INFINITE MATROIDAL VERSION OF HALL'S MATCHING THEOREM

JERZY WOJCIECHOWSKI

ABSTRACT. Hall's theorem for bipartite graphs gives a necessary and sufficient condition for the existence of a matching in a given bipartite graph. Aharoni and Ziv [2] generalized the notion of matchability to a pair of possibly infinite matroids on the same set and gave a condition that is sufficient for the matchability of a given pair $(\mathcal{M}, \mathcal{W})$ of finitary matroids, where the matroid \mathcal{M} is SCF — a sum of countably many matroids of finite rank. The condition of Aharoni and Ziv is not necessary for matchability. In this paper we give a condition that is necessary for the existence of a matching for any pair of matroids (not necessarily finitary) and is sufficient for any pair $(\mathcal{M}, \mathcal{W})$ of finitary matroids, where the matroid \mathcal{M} is SCF.

1. Matroids

Following Higgs [6] (see also Oxley [10]), we will define *matroid* as a pair $S = (S, \bar{\partial})$ where S is a set and $\bar{\partial}$ is an IE-operator (idempotent-exchange operator) on S.

A space is a pair $S = (S, \overline{\partial})$ where S is a set and $\overline{\partial} : 2^S \to 2^S$ is an operator on S such that:

- M1. $X \subseteq \overline{\partial}(X)$ for every $X \subseteq S$;
- M2. if $X \subseteq Y \subseteq S$, then $\overline{\partial}(X) \subseteq \overline{\partial}(Y)$.

If $\mathcal{S} = (S, \bar{\partial})$ is a space, and $\bar{\partial}^* : 2^S \to 2^S$ is defined by

$$x \in \partial^*(X)$$
 iff $x \in X$ or $x \notin \partial(S \setminus (X \cup \{x\}))$.

then $\mathcal{S}^* = (S, \bar{\partial}^*)$ is also a space (the space *dual to* \mathcal{S}). It is easy to see that the space \mathcal{S}^{**} dual to \mathcal{S}^* is equal to \mathcal{S} .

A space $S = (S, \bar{\partial})$ is *idempotent* if

M3. $\bar{\partial}(\bar{\partial}(X)) = \bar{\partial}(X)$ for every $X \subseteq S$;

and it is *exchange* if

M4. for every X, Y and p such that $X \subseteq Y \subseteq S$ and $p \in S \setminus Y$, if $p \in \overline{\partial}(Y) \setminus \overline{\partial}(X)$ then there is $x \in Y \setminus X$ with $x \in \overline{\partial}(Y \setminus \{x\} \cup \{p\})$.

It is a straightforward exercise to verify that a space is idempotent if and only if its dual space is exchange.

A matroid is a space that is both idempotent and exchange. A matroid $S = (S, \bar{\partial})$ is finite if S is finite, and it is finitary if

M5. for every $X \subseteq S$ and $x \in S$, if $x \in \overline{\partial}(X)$ then there is a finite $Y \subseteq X$ such that $x \in \overline{\partial}(Y)$.

A finitary matroid is often called an *independence space* in the literature. Obviously, every finite matroid is finitary. The space dual to a matroid is clearly also a matroid, but the matroid dual to a finitary matroid (called *cofinitary*) does not have to be finitary.

Let $S = (S, \overline{\partial})$ be a space and let $X \subseteq S$. If $x \in \overline{\partial}(X)$ or $Y \subseteq \overline{\partial}(X)$, then we say that X spans x or X spans Y, respectively. We say that X is spanning in S if X spans S, and that X is independent in S if no $x \in X$ is spanned by $X \setminus \{x\}$. Note that X is independent in S if and only if $S \setminus X$ is spanning in the space dual to S. If X is not independent in S, then we say that it is *dependent* in S.

Given a finitary matroid $S = (S, \overline{\partial})$, let \overline{S} be the family of subsets of S that are independent in S. Note that (see Oxley [10]):

- I1. $\bar{\mathcal{S}} \neq \emptyset$;
- I2. if $A \in \overline{S}$ and $B \subseteq A$, then $B \in \overline{S}$;
- I3. if $I, J \in \overline{S}$ are finite and |I| = |J| + 1, then there is an element $y \in I \setminus J$ such that $J \cup \{y\} \in \overline{S}$;
- I4. if $A \subseteq S$ and $I \in \overline{S}$ for every finite $I \subseteq A$, then $A \in \overline{S}$.

Conversely, if \bar{S} is a family of subsets of a set S satisfying conditions I1–I4, and $\bar{\partial}: 2^S \to 2^S$ is defined by

 $x \in \bar{\partial}(X)$ iff $x \in X$ or there is $A \subseteq X$ such that $A \in \bar{S}$ and $A \cup \{x\} \notin \bar{S}$,

then $S = (S, \bar{\partial})$ is a finitary matroid and \bar{S} is equal to the family of subsets of S that are independent in S.

Let $\mathcal{S} = (S, \overline{\partial})$ be a space and let $X \subseteq S$. If X is both spanning and independent in \mathcal{S} , then it is said to be a *base* of \mathcal{S} . It is easy to see that X is a base of \mathcal{S} if and only if it is maximal in the family of independent sets of \mathcal{S} , and if and only if it is minimal in the family of spanning sets.

In general, a matroid may have no bases.

Example 1.1. Let $S_0 = \mathbb{Z}$ and

$$\bar{\partial}_0(X) = \begin{cases} X & \text{if } X \text{ is finite;} \\ S_0 & \text{otherwise.} \end{cases}$$

It is clear that $S_0 = (S_0, \overline{\partial}_0)$ is a matroid with the family of independent sets equal to the family of all finite subsets of S_0 and the family of spanning sets equal to the family of infinite subsets of S_0 . Thus S_0 has no bases.

However, if S is a finitary matroid, then for every independent X and spanning Y with $X \subseteq Y \subseteq S$ there is a base B of S with $X \subseteq B \subseteq Y$. It follows immediately that the same is true for cofinitary matroids. If $S = (S, \overline{\partial})$ is a matroid and for every $Y \subseteq X \subseteq S$ the family of subsets of X that contain Y and are independent in S has a maximal element, then S is called a *B*-matroid. Any finitary matroid is a B-matroid.

Let $\mathbb{Z}^{\infty} = \mathbb{Z} \cup \{-\infty, \infty\}$ be the set of *quasi-integers*. If $a_1, \ldots, a_n \in \mathbb{Z}^{\infty}$, then let the sum $a_1 + \cdots + a_n$ be the usual sum if a_1, \ldots, a_n are all integers, let the sum be ∞ if at least one of them is ∞ , and let it be $-\infty$ if none of a_1, \ldots, a_n is ∞ but at least one of them is $-\infty$. Note that it follows immediately from the above definition that the operation of addition in \mathbb{Z}^{∞} is commutative and associative. The difference a-b of two quasi-integers a, b means a + (-b); and likewise, for example, a-b+c-dmeans a + (-b) + c + (-d), etc. Let \mathbb{Z}^{∞} be ordered in the obvious way. Note that if $a, b, c, d \in \mathbb{Z}^{\infty}$ satisfy $a \leq c$ and $b \leq d$, then $a + b \leq c + d$. Given a set S, let $||S|| \in \mathbb{Z}^{\infty}$ be the cardinality of S if S is finite, and $||S|| = \infty$ if S is infinite.

Let $\mathcal{S} = (S, \overline{\partial})$ be a matroid. The *quasirank* of \mathcal{S} (denoted $r(\mathcal{S})$) is the element of \mathbb{Z}^{∞} that is equal to the maximal cardinality of a finite independent set of \mathcal{S} if such

a cardinality exists, and it is equal to ∞ otherwise. If r(S) is finite, then S is said to be a *finite-rank* matroid. It is obvious that a finite-rank matroid is finitary. If S is finitary, then all bases of S have the same cardinality (denoted $\rho(S)$), and this cardinality is defined to be the *rank* of S. Let $r^*(S)$ be the quasirank of the matroid dual to S.

Assume that $\mathcal{S} = (S, \overline{\partial})$ is a space and $X \subseteq S$. The restriction of \mathcal{S} to X, denoted $\mathcal{S}|X$, is defined to be the space $(X, \overline{\partial}')$ with $\overline{\partial}'$ being the restriction of $\overline{\partial}$ to 2^X . The contraction of \mathcal{S} to X, denoted $\mathcal{S}.X$, is the dual space to the restriction to X of the space dual to \mathcal{S} . Explicitly, $\mathcal{S}.X = (X, \overline{\partial}'')$ with $x \in \overline{\partial}''(A)$ (where $A \subseteq X$) if and only if $x \in \overline{\partial} (A \cup (S \setminus X))$. If \mathcal{S} is a matroid, then both $\mathcal{S}|X$ and $\mathcal{S}.X$ are matroids. If moreover \mathcal{S} is either finite, finite-rank, finitary, or is a B-matroid, then both $\mathcal{S}|X$ and $\mathcal{S}.X$ have the same property. Let $\mathcal{S} \setminus X = \mathcal{S}|(S \setminus X)$ and $\mathcal{S}/X = \mathcal{S}.(S \setminus X)$.

Let $(S_i : i \in I)$ be a family of pairwise disjoint sets and $(S_i : i \in I)$ be a family of spaces with $S_i = (S_i, \bar{\partial}_i)$. The sum of the family $(S_i : i \in I)$ is defined to be the space $S = (S, \bar{\partial})$ with $S = \bigcup_{i \in I} S_i$ and $x \in \bar{\partial}(X)$ if and only if $x \in \bar{\partial}_i(X \cap S_i)$ where $i \in I$ is such that $x \in S_i$. It is easy to see that the following lemma holds.

Lemma 1.1. If the space $S = (S, \overline{\partial})$ is the sum of the family $(S_i : i \in I)$ of spaces with $S_i = (S_i, \overline{\partial}_i)$ for every $i \in I$, and $A \subseteq S$, then S|A is the sum of the family $(S_i|A_i : i \in I)$ and S.A is the sum of the family $(S_i.A_i : i \in I)$, where $A_i = A \cap S_i$ for every $i \in I$.

A matroid \mathcal{S} is said to be SCF if it is the sum of a countable family of finite-rank matroids.

2. A matroidal analog of Hall's Theorem

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Aharoni and Ziv [2] defined the pair $(\mathcal{M}, \mathcal{W})$ to be *matchable* if there is a subset of E that is both spanning in \mathcal{M} and independent in \mathcal{W} . Such a subset of E will be called a *matching* in $(\mathcal{M}, \mathcal{W})$.

The concept of matchability of a pair of matroids on the same set originated as a generalization of a matroidal interpretation of the existence of a matching in a bipartite graph. Indeed, if G = (V, E) is a bipartite graph with bipartition $V = M \cup W$, then let $\mathcal{M} = (E, \bar{\partial}_{\mathcal{M}})$ and $\mathcal{W} = (E, \bar{\partial}_{\mathcal{W}})$ be the matroids on the set of edges E defined by:

- $y \in \bar{\partial}_{\mathcal{M}}(X)$ if and only if there exists $x \in X$ such that x and y are incident to the same vertex in M;
- $y \in \partial_{\mathcal{W}}(X)$ if and only if there exists $x \in X$ such that x and y are incident to the same vertex in W.

It is easy to see that a subset of E is a matching in $\Gamma = (\mathcal{M}, \mathcal{W})$ if and only if it contains a matching in the graph G, implying that Γ is matchable if and only if the graph G is matchable.

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Aharoni and Ziv define a *hindrance* in $(\mathcal{M}, \mathcal{W})$ to be a subset H of E such that H is independent in both \mathcal{W} and \mathcal{M} . $(\bar{\partial}_{\mathcal{W}}(H))$ but H is not spanning in \mathcal{M} . $(\bar{\partial}_{\mathcal{W}}(H))$. They prove the following result.

Theorem 2.1. Let \mathcal{M} and \mathcal{W} be matroids on a set E such that \mathcal{M} is SCF and \mathcal{W} is finitary. If there are no hindrances in $(\mathcal{M}, \mathcal{W})$, then $(\mathcal{M}, \mathcal{W})$ is matchable.

Theorem 2.1 is used by Aharoni and Ziv to prove a special case of the following conjecture, which is the infinite version of Edmond's theorem, and is attributed to C. Nash-Williams by Aharoni in [2].

Conjecture 2.2. If \mathcal{M} and \mathcal{W} are finitary matroids on the same set S, then there exists $I \subseteq S$ such that I is independent in both \mathcal{M} and \mathcal{W} and there is a partition of I as $I = H \cup K$ with

$$\bar{\partial}_{\mathcal{M}}(H) \cup \bar{\partial}_{\mathcal{W}}(K) = S.$$

The condition, in Theorem 2.1, that $(\mathcal{M}, \mathcal{W})$ does not contain a hindrance is not necessary for matchability. For example, let

$$E = \{(i, j) : i \in \{0, 1\}, j \in \{0, 1, 2, \dots\}\},\$$

with

$$(i,j) \in \bar{\partial}_{\mathcal{W}}(A)$$
 iff there is $i' \in \{0,1\}$ such that $(i',j) \in A$,

and $X \subseteq E$ being independent in \mathcal{M} if and only if it is the set of edges of an acyclic subgraph of the graph G = (V, E) with $V = \{0, 1, 2, ...\}, (0, j)$ incident to j and j + 1, and (1, j) incident to j and j + 2, j = 0, 1, 2, ... Then

$$H = \{(1, j) : j \in \{0, 1, 2, \dots\}\}$$

is a hindrance in $(\mathcal{M}, \mathcal{W})$ and

$$T = \{(0, j) : j \in \{0, 1, 2, \dots\}\}$$

is a matching in $(\mathcal{M}, \mathcal{W})$.

The condition of Aharoni and Ziv resembles the condition in the countable version of Hall's theorem proved by Podewski and Steffens [11]. Another countable version of Hall's Theorem with a condition of a somewhat different nature was given by Nash-Williams [8] [9]. A modified version of the theorem of Nash-Williams, with a condition of a similar nature, called μ -admissibility, is proved in [12]. We are going to formulate a matroidal analog of μ -admissibility after some preliminaries.

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Let M and W be disjoint copies of E (say $M = E \times \{0\}$ and $W = E \times \{1\}$). In an obvious way, \mathcal{M} and \mathcal{W} can be regarded as matroids on M and W respectively. To simplify notation, we will often identify the elements of M (of W) with the elements of E when it does not lead to confusion.

A string is an injective function with its domain being an ordinal. In particular, the empty set \emptyset is a string with domain $0 = \emptyset$. A string f is said to be in a set Sif rge $f \subseteq S$, and it is said to be an α -string if its domain is equal to α . A string in $\Gamma = (\mathcal{M}, \mathcal{W})$ is a string in $\mathcal{M} \cup \mathcal{W}$. Given a string f in Γ , let

$$\operatorname{rge}_{M} f = \{a \in E : (a, 0) \in \operatorname{rge} f\},$$

$$\operatorname{rge}_{W} f = \{a \in E : (a, 1) \in \operatorname{rge} f\}.$$

A string f in Γ is saturated if $\operatorname{rge}_M f_\beta \subseteq \operatorname{rge}_W f_\beta$ for every $\beta \leq \operatorname{dom} f$.

Let f be a string and β , γ be ordinals with $\beta \leq \gamma \leq \text{dom } f$. The $[\beta, \gamma)$ -segment of f is the string $f_{[\beta,\gamma)}$ defined by

$$f_{[\beta,\gamma)}(\theta) = f(\beta + \theta)$$

for all θ with $\beta + \theta < \gamma$, that is, $f_{[\beta,\gamma)}$ is obtained from f by restricting it to $[\beta,\gamma)$ and shifting the domain to start at 0. Given $\alpha \leq \text{dom } f$, let $f_{\alpha} = f_{[0,\alpha)}$.

Assume that f is a string in Γ . The μ -margin $\mu(f)$ of f is an element of \mathbb{Z}^{∞} defined by transfinite induction on $\alpha = \text{dom } f$ as follows. Let $\mu(f) = 0$ if $\alpha = 0$, let (1)

$$\mu(f) = \begin{cases} \mu(f_{\beta}) + 1 & \text{if } f(\beta) \in W \text{ and } f(\beta) \text{ is not spanned by } \operatorname{rge}_{W} f_{\beta} \text{ in } \mathcal{W}, \\ \mu(f_{\beta}) - 1 & \text{if } f(\beta) \in M \text{ and } f(\beta) \text{ is not spanned by } E \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M}, \\ \mu(f_{\beta}) & \text{otherwise} \end{cases}$$

when $\alpha = \beta + 1$ is a successor ordinal, and

$$\mu(f) = \liminf_{\beta \to \alpha} \mu(f_\beta)$$

if α is a limit ordinal. We say that Γ is μ -admissible if $\mu(f) \ge 0$ for every saturated string f in Γ .

We will prove the following results.

Theorem 2.3. If \mathcal{M} and \mathcal{W} are arbitrary matroids on the same set and $(\mathcal{M}, \mathcal{W})$ is matchable, then it is μ -admissible.

Theorem 2.4. Let \mathcal{M} and \mathcal{W} be matroids on the same set. If \mathcal{M} is SCF, \mathcal{W} is finitary, and $(\mathcal{M}, \mathcal{W})$ is μ -admissible, then it is matchable.

3. Necessity of the condition

In this section we are going to prove Theorem 2.3. Let's start with the following preliminary lemma.

Lemma 3.1. Let $S = (S, \overline{\partial}_S)$ be a matroid, $a \in S$, and $\{S_1, S_2, S_3\}$ be a partition of $S \setminus \{a\}$ (allowing the parts to be empty). Let $S'_i = S_i \cup \{a\}$, i = 1, 2, 3, and

$$\mathcal{S}_1 = (\mathcal{S}/S_1) \setminus S_3, \quad \mathcal{S}_2 = (\mathcal{S}/S_1) \setminus S_3, \quad \mathcal{S}_3 = (\mathcal{S}/S_1) \setminus S_3'.$$

Then

(1) $r(S_1) = r(S_2) = r(S_3)$ and $r^*(S_1) = r^*(S_2) - 1 = r^*(S_3)$ if a is spanned by S_1 in S;

- (2) $r(S_1) + 1 = r(S_2) = r(S_3)$ and $r^*(S_1) = r^*(S_2) = r^*(S_3) + 1$ if a is spanned by $S_1 \cup S_2$ but not by S_1 in S;
- (3) $r(S_1) = r(S_2) 1 = r(S_3)$ and $r^*(S_1) = r^*(S_2) = r^*(S_3)$ if a is not spanned by $S_1 \cup S_2$ in S.

Proof. We will only prove the equations involving the quasirank r. The equations involving the dual quasirank r^* will then follow.

Assume that a is spanned by S_1 in \mathcal{S} . Obviously, any set independent in \mathcal{S}_1 is independent in \mathcal{S}_2 . Suppose that A is independent in \mathcal{S}_2 . Since $a \in \overline{\partial}_{\mathcal{S}_2}(\emptyset)$, it follows that $a \notin A$ and A is independent in \mathcal{S}_1 , thus

$$r(\mathcal{S}_1) = r(\mathcal{S}_2).$$

Assume that a is not spanned by S_1 in \mathcal{S} . We will show that

(2)
$$r(\mathcal{S}_1) = r(\mathcal{S}_2) - 1.$$

If $r(\mathcal{S}_1) = \infty$, then $r(\mathcal{S}_2) = \infty$ and (2) holds. If $r(\mathcal{S}_1)$ is finite and A is a base of \mathcal{S}_1 , then $A \cup \{a\}$ is a base of \mathcal{S}_2 and (2) holds as well.

Assume that a is spanned by $S_1 \cup S_2$ in \mathcal{S} . We will show that

(3)
$$r(\mathcal{S}_2) = r(\mathcal{S}_3).$$

If $r(S_3) = \infty$, then $r(S_2) = \infty$ and (3) holds. If $r(S_3)$ is finite and A is a base of S_3 , then it is a base of S_2 so (3) holds as well.

Assume that a is not spanned by $S_1 \cup S_2$ in \mathcal{S} . We will show that

(4)
$$r(\mathcal{S}_2) - 1 = r(\mathcal{S}_3).$$

If $r(S_3) = \infty$, then $r(S_2) = \infty$ and (4) holds. If $r(S_3)$ is finite and A is a base of S_3 , then $A \cup \{a\}$ is a base of S_2 so (3) holds as well.

Now we are ready to prove Theorem 2.3. Let \mathcal{M} and \mathcal{W} be arbitrary matroids on the same set E and let $\Gamma = (\mathcal{M}, \mathcal{W})$. Assume that T is a matching in Γ and f is a saturated string in Γ . Let $\alpha = \text{dom } f$, and for each $\beta \leq \alpha$ let $T_{\beta} = T \cap \text{rge}_M f_{\beta}$,

$$r_{\beta}^* = r^* \left(\left(\mathcal{M}. \operatorname{rge}_M f_{\beta} \right) | T_{\beta} \right),$$

and

$$r_{\beta} = r\left(\left(\mathcal{W}/T_{\beta} \right) \, | \left(\operatorname{rge}_{W} f_{\beta} \setminus T_{\beta} \right) \right).$$

Using transfinite induction on α , we will show that

(5)
$$\mu(f) \ge r_{\alpha}^* + r_{\alpha}.$$

Since $r^*_{\alpha}, r_{\alpha} \geq 0$, it then follows that $\mu(f) \geq 0$ and so Γ is μ -admissible.

If $\alpha = 0$, then $\mu(f) = r_{\alpha}^* = r_{\alpha} = 0$ so (5) holds. The proof of (5) will be completed in a series of lemmas.

Lemma 3.2. If $\alpha = \beta + 1$ is a successor ordinal, $\mu(f_{\beta}) \ge r_{\beta}^* + r_{\beta}$, and $f(\beta) \in W$, then $\mu(f) \ge r_{\alpha}^* + r_{\alpha}$.

Proof. Since $\operatorname{rge}_M f = \operatorname{rge}_M f_\beta$, we have $r^*_{\alpha} = r^*_{\beta}$. Let $\mathcal{S} = \mathcal{W}$, $a = f(\beta)$,

$$S_1 = T_\beta, \quad S_2 = \operatorname{rge}_W f_\beta \setminus T_\beta, \quad S_3 = E \setminus \operatorname{rge}_W f,$$

and S_1, S_2, S_3 be as in Lemma 3.1. Then $r_{\beta} = r(S_3)$ and $r_{\alpha} = r(S_2)$. If $f(\beta)$ is not spanned by $\operatorname{rge}_W f_{\beta} = S_1 \cup S_2$ in \mathcal{W} , then $\mu(f) = \mu(f_{\beta}) + 1$ and it follows from Lemma 3.1 that $r_{\alpha} = r_{\beta} + 1$. If $f(\beta)$ is spanned by $\operatorname{rge}_W f_{\beta} = S_1 \cup S_2$ in \mathcal{W} , then $\mu(f) = \mu(f_{\beta})$ and it follows from Lemma 3.1 that $r_{\alpha} = r_{\beta}$.

Lemma 3.3. If $\alpha = \beta + 1$ is a successor ordinal, $\mu(f_{\beta}) \ge r_{\beta}^* + r_{\beta}$, and $f(\beta) \in M$, then $\mu(f) \ge r_{\alpha}^* + r_{\alpha}$.

Proof. If $f(\beta) \notin T$, then $r_{\alpha} = r_{\beta}$. If $f(\beta) \in T$, than taking $\mathcal{S} = \mathcal{W}$, $a = f(\beta)$,

 $S_1 = T_\beta, \quad S_2 = \operatorname{rge}_W f_\beta \setminus T_\beta, \quad S_3 = E \setminus \operatorname{rge}_W f,$

and S_1, S_2, S_3 as in Lemma 3.1, we have $r_{\beta} = r(S_2)$ and $r_{\alpha} = r(S_1)$. Since T is independent in \mathcal{W} , it follows that $f(\beta)$ is not spanned by T_{β} in \mathcal{W} , so Lemma 3.1 implies that $r_{\alpha} = r_{\beta} - 1$.

Now let $\mathcal{S} = \mathcal{M}, a = f(\beta),$

$$S_1 = E \setminus \operatorname{rge}_M f, \quad S_2 = T_\beta, \quad S_3 = \operatorname{rge}_M f_\beta \setminus T_\beta,$$

and $\mathcal{S}_1, \mathcal{S}_2, \mathcal{S}_3$ be as in Lemma 3.1.

If $f(\beta) \in T$, then $r_{\beta}^* = r^*(\mathcal{S}_1)$ and $r_{\alpha}^* = r^*(\mathcal{S}_2)$ so Lemma 3.1 implies that

$$r_{\alpha}^{*} = \begin{cases} r_{\beta}^{*} + 1 & \text{if } f(\beta) \text{ is spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \\ r_{\beta}^{*} & \text{if } f(\beta) \text{ is not spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \end{cases}$$

Assume now that $f(\beta) \notin T$. Then $r_{\beta}^* = r^*(\mathcal{S}_1)$ and $r_{\alpha}^* = r^*(\mathcal{S}_3)$. If $f(\beta)$ is spanned by $S_1 = M \setminus \operatorname{rge}_M f$ in \mathcal{M} , then Lemma 3.1 implies that $r_{\alpha}^* = r_{\beta}^*$. Note that since $T \subseteq S_1 \cup S_2$ and T is spanning in \mathcal{M} , it follows that $f(\beta)$ is spanned by $S_1 \cup S_2$ in \mathcal{M} . Therefore, if $f(\beta)$ is not spanned by $S_1 = M \setminus \operatorname{rge}_M f$ in \mathcal{M} , then it follows from Lemma 3.1 that $r_{\alpha}^* = r_{\beta}^* - 1$.

Combining the cases when $f(\beta) \in T$ and $f(\beta) \notin T$, we obtain

$$r_{\alpha} + r_{\alpha}^{*} = \begin{cases} r_{\beta} + r_{\beta}^{*} & \text{if } f(\beta) \text{ is spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \\ r_{\beta} + r_{\beta}^{*} - 1 & \text{if } f(\beta) \text{ is not spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \end{cases}$$

Since

$$\mu(f) = \begin{cases} \mu(f_{\beta}) & \text{if } f(\beta) \text{ is spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \\ \mu(f_{\beta}) - 1 & \text{if } f(\beta) \text{ is not spanned by } M \setminus \operatorname{rge}_{M} f \text{ in } \mathcal{M} \end{cases}$$

the proof is complete. \blacksquare

Lemma 3.4. If α is a limit ordinal and $\mu(f_{\beta}) \geq r_{\beta}^* + r_{\beta}$ for every $\beta < \alpha$, then $\mu(f) \geq r_{\alpha}^* + r_{\alpha}$.

Proof. Suppose, by way of contradiction, that $\mu(f) < r_{\alpha}^* + r_{\alpha}$. Then $\mu(f_{\beta})$ is finite for every $\beta \leq \alpha$. Therefore r_{β}^* and r_{β} are both finite for every $\beta < \alpha$. Let A_{β} be a base of the matroid dual to $(\mathcal{M}. \operatorname{rge}_M f) | T_{\beta}$ for every $\beta < \alpha$. We can moreover assume that $A_{\beta} \subseteq A_{\beta'}$ for $\beta \leq \beta' < \alpha$. Since A_{β} is independent in the matroid dual to $(\mathcal{M}. \operatorname{rge}_M f_{\beta}) | T_{\beta}$, it follows that

$$\|A_{\beta}\| \le r_{\beta}^*$$

for $\beta < \alpha$. Note that the union $A = \bigcup_{\beta < \alpha} A_{\beta}$ must be finite, since otherwise we would have $\liminf_{\beta \to \alpha} r_{\beta}^* = \infty$, which would imply that

$$\mu(f) = \liminf_{\beta \to \alpha} \mu(f_{\beta}) \ge \liminf_{\beta \to \alpha} r_{\beta}^* = \infty.$$

Therefore $A = A_{\gamma}$ for some $\gamma < \alpha$. It follows that A is spanning in the matroid dual to $(\mathcal{M}. \operatorname{rge}_M f) | T_{\alpha}$ and so

$$r_{\alpha}^* \leq \|A\| = \liminf_{\beta \to \alpha} \|A_{\beta}\|.$$

Let D_{β} be a base of $(\mathcal{W}/T_{\alpha}) | (\operatorname{rge}_{W} f_{\beta} \setminus T_{\alpha})$ for every $\beta < \alpha$, with $D_{\beta} \subseteq D_{\beta'}$ for $\beta \leq \beta' < \alpha$. Since D_{β} is independent in $(\mathcal{W}/T_{\beta}) | (\operatorname{rge}_{W} f_{\beta} \setminus T_{\beta})$, we have

$$\|D_{\beta}\| \le r_{\beta}$$

for every $\beta < \alpha$. Similarly as above it follows that $D = \bigcup_{\beta < \alpha} D_{\beta}$ must be finite and spanning in $(\mathcal{W}/T_{\alpha}) \mid (\operatorname{rge}_{W} f \setminus T_{\alpha})$ implying that

$$r_{\alpha} \leq \|D\| = \liminf_{\beta \to \alpha} \|D_{\beta}\|.$$

Since

$$\mu(f_{\beta}) \ge r_{\beta}^* + r_{\beta} \ge \|A_{\beta}\| + \|D_{\beta}\|$$

for every $\beta < \alpha$, it follows that

$$\mu(f) = \liminf_{\beta \to \alpha} \mu(f_{\beta})$$

$$\geq \liminf_{\beta \to \alpha} (\|A_{\beta}\| + \|D_{\beta}\|)$$

$$= \|A\| + \|D\|$$

$$= \liminf_{\beta \to \alpha} \|A_{\beta}\| + \liminf_{\beta \to \alpha} \|D_{\beta}\|$$

$$\geq r_{\alpha}^{*} + r_{\alpha}.$$

This contradiction completes the proof.

4. Sufficiency of the condition

4.1. **Preliminary results.** Let \mathcal{M} and \mathcal{W} be arbitrary matroids on the same set Eand let $\Gamma = (\mathcal{M}, \mathcal{W})$. If f and g are strings in Γ with domains α and β respectively, then the *concatenation* f * g of f and g is defined to be the $(\alpha + \beta)$ -string h such that $h_{\alpha} = f$ and $h_{[\alpha,\alpha+\beta)} = g$. For $u \in \mathcal{M} \cup \mathcal{W}$, let [u] be the 1-string f with f(0) = u. Let \mathfrak{T} be the set of all strings in Γ and let \preceq be the relation on \mathfrak{T} such that $g \preceq f$ if $g = f_{\beta}$ for some $\beta \leq \text{dom } f$. Clearly \preceq is a partial order on \mathfrak{T} . Let \mathfrak{R} be the subset of \mathfrak{T} consisting of all saturated strings f in Γ with $\mu(f) = 0$.

Lemma 4.1. Assume that \mathcal{M} is the sum of matroids \mathcal{M}_1 and \mathcal{M}_2 (on sets M_1 and M_2 respectively) with \mathcal{M}_1 having positive finite rank. Let \mathfrak{R}' be the subset of \mathfrak{R} consisting of strings g such that there is

$$a \in M_1 \setminus \operatorname{rge}_M g$$

with $\{a\}$ being independent in \mathcal{M}_1 .

- (1) If Γ is μ -admissible, then the set \mathfrak{R}' contains a maximal element with respect to \preceq .
- (2) If Γ is μ -admissible and f is maximal in \mathfrak{R}' with respect to \preceq , then

$$\operatorname{rge}_M f = \operatorname{rge}_W f.$$

Proof. (1) We are going to use Zorn lemma. Since the empty string belongs to \mathfrak{R}' , the set \mathfrak{R}' is nonempty. Let \mathfrak{B} be a nonempty chain in \mathfrak{R}' . We will show that there is an upper bound for \mathfrak{B} in \mathfrak{R}' .

Let $\Theta = \{ \operatorname{dom} g : g \in \mathfrak{B} \}$ and $\alpha = \sup \Theta$. We are going to define an α string f in Γ that belongs to \mathfrak{R}' and is an upper bound for \mathfrak{B} . If $\beta < \alpha$, then there is $g \in \mathfrak{B}$ with $\beta < \operatorname{dom} g$. Define $f(\beta) = g(\beta)$. Since \mathfrak{B} is a chain, the value of $f(\beta)$ does not depend on the choice of g. It is clear that $g \leq f$ for every $g \in \mathfrak{B}$ so f is an upper bound for \mathfrak{B} .

Now we show that $f \in \mathfrak{R}'$. Since $\mathfrak{B} \subseteq \mathfrak{R}'$, we can assume that $f \notin \mathfrak{B}$. Then α is a limit ordinal. If $\beta < \alpha$, then $f_{\beta} = g_{\beta}$ for some $g \in \mathfrak{B}$ so f is saturated. Since $\alpha = \sup \Theta$ and since $\mu(f_{\beta}) = 0$ for every $\beta \in \Theta$, it follows that $\mu(f) = 0$. Therefore $f \in \mathfrak{R}$.

It remains to show that there is $a \in M_1 \setminus \operatorname{rge}_M f$ with $\{a\}$ being independent in \mathcal{M}_1 . Suppose, by way of contradiction, that such a does not exist. For each $\beta \leq \alpha$, let

$$r_{\beta} = r\left(\mathcal{M}_1 \mid \left(M_1 \setminus \operatorname{rge}_M f_{\beta}\right)\right).$$

Since no singleton of $M_1 \setminus \operatorname{rge}_M f$ is independent in \mathcal{M}_1 , we have $r_\alpha = 0$. Since \mathcal{M}_1 is a finite-rank matroid, there is $\gamma < \alpha$ such that $r_\gamma = r_\beta$ for every β with $\gamma \leq \beta < \alpha$. Since $f_\gamma = g_\gamma$ for some $g \in \mathfrak{B}$, it follows that there is $a \in M_1 \setminus \operatorname{rge}_M f_\gamma$ with $\{a\}$ independent in \mathcal{M}_1 . Since $a \notin M_1 \setminus \operatorname{rge}_M f$, there is δ with $\gamma \leq \delta < \alpha$ and $f(\delta) = (a, 0)$. Let f' be the string obtained from f by removing the value (a, 0) and shifting down the remaining values, that is let

$$f' = f_{\delta} * f_{[\delta+1,\alpha)}.$$

Since $r_{\delta} = r_{\delta+1}$, *a* is spanned by $E \setminus \operatorname{rge}_M f_{\delta+1}$ in \mathcal{M} , so $\mu(f_{\delta+1}) = \mu(f_{\delta})$. A straightforward argument by transfinite induction shows that in general

(6)
$$\mu(f_{\beta}) = \mu(f_{\delta} * f_{[\delta+1,\beta]})$$

for every β such that $\delta < \beta \leq \alpha$. The only nontrivial step of this inductive argument is when $\beta = \beta' + 1$ is a successor and $f(\beta') \in M_1$. The equality $r_{\beta} = r_{\beta'}$ implies then that $f(\beta')$ is spanned by $E \setminus \operatorname{rge}_M f_{\beta}$ and so the inductive step goes through. Applying (6) for $\beta = \alpha$, we get $\mu(f') = \mu(f) = 0$. Since $r_{\alpha} = 0$ and $\{a\}$ is independent in \mathcal{M}_1 , it follows that a is not spanned by $E \setminus \operatorname{rge}_M f$ in \mathcal{M} , so

$$\mu(f' * [(a, 0)]) = -1.$$

Since f' * [(a, 0)] is saturated and Γ is μ -admissible, this is a contradiction, implying that $f \in \mathfrak{R}'$.

Since \mathfrak{B} was an arbitrary nonempty chain in \mathfrak{R}' , it follows from Zorn lemma that \mathfrak{R}' contains a maximal element with respect to \preceq , and hence the proof is complete.

(2) Assume that f is maximal in \mathfrak{R}' with respect to \preceq . Suppose, by way of contradiction that there is

$$c \in \operatorname{rge}_W f \setminus \operatorname{rge}_M f.$$

Then the string

$$f' = f \ast [(c,0)]$$

is saturated and $\mu(f') \leq 0$. Since Γ is μ -admissible, we have $\mu(f') = 0$ implying that $f' \in \mathfrak{R}$. Since f is maximal in \mathfrak{R}' with respect to \leq , it follows that $f' \notin \mathfrak{R}'$ so there is no

$$a \in M_1 \setminus \operatorname{rge}_M f'$$

with $\{a\}$ being independent in \mathcal{M}_1 . Since $f \in \mathfrak{R}'$, $\{c\}$ is independent in \mathcal{M}_1 . It follows that c is not spanned by $E \setminus \operatorname{rge}_M f$ in \mathcal{M} and so $\mu(f') = -1$, which is a contradiction.

Lemma 4.2. Assume that \mathcal{M} is the sum of matroids \mathcal{M}' and \mathcal{M}'' (on sets E' and E'' respectively) with \mathcal{M}' having positive finite rank. If Γ is μ -admissible, then there is $a \in E'$ and disjoint sets E_1, E_2 with $E_1 \cup E_2 = E \setminus \{a\}$, such that $\{a\}$ is independent in both \mathcal{M} and \mathcal{W} , and both pairs

$$\Gamma_1 = (\mathcal{M}.E_1, (\mathcal{W}/\{a\})|E_1) \quad and \quad \Gamma_2 = ((\mathcal{M}/\{a\})|E_2, \mathcal{W}.E_2)$$

are μ -admissible.

Proof. Let \mathfrak{R}' be the subset of \mathfrak{R} consisting of strings g such that there is

$$b \in E' \setminus \operatorname{rge}_M g$$

with $\{b\}$ being independent in \mathcal{M}' . Let f be a maximal element in \mathfrak{R}' with respect to \leq and

$$A = \{ b \in E' \setminus \operatorname{rge}_M f : \{ b \} \text{ is independent in } \mathcal{M}' \}.$$

Let t be a string with

$$\operatorname{rge} t = A \times \{0\}$$

and dom $t = \delta + 1$ for some ordinal δ (note that A is nonempty). Since $t(\delta)$ is not spanned by $E \setminus \operatorname{rge}_M(f * t)$ in \mathcal{M} , we have

$$\mu(f * t) \le \mu(f) - 1 < 0.$$

Since Γ is μ -admissible, it follows that f * t is not saturated. Since f is saturated, there is

$$a \in \operatorname{rge}_M t \setminus \operatorname{rge}_W f = A \setminus \operatorname{rge}_W f.$$

Let

$$E_1 = \operatorname{rge}_W f = \operatorname{rge}_M f$$

and

$$E_2 = E \setminus (E_1 \cup \{a\}).$$

Then a is not spanned by E_1 in \mathcal{W} , since it follows from the maximality of f that $f * [(a, 1)] \notin \mathfrak{R}'$. In particular $\{a\}$ is independent in \mathcal{W} . Since $a \in A$, $\{a\}$ is independent in \mathcal{M} .

Let g be a saturated string in

$$\Gamma_1 = \left(\mathcal{M}.E_1, \left(\mathcal{W}/\{a\}\right)|E_1\right).$$

Then g is a saturated string in Γ so $\mu(g) \geq 0$. Since a is not spanned by E_1 in \mathcal{W} and $\operatorname{rge}_W g \subseteq E_1$, it follows that for any $\beta < \operatorname{dom} g$, if $g(\beta) \in W$, then $g(\beta)$ is spanned by $\operatorname{rge}_W g_\beta$ in $(\mathcal{W}/\{a\}) | E_1$ if and only if it is spanned by the same set in \mathcal{W} . Moreover, for any $\beta < \operatorname{dom} g$, if $g(\beta) \in M$, then it is spanned by $E_1 \setminus \operatorname{rge}_M g_{\beta+1}$ in $\mathcal{M}.E_1$ if and only if it is spanned by $E \setminus \operatorname{rge}_M g_{\beta+1}$ in \mathcal{M} . It follows that an argument by transfinite induction can be used to prove that if μ_1 is the μ -function of the pair Γ_1 , then $\mu_1(g_\beta) = \mu(g_\beta)$ for every $\beta \leq \operatorname{dom} g$. In particular $\mu_1(g) = \mu(g) \geq 0$, so Γ_1 is μ -admissible.

It remains to show that

$$\Gamma_2 = \left(\left(\mathcal{M} / \{a\} \right) | E_2, \mathcal{W}.E_2 \right)$$

is μ -admissible. Suppose, by way of contradiction, that it is not. Let g be a saturated string in Γ_2 with $\mu_2(g) < 0$, where μ_2 is the μ -function of the pair Γ_2 . Without loss of generality, we can assume that $\mu_2(g) = -1$ and $\mu_2(g_\beta) \ge 0$ for every $\beta < \text{dom } g$. Then

$$h = f \ast [(a,1)] \ast g$$

is a saturated string in Γ . Note that if $\beta < \text{dom } g$ and $g(\beta) \in W$, then $g(\beta)$ is spanned by $\text{rge}_W g_\beta$ in $\mathcal{W}.E_2$ if and only if it is spanned by

$$E_1 \cup \{a\} \cup \operatorname{rge}_W g_\beta = \operatorname{rge}_W (f * [(a, 1)] * g_\beta)$$

in \mathcal{W} . Moreover, if $\beta < \text{dom } g$ and $g(\beta) \in M$, then $g(\beta)$ is spanned by $E_2 \setminus \text{rge}_M g_\beta$ in $(\mathcal{M}/\{a\}) | E_2$ if and only if it is spanned by

$$(E_2 \setminus \operatorname{rge}_M g_\beta) \cup \{a\} = E \setminus \operatorname{rge}_M (f * [(a, 1)] * g_\beta)$$

in \mathcal{M} . It follows that an argument by transfinite induction can be used to prove that

$$\mu(f * [(a, 1)] * g_{\beta}) = \mu(f) + 1 + \mu_2(g_{\beta})$$

for every $\beta \leq \operatorname{dom} g$. In particular

$$\mu(h) = \mu(f * [(a, 1)] * g) = \mu(f) + 1 + \mu_2(g) = \mu(f) + 1 - 1 = 0.$$

Therefore $h \in \mathfrak{R}'$ contradicting the definition of f as a maximal element in \mathfrak{R}' with respect to \preceq . Therefore Γ_2 is μ -admissible and the proof is complete.

4.2. Tree decomposition of Γ . Now we are ready for the proof of Theorem 2.4. We need some more terminology. By a *binary tree* we will mean a finite set N of finite 0-1 sequences (including the empty sequence) such that if $n \ge 1$ and $a_1a_2 \ldots a_n \in N$, then $a_1a_2 \ldots a_{n-1} \in N$ and $a_1a_2 \ldots a_{n-1}a'_n \in N$, where $a'_n = 1 - a_n$. An element of a tree N will be called a *vertex* of N. A *leaf* of a tree N is a sequence $a_1a_2 \ldots a_n \in N$ such that $a_1a_2 \ldots a_na_{n+1} \notin N$ for any $a_{n+1} \in \{0, 1\}$. An *internal vertex* of a tree Nis a vertex of N that is not a leaf.

If $s = a_1 a_2 \dots a_n$ and $s' = a'_1 a'_2 \dots a'_m$ are in N, then we say that s is to the left of s' (s' is to the right of s) if there is i with $1 \le i \le \min(n, m)$ such that $a_i = 0, a'_i = 1$, and $a_j = a'_j$ for every j with $1 \le j < i$. If $s', s \in N$ are as above with n < m and $a_i = a'_i$ for every $i = 1, 2, \dots, n$, then we say that s is above s' (s' is below s).

A tree partition of a set A is a function $\tau : N \to 2^A$ where N is a binary tree, $\tau(s_1) \cap \tau(s_2) = \emptyset$ whenever $s_1 \neq s_2$, and

$$\bigcup_{s \in N} \tau(s) = A.$$

Note that we allow the values of τ to be empty sets.

Suppose $\tau : N \to 2^A$ is a tree partition. If s is a vertex of N, then let L_s be the union of all $\tau(s')$ with s' to the left of s, let R_s be the union of all $\tau(s')$ with s' to the right of s, U_s be the union of all $\tau(s')$ with s' above s, and D_s be the union of $\tau(s)$ and all $\tau(s')$ with s' below s. Note that the sets L_s , R_s , U_s , D_s are pairwise disjoint and

$$L_s \cup R_s \cup U_s \cup D_s = A.$$

Let τ be a tree partition of the set E. With each vertex s of N we associate a pair of matroids $\Gamma_s = (\mathcal{M}_s, \mathcal{W}_s)$ with

$$\mathcal{M}_s = (\mathcal{M} \setminus L_s) . D_s \text{ and } \mathcal{W}_s = (\mathcal{W} \setminus R_s) . D_s.$$

We say that τ is a *tree decomposition* of Γ if for every internal vertex s of N, $\tau(s)$ is a singleton that is independent in both \mathcal{M}_s and \mathcal{W}_s . We say that a tree decomposition τ of Γ is μ -admissible if for every vertex s of N the pair Γ_s is μ -admissible. Note that if $\tau : N \to 2^E$ is the trivial decomposition with N containing only the empty sequence and $\tau(\emptyset) = E$, then τ is μ -admissible if and only if Γ is μ -admissible.

The internal set of a tree decomposition $\tau:N\to 2^E$ is the set

$$I_{\tau} = \{a \in E : \tau(s) = \{a\} \text{ for some internal vertex } s \text{ of } N\}.$$

Lemma 4.3. If $\tau : N \to 2^E$ is a tree decomposition of Γ , then the internal set of τ is independent in both \mathcal{M} and \mathcal{W} .

Proof. Without loss of generality we can assume that the set \overline{N} of internal vertices is nonempty. Let < be the ordering of \overline{N} defined by s < s' if and only if s is above or to the left of s', and let $s \leq s'$ if and only if s < s' or s = s'. It is easy to see that \leq is a linear ordering of \overline{N} . Let

$$\bar{N} = \{s_1, s_2, \dots, s_k\},\$$

with

$$s_1 < s_2 < \cdots < s_k.$$

Let $i \in \{1, \ldots, k\}$. Since τ is a tree decomposition, $\tau(s_i)$ is independent in

$$\mathcal{W}_{s_i} = (\mathcal{W} \setminus R_{s_i}) . D_{s_i},$$

which implies that $\tau(s_i)$ is not spanned $U_{s_i} \cup L_{s_i}$ in \mathcal{W} . Since

$$\tau(s_1) \cup \tau(s_2) \cup \cdots \cup \tau(s_{i-1}) \subseteq U_{s_i} \cup L_{s_i},$$

it follows that $\tau(s_i)$ is not spanned by the set $\tau(s_1) \cup \tau(s_2) \cup \cdots \cup \tau(s_{i-1})$ in \mathcal{W} . This implies that

$$I_{\tau} = \tau(s_1) \cup \tau(s_2) \cup \cdots \cup \tau(s_k)$$

is independent in \mathcal{W} since otherwise there would be a circuit C in $\mathcal{W}|I_{\tau}$, and taking the largest possible i with $\tau(s_i) \subseteq C$ we would get $\tau(s_i)$ that is spanned by the set $\tau(s_1) \cup \tau(s_2) \cup \cdots \cup \tau(s_{i-1})$ in \mathcal{W} .

The proof that I_{τ} is independent in \mathcal{M} is similar with the ordering < of \overline{N} defined by s < s' if and only if s is above or to the right of s'.

Assume that \mathcal{M} is the sum of matroids \mathcal{M}' and \mathcal{M}'' (on sets E' and E'' respectively) with \mathcal{M}' having finite rank. If $\tau : N \to 2^E$ is a tree decomposition of Γ , then for each vertex s of N, let $L'_s = L_s \cap E'$, $L''_s = L_s \cap E''$, let R'_s , R''_s , U''_s , D''_s , D''_s be defined similarly, and let

$$\mathcal{M}'_s = (\mathcal{M}' \setminus L'_s) . D'_s, \quad \mathcal{M}''_s = (\mathcal{M}'' \setminus L''_s) . D''_s.$$

It follows then from Lemma 1.1 that for each vertex s of N, the matroid \mathcal{M}_s is the sum of \mathcal{M}'_s and \mathcal{M}''_s . Moreover, let

$$I'_{\tau} = I_{\tau} \cap E' \quad I''_{\tau} = I_{\tau} \cap E''$$

Lemma 4.4. Let $\tau : N \to 2^E$ be a tree decomposition of Γ . Then

$$r\left(\mathcal{M}'\right) = |I'_{\tau}| + \sum_{s \in V} r\left(\mathcal{M}'_{s}\right),$$

where V is the set of leaves of N.

Proof. Let < be the ordering on N defined by s < s' if and only if s is above or to the right of s', and let $s \leq s'$ if and only if s < s' or s = s'. Let $\tau' : N \to 2^E$ be defined by

$$\tau'(s) = \tau(s) \cap E'$$

if s is an internal vertex of N and let $\xi(s)$ be a base of \mathcal{M}'_s if s is a leaf of N. We claim that $\bigcup_{s \in N} \tau'(s)$ is a base of \mathcal{M}' . Since

$$I'_{\tau} = \bigcup_{s \in \bar{N}} \tau'(s),$$

where \overline{N} is the set of internal vertices of N, the claim implies that

$$r\left(\mathcal{M}'\right) = |I'_{\tau}| + \sum_{s \in V} r\left(\mathcal{M}'_{s}\right).$$

It remains to prove the claim. Let

$$N = \{s_1, s_2, \ldots, s_k\},\$$

with

$$s_1 < s_2 < \cdots < s_k.$$

We will show, by induction on j, that for every j with $1 \le j \le k$ the set $\bigcup_{i=1}^{j} \tau'(s_j)$ is a base of

$$\mathcal{M}\left(R_{s_{j}}^{\prime}\cup U_{s_{j}}^{\prime}\cup\tau^{\prime}\left(s_{j}\right)\right).$$

Since $s_1 = \emptyset$ and $\tau(\emptyset)$ is independent in $\mathcal{M}'_{\emptyset} = \mathcal{M}'$, it follows that $\tau'(s_1)$ is a base of $\mathcal{M}' | (R'_{s_1} \cup U'_{s_1} \cup \tau'(s_1))$. Assume that $1 \leq j < k$ and that $\bigcup_{i=1}^j \tau'(s_i)$ is a base of

$$\mathcal{M}'|\left(R'_{s_j} \cup U'_{s_j} \cup \tau'\left(s_j\right)\right)$$

Since

$$R'_{s_j} \cup U'_{s_j} \cup \tau'(s_j) = R'_{s_{j+1}} \cup U'_{s_{j+1}}$$

and $\tau'(s_{j+1})$ is a base of

$$\mathcal{M}'_{s_{j+1}} | \tau'(s_{j+1}) = \left(\mathcal{M}' | \left(R'_{s_{j+1}} \cup U'_{s_{j+1}} \cup \tau'(s_{j+1}) \right) \right) . \tau'(s_{j+1})$$

it follows that $\bigcup_{i=1}^{j+1} \tau'(s_i)$ is a base of

$$\mathcal{M}' | \left(R'_{s_{j+1}} \cup U'_{s_{j+1}} \cup \tau'(s_{j+1}) \right).$$

Thus the proof is complete. \blacksquare

Let $\tau: N \to 2^E$ and $\tau': N' \to 2^E$ be tree decompositions of Γ with

$$N' = N \cup \{a_1 a_2 \dots a_n 0, a_1 a_2 \dots a_n 1\}$$

where $a_1 a_2 \ldots a_n$ is a fixed leaf of N, and $\tau'(s) = \tau(s)$ for every $s \in N \setminus \{a_1 a_2 \ldots a_n\}$. Then τ' will be called a *one step refinement* of τ . If $\tau' = \tau$ or τ' can be obtained from τ by a finite sequence of one step refinements, then τ' will be called a *refinement* of τ . Note that if $\tau : N \to 2^E$ is a tree decomposition of Γ and $\tau' : N' \to 2^E$ is a refinement of τ , then for every $s \in N$, the matroids \mathcal{M}_s and \mathcal{W}_s do not change when we replace τ with τ' .

Lemma 4.5. Assume that \mathcal{M} is the sum of matroids \mathcal{M}' and \mathcal{M}'' (on sets E' and E'' respectively) with \mathcal{M}' having finite rank. If $\tau : N \to 2^E$ is a μ -admissible tree decomposition of Γ , then there is a μ -admissible refinement τ' of τ such that the internal set $I_{\tau'}$ of τ' contains a base of \mathcal{M}' .

Proof. We will prove the lemma by induction on the number

$$\ell_{\tau} = r\left(\mathcal{M}'\right) - \left|I_{\tau}'\right|,\,$$

where

$$I'_{\tau} = I_{\tau} \cap E'.$$

If $\ell_{\tau} = 0$, then I'_{τ} is a base of \mathcal{M}' and $\tau' = \tau$ satisfies the requirements. Assume that $\ell_{\tau} > 0$. Then it follows from Lemma 4.4 that there is a leaf $s = a_1 a_2 \dots a_n$ of N with $r(\mathcal{M}'_s) > 0$. Since the pair $(\mathcal{M}_s, \mathcal{W}_s)$ is μ -admissible, it follows from Lemma 4.2 that there is

$$a \in D'_s = \tau(s) \cap E'$$

and disjoint sets E_1, E_2 with $E_1 \cup E_2 = D'_s \setminus \{a\}$, such that $\{a\}$ is independent in both \mathcal{M}_s and \mathcal{W}_s , and both pairs

$$\Gamma_1 = (\mathcal{M}_s.E_1, (\mathcal{W}_s/\{a\}) | E_1) \quad \Gamma_2 = ((\mathcal{M}_s/\{a\}) | E_2, \mathcal{W}_s.E_2)$$

are μ -admissible. Let $s_0 = a_1 a_2 \dots a_n 0$, $s_1 = a_1 a_2 \dots a_n 1$, $N' = N \cup \{s_0, s_1\}$ and $\tau' : N' \to 2^E$ be such that $\tau'(s') = \tau(s')$ for every $s' \in N \setminus \{s\}, \tau'(s) = \{a\}, \tau'(s_0) = E_1$, and $\tau'(s_1) = E_2$. Note that

$$L_{s_0} = L_s$$
 $L_{s_1} = L_s \cup E_1$ $R_{s_0} = R_s \cup E_2$ $R_{s_1} = R_s$ $D_{s_0} = E_1$ $D_{s_1} = E_2$

 \mathbf{SO}

$$\mathcal{M}_{s_0} = (\mathcal{M} \setminus L_{s_0}) . D_{s_0} = (\mathcal{M} \setminus L_s) . D_{s_0} = ((\mathcal{M} \setminus L_s) . D_s) . E_1$$

and

$$\mathcal{W}_{s_0} = (\mathcal{W} \setminus R_{s_0}) . D_{s_0} = (((\mathcal{W} \setminus R_s) . D_s) / \{a\}) \setminus E_2 = (\mathcal{W}_s / \{a\}) |E_1.$$

Thus

$$\Gamma_1 = \left(\mathcal{M}_{s_0}, \mathcal{W}_{s_0}\right).$$

Similarly,

$$\Gamma_2 = \left(\mathcal{M}_{s_1}, \mathcal{W}_{s_1}\right).$$

Since both Γ_1 and Γ_2 are μ -admissible and τ is μ -admissible, it follows that τ' is μ -admissible. Since

$$a \in I'_{\tau'} = I_{\tau'} \cap E',$$

it follows that $\ell_{\tau'} < \ell_{\tau}$ so the inductive hypothesis implies that τ' has a μ -admissible refinement τ'' with $I_{\tau''}$ containing a base of \mathcal{M}' . Thus the proof is complete.

4.3. **Proof of Theorem 2.4.** Let \mathcal{M} be the sum of finite rank matroids \mathcal{M}_1 , \mathcal{M}_2 , Let τ_0 be the trivial tree decomposition of Γ . Suppose that we have a μ -admissible tree decomposition τ_i of Γ . It follows from Lemma 4.5 that there is a μ -admissible tree decomposition τ_{i+1} of Γ that is a refinement of τ_i such that $I_{\tau_{i+1}}$ contains a base of \mathcal{M}_{i+1} . Let

$$I = \bigcup_{i=1}^{\infty} I_{\tau_i}.$$

Then I is spanning in \mathcal{M} , and it follows from Lemma 4.3 that any finite subset of I is independent in \mathcal{W} . Since \mathcal{W} is finitary, I is independent in \mathcal{W} .

5. Remarks

If we remove the restrictions on \mathcal{M} and \mathcal{W} in Theorem 2.4, it becomes obviously false. For example, if both \mathcal{M} and \mathcal{W} are equal to the matroid from Example 1.1, then $\Gamma = (\mathcal{M}, \mathcal{W})$ is μ -admissible, since $\mu(f) = \| \operatorname{rge}_W f \|$ for any saturated string fin Γ . However, Γ is not matchable as any matching in Γ would be a base of \mathcal{M} , and \mathcal{M} has no bases. It is natural to ask, how much the restrictions on \mathcal{M} and \mathcal{W} can be relaxed for Theorem 2.4 to remain valid.

Another natural question to ask is whether the nonexistence of a hindrance in $\Gamma = (\mathcal{M}, \mathcal{W})$ implies its μ -admissibility. This implication clearly holds for every pair Γ with \mathcal{M} being SCF and \mathcal{W} being finitary, or more generally, whenever the nonexistence of a hindrance in Γ implies its matchability, since matchability always implies μ -admissibility.

On the other hand, without any restrictions on \mathcal{M} and \mathcal{W} , the nonexistence of a hindrance does not imply μ -admissibility. For example, let \mathcal{W} be as in Example 1.1 and \mathcal{M} be discrete, that is, let all subsets of \mathbb{Z} be independent in \mathcal{M} . Then there are no hindrances in $\Gamma = (\mathcal{M}, \mathcal{W})$, since if H is independent in \mathcal{W} , then it is finite, so $\bar{\partial}_{\mathcal{W}}(H) = H$ and H is spanning in \mathcal{M} . $(\bar{\partial}_{\mathcal{W}}(H))$. However, Γ is not μ -admissible. Indeed, let f be the $(\omega + 2)$ -string in Γ defined as follows. Let $M = \mathbb{Z} \times \{0\}$, $W = \mathbb{Z} \times \{1\}$ and consider \mathcal{M} and \mathcal{W} as matroids on M and W respectively. Let f(i) = (i, 1) for $i = 0, 2, 4, \ldots, f(i) = (i - 1, 0)$ for $i = 1, 3, 5, \ldots, f(\omega) = (1, 1)$, and $f(\omega + 1) = (1, 0)$. Then f is saturated, $\mu(f_{\omega}) = \mu(f_{\omega+1}) = 0$, and $\mu(f) = -1$.

It would be interesting to know whether the nonexistence of a hindrance implies μ -admissibility when \mathcal{M} and \mathcal{W} are finitary, and if so, then how much this restriction can be relaxed for the implication to remain valid.

MATROIDAL VERSION OF HALL'S THEOREM

References

- R. AHARONI, On the equivalence of two conditions for the existence of transversals, J. Combin. Theory Ser. A 34 (1983), 202–214.
- [2] R. AHARONI and R. ZIV, The intersection of two infinite matroids, J. London Math. Soc. (2) 58 (1998), no. 3, 513–525.
- [3] R. M. DAMERELL and E. C. MILNER, Necessary and sufficient conditions for transversals of countable set systems, J. Combin. Theory Ser. A 17 (1974), 350–374.
- [4] P. HALL, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
- [5] M. HALL, JR., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922–926.
- [6] D. A. HIGGS, Matroids and duality, Colloq. Math. 20 (1969), 215-220.
- [7] E. C. MILNER and S. SHELAH, Sufficiency conditions for existence of transversals, Canad. J. Math. 26 (1974), no. 4, 948–961.
- [8] C. ST. J. A. NASH-WILLIAMS, Another criterion for marriage in denumerable societies, Advances in Graph Theory, Proc. Cambridge Comb. Conf. (B. Bollobás, ed.), Ann. Discrete Math., vol. 3, North-Holland, 1978, pp.~165–179.
- [9] C. ST. J. A. NASH-WILLIAMS, Marriage in infinite societies in which each woman knows countably many men, Proc. 10th S-E Conf. Combinatorics, Graph Theory, and Computing, 1980, pp. 103–115.
- [10] J. G. OXLEY, *Infinite matroids*. In "Matroid applications" (ed. N. White), 1992, Cambridge University Press, 73–90.
- K. P. PODEWSKI and K. S. STEFFENS, *Injective choice functions for countable families*, J. Combin. Theory Ser. B **21** (1976), 40–46.
- [12] J. WOJCIECHOWSKI, A criterion for the existence of transversals of set systems, J. London Math. Soc. (2) 56 (1997), 491–503.

DEPARTMENT OF MATHEMATICS, WEST WIRGINIA UNIVERSITY, MORGANTOWN, WV 26506-6310, USA

E-mail address: jerzy@math.wvu.edu