g(u)− g(v)| ≥ 2. Let w, y be vertices of C ′
m such that g(w) is

between g(u) and g(v) in the standard ordering of integers, and y is joined to w by an edge of

F . Let g′ : U ∪V → N be the labeling of C ′
mobtained from g by exchanging min {g(w), g(y)}

with max {g(u), g(v)}. For example, if

g(u) < g(w) < g(v) < g(y),

then we exchange the labels of w and v.

Let h′ : E ∪ F → N be the labeling of the edges of C ′
m induced by g′. Then

∑
e∈F

h′(e) <
∑
e∈F

h(e)

and
∑
e∈F

h′(e) ≡
∑
e∈F

h(e) mod 2.

Therefore, induction on
∑

e∈F h(e) can be used to prove that (1) holds in general.

If m is odd and g is a minimal k-equitable labeling, then
∑

e∈E∪F h(e) is odd and divisible

by k implying that k is odd.

Let P be the set of all pairs (m, k) of positive integers such that m ≥ 3, k is a proper

divisor of 2m and k is odd if m is odd. Then for the graph C ′
m to be minimally k-equitable

it is necessary that (m, k) ∈ P . Acharya and Bhat-Nayak [1] [2] proved that the condition

(m, k) ∈ P is sufficient for C ′
m to be minimally k-equitable when k ∈ {3, 4}. We will prove

that this condition is sufficient in general.

Theorem 1.2. Let m ≥ 3 and k ≥ 2 be integers. If (m, k) ∈ P, then the graph C ′
m is

minimally k-equitable.
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We shall call a graph G an integer graph if its vertex set is a finite subset of N. If

e = (u, v) is an edge of G, then we will say that e has length |u− v|. Observe that a finite

graph H has a k-equitable labeling if and only if it is isomorphic to an integer graph G with

either 0 or k edges of any length. We will call such G a k-equitable representation of the

graph H. Note also that a finite graph H is minimally k-equitable if it has a k-equitable

representation G whose vertices are consecutive integers. We will call such G a minimal

k-equitable representation of H.

In the following proofs, to show that C ′
m is k-equitable, we will construct an integer graph

Gk
m that will be a minimal k-equitable representation of C ′

m. In the included figures of the

graphs Gk
m the vertices will be placed on the real line, the edges that are part of the cycle

(cycle edges) will be marked by thick lines below the real line and the edges of the matching

(matching edges) above the real line.

The proof of Theorem 1.2 will be split into several lemmas. The proofs of these lemmas will

be given in the remaining sections. Assume that (m, k) ∈ P . We have then two possibilities:

either k divides m or it does not divide m. In section 2 we will present the starting point of

our construction in the case when k divides m, namely, we will show that C ′
m is minimally

k-equitable when m = k or m = 2k. The proof that C ′
`k is minimally k-equitable for ` ≥ 3

will be given in section 4 for even k and in section 5 for odd k. If k does not divide m, then

the definition of P implies that k ≡ 0 mod 4 and m = `k/2 for some odd integer ` ≥ 3. Let

k ≡ 0 mod 4. We will prove in section 3 that the graph C ′
3k/2 is minimally k-equitable. The

proof that C ′
`k/2 is minimally k-equitable for odd ` ≥ 5 will be given in section 4.

2. Minimal k-equitability of C ′
k and C ′

2k

Lemma 2.1. Let k ≥ 3 be an integer. The graph C ′
k is minimally k-equitable.

Proof. Let Gk
k be the integer graph with the vertex set {1, 2, . . . , 2k} and the edge set con-

sisting of all the edges listed below:

• (1, 2), (2, 3), . . . , (k, k + 1)

— the above edges are k edges of length 1, the first of which is a matching edge, and all the

others are cycle edges;
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• (2, k + 1), (3, k + 2), . . . , (k + 1, 2k)

— the above edges are k edges of length k− 1, the first of which is a cycle edge, and all the

others are matching edges.

Figure 1 shows the graph G3
3 and Figure 2 shows the graph Gk

k for arbitrary k ≥ 3.

◦ ◦ ◦ ◦ ◦ ◦
1

2 3 4

5 6

Figure 1. The graph G3
3

. . .

. . .

. . .

. . . . . .
. . .
. . .
. . .

◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦
1

2 3 4 5 k−1 k k+1

k+2 k+3 k+4 2k−2 2k−1 2k

. . .

Figure 2. The graph Gk
k

It is clear that Gk
k is a minimal k-equitable representation of C ′

k implying that C ′
k is

minimally k-equitable.

Lemma 2.2. Let k ≥ 3 be an odd integer. The graph C ′
2k is minimally k-equitable.

Proof. Let Gk
2k be the integer graph with the vertex set {1, 2, . . . , 4k} and the edge set

consisting of all the edges listed below:

• (
1, k+3

2

)
,
(
2, k+5

2

)
, . . . ,

(
k+1
2

, k + 1
)

— the edges listed above are k+1
2

edges of length k+1
2

, all of which are matching edges;
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• (
k + 2, 3k+5

2

)
,
(
k + 3, 3k+7

2

)
, . . . ,

(
3k+1

2
, 2k + 1

)

— the edges listed above are k−1
2

edges of length k+1
2

, the last of which is a cycle edge, and

all the others are matching edges;

• (
k+3
2

, k+5
2

)
,
(

k+7
2

, k+9
2

)
, . . . ,

(
3k+1

2
, 3k+3

2

)

— these are k+1
2

edges of length 1, the last of which is a matching edge, and all the others

are cycle edges;

• (2k + 2, 2k + 3), (2k + 4, 2k + 5), . . . ,(3k − 1, 3k)

— these are k−1
2

edges of length 1, all of which are cycle edges;

• (
k+3
2

, 2k + 1
)
,
(

k+5
2

, 2k + 2
)
, . . . ,

(
3k+1

2
, 3k

)

— these are k edges of length 3k−1
2

, all of which are cycle edges;

• (2k + 1, 3k + 1), (2k + 2, 3k + 2), . . . ,(3k, 4k)

— these are k edges of length k, all of which are matching edges.

Figures 3, 4, and 5 show the graphs G3
6, G5

10, and G7
14 respectively; figures 6 and 7 show

the general graph Gk
2k for arbitrary k ≡ 1 mod 4, and k ≡ 3 mod 4 respectively.

It is clear that Gk
2k is a minimal k-equitable representation of C ′

2k implying that C ′
2k is

minimally k-equitable.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2

3 4 5 6 7 8 9

10 11 12

Figure 3. The graph G3
6
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3

4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20

Figure 4. The graph G5
10

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3 4

5 6 7 8 9

10

11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28

Figure 5. The graph G7
14
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Figure 6. The graph Gk
2k when k ≡ 1 mod 4
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k+1
2
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k k+3

3k−3
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2
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Figure 7. The graph Gk
2k when k ≡ 3 mod 4

Lemma 2.3. Let k ≥ 2 be an even integer. The graph C ′
2k is minimally k-equitable.

Proof. Let G2
4 be the integer graph with the vertex set {1, 2, . . . , 8} and the edge set consisting

of the following edges (see Figure 8):

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦1 2 3 4 5

6 7 8

Figure 8. The graph G2
4

• (1, 2), (4, 5) — 2 edges of length 1 — both of them cycle edges;

• (1, 3), (2, 4) — 2 edges of length 2 — the first a matching edge, the second a cycle

edge;

• (4, 7), (5, 8) — 2 edges of length 3 — both of which being matching edges;

• (1, 5), (2, 6) — 2 edges of length 4 — the first a cycle edge, the second a matching

edge.

For k ≥ 4 let Gk
2k be the integer graph with the vertex set {1, 2, . . . , 4k} and the edge set

consisting of all the edges listed below:

• (
1, k+2

2

)
,
(
2, k+4

2

)
, . . . ,

(
k
2
, k

)
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— these are k
2

edges of length k
2
, all of which are matching edges;

• (
k + 1, 3k+2

2

)
,
(
k + 2, 3k+4

2

)
, . . . ,

(
3k
2
, 2k

)

— these are k
2

edges of length k
2
, the last of which is a cycle edge, and all the others are

matching edges;

• (
k+2
2

, k+4
2

)
,
(

k+6
2

, k+8
2

)
, . . . ,

(
3k−2

2
, 3k

2

)

— these are k
2

edges of length 1, all of which are cycle edges;

• (2k, 2k + 1), (2k + 2, 2k + 3), . . . ,(3k − 2, 3k − 1)

— these are k
2

edges of length 1, all of which are cycle edges;

• (
k+2
2

, 2k + 1
)
,
(

k+4
2

, 2k + 2
)
, . . . ,

(
3k
2
, 3k

)

— these are k edges of length 3k
2
, the last of which is a matching edge, and all the others are

cycle edges;

• (2k, 3k + 1), (2k + 1, 3k + 2), . . . ,(3k − 1, 4k)

— these are k edges of length k + 1, all of which are matching edges.

Figures 9 and 10 show the graphs G4
8 and G6

12 respectively; Figures 11 and 12 show the

general graph Gk
2k for arbitrary k ≡ 0 mod 4, and k ≡ 2 mod 4 respectively.

It is clear that, for every even k ≥ 2, the graph Gk
2k is a minimal k-equitable representation

of C ′
2k, implying that C ′

2k is minimally k-equitable.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2

3 4 5 6 7 8 9 10 11

12 13 14 15 16

Figure 9. The graph G4
8
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3

4 5 6 7 8 9 10 11 12 13 14 15 16 17

18 19 20 21 22 23 24

Figure 10. The graph G6
12
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Figure 11. The graph Gk
2k when k ≡ 0 mod 4
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2
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k−2 k k+3
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2

3k
2
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2

2k−2 2k 2k+3

3k−2
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Figure 12. The graph Gk
2k when k ≡ 2 mod 4

3. Minimal k-equitability of C ′
3k/2 when k ≡ 0 mod 4

Lemma 3.1. Let k ≥ 4 be an integer such that k ≡ 0 mod 4. The graph C ′
3k/2 is minimally

k-equitable.

Proof. Let Gk
3k/2 be the integer graph with the vertex set {1, 2, . . . , 3k} and the edge set

consisting of all the edges listed below:

• (
1, k+2

2

)
,
(
2, k+4

2

)
, . . . ,

(
k−2
2

, k − 1
)

— these are k−2
2

edges of length k
2
, all of which are matching edges;

• (
3k+4

2
, 2k + 2

)
,
(

3k+6
2

, 2k + 3
)
, . . . ,

(
2k − 1, 5k−2

2

)

— these are k−4
2

edges of length k
2
, all of which are matching edges, (they appear only when

k ≥ 8);

• (
k + 1, 3k+2

2

)
,
(

3k
2
, 2k

)
,
(
2k + 1, 5k+2

2

)

— these are 3 edges of length k
2
, the first and the third of which are matching edges, and

the second is a cycle edge;

• (
k+2
2

, k+4
2

)
,
(

k+6
2

, k+8
2

)
, . . . ,(k − 1, k)

— these are k
4

edges of length 1, all of which are cycle edges;

• (k, k + 1), (k + 1, k + 2), . . . ,
(

3k−2
2

, 3k
2

)
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— these are k
2

edges of length 1, all of which are cycle edges;

• (2k, 2k + 1), (2k + 2, 2k + 3), . . . ,
(

5k−4
2

, 5k−2
2

)

— these are k
4

edges of length 1, all of which are cycle edges;

• (
k
2
, 2k

)
,
(

k+2
2

, 2k + 1
)
, . . . ,

(
k, 5k

2

)

— these are k+2
2

edges of length 3k
2
, the first and the last of which are matching edges, and

all the others are cycle edges;

• (
k + 2, 5k+4

2

)
,
(
k + 3, 5k+6

2

)
, . . . ,

(
3k
2
, 3k

)

— these are k−2
2

edges of length 3k
2
, all of which are matching edges.

Figures 13, 14 and 15 show the graphs G4
6, G8

12, and G12
18 respectively; figure 16 shows the

general graph Gk
3k/2 for arbitrary k ≡ 0 mod 4.

It is clear that, for every k ≡ 0 mod 4, the graph Gk
3k/2 is a minimal k-equitable represen-

tation of C ′
3k/2, implying that C ′

3k/2 is minimally k-equitable.

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2

3 4 5 6 7 8 9

10 11 12

Figure 13. The graph G4
6
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3 4

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24

Figure 14. The graph G8
12

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
1 2 3 4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

30 31 32 33 34 35 36

Figure 15. The graph G12
18
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Figure 16. The graph Gk
3k/2 when k ≡ 0 mod 4

4. Minimal k-equitability of C ′
m when k is even

Assume that k ≥ 2 is even. We are going to show that C ′
m is minimally k-equitable for

every m such that (m, k) ∈ P .

Given a minimal k-equitable representation G of C ′
m, we say that a set S of edges of G is

a k-socket if the following conditions are satisfied:

(1) S consists of k
2

cycle edges of length 1 whose endpoints form a set of consecutive k

integers s, s + 1, . . . , s + k − 1;

(2) if a is the smallest integer in the vertex set of G and b is the largest integer in the

vertex set of G, then either b− s + 1 or s + k − a is not the length of any edge of G.

Note that if the set of endpoints of the edges of S consists of either the largest k vertices of

G or the smallest k vertices of G, then the second condition above is satisfied.
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A minimal k-equitable representation of C ′
m with a k-socket will be called a k-proper

representation of C ′
m.

Lemma 4.1. The graph Gk
2k is a k-proper representation of C ′

2k for every even k ≥ 2.

Proof. Let k ≥ 2 be an even integer. It follows from the proof of Lemma 2.3 that Gk
2k is a

minimally k-equitable representation of C ′
2k. If k = 2, then let S = {(4, 5)}. (See Figure 8.)

With b = 8 and s = 4 the integer b− s + 1 = 5 is not a length of any edge of G2
4. Thus S is

a 2-socket in G2
4 implying that G2

4 is a 2-proper representation of C ′
4.

If k ≥ 4, then let (see Figures 11 and 12)

S =

{(
k + 2

2
,
k + 4

2

)
,

(
k + 6

2
,
k + 8

2

)
, . . . ,

(
3k − 2

2
,
3k

2

)}
.

With b = 4k and s = k+2
2

, the integer b − s + 1 = 7k
2

is not a length of any edge of Gk
2k,

implying that Gk
2k is a k-proper representation of C ′

2k.

Lemma 4.2. The graph Gk
3k/2 is a k-proper representation of C ′

3k/2 for every integer k ≥ 4

such that k ≡ 0 mod 4.

Proof. Let k ≥ 4 be an integer with k ≡ 0 mod 4. It follows from the proof of Lemma 3.1

that Gk
3k/2 is a minimally k-equitable representation of C ′

3k/2. Let (see Figure 16)

S =

{(
k + 2

2
,
k + 4

2

)
,

(
k + 6

2
,
k + 8

2

)
, . . . ,

(
3k − 6

2
,
3k − 4

2

)
,

(
3k − 2

2
,
3k

2

)}
.

With b = 3k and s = k+2
2

, the integer b − s + 1 = 5k
2

is not a length of any edge of Gk
3k/2,

implying that Gk
3k/2 is a k-proper representation of C ′

3k/2.

Lemma 4.3. If k is even and there is a k-proper representation of C ′
m, then there is a

k-proper representation of C ′
m+k.

Proof. Let G be a k-proper representation of C ′
m with a k-socket S and let s be the smallest

integer in the set of endpoints of the edges in S. Let a be the smallest integer which is a

vertex of G and let b be the largest integer which is a vertex of G. Let H be the graph

obtained from G by performing the following operations:

• remove the edges of S;
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• add 2 sets of k vertices each at both ends of the graph G, namely add the vertices

a− k, a− k + 1, . . . , a− 1 and b + 1, b + 2, . . . , b + k;

• add k edges of length b− a + k + 1 matching the new vertices, namely add the edges

(a− k, b + 1), (a− k + 1, b + 2), . . . , (a− 1, b + k);

Case 1: if G has no edges of length b− s + 1, then

• add k edges of length b − s + 1 joining the endpoints of the edges in S to the new

vertices whose value is larger than b, namely add the edges (s, b + 1), (s + 1, b + 2),

. . . , (s + k − 1, b + k);

• add k
2

edges of length 1 that form a matching of the set of all the new vertices

whose value is larger than b, namely add the edges (b + 1, b + 2), (b + 3, b + 4), . . . ,

(b + k − 1, b + k).

Figure 17 shows the new edges of the graph H in case 1.

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

◦ ◦ · · · ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦
º

¹

·

¸

'

&

$

%
· · · ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ · · · ◦ ◦

a−k

a−k+1

a−2 a a+1 s−2

s−1 s s+1 s+k−2 s+k

s+k+1 b−1 b b+2 b+k

. . . . . .

. . . . . .

. . . . . . . . .
. . . . . .
. . . . . .

Figure 17. The new edges of the graph H in case 1

Case 2: if G has some edge of length b− s + 1, (so that it has no edges of length s + k− a),

then

• add k edges of length s+k−a joining the endpoints of the edges in S to the new ver-

tices whose value is smaller than a, namely add the edges (a− k, s), (a− k + 1, s + 1),

. . . , (a− 1, s + k − 1);
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• add k
2

edges of length 1 that form a matching of the set of the new vertices whose value

is smaller than a, namely add the edges (a− k, a− k + 1), (a− k + 2, a− k + 3), . . . ,

(a− 2, a− 1).

Figure 18 shows the new edges of the graph H in case 2. Figures 19 and 20 show the results

of applying the above construction to the graphs G2
4 and G4

6 respectively.

Since each edge of S in G is replaced by a path of length 3 in H, the cycle of G gives

rise to a cycle of length m + k in H. Moreover, the new k edges of length b − a + k + 1

in H are matching edges implying that H is isomorphic to C ′
m+k. It is clear that H is a

minimally k-equitable representation of C ′
m+k. The set of the new edges of length 1 in H is a

k-socket since the set of endpoints of these edges consists of either the k vertices of H having

the smallest label or the k vertices of H having the largest label. Thus H is a k-proper

representation of C ′
m+k.

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

◦ ◦ · · · ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦
º

¹

·

¸

'

&

$

%
· · · ◦ ◦ ◦ ◦ · · · ◦ ◦ ◦ ◦ · · · ◦ ◦

a−k

a−k+1

a−2 a a+1 s−2

s−1 s s+1 s+k−2 s+k

s+k+1 b−1 b b+1

b+2

b+k

. . . . . .

. . . . . .

. . . . . . . . .
. . . . . .
. . . . . .

Figure 18. The new edges of the graph H in case 2
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◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-1 0

1 2 3 4 5

6 7 8

9 10

Figure 19. A 2-proper representation of C ′
6 obtained from G2

4

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
-3 -2 -1 0 1 2

3 4 5 6 7 8 9

10 11 12

13 14 15 16

Figure 20. A 2-proper representation of C ′
10 obtained from G4

6

Proposition 4.4. Let (m, k) ∈ P with k being even. Then C ′
m is minimally k-equitable.

Proof. Assume that m = `k for some integer `. The minimal k-equitability of C ′
m follows

from Lemma 2.1 when ` = 1, and from Lemma 2.3 when ` = 2. If ` ≥ 3, then the minimal

k-equitability of C ′
m follows by induction on ` using Lemmas 4.1 and 4.3.
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If k is not a divisor of m, then k ≡ 0 mod 4 and m = `k/2 for some odd integer ` ≥ 3. The

minimal k-equitability of C ′
m follows from Lemma 3.1 when ` = 3, and follows by induction

using Lemmas 4.2 and 4.3 when ` ≥ 5.

5. Minimal k-equitability of C ′
m when k is odd

Assume that k ≥ 3 is odd. We are going to show that C ′
m is minimally k-equitable for

every m such that (m, k) ∈ P .

If e = (u, v) is an edge of an integer graph and u < v, then we say that u is the left

endpoint of e and v is the right endpoint of e. Given a minimal k-equitable representation

G of C ′
m, we say that a pair T = (T, C) is a k-thread in G if the following conditions are

satisfied:

(1) C consists of k edges that are cycle edges and have the same length;

(2) T is either the set of all left endpoints or the set of all right endpoints of the edges

in C and it consists of k consecutive integers t, t + 1, . . . , t + k − 1;

(3) if a is the vertex of G with the smallest label, b is the vertex of G with the largest

label, s is the other endpoint of the edge in C that has t as one of its endpoints, AG

is the set of lengths of the edges of G, and RG,T, LG,T, WG are infinite sets of integers

defined as follows:

RG,T = {b− s + 1} ∪ {b + 2ik − t + 1 : i ≥ 0} ∪ {t− a + 2ik : i ≥ 1} ,

LG,T = {s− a + k} ∪ {b + (2i + 1) k − t + 1 : i ≥ 0} ∪ {t− a + (2i + 1) k : i ≥ 0} ,

WG = {b− a + ik + 1 : i ≥ 1} ,

then either LG,T or RG,T is disjoint with AG ∪WG.

The following three figures illustrate the definition of a k-thread in a graph G when t < s;

the pictures require obvious modifications when s < t. Figure 21 shows the edges of the

graph G that belong to the set C. Figure 22 shows the relationship between the sets RG,T,

WG and the vertices of the graph G, where the integers in RG,T and WG are represented by

edges of the corresponding lengths. The set RG,T is represented above the line containing

the vertices of G and the set WG below it. Figure 23 shows analogous relationship between

the sets LG,T, WG and the graph G.
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Figure 21. Edges of the graph G that belong to C
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Figure 22. Edges whose length is in RG,T or WG
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Figure 23. Edges whose length is in LG,T or WG

A minimal k-equitable representation of C ′
m with a k-thread will be called a k-proper

representation of C ′
m.

Lemma 5.1. The graph Gk
2k is a k-proper representation of C ′

2k for every odd k ≥ 3.

Proof. Let k ≥ 3 be an odd integer. It follows from the proof of Lemma 2.2 that Gk
2k is a

minimally k-equitable representation of C ′
2k.

Let (see Figures 6 and 7)

C =

{(
k + 3

2
, 2k + 1

)
,

(
k + 5

2
, 2k + 2

)
, . . . ,

(
3k + 1

2
, 3k

)}
,

and

T =

{
k + 3

2
,
k + 5

2
, . . . ,

3k + 1

2

}
.

With T = (T, C), a = 1, b = 4k, t = k+3
2

and s = 2k + 1, we have

RG,T = {2k} ∪
{

(4i− 1) k − 1

2
: i ≥ 2

}
∪

{
(4i + 1) k + 1

2
: i ≥ 1

}
.
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Since

WG = {ik : i ≥ 5} ,

and

AG =

{
1,

k + 1

2
, k,

3k − 1

2

}
,

it is clear that

RG,T ∩ (AG ∪WG) = ∅.
It follows that T is a k-thread in Gk

2k, implying that Gk
2k is a k-proper representation of

C ′
2k.

Lemma 5.2. If k is odd and there is a k-proper representation of C ′
m, then there is a k-proper

representation of C ′
m+k.

Proof. Let G be a k-proper representation of C ′
m with a k-thread T = (T, C), let t be the

smallest label of T , let s be the other endpoint of the edge in C that has t as one of its

endpoints, and let

S = {s, s + 1, . . . , s + k − 1} .

Let a be the smallest label of the vertices of G and let b be the largest label of the vertices

of G. Let H be the graph obtained from G by performing the following operations:

• remove the edges of C;

• add the vertices a− k, a− k + 1, . . . , a− 1 and b + 1, b + 2, . . . , b + k;

• add k edges of length b− a + k + 1 matching the new vertices, namely add the edges

(a− k, b + 1), (a− k + 1, b + 2), . . . , (a− 1, b + k);

Case 1: if RG,T ∩ (AG ∪WG) = ∅, then

• add k edges of length b−s+1 joining the vertices in S to the new vertices whose label

is larger than b, namely add the edges (s, b + 1), (s + 1, b + 2), . . . , (s + k − 1, b + k);

• add k edges of length b−t+1 joining the vertices in T to the new vertices whose label

is larger than b, namely add the edges (t, b + 1), (t + 1, b + 2), . . . , (t + k − 1, b + k).

Figure 24 shows the new edges of the graph H in case 1.



23

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . .

◦ ◦ · · · ◦ ◦ ◦ · · · ◦ ◦ ◦
º

¹

·

¸
· · · ◦ ◦ ◦

'

&

$

%
· · · ◦ ◦ ◦

º

¹

·

¸
· · · ◦ ◦ ◦ · · · ◦ ◦ ◦ · · · ◦ ◦

a−k

a−k+1

a−2 a−1 a t−1

t t+1

t+k−2

t+k

s−1

s s+1

s+k−2

s+k

b b+2

b+k−1

b+k

. . . . . .

. . . . . .

. . . . . . . . .
. . . . . .
. . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .

Figure 24. The new edges of the graph H in case 1

Case 2: if RG,T ∩ (AG ∪WG) 6= ∅, (so that LG,T ∩ (AG ∪WG) = ∅) then

• add k edges of length s + k − a joining the vertices in S to the new vertices whose

label is smaller than a, namely add the edges (a− k, s), (a− k + 1, s + 1), . . . ,

(a− 1, s + k − 1);

• add k edges of length t + k − a joining the vertices in T to the new vertices whose

label is smaller than a, namely add the edges (a− k, t), (a− k + 1, t + 1), . . . ,

(a− 1, t + k − 1).

Figure 25 shows the new edges of the graph H in case 2. Figure 26 shows the results of

applying the above construction to the graph G3
6.

Since each edge of C in G is replaced by a path of length 2 in H, the cycle of G gives rise to

a cycle of length m + k in H. Moreover, the new k edges of length b − a + k + 1 in H are

matching edges, implying that H is isomorphic to C ′
m+k. Since

b− a + k + 1 > b− a,

there are no edges in G of length b − a + k + 1. Moreover the lengths of the new cycle

edges of H are in LG,T in case 1 and in RG,T in case 2, implying that they are not in AG.
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Figure 25. The new edges of the graph H in case 2
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Figure 26. A 3-proper representation of C ′
9 obtained from G3

6

Therefore, the graph H is a minimally k-equitable representation of C ′
m+k. To prove that H

is a k-proper representation of C ′
m+k it remains to show that there is a k-thread in H.

In case 1, let C ′ be the set of the new edges of H of length b− t + 1 that join the vertices

in T to the new vertices whose label is larger than b. We claim that the pair T′ = (T, C ′) is a
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k-thread in the graph H. Let a′ = a− k, b′ = b + k, and let s′ = b + 1 be the other endpoint

of the edge of C ′ that has t as one of its endpoints. We have then

LH,T′ = {s′ − a′ + k} ∪ {b′ + (2i + 1) k − t + 1 : i ≥ 0} ∪ {t− a′ + (2i + 1) k : i ≥ 0}
= {b− a + 2k + 1} ∪ {b + 2ik − t + 1 : i ≥ 1} ∪ {t− a + 2ik : i ≥ 1}
= RG,T ∪ {b− a + 2k + 1} \ {b− s + 1, b− t + 1} .

Moreover

AH = AG ∪ {b− a + k + 1, b− s + 1, b− t + 1} \ {|t− s|} ,

and

WH = {b′ − a′ + ik + 1 : i ≥ 1}
= {b− a + ik + 1 : i ≥ 3}
= WG \ {b− a + k + 1, b− a + 2k + 1} ,

so

AH ∪WH = (AG ∪WG) ∪ {b− s + 1, b− t + 1} \ {b− a + 2k + 1, |t− s|} .

Since RG,T ∩ (AG ∪WG) = ∅, it follows that

LH,T′ ∩ (AH ∪WH) = ∅,

so the pair T′ = (T, C ′) is a k-thread in the graph H.

In case 2, let C ′ be the set of the new edges of H of length t + k− a that join the vertices

in T to the new vertices whose label is smaller than a. We claim that the pair T′ = (T, C ′)
is a k-thread in the graph H. Let a′ = a − k, b′ = b + k, and let s′ = a − k be the other

endpoint of the edge of C ′ that has t as one of its endpoints. Then

RH,T′ = {b′ − s′ + 1} ∪ {b′ + 2ik − t + 1 : i ≥ 0} ∪ {t− a′ + 2ik : i ≥ 1}
= {b− a + 2k + 1} ∪ {b + (2i + 1) k − t + 1 : i ≥ 0} ∪ {t− a + (2i + 1) k : i ≥ 1}

LG,T ∪ {b− a + 2k + 1} \ {s + k − a, t + k − a} .

Moreover

AH = AG ∪ {b− a + k + 1, s + k − a, t + k − a} \ {|t− s|} ,
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and

WH = WG \ {b− a + k + 1, b− a + 2k + 1}

so

AH ∪WH = (AG ∪WG) ∪ {s + k − a, t + k − a} \ {b− a + 2k + 1, |t− s|} .

Since LG,T ∩ (AG ∪WG) = ∅, it follows that

RH,T′ ∩ (AH ∪WH) = ∅,

so the pair T′ = (T, C ′) is a k-thread in the graph H.

Thus H is a k-proper representation of C ′
m+k.

Proof of Theorem 1.2. Assume the (m, k) ∈ P . If k is even then it follows from

Proposition 4.4 that C ′
m is k-equitable. If k is odd, then it is a divisor of m. The k-

equitability of C ′
m follows from Lemma 2.1 if k = m, and it follows by induction using

Lemmas 5.1 and 5.2 if k is a proper divisor of m.

References

[1] Acharya, M., Bhat-Nayak, V.N., Minimal 3-equitability of C3n ◦K1, presented at National Confer-

ence on Discrete Mathematics and it’s Applications, held at M.S. University, Thirunelveli, India, January

5–7, (2000)

[2] Acharya, M., Bhat-Nayak, V.N., Minimal 4-equitability of C2n ◦K1, Ars Combinatoria 65 (2002),

209–236.

[3] Barrientos, Deiter and Hevia, Equitable labelings of forests, Combinatorics and Graph Theory 1

(1995), 1–26.

[4] Bloom, G., Problem posed at the Graph Theory meeting of the New York Academy of Sciences, No-

vember 1989.

[5] Ringel, G., Problem 25, Theory of Graphs and Its Applications, Proc. Int. Symp. Smolenice (June

1963), Czech. Acad. Sci. Prague, Czech. (1964), 162.

[6] Rosa, A., On certain valuations of the vertices of a graph, Theory of Graphs, Gordon and Breach, New

York, N.Y. (1967), 349–355

[7] Wojciechowski, J., Equitable labelings of cycles, J. Graph Theory 17 (1993), no. 4, 531–547.



27

Department of Mathematics, West Wirginia University, Morgantown, WV 26506-6310,

USA

E-mail address: jerzy@math.wvu.edu


