INFINITE MATROIDAL VERSION OF HALL'S MATCHING THEOREM

JERZY WOJCIECHOWSKI

Abstract

Hall's theorem for bipartite graphs gives a necessary and sufficient condition for the existence of a matching in a given bipartite graph. Aharoni and Ziv [2] generalized the notion of matchability to a pair of possibly infinite matroids on the same set and gave a condition that is sufficient for the matchability of a given pair $(\mathcal{M}, \mathcal{W})$ of finitary matroids, where the matroid \mathcal{M} is SCF - a sum of countably many matroids of finite rank. The condition of Aharoni and Ziv is not necessary for matchability. In this paper we give a condition that is necessary for the existence of a matching for any pair of matroids (not necessarily finitary) and is sufficient for any pair $(\mathcal{M}, \mathcal{W})$ of finitary matroids, where the matroid \mathcal{M} is SCF.

1. Matroids

Following Higgs [6] (see also Oxley [10]), we will define matroid as a pair $\mathcal{S}=(S, \bar{\partial})$ where S is a set and $\bar{\partial}$ is an IE-operator (idempotent-exchange operator) on S.

A space is a pair $\mathcal{S}=(S, \bar{\partial})$ where S is a set and $\bar{\partial}: 2^{S} \rightarrow 2^{S}$ is an operator on S such that:

M1. $X \subseteq \bar{\partial}(X)$ for every $X \subseteq S$;
M2. if $X \subseteq Y \subseteq S$, then $\bar{\partial}(X) \subseteq \bar{\partial}(Y)$.
If $\mathcal{S}=(S, \bar{\partial})$ is a space, and $\bar{\partial}^{*}: 2^{S} \rightarrow 2^{S}$ is defined by

$$
x \in \bar{\partial}^{*}(X) \text { iff } x \in X \text { or } x \notin \bar{\partial}(S \backslash(X \cup\{x\}))
$$

then $\mathcal{S}^{*}=\left(S, \bar{\partial}^{*}\right)$ is also a space (the space dual to \mathcal{S}). It is easy to see that the space $\mathcal{S}^{* *}$ dual to \mathcal{S}^{*} is equal to \mathcal{S}.

A space $\mathcal{S}=(S, \bar{\partial})$ is idempotent if
M3. $\bar{\partial}(\bar{\partial}(X))=\bar{\partial}(X)$ for every $X \subseteq S$;
and it is exchange if
M4. for every X, Y and p such that $X \subseteq Y \subseteq S$ and $p \in S \backslash Y$, if $p \in \bar{\partial}(Y) \backslash \bar{\partial}(X)$ then there is $x \in Y \backslash X$ with $x \in \bar{\partial}(Y \backslash\{x\} \cup\{p\})$.

It is a straightforward exercise to verify that a space is idempotent if and only if its dual space is exchange.
A matroid is a space that is both idempotent and exchange. A matroid $\mathcal{S}=(S, \bar{\partial})$ is finite if S is finite, and it is finitary if

M5. for every $X \subseteq S$ and $x \in S$, if $x \in \bar{\partial}(X)$ then there is a finite $Y \subseteq X$ such that $x \in \bar{\partial}(Y)$.

A finitary matroid is often called an independence space in the literature. Obviously, every finite matroid is finitary. The space dual to a matroid is clearly also a matroid, but the matroid dual to a finitary matroid (called cofinitary) does not have to be finitary.

Let $\mathcal{S}=(S, \bar{\partial})$ be a space and let $X \subseteq S$. If $x \in \bar{\partial}(X)$ or $Y \subseteq \bar{\partial}(X)$, then we say that X spans x or X spans Y, respectively. We say that X is spanning in \mathcal{S} if X spans S, and that X is independent in \mathcal{S} if no $x \in X$ is spanned by $X \backslash\{x\}$. Note that X is independent in \mathcal{S} if and only if $S \backslash X$ is spanning in the space dual to \mathcal{S}. If X is not independent in \mathcal{S}, then we say that it is dependent in \mathcal{S}.

Given a finitary matroid $\mathcal{S}=(S, \bar{\partial})$, let $\overline{\mathcal{S}}$ be the family of subsets of S that are independent in \mathcal{S}. Note that (see Oxley [10]):

I1. $\overline{\mathcal{S}} \neq \varnothing$;
I2. if $A \in \overline{\mathcal{S}}$ and $B \subseteq A$, then $B \in \overline{\mathcal{S}}$;
I3. if $I, J \in \overline{\mathcal{S}}$ are finite and $|I|=|J|+1$, then there is an element $y \in I \backslash J$ such that $J \cup\{y\} \in \overline{\mathcal{S}}$;
I4. if $A \subseteq S$ and $I \in \overline{\mathcal{S}}$ for every finite $I \subseteq A$, then $A \in \overline{\mathcal{S}}$.
Conversely, if $\overline{\mathcal{S}}$ is a family of subsets of a set S satisfying conditions I1-I4, and $\bar{\partial}: 2^{S} \rightarrow 2^{S}$ is defined by
$x \in \bar{\partial}(X) \quad$ iff $x \in X$ or there is $A \subseteq X$ such that $A \in \overline{\mathcal{S}}$ and $A \cup\{x\} \notin \overline{\mathcal{S}}$,
then $\mathcal{S}=(S, \bar{\partial})$ is a finitary matroid and $\overline{\mathcal{S}}$ is equal to the family of subsets of S that are independent in \mathcal{S}.

Let $\mathcal{S}=(S, \bar{\partial})$ be a space and let $X \subseteq S$. If X is both spanning and independent in \mathcal{S}, then it is said to be a base of \mathcal{S}. It is easy to see that X is a base of \mathcal{S} if and only if it is maximal in the family of independent sets of \mathcal{S}, and if and only if it is minimal in the family of spanning sets.

In general, a matroid may have no bases.
Example 1.1. Let $S_{0}=\mathbb{Z}$ and

$$
\bar{\partial}_{0}(X)= \begin{cases}X & \text { if } X \text { is finite } \\ S_{0} & \text { otherwise }\end{cases}
$$

It is clear that $\mathcal{S}_{0}=\left(S_{0}, \bar{\partial}_{0}\right)$ is a matroid with the family of independent sets equal to the family of all finite subsets of S_{0} and the family of spanning sets equal to the family of infinite subsets of S_{0}. Thus \mathcal{S}_{0} has no bases.

However, if \mathcal{S} is a finitary matroid, then for every independent X and spanning Y with $X \subseteq Y \subseteq S$ there is a base B of \mathcal{S} with $X \subseteq B \subseteq Y$. It follows immediately that the same is true for cofinitary matroids. If $\mathcal{S}=(S, \bar{\partial})$ is a matroid and for every $Y \subseteq X \subseteq S$ the family of subsets of X that contain Y and are independent in \mathcal{S} has a maximal element, then \mathcal{S} is called a B-matroid. Any finitary matroid is a B-matroid.

Let $\mathbb{Z}^{\infty}=\mathbb{Z} \cup\{-\infty, \infty\}$ be the set of quasi-integers. If $a_{1}, \ldots, a_{n} \in \mathbb{Z}^{\infty}$, then let the sum $a_{1}+\cdots+a_{n}$ be the usual sum if a_{1}, \ldots, a_{n} are all integers, let the sum be ∞ if at least one of them is ∞, and let it be $-\infty$ if none of a_{1}, \ldots, a_{n} is ∞ but at least one of them is $-\infty$. Note that it follows immediately from the above definition that the operation of addition in \mathbb{Z}^{∞} is commutative and associative. The difference $a-b$ of two quasi-integers a, b means $a+(-b)$; and likewise, for example, $a-b+c-d$ means $a+(-b)+c+(-d)$, etc. Let \mathbb{Z}^{∞} be ordered in the obvious way. Note that if $a, b, c, d \in \mathbb{Z}^{\infty}$ satisfy $a \leq c$ and $b \leq d$, then $a+b \leq c+d$. Given a set S, let $\|S\| \in \mathbb{Z}^{\infty}$ be the cardinality of S if S is finite, and $\|S\|=\infty$ if S is infinite.

Let $\mathcal{S}=(S, \bar{\partial})$ be a matroid. The quasirank of \mathcal{S} (denoted $r(\mathcal{S})$) is the element of \mathbb{Z}^{∞} that is equal to the maximal cardinality of a finite independent set of \mathcal{S} if such
a cardinality exists, and it is equal to ∞ otherwise. If $r(\mathcal{S})$ is finite, then \mathcal{S} is said to be a finite-rank matroid. It is obvious that a finite-rank matroid is finitary. If \mathcal{S} is finitary, then all bases of \mathcal{S} have the same cardinality (denoted $\rho(\mathcal{S})$), and this cardinality is defined to be the rank of \mathcal{S}. Let $r^{*}(\mathcal{S})$ be the quasirank of the matroid dual to \mathcal{S}.

Assume that $\mathcal{S}=(S, \bar{\partial})$ is a space and $X \subseteq S$. The restriction of \mathcal{S} to X, denoted $\mathcal{S} \mid X$, is defined to be the space $\left(X, \bar{\partial}^{\prime}\right)$ with $\bar{\partial}^{\prime}$ being the restriction of $\bar{\partial}$ to 2^{X}. The contraction of \mathcal{S} to X, denoted $\mathcal{S} . X$, is the dual space to the restriction to X of the space dual to \mathcal{S}. Explicitly, $\mathcal{S} . X=\left(X, \bar{\partial}^{\prime \prime}\right)$ with $x \in \bar{\partial}^{\prime \prime}(A)$ (where $A \subseteq X$) if and only if $x \in \bar{\partial}(A \cup(S \backslash X))$. If \mathcal{S} is a matroid, then both $\mathcal{S} \mid X$ and $\mathcal{S} . X$ are matroids. If moreover \mathcal{S} is either finite, finite-rank, finitary, or is a B-matroid, then both $\mathcal{S} \mid X$ and \mathcal{S}. X have the same property. Let $\mathcal{S} \backslash X=\mathcal{S} \mid(S \backslash X)$ and $\mathcal{S} / X=\mathcal{S}$. $(S \backslash X)$.

Let $\left(S_{i}: i \in I\right)$ be a family of pairwise disjoint sets and $\left(\mathcal{S}_{i}: i \in I\right)$ be a family of spaces with $\mathcal{S}_{i}=\left(S_{i}, \bar{\partial}_{i}\right)$. The sum of the family $\left(S_{i}: i \in I\right)$ is defined to be the space $\mathcal{S}=(S, \bar{\partial})$ with $S=\bigcup_{i \in I} S_{i}$ and $x \in \bar{\partial}(X)$ if and only if $x \in \bar{\partial}_{i}\left(X \cap S_{i}\right)$ where $i \in I$ is such that $x \in S_{i}$. It is easy to see that the following lemma holds.

Lemma 1.1. If the space $\mathcal{S}=(S, \bar{\partial})$ is the sum of the family $\left(\mathcal{S}_{i}: i \in I\right)$ of spaces with $\mathcal{S}_{i}=\left(S_{i}, \bar{\partial}_{i}\right)$ for every $i \in I$, and $A \subseteq S$, then $\mathcal{S} \mid A$ is the sum of the family $\left(\mathcal{S}_{i} \mid A_{i}: i \in I\right)$ and $\mathcal{S} . A$ is the sum of the family $\left(\mathcal{S}_{i} . A_{i}: i \in I\right)$, where $A_{i}=A \cap S_{i}$ for every $i \in I$.

A matroid \mathcal{S} is said to be SCF if it is the sum of a countable family of finite-rank matroids.

2. A matroidal analog of Hall's Theorem

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Aharoni and Ziv [2] defined the pair $(\mathcal{M}, \mathcal{W})$ to be matchable if there is a subset of E that is both spanning in \mathcal{M} and independent in \mathcal{W}. Such a subset of E will be called a matching in $(\mathcal{M}, \mathcal{W})$.

The concept of matchability of a pair of matroids on the same set originated as a generalization of a matroidal interpretation of the existence of a matching in a
bipartite graph. Indeed, if $G=(V, E)$ is a bipartite graph with bipartition $V=$ $M \cup W$, then let $\mathcal{M}=\left(E, \bar{\partial}_{\mathcal{M}}\right)$ and $\mathcal{W}=\left(E, \bar{\partial}_{\mathcal{W}}\right)$ be the matroids on the set of edges E defined by:

- $y \in \bar{\partial}_{\mathcal{M}}(X)$ if and only if there exists $x \in X$ such that x and y are incident to the same vertex in M;
- $y \in \bar{\partial}_{\mathcal{W}}(X)$ if and only if there exists $x \in X$ such that x and y are incident to the same vertex in W.

It is easy to see that a subset of E is a matching in $\Gamma=(\mathcal{M}, \mathcal{W})$ if and only if it contains a matching in the graph G, implying that Γ is matchable if and only if the graph G is matchable.

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Aharoni and Ziv define a hindrance in $(\mathcal{M}, \mathcal{W})$ to be a subset H of E such that H is independent in both \mathcal{W} and $\mathcal{M} .\left(\bar{\partial}_{\mathcal{W}}(H)\right)$ but H is not spanning in $\mathcal{M} .\left(\bar{\partial}_{\mathcal{W}}(H)\right)$. They prove the following result.

Theorem 2.1. Let \mathcal{M} and \mathcal{W} be matroids on a set E such that \mathcal{M} is SCF and \mathcal{W} is finitary. If there are no hindrances in $(\mathcal{M}, \mathcal{W})$, then $(\mathcal{M}, \mathcal{W})$ is matchable.

Theorem 2.1 is used by Aharoni and Ziv to prove a special case of the following conjecture, which is the infinite version of Edmond's theorem, and is attributed to C. Nash-Williams by Aharoni in [2].

Conjecture 2.2. If \mathcal{M} and \mathcal{W} are finitary matroids on the same set S, then there exists $I \subseteq S$ such that I is independent in both \mathcal{M} and \mathcal{W} and there is a partition of I as $I=H \cup K$ with

$$
\bar{\partial}_{\mathcal{M}}(H) \cup \bar{\partial}_{\mathcal{W}}(K)=S
$$

The condition, in Theorem 2.1, that $(\mathcal{M}, \mathcal{W})$ does not contain a hindrance is not necessary for matchability. For example, let

$$
E=\{(i, j): i \in\{0,1\}, j \in\{0,1,2, \ldots\}\}
$$

with

$$
(i, j) \in \bar{\partial}_{\mathcal{W}}(A) \quad \text { iff there is } i^{\prime} \in\{0,1\} \text { such that }\left(i^{\prime}, j\right) \in A \text {, }
$$

and $X \subseteq E$ being independent in \mathcal{M} if and only if it is the set of edges of an acyclic subgraph of the graph $G=(V, E)$ with $V=\{0,1,2, \ldots\},(0, j)$ incident to j and $j+1$, and $(1, j)$ incident to j and $j+2, j=0,1,2, \ldots$ Then

$$
H=\{(1, j): j \in\{0,1,2, \ldots\}\}
$$

is a hindrance in $(\mathcal{M}, \mathcal{W})$ and

$$
T=\{(0, j): j \in\{0,1,2, \ldots\}\}
$$

is a matching in $(\mathcal{M}, \mathcal{W})$.
The condition of Aharoni and Ziv resembles the condition in the countable version of Hall's theorem proved by Podewski and Steffens [11]. Another countable version of Hall's Theorem with a condition of a somewhat different nature was given by Nash-Williams [8] [9]. A modified version of the theorem of Nash-Williams, with a condition of a similar nature, called μ-admissibility, is proved in [12]. We are going to formulate a matroidal analog of μ-admissibility after some preliminaries.

Let \mathcal{M} and \mathcal{W} be matroids on a set E. Let M and W be disjoint copies of E (say $M=E \times\{0\}$ and $W=E \times\{1\})$. In an obvious way, \mathcal{M} and \mathcal{W} can be regarded as matroids on M and W respectively. To simplify notation, we will often identify the elements of M (of W) with the elements of E when it does not lead to confusion.

A string is an injective function with its domain being an ordinal. In particular, the empty set \varnothing is a string with domain $0=\varnothing$. A string f is said to be in a set S if rge $f \subseteq S$, and it is said to be an α-string if its domain is equal to α. A string in $\Gamma=(\mathcal{M}, \mathcal{W})$ is a string in $M \cup W$. Given a string f in Γ, let

$$
\begin{aligned}
\operatorname{rge}_{M} f & =\{a \in E:(a, 0) \in \operatorname{rge} f\} \\
\operatorname{rge}_{W} f & =\{a \in E:(a, 1) \in \operatorname{rge} f\}
\end{aligned}
$$

A string f in Γ is saturated if $\operatorname{rge}_{M} f_{\beta} \subseteq \operatorname{rge}_{W} f_{\beta}$ for every $\beta \leq \operatorname{dom} f$.
Let f be a string and β, γ be ordinals with $\beta \leq \gamma \leq \operatorname{dom} f$. The $[\beta, \gamma)$-segment of f is the string $f_{[\beta, \gamma)}$ defined by

$$
f_{[\beta, \gamma)}(\theta)=f(\beta+\theta),
$$

for all θ with $\beta+\theta<\gamma$, that is, $f_{[\beta, \gamma)}$ is obtained from f by restricting it to $[\beta, \gamma)$ and shifting the domain to start at 0 . Given $\alpha \leq \operatorname{dom} f$, let $f_{\alpha}=f_{[0, \alpha)}$.

Assume that f is a string in Γ. The μ-margin $\mu(f)$ of f is an element of \mathbb{Z}^{∞} defined by transfinite induction on $\alpha=\operatorname{dom} f$ as follows. Let $\mu(f)=0$ if $\alpha=0$, let

$$
\mu(f)= \begin{cases}\mu\left(f_{\beta}\right)+1 & \text { if } f(\beta) \in W \text { and } f(\beta) \text { is not spanned by } \operatorname{rge}_{W} f_{\beta} \text { in } \mathcal{W} \tag{1}\\ \mu\left(f_{\beta}\right)-1 & \text { if } f(\beta) \in M \text { and } f(\beta) \text { is not spanned by } E \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M} \\ \mu\left(f_{\beta}\right) & \text { otherwise }\end{cases}
$$

when $\alpha=\beta+1$ is a successor ordinal, and

$$
\mu(f)=\liminf _{\beta \rightarrow \alpha} \mu\left(f_{\beta}\right)
$$

if α is a limit ordinal. We say that Γ is μ-admissible if $\mu(f) \geq 0$ for every saturated string f in Γ.

We will prove the following results.
Theorem 2.3. If \mathcal{M} and \mathcal{W} are arbitrary matroids on the same set and $(\mathcal{M}, \mathcal{W})$ is matchable, then it is μ-admissible.

Theorem 2.4. Let \mathcal{M} and \mathcal{W} be matroids on the same set. If \mathcal{M} is $S C F, \mathcal{W}$ is finitary, and $(\mathcal{M}, \mathcal{W})$ is μ-admissible, then it is matchable.

3. Necessity of the condition

In this section we are going to prove Theorem 2.3. Let's start with the following preliminary lemma.

Lemma 3.1. Let $\mathcal{S}=\left(S, \bar{\partial}_{\mathcal{S}}\right)$ be a matroid, $a \in S$, and $\left\{S_{1}, S_{2}, S_{3}\right\}$ be a partition of $S \backslash\{a\}$ (allowing the parts to be empty). Let $S_{i}^{\prime}=S_{i} \cup\{a\}, i=1,2,3$, and

$$
\mathcal{S}_{1}=\left(\mathcal{S} / S_{1}^{\prime}\right) \backslash S_{3}, \quad \mathcal{S}_{2}=\left(\mathcal{S} / S_{1}\right) \backslash S_{3}, \quad \mathcal{S}_{3}=\left(\mathcal{S} / S_{1}\right) \backslash S_{3}^{\prime}
$$

Then
(1) $r\left(\mathcal{S}_{1}\right)=r\left(\mathcal{S}_{2}\right)=r\left(\mathcal{S}_{3}\right)$ and $r^{*}\left(\mathcal{S}_{1}\right)=r^{*}\left(\mathcal{S}_{2}\right)-1=r^{*}\left(\mathcal{S}_{3}\right)$ if a is spanned by S_{1} in \mathcal{S};
(2) $r\left(\mathcal{S}_{1}\right)+1=r\left(\mathcal{S}_{2}\right)=r\left(\mathcal{S}_{3}\right)$ and $r^{*}\left(\mathcal{S}_{1}\right)=r^{*}\left(\mathcal{S}_{2}\right)=r^{*}\left(\mathcal{S}_{3}\right)+1$ if a is spanned by $S_{1} \cup S_{2}$ but not by S_{1} in \mathcal{S};
(3) $r\left(\mathcal{S}_{1}\right)=r\left(\mathcal{S}_{2}\right)-1=r\left(\mathcal{S}_{3}\right)$ and $r^{*}\left(\mathcal{S}_{1}\right)=r^{*}\left(\mathcal{S}_{2}\right)=r^{*}\left(\mathcal{S}_{3}\right)$ if a is not spanned by $S_{1} \cup S_{2}$ in \mathcal{S}.

Proof. We will only prove the equations involving the quasirank r. The equations involving the dual quasirank r^{*} will then follow.

Assume that a is spanned by S_{1} in \mathcal{S}. Obviously, any set independent in \mathcal{S}_{1} is independent in \mathcal{S}_{2}. Suppose that A is independent in \mathcal{S}_{2}. Since $a \in \bar{\partial}_{\mathcal{S}_{2}}(\varnothing)$, it follows that $a \notin A$ and A is independent in \mathcal{S}_{1}, thus

$$
r\left(\mathcal{S}_{1}\right)=r\left(\mathcal{S}_{2}\right)
$$

Assume that a is not spanned by S_{1} in \mathcal{S}. We will show that

$$
\begin{equation*}
r\left(\mathcal{S}_{1}\right)=r\left(\mathcal{S}_{2}\right)-1 \tag{2}
\end{equation*}
$$

If $r\left(\mathcal{S}_{1}\right)=\infty$, then $r\left(\mathcal{S}_{2}\right)=\infty$ and (2) holds. If $r\left(\mathcal{S}_{1}\right)$ is finite and A is a base of \mathcal{S}_{1}, then $A \cup\{a\}$ is a base of \mathcal{S}_{2} and (2) holds as well.

Assume that a is spanned by $S_{1} \cup S_{2}$ in \mathcal{S}. We will show that

$$
\begin{equation*}
r\left(\mathcal{S}_{2}\right)=r\left(\mathcal{S}_{3}\right) . \tag{3}
\end{equation*}
$$

If $r\left(\mathcal{S}_{3}\right)=\infty$, then $r\left(\mathcal{S}_{2}\right)=\infty$ and (3) holds. If $r\left(\mathcal{S}_{3}\right)$ is finite and A is a base of \mathcal{S}_{3}, then it is a base of \mathcal{S}_{2} so (3) holds as well.

Assume that a is not spanned by $S_{1} \cup S_{2}$ in \mathcal{S}. We will show that

$$
\begin{equation*}
r\left(\mathcal{S}_{2}\right)-1=r\left(\mathcal{S}_{3}\right) . \tag{4}
\end{equation*}
$$

If $r\left(\mathcal{S}_{3}\right)=\infty$, then $r\left(\mathcal{S}_{2}\right)=\infty$ and (4) holds. If $r\left(\mathcal{S}_{3}\right)$ is finite and A is a base of \mathcal{S}_{3}, then $A \cup\{a\}$ is a base of \mathcal{S}_{2} so (3) holds as well.

Now we are ready to prove Theorem 2.3. Let \mathcal{M} and \mathcal{W} be arbitrary matroids on the same set E and let $\Gamma=(\mathcal{M}, \mathcal{W})$. Assume that T is a matching in Γ and f is a saturated string in Γ. Let $\alpha=\operatorname{dom} f$, and for each $\beta \leq \alpha$ let $T_{\beta}=T \cap \operatorname{rge}_{M} f_{\beta}$,

$$
r_{\beta}^{*}=r^{*}\left(\left(\mathcal{M} \cdot \operatorname{rge}_{M} f_{\beta}\right) \mid T_{\beta}\right),
$$

and

$$
r_{\beta}=r\left(\left(\mathcal{W} / T_{\beta}\right) \mid\left(\operatorname{rge}_{W} f_{\beta} \backslash T_{\beta}\right)\right)
$$

Using transfinite induction on α, we will show that

$$
\begin{equation*}
\mu(f) \geq r_{\alpha}^{*}+r_{\alpha} \tag{5}
\end{equation*}
$$

Since $r_{\alpha}^{*}, r_{\alpha} \geq 0$, it then follows that $\mu(f) \geq 0$ and so Γ is μ-admissible.
If $\alpha=0$, then $\mu(f)=r_{\alpha}^{*}=r_{\alpha}=0$ so (5) holds. The proof of (5) will be completed in a series of lemmas.

Lemma 3.2. If $\alpha=\beta+1$ is a successor ordinal, $\mu\left(f_{\beta}\right) \geq r_{\beta}^{*}+r_{\beta}$, and $f(\beta) \in W$, then $\mu(f) \geq r_{\alpha}^{*}+r_{\alpha}$.

Proof. Since $\operatorname{rge}_{M} f=\operatorname{rge}_{M} f_{\beta}$, we have $r_{\alpha}^{*}=r_{\beta}^{*}$. Let $\mathcal{S}=\mathcal{W}, a=f(\beta)$,

$$
S_{1}=T_{\beta}, \quad S_{2}=\operatorname{rge}_{W} f_{\beta} \backslash T_{\beta}, \quad S_{3}=E \backslash \operatorname{rge}_{W} f
$$

and $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ be as in Lemma 3.1. Then $r_{\beta}=r\left(\mathcal{S}_{3}\right)$ and $r_{\alpha}=r\left(\mathcal{S}_{2}\right)$. If $f(\beta)$ is not spanned by $\operatorname{rge}_{W} f_{\beta}=S_{1} \cup S_{2}$ in \mathcal{W}, then $\mu(f)=\mu\left(f_{\beta}\right)+1$ and it follows from Lemma 3.1 that $r_{\alpha}=r_{\beta}+1$. If $f(\beta)$ is spanned by $\operatorname{rge}_{W} f_{\beta}=S_{1} \cup S_{2}$ in \mathcal{W}, then $\mu(f)=\mu\left(f_{\beta}\right)$ and it follows from Lemma 3.1 that $r_{\alpha}=r_{\beta}$.

Lemma 3.3. If $\alpha=\beta+1$ is a successor ordinal, $\mu\left(f_{\beta}\right) \geq r_{\beta}^{*}+r_{\beta}$, and $f(\beta) \in M$, then $\mu(f) \geq r_{\alpha}^{*}+r_{\alpha}$.

Proof. If $f(\beta) \notin T$, then $r_{\alpha}=r_{\beta}$. If $f(\beta) \in T$, than taking $\mathcal{S}=\mathcal{W}, a=f(\beta)$,

$$
S_{1}=T_{\beta}, \quad S_{2}=\operatorname{rge}_{W} f_{\beta} \backslash T_{\beta}, \quad S_{3}=E \backslash \operatorname{rge}_{W} f
$$

and $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ as in Lemma 3.1, we have $r_{\beta}=r\left(\mathcal{S}_{2}\right)$ and $r_{\alpha}=r\left(\mathcal{S}_{1}\right)$. Since T is independent in \mathcal{W}, it follows that $f(\beta)$ is not spanned by T_{β} in \mathcal{W}, so Lemma 3.1 implies that $r_{\alpha}=r_{\beta}-1$.

Now let $\mathcal{S}=\mathcal{M}, a=f(\beta)$,

$$
S_{1}=E \backslash \operatorname{rge}_{M} f, \quad S_{2}=T_{\beta}, \quad S_{3}=\operatorname{rge}_{M} f_{\beta} \backslash T_{\beta},
$$

and $\mathcal{S}_{1}, \mathcal{S}_{2}, \mathcal{S}_{3}$ be as in Lemma 3.1.

If $f(\beta) \in T$, then $r_{\beta}^{*}=r^{*}\left(\mathcal{S}_{1}\right)$ and $r_{\alpha}^{*}=r^{*}\left(\mathcal{S}_{2}\right)$ so Lemma 3.1 implies that

$$
r_{\alpha}^{*}= \begin{cases}r_{\beta}^{*}+1 & \text { if } f(\beta) \text { is spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M} \\ r_{\beta}^{*} & \text { if } f(\beta) \text { is not spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M}\end{cases}
$$

Assume now that $f(\beta) \notin T$. Then $r_{\beta}^{*}=r^{*}\left(\mathcal{S}_{1}\right)$ and $r_{\alpha}^{*}=r^{*}\left(\mathcal{S}_{3}\right)$. If $f(\beta)$ is spanned by $S_{1}=M \backslash \operatorname{rge}_{M} f$ in \mathcal{M}, then Lemma 3.1 implies that $r_{\alpha}^{*}=r_{\beta}^{*}$. Note that since $T \subseteq S_{1} \cup S_{2}$ and T is spanning in \mathcal{M}, it follows that $f(\beta)$ is spanned by $S_{1} \cup S_{2}$ in \mathcal{M}. Therefore, if $f(\beta)$ is not spanned by $S_{1}=M \backslash \operatorname{rge}_{M} f$ in \mathcal{M}, then it follows from Lemma 3.1 that $r_{\alpha}^{*}=r_{\beta}^{*}-1$.

Combining the cases when $f(\beta) \in T$ and $f(\beta) \notin T$, we obtain

$$
r_{\alpha}+r_{\alpha}^{*}=\left\{\begin{array}{ll}
r_{\beta}+r_{\beta}^{*} & \text { if } f(\beta) \text { is spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M} \\
r_{\beta}+r_{\beta}^{*}-1 & \text { if } f(\beta) \text { is not spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M}
\end{array} .\right.
$$

Since

$$
\mu(f)=\left\{\begin{array}{ll}
\mu\left(f_{\beta}\right) & \text { if } f(\beta) \text { is spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M} \\
\mu\left(f_{\beta}\right)-1 & \text { if } f(\beta) \text { is not spanned by } M \backslash \operatorname{rge}_{M} f \text { in } \mathcal{M}
\end{array},\right.
$$

the proof is complete.
Lemma 3.4. If α is a limit ordinal and $\mu\left(f_{\beta}\right) \geq r_{\beta}^{*}+r_{\beta}$ for every $\beta<\alpha$, then $\mu(f) \geq r_{\alpha}^{*}+r_{\alpha}$.

Proof. Suppose, by way of contradiction, that $\mu(f)<r_{\alpha}^{*}+r_{\alpha}$. Then $\mu\left(f_{\beta}\right)$ is finite for every $\beta \leq \alpha$. Therefore r_{β}^{*} and r_{β} are both finite for every $\beta<\alpha$. Let A_{β} be a base of the matroid dual to $\left(\mathcal{M} . \operatorname{rge}_{M} f\right) \mid T_{\beta}$ for every $\beta<\alpha$. We can moreover assume that $A_{\beta} \subseteq A_{\beta^{\prime}}$ for $\beta \leq \beta^{\prime}<\alpha$. Since A_{β} is independent in the matroid dual to $\left(\mathcal{M} . \operatorname{rge}_{M} f_{\beta}\right) \mid T_{\beta}$, it follows that

$$
\left\|A_{\beta}\right\| \leq r_{\beta}^{*}
$$

for $\beta<\alpha$. Note that the union $A=\bigcup_{\beta<\alpha} A_{\beta}$ must be finite, since otherwise we would have $\liminf _{\beta \rightarrow \alpha} r_{\beta}^{*}=\infty$, which would imply that

$$
\mu(f)=\liminf _{\beta \rightarrow \alpha} \mu\left(f_{\beta}\right) \geq \liminf _{\beta \rightarrow \alpha} r_{\beta}^{*}=\infty .
$$

Therefore $A=A_{\gamma}$ for some $\gamma<\alpha$. It follows that A is spanning in the matroid dual to $\left(\mathcal{M} \cdot \operatorname{rge}_{M} f\right) \mid T_{\alpha}$ and so

$$
r_{\alpha}^{*} \leq\|A\|=\liminf _{\beta \rightarrow \alpha}\left\|A_{\beta}\right\|
$$

Let D_{β} be a base of $\left(\mathcal{W} / T_{\alpha}\right) \mid\left(\operatorname{rge}_{W} f_{\beta} \backslash T_{\alpha}\right)$ for every $\beta<\alpha$, with $D_{\beta} \subseteq D_{\beta^{\prime}}$ for $\beta \leq \beta^{\prime}<\alpha$. Since D_{β} is independent in $\left(\mathcal{W} / T_{\beta}\right) \mid\left(\operatorname{rge}_{W} f_{\beta} \backslash T_{\beta}\right)$, we have

$$
\left\|D_{\beta}\right\| \leq r_{\beta}
$$

for every $\beta<\alpha$. Similarly as above it follows that $D=\bigcup_{\beta<\alpha} D_{\beta}$ must be finite and spanning in $\left(\mathcal{W} / T_{\alpha}\right) \mid\left(\operatorname{rge}_{W} f \backslash T_{\alpha}\right)$ implying that

$$
r_{\alpha} \leq\|D\|=\liminf _{\beta \rightarrow \alpha}\left\|D_{\beta}\right\| .
$$

Since

$$
\mu\left(f_{\beta}\right) \geq r_{\beta}^{*}+r_{\beta} \geq\left\|A_{\beta}\right\|+\left\|D_{\beta}\right\|
$$

for every $\beta<\alpha$, it follows that

$$
\begin{aligned}
\mu(f) & =\liminf _{\beta \rightarrow \alpha} \mu\left(f_{\beta}\right) \\
& \geq \liminf _{\beta \rightarrow \alpha}\left(\left\|A_{\beta}\right\|+\left\|D_{\beta}\right\|\right) \\
& =\|A\|+\|D\| \\
& =\liminf _{\beta \rightarrow \alpha}\left\|A_{\beta}\right\|+\liminf _{\beta \rightarrow \alpha}\left\|D_{\beta}\right\| \\
& \geq r_{\alpha}^{*}+r_{\alpha} .
\end{aligned}
$$

This contradiction completes the proof.

4. Sufficiency of the condition

4.1. Preliminary results. Let \mathcal{M} and \mathcal{W} be arbitrary matroids on the same set E and let $\Gamma=(\mathcal{M}, \mathcal{W})$. If f and g are strings in Γ with domains α and β respectively, then the concatenation $f * g$ of f and g is defined to be the $(\alpha+\beta)$-string h such that $h_{\alpha}=f$ and $h_{[\alpha, \alpha+\beta)}=g$. For $u \in M \cup W$, let $[u]$ be the 1-string f with $f(0)=u$.

Let \mathfrak{T} be the set of all strings in Γ and let \preceq be the relation on \mathfrak{T} such that $g \preceq f$ if $g=f_{\beta}$ for some $\beta \leq \operatorname{dom} f$. Clearly \preceq is a partial order on \mathfrak{T}. Let \mathfrak{R} be the subset of \mathfrak{T} consisting of all saturated strings f in Γ with $\mu(f)=0$.

Lemma 4.1. Assume that \mathcal{M} is the sum of matroids \mathcal{M}_{1} and \mathcal{M}_{2} (on sets M_{1} and M_{2} respectively) with \mathcal{M}_{1} having positive finite rank. Let \mathfrak{R}^{\prime} be the subset of \mathfrak{R} consisting of strings g such that there is

$$
a \in M_{1} \backslash \operatorname{rge}_{M} g
$$

with $\{a\}$ being independent in \mathcal{M}_{1}.
(1) If Γ is μ-admissible, then the set \mathfrak{R}^{\prime} contains a maximal element with respect to \preceq.
(2) If Γ is μ-admissible and f is maximal in \mathfrak{R}^{\prime} with respect to \preceq, then

$$
\operatorname{rge}_{M} f=\operatorname{rge}_{W} f .
$$

Proof. (1) We are going to use Zorn lemma. Since the empty string belongs to \mathfrak{R}^{\prime}, the set \mathfrak{R}^{\prime} is nonempty. Let \mathfrak{B} be a nonempty chain in \mathfrak{R}^{\prime}. We will show that there is an upper bound for \mathfrak{B} in \mathfrak{R}^{\prime}.

Let $\Theta=\{\operatorname{dom} g: g \in \mathfrak{B}\}$ and $\alpha=\sup \Theta$. We are going to define an α string f in Γ that belongs to \mathfrak{R}^{\prime} and is an upper bound for \mathfrak{B}. If $\beta<\alpha$, then there is $g \in \mathfrak{B}$ with $\beta<\operatorname{dom} g$. Define $f(\beta)=g(\beta)$. Since \mathfrak{B} is a chain, the value of $f(\beta)$ does not depend on the choice of g. It is clear that $g \preceq f$ for every $g \in \mathfrak{B}$ so f is an upper bound for \mathfrak{B}.

Now we show that $f \in \mathfrak{R}^{\prime}$. Since $\mathfrak{B} \subseteq \mathfrak{R}^{\prime}$, we can assume that $f \notin \mathfrak{B}$. Then α is a limit ordinal. If $\beta<\alpha$, then $f_{\beta}=g_{\beta}$ for some $g \in \mathfrak{B}$ so f is saturated. Since $\alpha=\sup \Theta$ and since $\mu\left(f_{\beta}\right)=0$ for every $\beta \in \Theta$, it follows that $\mu(f)=0$. Therefore $f \in \mathfrak{R}$.

It remains to show that there is $a \in M_{1} \backslash \operatorname{rge}_{M} f$ with $\{a\}$ being independent in \mathcal{M}_{1}. Suppose, by way of contradiction, that such a does not exist. For each $\beta \leq \alpha$, let

$$
r_{\beta}=r\left(\mathcal{M}_{1} \mid\left(M_{1} \backslash \operatorname{rge}_{M} f_{\beta}\right)\right) .
$$

Since no singleton of $M_{1} \backslash \operatorname{rge}_{M} f$ is independent in \mathcal{M}_{1}, we have $r_{\alpha}=0$. Since \mathcal{M}_{1} is a finite-rank matroid, there is $\gamma<\alpha$ such that $r_{\gamma}=r_{\beta}$ for every β with $\gamma \leq \beta<\alpha$. Since $f_{\gamma}=g_{\gamma}$ for some $g \in \mathfrak{B}$, it follows that there is $a \in M_{1} \backslash \operatorname{rge}_{M} f_{\gamma}$ with $\{a\}$ independent in \mathcal{M}_{1}. Since $a \notin M_{1} \backslash \operatorname{rge}_{M} f$, there is δ with $\gamma \leq \delta<\alpha$ and $f(\delta)=(a, 0)$. Let f^{\prime} be the string obtained from f by removing the value $(a, 0)$ and shifting down the remaining values, that is let

$$
f^{\prime}=f_{\delta} * f_{[\delta+1, \alpha)} .
$$

Since $r_{\delta}=r_{\delta+1}, a$ is spanned by $E \backslash \operatorname{rge}_{M} f_{\delta+1}$ in \mathcal{M}, so $\mu\left(f_{\delta+1}\right)=\mu\left(f_{\delta}\right)$. A straightforward argument by transfinite induction shows that in general

$$
\begin{equation*}
\mu\left(f_{\beta}\right)=\mu\left(f_{\delta} * f_{[\delta+1, \beta)}\right) \tag{6}
\end{equation*}
$$

for every β such that $\delta<\beta \leq \alpha$. The only nontrivial step of this inductive argument is when $\beta=\beta^{\prime}+1$ is a successor and $f\left(\beta^{\prime}\right) \in M_{1}$. The equality $r_{\beta}=r_{\beta^{\prime}}$ implies then that $f\left(\beta^{\prime}\right)$ is spanned by $E \backslash \operatorname{rge}_{M} f_{\beta}$ and so the inductive step goes through. Applying (6) for $\beta=\alpha$, we get $\mu\left(f^{\prime}\right)=\mu(f)=0$. Since $r_{\alpha}=0$ and $\{a\}$ is independent in \mathcal{M}_{1}, it follows that a is not spanned by $E \backslash \operatorname{rge}_{M} f$ in \mathcal{M}, so

$$
\mu\left(f^{\prime} *[(a, 0)]\right)=-1
$$

Since $f^{\prime} *[(a, 0)]$ is saturated and Γ is μ-admissible, this is a contradiction, implying that $f \in \mathfrak{R}^{\prime}$.

Since \mathfrak{B} was an arbitrary nonempty chain in \mathfrak{R}^{\prime}, it follows from Zorn lemma that \mathfrak{R}^{\prime} contains a maximal element with respect to \preceq, and hence the proof is complete.
(2) Assume that f is maximal in \mathfrak{R}^{\prime} with respect to \preceq. Suppose, by way of contradiction that there is

$$
c \in \operatorname{rge}_{W} f \backslash \operatorname{rge}_{M} f .
$$

Then the string

$$
f^{\prime}=f *[(c, 0)]
$$

is saturated and $\mu\left(f^{\prime}\right) \leq 0$. Since Γ is μ-admissible, we have $\mu\left(f^{\prime}\right)=0$ implying that $f^{\prime} \in \mathfrak{R}$. Since f is maximal in \mathfrak{R}^{\prime} with respect to \preceq, it follows that $f^{\prime} \notin \mathfrak{R}^{\prime}$ so there is no

$$
a \in M_{1} \backslash \operatorname{rge}_{M} f^{\prime}
$$

with $\{a\}$ being independent in \mathcal{M}_{1}. Since $f \in \mathfrak{R}^{\prime},\{c\}$ is independent in \mathcal{M}_{1}. It follows that c is not spanned by $E \backslash \operatorname{rge}_{M} f$ in \mathcal{M} and so $\mu\left(f^{\prime}\right)=-1$, which is a contradiction.

Lemma 4.2. Assume that \mathcal{M} is the sum of matroids \mathcal{M}^{\prime} and $\mathcal{M}^{\prime \prime}$ (on sets E^{\prime} and $E^{\prime \prime}$ respectively) with \mathcal{M}^{\prime} having positive finite rank. If Γ is μ-admissible, then there is $a \in E^{\prime}$ and disjoint sets E_{1}, E_{2} with $E_{1} \cup E_{2}=E \backslash\{a\}$, such that $\{a\}$ is independent in both \mathcal{M} and \mathcal{W}, and both pairs

$$
\Gamma_{1}=\left(\mathcal{M} \cdot E_{1},(\mathcal{W} /\{a\}) \mid E_{1}\right) \quad \text { and } \quad \Gamma_{2}=\left((\mathcal{M} /\{a\}) \mid E_{2}, \mathcal{W} \cdot E_{2}\right)
$$

are μ-admissible.
Proof. Let \mathfrak{R}^{\prime} be the subset of \mathfrak{R} consisting of strings g such that there is

$$
b \in E^{\prime} \backslash \operatorname{rge}_{M} g
$$

with $\{b\}$ being independent in \mathcal{M}^{\prime}. Let f be a maximal element in \mathfrak{R}^{\prime} with respect to \preceq and

$$
A=\left\{b \in E^{\prime} \backslash \operatorname{rge}_{M} f:\{b\} \text { is independent in } \mathcal{M}^{\prime}\right\}
$$

Let t be a string with

$$
\operatorname{rge} t=A \times\{0\}
$$

and $\operatorname{dom} t=\delta+1$ for some ordinal δ (note that A is nonempty). Since $t(\delta)$ is not spanned by $E \backslash \operatorname{rge}_{M}(f * t)$ in \mathcal{M}, we have

$$
\mu(f * t) \leq \mu(f)-1<0 .
$$

Since Γ is μ-admissible, it follows that $f * t$ is not saturated. Since f is saturated, there is

$$
a \in \operatorname{rge}_{M} t \backslash \operatorname{rge}_{W} f=A \backslash \operatorname{rge}_{W} f
$$

Let

$$
E_{1}=\operatorname{rge}_{W} f=\operatorname{rge}_{M} f
$$

and

$$
E_{2}=E \backslash\left(E_{1} \cup\{a\}\right)
$$

Then a is not spanned by E_{1} in \mathcal{W}, since it follows from the maximality of f that $f *[(a, 1)] \notin \mathfrak{R}^{\prime}$. In particular $\{a\}$ is independent in \mathcal{W}. Since $a \in A,\{a\}$ is independent in \mathcal{M}.

Let g be a saturated string in

$$
\Gamma_{1}=\left(\mathcal{M} \cdot E_{1},(\mathcal{W} /\{a\}) \mid E_{1}\right)
$$

Then g is a saturated string in Γ so $\mu(g) \geq 0$. Since a is not spanned by E_{1} in \mathcal{W} and $\operatorname{rge}_{W} g \subseteq E_{1}$, it follows that for any $\beta<\operatorname{dom} g$, if $g(\beta) \in W$, then $g(\beta)$ is spanned by $\operatorname{rge}_{W} g_{\beta}$ in $(\mathcal{W} /\{a\}) \mid E_{1}$ if and only if it is spanned by the same set in \mathcal{W}. Moreover, for any $\beta<\operatorname{dom} g$, if $g(\beta) \in M$, then it is spanned by $E_{1} \backslash \operatorname{rge}_{M} g_{\beta+1}$ in $\mathcal{M} . E_{1}$ if and only if it is spanned by $E \backslash \operatorname{rge}_{M} g_{\beta+1}$ in \mathcal{M}. It follows that an argument by transfinite induction can be used to prove that if μ_{1} is the μ-function of the pair Γ_{1}, then $\mu_{1}\left(g_{\beta}\right)=\mu\left(g_{\beta}\right)$ for every $\beta \leq \operatorname{dom} g$. In particular $\mu_{1}(g)=\mu(g) \geq 0$, so Γ_{1} is μ-admissible.

It remains to show that

$$
\Gamma_{2}=\left((\mathcal{M} /\{a\}) \mid E_{2}, \mathcal{W} \cdot E_{2}\right)
$$

is μ-admissible. Suppose, by way of contradiction, that it is not. Let g be a saturated string in Γ_{2} with $\mu_{2}(g)<0$, where μ_{2} is the μ-function of the pair Γ_{2}. Without loss of generality, we can assume that $\mu_{2}(g)=-1$ and $\mu_{2}\left(g_{\beta}\right) \geq 0$ for every $\beta<\operatorname{dom} g$. Then

$$
h=f *[(a, 1)] * g
$$

is a saturated string in Γ. Note that if $\beta<\operatorname{dom} g$ and $g(\beta) \in W$, then $g(\beta)$ is spanned by $\operatorname{rge}_{W} g_{\beta}$ in $\mathcal{W} . E_{2}$ if and only if it is spanned by

$$
E_{1} \cup\{a\} \cup \operatorname{rge}_{W} g_{\beta}=\operatorname{rge}_{W}\left(f *[(a, 1)] * g_{\beta}\right)
$$

in \mathcal{W}. Moreover, if $\beta<\operatorname{dom} g$ and $g(\beta) \in M$, then $g(\beta)$ is spanned by $E_{2} \backslash \operatorname{rge}_{M} g_{\beta}$ in $(\mathcal{M} /\{a\}) \mid E_{2}$ if and only if it is spanned by

$$
\left(E_{2} \backslash \operatorname{rge}_{M} g_{\beta}\right) \cup\{a\}=E \backslash \operatorname{rge}_{M}\left(f *[(a, 1)] * g_{\beta}\right)
$$

in \mathcal{M}. It follows that an argument by transfinite induction can be used to prove that

$$
\mu\left(f *[(a, 1)] * g_{\beta}\right)=\mu(f)+1+\mu_{2}\left(g_{\beta}\right)
$$

for every $\beta \leq \operatorname{dom} g$. In particular

$$
\mu(h)=\mu(f *[(a, 1)] * g)=\mu(f)+1+\mu_{2}(g)=\mu(f)+1-1=0 .
$$

Therefore $h \in \mathfrak{R}^{\prime}$ contradicting the definition of f as a maximal element in \mathfrak{R}^{\prime} with respect to \preceq. Therefore Γ_{2} is μ-admissible and the proof is complete.
4.2. Tree decomposition of Γ. Now we are ready for the proof of Theorem 2.4. We need some more terminology. By a binary tree we will mean a finite set N of finite $0-1$ sequences (including the empty sequence) such that if $n \geq 1$ and $a_{1} a_{2} \ldots a_{n} \in N$, then $a_{1} a_{2} \ldots a_{n-1} \in N$ and $a_{1} a_{2} \ldots a_{n-1} a_{n}^{\prime} \in N$, where $a_{n}^{\prime}=1-a_{n}$. An element of a tree N will be called a vertex of N. A leaf of a tree N is a sequence $a_{1} a_{2} \ldots a_{n} \in N$ such that $a_{1} a_{2} \ldots a_{n} a_{n+1} \notin N$ for any $a_{n+1} \in\{0,1\}$. An internal vertex of a tree N is a vertex of N that is not a leaf.

If $s=a_{1} a_{2} \ldots a_{n}$ and $s^{\prime}=a_{1}^{\prime} a_{2}^{\prime} \ldots a_{m}^{\prime}$ are in N, then we say that s is to the left of $s^{\prime}\left(s^{\prime}\right.$ is to the right of $\left.s\right)$ if there is i with $1 \leq i \leq \min (n, m)$ such that $a_{i}=0, a_{i}^{\prime}=1$, and $a_{j}=a_{j}^{\prime}$ for every j with $1 \leq j<i$. If $s^{\prime}, s \in N$ are as above with $n<m$ and $a_{i}=a_{i}^{\prime}$ for every $i=1,2, \ldots, n$, then we say that s is above $s^{\prime}\left(s^{\prime}\right.$ is below $\left.s\right)$.

A tree partition of a set A is a function $\tau: N \rightarrow 2^{A}$ where N is a binary tree, $\tau\left(s_{1}\right) \cap \tau\left(s_{2}\right)=\varnothing$ whenever $s_{1} \neq s_{2}$, and

$$
\bigcup_{s \in N} \tau(s)=A .
$$

Note that we allow the values of τ to be empty sets.
Suppose $\tau: N \rightarrow 2^{A}$ is a tree partition. If s is a vertex of N, then let L_{s} be the union of all $\tau\left(s^{\prime}\right)$ with s^{\prime} to the left of s, let R_{s} be the union of all $\tau\left(s^{\prime}\right)$ with s^{\prime} to the right of s, U_{s} be the union of all $\tau\left(s^{\prime}\right)$ with s^{\prime} above s, and D_{s} be the union of $\tau(s)$ and all $\tau\left(s^{\prime}\right)$ with s^{\prime} below s. Note that the sets $L_{s}, R_{s}, U_{s}, D_{s}$ are pairwise disjoint and

$$
L_{s} \cup R_{s} \cup U_{s} \cup D_{s}=A
$$

Let τ be a tree partition of the set E. With each vertex s of N we associate a pair of matroids $\Gamma_{s}=\left(\mathcal{M}_{s}, \mathcal{W}_{s}\right)$ with

$$
\mathcal{M}_{s}=\left(\mathcal{M} \backslash L_{s}\right) \cdot D_{s} \quad \text { and } \quad \mathcal{W}_{s}=\left(\mathcal{W} \backslash R_{s}\right) \cdot D_{s}
$$

We say that τ is a tree decomposition of Γ if for every internal vertex s of $N, \tau(s)$ is a singleton that is independent in both \mathcal{M}_{s} and \mathcal{W}_{s}. We say that a tree decomposition τ of Γ is μ-admissible if for every vertex s of N the pair Γ_{s} is μ-admissible. Note that if $\tau: N \rightarrow 2^{E}$ is the trivial decomposition with N containing only the empty sequence and $\tau(\varnothing)=E$, then τ is μ-admissible if and only if Γ is μ-admissible.

The internal set of a tree decomposition $\tau: N \rightarrow 2^{E}$ is the set

$$
I_{\tau}=\{a \in E: \tau(s)=\{a\} \text { for some internal vertex } s \text { of } N\} .
$$

Lemma 4.3. If $\tau: N \rightarrow 2^{E}$ is a tree decomposition of Γ, then the internal set of τ is independent in both \mathcal{M} and \mathcal{W}.

Proof. Without loss of generality we can assume that the set \bar{N} of internal vertices is nonempty. Let $<$ be the ordering of \bar{N} defined by $s<s^{\prime}$ if and only if s is above or to the left of s^{\prime}, and let $s \leq s^{\prime}$ if and only if $s<s^{\prime}$ or $s=s^{\prime}$. It is easy to see that \leq is a linear ordering of \bar{N}. Let

$$
\bar{N}=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}
$$

with

$$
s_{1}<s_{2}<\cdots<s_{k}
$$

Let $i \in\{1, \ldots, k\}$. Since τ is a tree decomposition, $\tau\left(s_{i}\right)$ is independent in

$$
\mathcal{W}_{s_{i}}=\left(\mathcal{W} \backslash R_{s_{i}}\right) \cdot D_{s_{i}},
$$

which implies that $\tau\left(s_{i}\right)$ is not spanned $U_{s_{i}} \cup L_{s_{i}}$ in \mathcal{W}. Since

$$
\tau\left(s_{1}\right) \cup \tau\left(s_{2}\right) \cup \cdots \cup \tau\left(s_{i-1}\right) \subseteq U_{s_{i}} \cup L_{s_{i}}
$$

it follows that $\tau\left(s_{i}\right)$ is not spanned by the set $\tau\left(s_{1}\right) \cup \tau\left(s_{2}\right) \cup \cdots \cup \tau\left(s_{i-1}\right)$ in \mathcal{W}. This implies that

$$
I_{\tau}=\tau\left(s_{1}\right) \cup \tau\left(s_{2}\right) \cup \cdots \cup \tau\left(s_{k}\right)
$$

is independent in \mathcal{W} since otherwise there would be a circuit C in $\mathcal{W} \mid I_{\tau}$, and taking the largest possible i with $\tau\left(s_{i}\right) \subseteq C$ we would get $\tau\left(s_{i}\right)$ that is spanned by the set $\tau\left(s_{1}\right) \cup \tau\left(s_{2}\right) \cup \cdots \cup \tau\left(s_{i-1}\right)$ in \mathcal{W}.

The proof that I_{τ} is independent in \mathcal{M} is similar with the ordering $<$ of \bar{N} defined by $s<s^{\prime}$ if and only if s is above or to the right of s^{\prime}.

Assume that \mathcal{M} is the sum of matroids \mathcal{M}^{\prime} and $\mathcal{M}^{\prime \prime}$ (on sets E^{\prime} and $E^{\prime \prime}$ respectively) with \mathcal{M}^{\prime} having finite rank. If $\tau: N \rightarrow 2^{E}$ is a tree decomposition of Γ, then for each vertex s of N, let $L_{s}^{\prime}=L_{s} \cap E^{\prime}, L_{s}^{\prime \prime}=L_{s} \cap E^{\prime \prime}$, let $R_{s}^{\prime}, R_{s}^{\prime \prime}, U_{s}^{\prime}, U_{s}^{\prime \prime}, D_{s}^{\prime}, D_{s}^{\prime \prime}$ be defined similarly, and let

$$
\mathcal{M}_{s}^{\prime}=\left(\mathcal{M}^{\prime} \backslash L_{s}^{\prime}\right) \cdot D_{s}^{\prime}, \quad \mathcal{M}_{s}^{\prime \prime}=\left(\mathcal{M}^{\prime \prime} \backslash L_{s}^{\prime \prime}\right) \cdot D_{s}^{\prime \prime}
$$

It follows then from Lemma 1.1 that for each vertex s of N, the matroid \mathcal{M}_{s} is the sum of \mathcal{M}_{s}^{\prime} and $\mathcal{M}_{s}^{\prime \prime}$. Moreover, let

$$
I_{\tau}^{\prime}=I_{\tau} \cap E^{\prime} \quad I_{\tau}^{\prime \prime}=I_{\tau} \cap E^{\prime \prime}
$$

Lemma 4.4. Let $\tau: N \rightarrow 2^{E}$ be a tree decomposition of Γ. Then

$$
r\left(\mathcal{M}^{\prime}\right)=\left|I_{\tau}^{\prime}\right|+\sum_{s \in V} r\left(\mathcal{M}_{s}^{\prime}\right)
$$

where V is the set of leaves of N.

Proof. Let $<$ be the ordering on N defined by $s<s^{\prime}$ if and only if s is above or to the right of s^{\prime}, and let $s \leq s^{\prime}$ if and only if $s<s^{\prime}$ or $s=s^{\prime}$. Let $\tau^{\prime}: N \rightarrow 2^{E}$ be defined by

$$
\tau^{\prime}(s)=\tau(s) \cap E^{\prime}
$$

if s is an internal vertex of N and let $\xi(s)$ be a base of \mathcal{M}_{s}^{\prime} if s is a leaf of N. We claim that $\bigcup_{s \in N} \tau^{\prime}(s)$ is a base of \mathcal{M}^{\prime}. Since

$$
I_{\tau}^{\prime}=\bigcup_{s \in \bar{N}} \tau^{\prime}(s),
$$

where \bar{N} is the set of internal vertices of N, the claim implies that

$$
r\left(\mathcal{M}^{\prime}\right)=\left|I_{\tau}^{\prime}\right|+\sum_{s \in V} r\left(\mathcal{M}_{s}^{\prime}\right) .
$$

It remains to prove the claim. Let

$$
N=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}
$$

with

$$
s_{1}<s_{2}<\cdots<s_{k}
$$

We will show, by induction on j, that for every j with $1 \leq j \leq k$ the set $\bigcup_{i=1}^{j} \tau^{\prime}\left(s_{j}\right)$ is a base of

$$
\mathcal{M} \mid\left(R_{s_{j}}^{\prime} \cup U_{s_{j}}^{\prime} \cup \tau^{\prime}\left(s_{j}\right)\right)
$$

Since $s_{1}=\varnothing$ and $\tau(\varnothing)$ is independent in $\mathcal{M}_{\varnothing}^{\prime}=\mathcal{M}^{\prime}$, it follows that $\tau^{\prime}\left(s_{1}\right)$ is a base of $\mathcal{M}^{\prime} \mid\left(R_{s_{1}}^{\prime} \cup U_{s_{1}}^{\prime} \cup \tau^{\prime}\left(s_{1}\right)\right)$. Assume that $1 \leq j<k$ and that $\bigcup_{i=1}^{j} \tau^{\prime}\left(s_{i}\right)$ is a base of

$$
\mathcal{M}^{\prime} \mid\left(R_{s_{j}}^{\prime} \cup U_{s_{j}}^{\prime} \cup \tau^{\prime}\left(s_{j}\right)\right)
$$

Since

$$
R_{s_{j}}^{\prime} \cup U_{s_{j}}^{\prime} \cup \tau^{\prime}\left(s_{j}\right)=R_{s_{j+1}}^{\prime} \cup U_{s_{j+1}}^{\prime}
$$

and $\tau^{\prime}\left(s_{j+1}\right)$ is a base of

$$
\mathcal{M}_{s_{j+1}}^{\prime} \mid \tau^{\prime}\left(s_{j+1}\right)=\left(\mathcal{M}^{\prime} \mid\left(R_{s_{j+1}}^{\prime} \cup U_{s_{j+1}}^{\prime} \cup \tau^{\prime}\left(s_{j+1}\right)\right)\right) \cdot \tau^{\prime}\left(s_{j+1}\right)
$$

it follows that $\bigcup_{i=1}^{j+1} \tau^{\prime}\left(s_{i}\right)$ is a base of

$$
\mathcal{M}^{\prime} \mid\left(R_{s_{j+1}}^{\prime} \cup U_{s_{j+1}}^{\prime} \cup \tau^{\prime}\left(s_{j+1}\right)\right) .
$$

Thus the proof is complete.
Let $\tau: N \rightarrow 2^{E}$ and $\tau^{\prime}: N^{\prime} \rightarrow 2^{E}$ be tree decompositions of Γ with

$$
N^{\prime}=N \cup\left\{a_{1} a_{2} \ldots a_{n} 0, a_{1} a_{2} \ldots a_{n} 1\right\}
$$

where $a_{1} a_{2} \ldots a_{n}$ is a fixed leaf of N, and $\tau^{\prime}(s)=\tau(s)$ for every $s \in N \backslash\left\{a_{1} a_{2} \ldots a_{n}\right\}$. Then τ^{\prime} will be called a one step refinement of τ. If $\tau^{\prime}=\tau$ or τ^{\prime} can be obtained from τ by a finite sequence of one step refinements, then τ^{\prime} will be called a refinement of τ. Note that if $\tau: N \rightarrow 2^{E}$ is a tree decomposition of Γ and $\tau^{\prime}: N^{\prime} \rightarrow 2^{E}$ is a refinement of τ, then for every $s \in N$, the matroids \mathcal{M}_{s} and \mathcal{W}_{s} do not change when we replace τ with τ^{\prime}.

Lemma 4.5. Assume that \mathcal{M} is the sum of matroids \mathcal{M}^{\prime} and $\mathcal{M}^{\prime \prime}$ (on sets E^{\prime} and $E^{\prime \prime}$ respectively) with \mathcal{M}^{\prime} having finite rank. If $\tau: N \rightarrow 2^{E}$ is a μ-admissible tree decomposition of Γ, then there is a μ-admissible refinement τ^{\prime} of τ such that the internal set $I_{\tau^{\prime}}$ of τ^{\prime} contains a base of \mathcal{M}^{\prime}.

Proof. We will prove the lemma by induction on the number

$$
\ell_{\tau}=r\left(\mathcal{M}^{\prime}\right)-\left|I_{\tau}^{\prime}\right|,
$$

where

$$
I_{\tau}^{\prime}=I_{\tau} \cap E^{\prime}
$$

If $\ell_{\tau}=0$, then I_{τ}^{\prime} is a base of \mathcal{M}^{\prime} and $\tau^{\prime}=\tau$ satisfies the requirements. Assume that $\ell_{\tau}>0$. Then it follows from Lemma 4.4 that there is a leaf $s=a_{1} a_{2} \ldots a_{n}$ of N with $r\left(\mathcal{M}_{s}^{\prime}\right)>0$. Since the pair $\left(\mathcal{M}_{s}, \mathcal{W}_{s}\right)$ is μ-admissible, it follows from Lemma 4.2 that there is

$$
a \in D_{s}^{\prime}=\tau(s) \cap E^{\prime}
$$

and disjoint sets E_{1}, E_{2} with $E_{1} \cup E_{2}=D_{s}^{\prime} \backslash\{a\}$, such that $\{a\}$ is independent in both \mathcal{M}_{s} and \mathcal{W}_{s}, and both pairs

$$
\Gamma_{1}=\left(\mathcal{M}_{s} \cdot E_{1},\left(\mathcal{W}_{s} /\{a\}\right) \mid E_{1}\right) \quad \Gamma_{2}=\left(\left(\mathcal{M}_{s} /\{a\}\right) \mid E_{2}, \mathcal{W}_{s} \cdot E_{2}\right)
$$

are μ-admissible. Let $s_{0}=a_{1} a_{2} \ldots a_{n} 0, s_{1}=a_{1} a_{2} \ldots a_{n} 1, N^{\prime}=N \cup\left\{s_{0}, s_{1}\right\}$ and $\tau^{\prime}: N^{\prime} \rightarrow 2^{E}$ be such that $\tau^{\prime}\left(s^{\prime}\right)=\tau\left(s^{\prime}\right)$ for every $s^{\prime} \in N \backslash\{s\}, \tau^{\prime}(s)=\{a\}$, $\tau^{\prime}\left(s_{0}\right)=E_{1}$, and $\tau^{\prime}\left(s_{1}\right)=E_{2}$. Note that

$$
L_{s_{0}}=L_{s} \quad L_{s_{1}}=L_{s} \cup E_{1} \quad R_{s_{0}}=R_{s} \cup E_{2} \quad R_{s_{1}}=R_{s} \quad D_{s_{0}}=E_{1} \quad D_{s_{1}}=E_{2}
$$

so

$$
\mathcal{M}_{s_{0}}=\left(\mathcal{M} \backslash L_{s_{0}}\right) \cdot D_{s_{0}}=\left(\mathcal{M} \backslash L_{s}\right) \cdot D_{s_{0}}=\left(\left(\mathcal{M} \backslash L_{s}\right) \cdot D_{s}\right) \cdot E_{1}
$$

and

$$
\mathcal{W}_{s_{0}}=\left(\mathcal{W} \backslash R_{s_{0}}\right) \cdot D_{s_{0}}=\left(\left(\left(\mathcal{W} \backslash R_{s}\right) \cdot D_{s}\right) /\{a\}\right) \backslash E_{2}=\left(\mathcal{W}_{s} /\{a\}\right) \mid E_{1}
$$

Thus

$$
\Gamma_{1}=\left(\mathcal{M}_{s_{0}}, \mathcal{W}_{s_{0}}\right)
$$

Similarly,

$$
\Gamma_{2}=\left(\mathcal{M}_{s_{1}}, \mathcal{W}_{s_{1}}\right)
$$

Since both Γ_{1} and Γ_{2} are μ-admissible and τ is μ-admissible, it follows that τ^{\prime} is μ-admissible. Since

$$
a \in I_{\tau^{\prime}}^{\prime}=I_{\tau^{\prime}} \cap E^{\prime}
$$

it follows that $\ell_{\tau^{\prime}}<\ell_{\tau}$ so the inductive hypothesis implies that τ^{\prime} has a μ-admissible refinement $\tau^{\prime \prime}$ with $I_{\tau^{\prime \prime}}$ containing a base of \mathcal{M}^{\prime}. Thus the proof is complete.
4.3. Proof of Theorem 2.4. Let \mathcal{M} be the sum of finite rank matroids $\mathcal{M}_{1}, \mathcal{M}_{2}$,
\ldots.. Let τ_{0} be the trivial tree decomposition of Γ. Suppose that we have a μ-admissible tree decomposition τ_{i} of Γ. It follows from Lemma 4.5 that there is a μ-admissible tree decomposition τ_{i+1} of Γ that is a refinement of τ_{i} such that $I_{\tau_{i+1}}$ contains a base of \mathcal{M}_{i+1}. Let

$$
I=\bigcup_{i=1}^{\infty} I_{\tau_{i}} .
$$

Then I is spanning in \mathcal{M}, and it follows from Lemma 4.3 that any finite subset of I is independent in \mathcal{W}. Since \mathcal{W} is finitary, I is independent in \mathcal{W}.

5. Remarks

If we remove the restrictions on \mathcal{M} and \mathcal{W} in Theorem 2.4, it becomes obviously false. For example, if both \mathcal{M} and \mathcal{W} are equal to the matroid from Example 1.1, then $\Gamma=(\mathcal{M}, \mathcal{W})$ is μ-admissible, since $\mu(f)=\|$ rge $_{W} f \|$ for any saturated string f in Γ. However, Γ is not matchable as any matching in Γ would be a base of \mathcal{M}, and \mathcal{M} has no bases. It is natural to ask, how much the restrictions on \mathcal{M} and \mathcal{W} can be relaxed for Theorem 2.4 to remain valid.

Another natural question to ask is whether the nonexistence of a hindrance in $\Gamma=(\mathcal{M}, \mathcal{W})$ implies its μ-admissibility. This implication clearly holds for every pair Γ with \mathcal{M} being SCF and \mathcal{W} being finitary, or more generally, whenever the nonexistence of a hindrance in Γ implies its matchability, since matchability always implies μ-admissibility.

On the other hand, without any restrictions on \mathcal{M} and \mathcal{W}, the nonexistence of a hindrance does not imply μ-admissibility. For example, let \mathcal{W} be as in Example 1.1 and \mathcal{M} be discrete, that is, let all subsets of \mathbb{Z} be independent in \mathcal{M}. Then there are no hindrances in $\Gamma=(\mathcal{M}, \mathcal{W})$, since if H is independent in \mathcal{W}, then it is finite, so $\bar{\partial}_{\mathcal{W}}(H)=H$ and H is spanning in $\mathcal{M} .\left(\bar{\partial}_{\mathcal{W}}(H)\right)$. However, Γ is not μ-admissible. Indeed, let f be the $(\omega+2)$-string in Γ defined as follows. Let $M=\mathbb{Z} \times\{0\}$, $W=\mathbb{Z} \times\{1\}$ and consider \mathcal{M} and \mathcal{W} as matroids on M and W respectively. Let $f(i)=(i, 1)$ for $i=0,2,4, \ldots, f(i)=(i-1,0)$ for $i=1,3,5, \ldots, f(\omega)=(1,1)$, and $f(\omega+1)=(1,0)$. Then f is saturated, $\mu\left(f_{\omega}\right)=\mu\left(f_{\omega+1}\right)=0$, and $\mu(f)=-1$.

It would be interesting to know whether the nonexistence of a hindrance implies μ-admissibility when \mathcal{M} and \mathcal{W} are finitary, and if so, then how much this restriction can be relaxed for the implication to remain valid.

References

[1] R. Aharoni, On the equivalence of two conditions for the existence of transversals, J. Combin. Theory Ser. A 34 (1983), 202-214.
[2] R. Aharoni and R. Ziv, The intersection of two infinite matroids, J. London Math. Soc. (2) 58 (1998), no. 3, 513-525.
[3] R. M. Damerell and E. C. Milner, Necessary and sufficient conditions for transversals of countable set systems, J. Combin. Theory Ser. A 17 (1974), 350-374.
[4] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.
[5] M. Hall, Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc. 54 (1948), 922-926.
[6] D. A. Higgs, Matroids and duality, Colloq. Math. 20 (1969), 215-220.
[7] E. C. Milner and S. Shelah, Sufficiency conditions for existence of transversals, Canad. J. Math. 26 (1974), no. 4, 948-961.
[8] C. St. J. A. Nash-Williams, Another criterion for marriage in denumerable societies, Advances in Graph Theory, Proc. Cambridge Comb. Conf. (B. Bollobás, ed.), Ann. Discrete Math., vol. 3, North-Holland, 1978, pp. ~165-179.
[9] C. St. J. A. Nash-Williams, Marriage in infinite societies in which each woman knows countably many men, Proc. 10th S-E Conf. Combinatorics, Graph Theory, and Computing, 1980, pp. 103-115.
[10] J. G. Oxley, Infinite matroids. In "Matroid applications" (ed. N. White), 1992, Cambridge University Press, 73-90.
[11] K. P. Podewski and K. S. Steffens, Injective choice functions for countable families, J. Combin. Theory Ser. B 21 (1976), 40-46.
[12] J. Wojciechowski, A criterion for the existence of transversals of set systems, J. London Math. Soc. (2) 56 (1997), 491-503.

Department of Mathematics, West Wirginia University, Morgantown, WV 265066310, USA

E-mail address: jerzy@math.wvu.edu

