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Abstract

A graph G is a (d, d + s)-graph if the degree of each vertex of G lies in the interval

[d, d + s]. A (d, d + 1)-graph is said to be semiregular. An (r, r +1)-factorization of a graph

is a decomposition of the graph into edge-disjoint (r, r + 1)-factors.

We discuss here the state of knowledge about (r, r+1)-factorizations of d-regular graphs

and of (d, d + 1)-graphs.

For r, s ≥ 0, let φ (r, s) be the least integer such that, if d ≥ φ (r, s) and G is any simple

[d, d + s]-graph, then G has an (r, r + 1)-factorization. Akiyama and Kano (when r is even)

and Cai (when r is odd) showed that φ (r, s) exists for all r, s. We show that, for s ≥ 2,

φ (r, s) = r (r + s + 1) + 1. Earlier φ (r, 0) was determined by Egawa and Era, and φ (r, 1)

was determined by Hilton.

1 Introduction

We call a graph simple if it has no loops or multiple edges. In this paper, multigraphs are graphs

in which multiple edges may occur, but not loops. If multiple edges and loops may occur we

use the term pseudograph.

An (r, r + 1)-pseudograph is a pseudograph whose degrees are all either r or r + 1; in a

pseudograph, a loop counts two towards the degree of the vertex it is on. An (r, r + 1)-factor

of a pseudograph G is an (r, r + 1)-subpseudograph which spans G. An (r, r + 1)-factorization

of a pseudograph G is a decomposition of G into edge-disjoint (r, r + 1)-factors of G.

Let N be the set of non-negative integers. Given d, s ∈ N and a pseudograph G, we say

that G is a (d, d + s)-graph if the degree of any vertex of G is in the interval [d, d + s]. Let
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φ, ψ : N×N→ N be functions defined as follows. Given r, s ∈ N, let φ(r, s) be the smallest integer

such that d ≥ φ(r, s) implies that any simple (d, d + s)-graph has an (r, r + 1)-factorization.

Similarly, let ψ(r, s) be the smallest integer such that d ≥ ψ(r, s) implies that any (d, d + s)-

multigraph has an (r, r + 1)-factorization.

It is not clear at first sight that φ (r, s) and ψ(r, s) exist for all values of r, s, and indeed

the corresponding function for (d, d + s)-pseudographs does not exist for all values of r and s

(see [6]). But specializations of a result of Akiyama and Kano [1] when r is even and of Cai [3]

when r is odd yield the following result.

Theorem 1 For r, s ∈ N,

ψ (r, s) ≤
{

(3r + 1) (r + s− 1) if r is even,

(3r + 1) (r + s) if r is odd.

It is clear that φ (r, s) ≤ ψ (r, s) always.

Returning to φ (r, s), the value of φ (r, 0) was determined by Era [5] and Egawa [4]. A

different proof of the Era-Egawa result was given in [6] where φ (r, 1) was also determined.

Theorem 2 For r, s ∈ N, s ∈ {0, 1},

φ (r, s) =

{
r (r + s) if r is even,

r (r + s) + 1 if r is odd.

Less precise results are known for ψ (r, s) when s = 0 or 1. In [6] it is shown that the

following result holds.

Theorem 3 If r ∈ N and r ≥ 1, then

3
2
r2 − r ≤ ψ (r, 0) ≤ 2r2 − 3r

if r ≥ 4 is even, and

ψ (r, 0) = r2 + 1

if r is odd.

Thus ψ (r, 0) 6= φ (r, 0) if r is even, but ψ (r, 0) = φ (r, 0) if r is odd.

In [6] bounds are also obtained for ψ (r, 1).

In this paper we first describe in more detail what is known about (r, r + 1)-factorizations of

d-regular simple graphs and simple (d, d + 1)-graphs, with particular emphasis on the number

of factors in a factorization. We then prove the following theorem on the value of φ (r, s) when

s ≥ 2. This result stands in unexpected contrast to Theorem 2.
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Theorem 4 For r, s ∈ N, s ≥ 2

φ(r, s) = r (r + s + 1) + 1.

For good references on factorizations of graphs, see [2] and [8].

2 (r, r + 1)-factorizations of simple graphs

In the cases when s = 0 and s = 1, φ(r, s) was evaluated by a novel method in [6]. A

fundamental result of Hilton and de Werra [7] provided the key to this novel method. Let us

give some terminology and then explain this fundamental result.

An edge-colouring of a pseudograph G is a map λ : E(G) → C, where C is a set of colours

(loops being counted as edges). An edge-colouring is equitable if for each vertex v of G and any

two colours C1, C2 ∈ C, the number of edges incident to v and coloured C1 differs by at most

one from the corresponding number of edges coloured C2; here a loop on v coloured Ci counts as

two edges on v. For k an integer, k ≥ 2, the k-core of a pseudograph G is the subpseudograph

induced by the vertices of G whose degree is divisible by k. The theorem of Hilton and de Werra

is:

Theorem 5 Let k be an integer, k ≥ 2, and let G be a simple graph. If the k-core of G contains

no edges, then G has an equitable colouring with k colours.

Using this theorem, the first author [6] proved the following result about (r, r+1)-factorizations

of d-regular simple graphs. Theorem 5 was used to prove the ‘hard’ part, namely part 1.

Theorem 6 Let G be a simple d-regular graph, and let x and r be integers with r ≥ 1.

1. G has an (r, r + 1)-factorization with exactly x (r, r + 1)-factors if

d/(r + 1) < x < d/r,

or if r is odd and x = d/(r + 1), or if r is even and x = d/r.

2. If r is even and (r+1) | d, then there are d-regular simple graphs G which are, and d-regular

simple graphs G which are not (r, r + 1)-factorizable into x = d/(r + 1) (r, r + 1)-factors;

if r is odd and r | d, then there are d-regular simple graphs which are, and d-regular simple

graphs which are not (r, r + 1)-factorizable into x = d/r (r, r + 1)-factors.

3. If x /∈ [d/(r + 1), d/r], then no d-regular simple graph is (r, r + 1)-factorizable into x

(r, r + 1)-factors.
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For simple (d, d + 1)-graphs the following similar theorem was also proved in [6].

Theorem 7 Let x, d and r be integers with d ≥ r ≥ 1.

1. If

(d + 1)/(r + 1) < x < d/r

or

x =

{
d/r if r is even,

(d + 1)/(r + 1) if r is odd,

then any simple (d, d + 1)-graph G has an (r, r + 1)-factorization into x (r, r + 1)-factors.

2. If x ≥ 2 and

x =

{
d/r if r is odd,

(d + 1)/(r + 1) if r is even,

then some simple (d, d + 1)-graphs do and some do not have an (r, r + 1)-factorization

into x (r, r + 1)-factors.

3. If x /∈ [(d + 1)/(r + 1), d/r], then the only simple (d, d + 1)-graphs G having an (r, r + 1)-

factorization into x (r, r + 1)-factors occur when
{

x = d/(r + 1) and G is d-regular,

x = (d + 1)/r and G is (d + 1)-regular.

Moreover, when these conditions pertain, some but not all such graphs have an (r, r + 1)-

factorization.

Using Theorems 5, 6, and 7, it is a fairly simple matter to deduce Theorem 2 (which includes

the Era-Egawa theorem).

3 (r, r + 1)-factorization of simple (d, d + s)-graphs

In this section we prove Theorem 4 which says that if r, s ∈ N, s ≥ 2, then φ (r, s) =

r (r + s + 1) + 1.

Proof of Theorem 4

We first show that if

d ≥ r (r + s + 1) + 1,
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then any simple (d, d + s)-graph has an (r, r + 1)-factorization. Note that

d

r
− d + s

r + 1
≥ r2 + r + 1

r (r + 1)
> 1,

so there is an integer x with
d + s

r + 1
< x <

d

r
.

By Theorem 5, G has an equitable coloring with x colors. Let v be a vertex of G. Since rx < d,

there is a color class with at least r + 1 edges incident to v. Since (r + 1)x > d + s, there is

a color class with at most r edges incident to v. Since the coloring is equitable the number

of vertices incident to v in each color class is r or r + 1. Thus the color classes give us an

(r, r + 1)-factorization of G.

Next we show that if

d = r (r + s + 1) ,

then there is a simple (d, d + s)-graph without an (r, r + 1)-factorization. Note that

d + s = (r + 1) (r + s) ,

so any (r, r + 1)-factorization of a (d, d + s)-graph contains either r + s or r + s + 1 factors. We

are going to consider four cases depending on the parity of r and s. In all cases G will be a

disjoint union of graphs G1 and G2 such that G1 has no (r, r + 1)-factorization into r + s + 1

factors and G2 has no (r, r + 1)-factorization into r + s factors.

In each case, the argument will be that if G1 or G2 did have such an (r, r + 1)-factorization,

then some (r, r + 1)-factor would have to have an odd number of vertices of odd degree, which

is impossible.

Assume first that r is even. Then d is even. Let G1 be a graph with one vertex of degree

d + 2 and the remaining vertices of degree d. Some factor of an (r, r + 1)-factorization of such

a G1 into r + s + 1 factors would have exactly one vertex of degree r + 1 which is impossible.

For example, a suitable G1 can be obtained by taking Kd+2, removing a Hamiltonian cycle, and

adding a new vertex adjacent to all the other vertices. To construct G2 we consider two cases.

If s is odd, let G2 be a graph in which each vertex has degree d+ s except for one which has

degree d + s− 1. Since d + s is odd, G2 has odd order. In any (r, r + 1)-factorization of G into

r + s factors, all but one of the factors of G2 would have to be regular of degree r + 1 which

is odd. But since the order of G2 is also odd, this is impossible. A suitable graph G2 can be

obtained by taking Kd+s+2 and removing a spanning subgraph with (d + s + 1) /2 components,

where (d + s− 1) /2 components are P2’s and one is a P3.

If s is even, let G2 be a regular graph of degree d + s of odd order. In any (r, r + 1)-

factorization of G2 into r + s factors, all the (r, r + 1)-factors would be (r + 1)-regular, which

is impossible since r + 1 is odd and G2 has odd order.
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Now assume that r is odd (so d + s is even). Let G2 be a graph which has one vertex of

degree d+ s−2, the remainder having degree d+ s. Some factor of an (r, r + 1)-factorization of

such a G2 into r + s factors would have exactly one vertex of degree r, the remaining vertices

having degree r + 1. This is impossible as r is odd. An example of a suitable G2 may be

obtained by taking Kd+s+2, marking two of its vertices as u and v, removing a 1-factor from

Kd+s+2 − {u, v}, and removing a path of length 2 with endpoints u and v. To construct G1 we

consider two cases.

If s is even (so that d is even), let G1 be a d-regular graph of odd order. If s is odd (so that d

is odd), let G1 be a graph with one vertex of degree d+1 and the remaining vertices of degree d.

An example of such G1 can be obtained from Kd+2 by removing (d + 1) /2 independent edges.

4 (r, r + 1)-factorizations of multigraphs

Recall that we have defined multigraphs as having no loops.

Theorem 3 shows that the upper bounds for ψ (r, s) given in Theorem 1 are not best possible,

at least in the case when s = 0. This is also true if s = 1, as in [6] the following is proved.

Theorem 8 If r ∈ N, r ≥ 1, then

3r2

2
− r ≤ ψ (r, 1) ≤ 2r2 + r − 1

if r is even, and

r (r + 1) + 1 ≤ ψ (r, 1) ≤ 2r2 + 3r − 1

if r is odd.

Thus to determine ψ (r, s) remains an open problem.

Theorem 3 also seems to suggest the surprising possibility that φ (r, s) = ψ (r, s) holds for

every r, s ∈ N with r odd. However, the question if that is really true requires more evidence.
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