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Abstract. Hall’s theorem for bipartite graphs gives a necessary and sufficient

condition for the existence of a matching in a given bipartite graph. Aharoni and

Ziv [2] generalized the notion of matchability to a pair of possibly infinite matroids

on the same set and gave a condition that is sufficient for the matchability of a

given pair (M,W) of finitary matroids, where the matroid M is SCF — a sum of

countably many matroids of finite rank. The condition of Aharoni and Ziv is not

necessary for matchability. In this paper we give a condition that is necessary for

the existence of a matching for any pair of matroids (not necessarily finitary) and

is sufficient for any pair (M,W) of finitary matroids, where the matroid M is SCF.

1. Matroids

Following Higgs [6] (see also Oxley [10]), we will define matroid as a pair S =
(
S, ∂̄

)

where S is a set and ∂̄ is an IE-operator (idempotent-exchange operator) on S.

A space is a pair S =
(
S, ∂̄

)
where S is a set and ∂̄ : 2S → 2S is an operator on S

such that:

M1. X ⊆ ∂̄(X) for every X ⊆ S;

M2. if X ⊆ Y ⊆ S, then ∂̄(X) ⊆ ∂̄(Y ).

If S =
(
S, ∂̄

)
is a space, and ∂̄∗ : 2S → 2S is defined by

x ∈ ∂̄∗(X) iff x ∈ X or x /∈ ∂̄(S \ (X ∪ {x})).

then S∗ =
(
S, ∂̄∗

)
is also a space (the space dual to S). It is easy to see that the

space S∗∗ dual to S∗ is equal to S.

A space S =
(
S, ∂̄

)
is idempotent if

M3. ∂̄(∂̄(X)) = ∂̄(X) for every X ⊆ S;
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and it is exchange if

M4. for every X, Y and p such that X ⊆ Y ⊆ S and p ∈ S \Y , if p ∈ ∂̄(Y ) \ ∂̄(X)

then there is x ∈ Y \X with x ∈ ∂̄(Y \ {x} ∪ {p}).
It is a straightforward exercise to verify that a space is idempotent if and only if its

dual space is exchange.

A matroid is a space that is both idempotent and exchange. A matroid S =
(
S, ∂̄

)

is finite if S is finite, and it is finitary if

M5. for every X ⊆ S and x ∈ S, if x ∈ ∂̄(X) then there is a finite Y ⊆ X such

that x ∈ ∂̄(Y ).

A finitary matroid is often called an independence space in the literature. Obviously,

every finite matroid is finitary. The space dual to a matroid is clearly also a matroid,

but the matroid dual to a finitary matroid (called cofinitary) does not have to be

finitary.

Let S =
(
S, ∂̄

)
be a space and let X ⊆ S. If x ∈ ∂̄(X) or Y ⊆ ∂̄(X), then we say

that X spans x or X spans Y , respectively. We say that X is spanning in S if X

spans S, and that X is independent in S if no x ∈ X is spanned by X \ {x}. Note

that X is independent in S if and only if S \X is spanning in the space dual to S. If

X is not independent in S, then we say that it is dependent in S.

Given a finitary matroid S =
(
S, ∂̄

)
, let S̄ be the family of subsets of S that are

independent in S. Note that (see Oxley [10]):

I1. S̄ 6= ∅;

I2. if A ∈ S̄ and B ⊆ A, then B ∈ S̄;

I3. if I, J ∈ S̄ are finite and |I| = |J |+ 1, then there is an element y ∈ I \ J such

that J ∪ {y} ∈ S̄;

I4. if A ⊆ S and I ∈ S̄ for every finite I ⊆ A, then A ∈ S̄.

Conversely, if S̄ is a family of subsets of a set S satisfying conditions I1–I4, and

∂̄ : 2S → 2S is defined by

x ∈ ∂̄(X) iff x ∈ X or there is A ⊆ X such that A ∈ S̄ and A ∪ {x} /∈ S̄,
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then S =
(
S, ∂̄

)
is a finitary matroid and S̄ is equal to the family of subsets of S that

are independent in S.

Let S =
(
S, ∂̄

)
be a space and let X ⊆ S. If X is both spanning and independent

in S, then it is said to be a base of S. It is easy to see that X is a base of S if and

only if it is maximal in the family of independent sets of S, and if and only if it is

minimal in the family of spanning sets.

In general, a matroid may have no bases.

Example 1.1. Let S0 = Z and

∂̄0(X) =

{
X if X is finite;

S0 otherwise.

It is clear that S0 =
(
S0, ∂̄0

)
is a matroid with the family of independent sets equal

to the family of all finite subsets of S0 and the family of spanning sets equal to the

family of infinite subsets of S0. Thus S0 has no bases.

However, if S is a finitary matroid, then for every independent X and spanning Y

with X ⊆ Y ⊆ S there is a base B of S with X ⊆ B ⊆ Y . It follows immediately

that the same is true for cofinitary matroids. If S =
(
S, ∂̄

)
is a matroid and for every

Y ⊆ X ⊆ S the family of subsets of X that contain Y and are independent in S has a

maximal element, then S is called a B-matroid. Any finitary matroid is a B-matroid.

Let Z∞ = Z ∪ {−∞,∞} be the set of quasi-integers. If a1, . . . , an ∈ Z∞, then let

the sum a1 + · · · + an be the usual sum if a1, . . . , an are all integers, let the sum be

∞ if at least one of them is ∞, and let it be −∞ if none of a1, . . . , an is ∞ but at

least one of them is −∞. Note that it follows immediately from the above definition

that the operation of addition in Z∞ is commutative and associative. The difference

a− b of two quasi-integers a, b means a+(−b); and likewise, for example, a− b+ c−d

means a + (−b) + c + (−d), etc. Let Z∞ be ordered in the obvious way. Note that

if a, b, c, d ∈ Z∞ satisfy a ≤ c and b ≤ d, then a + b ≤ c + d. Given a set S, let

‖S‖ ∈ Z∞ be the cardinality of S if S is finite, and ‖S‖ = ∞ if S is infinite.

Let S =
(
S, ∂̄

)
be a matroid. The quasirank of S (denoted r(S)) is the element of

Z∞ that is equal to the maximal cardinality of a finite independent set of S if such
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a cardinality exists, and it is equal to ∞ otherwise. If r(S) is finite, then S is said

to be a finite-rank matroid. It is obvious that a finite-rank matroid is finitary. If

S is finitary, then all bases of S have the same cardinality (denoted ρ(S)), and this

cardinality is defined to be the rank of S. Let r∗(S) be the quasirank of the matroid

dual to S.

Assume that S =
(
S, ∂̄

)
is a space and X ⊆ S. The restriction of S to X, denoted

S|X, is defined to be the space
(
X, ∂̄′

)
with ∂̄′ being the restriction of ∂̄ to 2X . The

contraction of S to X, denoted S.X, is the dual space to the restriction to X of the

space dual to S. Explicitly, S.X =
(
X, ∂̄′′

)
with x ∈ ∂̄′′(A) (where A ⊆ X) if and

only if x ∈ ∂̄ (A ∪ (S \X)). If S is a matroid, then both S|X and S.X are matroids.

If moreover S is either finite, finite-rank, finitary, or is a B-matroid, then both S|X
and S.X have the same property. Let S \X = S| (S \X) and S/X = S. (S \X).

Let (Si : i ∈ I) be a family of pairwise disjoint sets and (Si : i ∈ I) be a family of

spaces with Si =
(
Si, ∂̄i

)
. The sum of the family (Si : i ∈ I) is defined to be the space

S =
(
S, ∂̄

)
with S =

⋃
i∈I Si and x ∈ ∂̄(X) if and only if x ∈ ∂̄i(X ∩ Si) where i ∈ I

is such that x ∈ Si. It is easy to see that the following lemma holds.

Lemma 1.1. If the space S =
(
S, ∂̄

)
is the sum of the family (Si : i ∈ I) of spaces

with Si =
(
Si, ∂̄i

)
for every i ∈ I, and A ⊆ S, then S|A is the sum of the family

(Si|Ai : i ∈ I) and S.A is the sum of the family (Si.Ai : i ∈ I), where Ai = A∩Si for

every i ∈ I.

A matroid S is said to be SCF if it is the sum of a countable family of finite-rank

matroids.

2. A matroidal analog of Hall’s Theorem

LetM andW be matroids on a set E. Aharoni and Ziv [2] defined the pair (M,W)

to be matchable if there is a subset of E that is both spanning in M and independent

in W . Such a subset of E will be called a matching in (M,W).

The concept of matchability of a pair of matroids on the same set originated as

a generalization of a matroidal interpretation of the existence of a matching in a
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bipartite graph. Indeed, if G = (V, E) is a bipartite graph with bipartition V =

M ∪W , then let M =
(
E, ∂̄M

)
and W =

(
E, ∂̄W

)
be the matroids on the set of edges

E defined by:

• y ∈ ∂̄M(X) if and only if there exists x ∈ X such that x and y are incident to

the same vertex in M ;

• y ∈ ∂̄W(X) if and only if there exists x ∈ X such that x and y are incident to

the same vertex in W .

It is easy to see that a subset of E is a matching in Γ = (M,W) if and only if it

contains a matching in the graph G, implying that Γ is matchable if and only if the

graph G is matchable.

Let M and W be matroids on a set E. Aharoni and Ziv define a hindrance in

(M,W) to be a subset H of E such that H is independent in bothW andM.
(
∂̄W(H)

)

but H is not spanning in M.
(
∂̄W(H)

)
. They prove the following result.

Theorem 2.1. Let M and W be matroids on a set E such that M is SCF and W
is finitary. If there are no hindrances in (M,W), then (M,W) is matchable.

Theorem 2.1 is used by Aharoni and Ziv to prove a special case of the following

conjecture, which is the infinite version of Edmond’s theorem, and is attributed to C.

Nash-Williams by Aharoni in [2].

Conjecture 2.2. If M and W are finitary matroids on the same set S, then there

exists I ⊆ S such that I is independent in both M and W and there is a partition of

I as I = H ∪K with

∂̄M (H) ∪ ∂̄W (K) = S.

The condition, in Theorem 2.1, that (M,W) does not contain a hindrance is not

necessary for matchability. For example, let

E = {(i, j) : i ∈ {0, 1} , j ∈ {0, 1, 2, . . . }} ,

with

(i, j) ∈ ∂̄W (A) iff there is i′ ∈ {0, 1} such that (i′, j) ∈ A,
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and X ⊆ E being independent in M if and only if it is the set of edges of an acyclic

subgraph of the graph G = (V,E) with V = {0, 1, 2, . . . }, (0, j) incident to j and

j + 1, and (1, j) incident to j and j + 2, j = 0, 1, 2, . . . . Then

H = {(1, j) : j ∈ {0, 1, 2, . . . }}

is a hindrance in (M,W) and

T = {(0, j) : j ∈ {0, 1, 2, . . . }}

is a matching in (M,W).

The condition of Aharoni and Ziv resembles the condition in the countable version

of Hall’s theorem proved by Podewski and Steffens [11]. Another countable version

of Hall’s Theorem with a condition of a somewhat different nature was given by

Nash-Williams [8] [9]. A modified version of the theorem of Nash-Williams, with a

condition of a similar nature, called µ-admissibility, is proved in [12]. We are going

to formulate a matroidal analog of µ-admissibility after some preliminaries.

Let M and W be matroids on a set E. Let M and W be disjoint copies of E (say

M = E × {0} and W = E × {1}). In an obvious way, M and W can be regarded as

matroids on M and W respectively. To simplify notation, we will often identify the

elements of M (of W ) with the elements of E when it does not lead to confusion.

A string is an injective function with its domain being an ordinal. In particular,

the empty set ∅ is a string with domain 0 = ∅. A string f is said to be in a set S

if rge f ⊆ S, and it is said to be an α-string if its domain is equal to α. A string in

Γ = (M,W) is a string in M ∪W . Given a string f in Γ, let

rgeM f = {a ∈ E : (a, 0) ∈ rge f} ,

rgeW f = {a ∈ E : (a, 1) ∈ rge f} .

A string f in Γ is saturated if rgeM fβ ⊆ rgeW fβ for every β ≤ dom f .

Let f be a string and β, γ be ordinals with β ≤ γ ≤ dom f . The [β, γ)-segment of

f is the string f[β,γ) defined by

f[β,γ)(θ) = f(β + θ),
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for all θ with β + θ < γ, that is, f[β,γ) is obtained from f by restricting it to [β, γ)

and shifting the domain to start at 0. Given α ≤ dom f , let fα = f[0,α).

Assume that f is a string in Γ. The µ-margin µ(f) of f is an element of Z∞ defined

by transfinite induction on α = dom f as follows. Let µ(f) = 0 if α = 0, let

(1)

µ(f) =





µ(fβ) + 1 if f(β) ∈ W and f(β) is not spanned by rgeW fβ in W ,

µ(fβ)− 1 if f(β) ∈ M and f(β) is not spanned by E \ rgeM f in M,

µ(fβ) otherwise

when α = β + 1 is a successor ordinal, and

µ(f) = liminf
β→α

µ(fβ)

if α is a limit ordinal. We say that Γ is µ-admissible if µ(f) ≥ 0 for every saturated

string f in Γ.

We will prove the following results.

Theorem 2.3. If M and W are arbitrary matroids on the same set and (M,W) is

matchable, then it is µ-admissible.

Theorem 2.4. Let M and W be matroids on the same set. If M is SCF, W is

finitary, and (M,W) is µ-admissible, then it is matchable.

3. Necessity of the condition

In this section we are going to prove Theorem 2.3. Let’s start with the following

preliminary lemma.

Lemma 3.1. Let S =
(
S, ∂̄S

)
be a matroid, a ∈ S, and {S1, S2, S3} be a partition of

S \ {a} (allowing the parts to be empty). Let S ′i = Si ∪ {a}, i = 1, 2, 3, and

S1 = (S/S ′1) \ S3, S2 = (S/S1) \ S3, S3 = (S/S1) \ S ′3.

Then

(1) r(S1) = r(S2) = r(S3) and r∗(S1) = r∗(S2)− 1 = r∗(S3) if a is spanned by S1

in S;
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(2) r(S1) + 1 = r(S2) = r(S3) and r∗(S1) = r∗(S2) = r∗(S3) + 1 if a is spanned by

S1 ∪ S2 but not by S1 in S;

(3) r(S1) = r(S2) − 1 = r(S3) and r∗(S1) = r∗(S2) = r∗(S3) if a is not spanned

by S1 ∪ S2 in S.

Proof. We will only prove the equations involving the quasirank r. The equations

involving the dual quasirank r∗ will then follow.

Assume that a is spanned by S1 in S. Obviously, any set independent in S1 is

independent in S2. Suppose that A is independent in S2. Since a ∈ ∂̄S2(∅), it follows

that a /∈ A and A is independent in S1, thus

r(S1) = r(S2).

Assume that a is not spanned by S1 in S. We will show that

(2) r(S1) = r(S2)− 1.

If r(S1) = ∞, then r(S2) = ∞ and (2) holds. If r(S1) is finite and A is a base of S1,

then A ∪ {a} is a base of S2 and (2) holds as well.

Assume that a is spanned by S1 ∪ S2 in S. We will show that

(3) r(S2) = r(S3).

If r(S3) = ∞, then r(S2) = ∞ and (3) holds. If r(S3) is finite and A is a base of S3,

then it is a base of S2 so (3) holds as well.

Assume that a is not spanned by S1 ∪ S2 in S. We will show that

(4) r(S2)− 1 = r(S3).

If r(S3) = ∞, then r(S2) = ∞ and (4) holds. If r(S3) is finite and A is a base of S3,

then A ∪ {a} is a base of S2 so (3) holds as well.

Now we are ready to prove Theorem 2.3. Let M and W be arbitrary matroids on

the same set E and let Γ = (M,W). Assume that T is a matching in Γ and f is a

saturated string in Γ. Let α = dom f , and for each β ≤ α let Tβ = T ∩ rgeM fβ,

r∗β = r∗ ((M. rgeM fβ) |Tβ) ,
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and

rβ = r ((W/Tβ) | (rgeW fβ \ Tβ)) .

Using transfinite induction on α, we will show that

(5) µ(f) ≥ r∗α + rα.

Since r∗α, rα ≥ 0, it then follows that µ(f) ≥ 0 and so Γ is µ-admissible.

If α = 0, then µ(f) = r∗α = rα = 0 so (5) holds. The proof of (5) will be completed

in a series of lemmas.

Lemma 3.2. If α = β + 1 is a successor ordinal, µ(fβ) ≥ r∗β + rβ, and f(β) ∈ W ,

then µ(f) ≥ r∗α + rα.

Proof. Since rgeM f = rgeM fβ, we have r∗α = r∗β. Let S = W , a = f(β),

S1 = Tβ, S2 = rgeW fβ \ Tβ, S3 = E \ rgeW f,

and S1,S2,S3 be as in Lemma 3.1. Then rβ = r(S3) and rα = r(S2). If f(β) is

not spanned by rgeW fβ = S1 ∪ S2 in W , then µ(f) = µ(fβ) + 1 and it follows from

Lemma 3.1 that rα = rβ + 1. If f(β) is spanned by rgeW fβ = S1 ∪ S2 in W , then

µ(f) = µ(fβ) and it follows from Lemma 3.1 that rα = rβ.

Lemma 3.3. If α = β + 1 is a successor ordinal, µ(fβ) ≥ r∗β + rβ, and f(β) ∈ M ,

then µ(f) ≥ r∗α + rα.

Proof. If f(β) /∈ T , then rα = rβ. If f(β) ∈ T , than taking S = W , a = f(β),

S1 = Tβ, S2 = rgeW fβ \ Tβ, S3 = E \ rgeW f,

and S1,S2,S3 as in Lemma 3.1, we have rβ = r(S2) and rα = r(S1). Since T is

independent in W , it follows that f(β) is not spanned by Tβ in W , so Lemma 3.1

implies that rα = rβ − 1.

Now let S = M, a = f(β),

S1 = E \ rgeM f, S2 = Tβ, S3 = rgeM fβ \ Tβ,

and S1,S2,S3 be as in Lemma 3.1.
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If f(β) ∈ T , then r∗β = r∗(S1) and r∗α = r∗(S2) so Lemma 3.1 implies that

r∗α =

{
r∗β + 1 if f(β) is spanned by M \ rgeM f in M
r∗β if f(β) is not spanned by M \ rgeM f in M

Assume now that f(β) /∈ T . Then r∗β = r∗(S1) and r∗α = r∗(S3). If f(β) is spanned

by S1 = M \ rgeM f in M, then Lemma 3.1 implies that r∗α = r∗β. Note that since

T ⊆ S1 ∪ S2 and T is spanning in M, it follows that f(β) is spanned by S1 ∪ S2 in

M. Therefore, if f(β) is not spanned by S1 = M \ rgeM f in M, then it follows from

Lemma 3.1 that r∗α = r∗β − 1.

Combining the cases when f(β) ∈ T and f(β) /∈ T , we obtain

rα + r∗α =

{
rβ + r∗β if f(β) is spanned by M \ rgeM f in M
rβ + r∗β − 1 if f(β) is not spanned by M \ rgeM f in M

.

Since

µ(f) =

{
µ(fβ) if f(β) is spanned by M \ rgeM f in M
µ(fβ)− 1 if f(β) is not spanned by M \ rgeM f in M

,

the proof is complete.

Lemma 3.4. If α is a limit ordinal and µ(fβ) ≥ r∗β + rβ for every β < α, then

µ(f) ≥ r∗α + rα.

Proof. Suppose, by way of contradiction, that µ(f) < r∗α + rα. Then µ(fβ) is finite

for every β ≤ α. Therefore r∗β and rβ are both finite for every β < α. Let Aβ be

a base of the matroid dual to (M. rgeM f) |Tβ for every β < α. We can moreover

assume that Aβ ⊆ Aβ′ for β ≤ β′ < α. Since Aβ is independent in the matroid dual

to (M. rgeM fβ) |Tβ, it follows that

‖Aβ‖ ≤ r∗β

for β < α. Note that the union A =
⋃

β<α Aβ must be finite, since otherwise we

would have liminfβ→α r∗β = ∞, which would imply that

µ(f) = liminf
β→α

µ(fβ) ≥ liminf
β→α

r∗β = ∞.
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Therefore A = Aγ for some γ < α. It follows that A is spanning in the matroid dual

to (M. rgeM f) |Tα and so

r∗α ≤ ‖A‖ = liminf
β→α

‖Aβ‖ .

Let Dβ be a base of (W/Tα) | (rgeW fβ \ Tα) for every β < α, with Dβ ⊆ Dβ′ for

β ≤ β′ < α. Since Dβ is independent in (W/Tβ) | (rgeW fβ \ Tβ), we have

‖Dβ‖ ≤ rβ

for every β < α. Similarly as above it follows that D =
⋃

β<α Dβ must be finite and

spanning in (W/Tα) | (rgeW f \ Tα) implying that

rα ≤ ‖D‖ = liminf
β→α

‖Dβ‖ .

Since

µ(fβ) ≥ r∗β + rβ ≥ ‖Aβ‖+ ‖Dβ‖

for every β < α, it follows that

µ(f) = liminf
β→α

µ(fβ)

≥ liminf
β→α

(‖Aβ‖+ ‖Dβ‖)
= ‖A‖+ ‖D‖
= liminf

β→α
‖Aβ‖+ liminf

β→α
‖Dβ‖

≥ r∗α + rα.

This contradiction completes the proof.

4. Sufficiency of the condition

4.1. Preliminary results. Let M and W be arbitrary matroids on the same set E

and let Γ = (M,W). If f and g are strings in Γ with domains α and β respectively,

then the concatenation f ∗g of f and g is defined to be the (α + β)-string h such that

hα = f and h[α,α+β) = g. For u ∈ M ∪W , let [u] be the 1-string f with f(0) = u.
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Let T be the set of all strings in Γ and let ¹ be the relation on T such that g ¹ f

if g = fβ for some β ≤ dom f . Clearly ¹ is a partial order on T. Let R be the subset

of T consisting of all saturated strings f in Γ with µ(f) = 0.

Lemma 4.1. Assume that M is the sum of matroids M1 and M2 (on sets M1

and M2 respectively) with M1 having positive finite rank. Let R′ be the subset of R

consisting of strings g such that there is

a ∈ M1 \ rgeM g

with {a} being independent in M1.

(1) If Γ is µ-admissible, then the set R′ contains a maximal element with respect

to ¹.

(2) If Γ is µ-admissible and f is maximal in R′ with respect to ¹, then

rgeM f = rgeW f.

Proof. (1) We are going to use Zorn lemma. Since the empty string belongs to

R′, the set R′ is nonempty. Let B be a nonempty chain in R′. We will show

that there is an upper bound for B in R′.

Let Θ = {dom g : g ∈ B} and α = sup Θ. We are going to define an α-

string f in Γ that belongs to R′ and is an upper bound for B. If β < α, then

there is g ∈ B with β < dom g. Define f(β) = g(β). Since B is a chain, the

value of f(β) does not depend on the choice of g. It is clear that g ¹ f for

every g ∈ B so f is an upper bound for B.

Now we show that f ∈ R′. Since B ⊆ R′, we can assume that f /∈ B.

Then α is a limit ordinal. If β < α, then fβ = gβ for some g ∈ B so f is

saturated. Since α = sup Θ and since µ(fβ) = 0 for every β ∈ Θ, it follows

that µ(f) = 0. Therefore f ∈ R.

It remains to show that there is a ∈ M1\rgeM f with {a} being independent

in M1. Suppose, by way of contradiction, that such a does not exist. For each

β ≤ α, let

rβ = r (M1| (M1 \ rgeM fβ)) .
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Since no singleton of M1 \ rgeM f is independent in M1, we have rα = 0.

Since M1 is a finite-rank matroid, there is γ < α such that rγ = rβ for every

β with γ ≤ β < α. Since fγ = gγ for some g ∈ B, it follows that there is

a ∈ M1 \ rgeM fγ with {a} independent in M1. Since a /∈ M1 \ rgeM f , there

is δ with γ ≤ δ < α and f(δ) = (a, 0). Let f ′ be the string obtained from f

by removing the value (a, 0) and shifting down the remaining values, that is

let

f ′ = fδ ∗ f[δ+1,α).

Since rδ = rδ+1, a is spanned by E \ rgeM fδ+1 in M, so µ(fδ+1) = µ(fδ). A

straightforward argument by transfinite induction shows that in general

(6) µ(fβ) = µ(fδ ∗ f[δ+1,β))

for every β such that δ < β ≤ α. The only nontrivial step of this inductive

argument is when β = β′ + 1 is a successor and f(β′) ∈ M1. The equality

rβ = rβ′ implies then that f(β′) is spanned by E\rgeM fβ and so the inductive

step goes through. Applying (6) for β = α, we get µ(f ′) = µ(f) = 0. Since

rα = 0 and {a} is independent in M1, it follows that a is not spanned by

E \ rgeM f in M, so

µ(f ′ ∗ [(a, 0)]) = −1.

Since f ′ ∗ [(a, 0)] is saturated and Γ is µ-admissible, this is a contradiction,

implying that f ∈ R′.

Since B was an arbitrary nonempty chain in R′, it follows from Zorn lemma

that R′ contains a maximal element with respect to ¹, and hence the proof

is complete.

(2) Assume that f is maximal in R′ with respect to ¹. Suppose, by way of

contradiction that there is

c ∈ rgeW f \ rgeM f.

Then the string

f ′ = f ∗ [(c, 0)]
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is saturated and µ(f ′) ≤ 0. Since Γ is µ-admissible, we have µ(f ′) = 0

implying that f ′ ∈ R. Since f is maximal in R′ with respect to ¹, it follows

that f ′ /∈ R′ so there is no

a ∈ M1 \ rgeM f ′

with {a} being independent in M1. Since f ∈ R′, {c} is independent in M1.

It follows that c is not spanned by E \ rgeM f in M and so µ(f ′) = −1, which

is a contradiction.

Lemma 4.2. Assume that M is the sum of matroids M′ and M′′ (on sets E ′ and E ′′

respectively) with M′ having positive finite rank. If Γ is µ-admissible, then there is

a ∈ E ′ and disjoint sets E1, E2 with E1 ∪E2 = E \ {a}, such that {a} is independent

in both M and W, and both pairs

Γ1 = (M.E1, (W/ {a}) |E1) and Γ2 = ((M/ {a}) |E2,W .E2)

are µ-admissible.

Proof. Let R′ be the subset of R consisting of strings g such that there is

b ∈ E ′ \ rgeM g

with {b} being independent in M′. Let f be a maximal element in R′ with respect

to ¹ and

A = {b ∈ E ′ \ rgeM f : {b} is independent in M′} .

Let t be a string with

rge t = A× {0}

and dom t = δ + 1 for some ordinal δ (note that A is nonempty). Since t(δ) is not

spanned by E \ rgeM(f ∗ t) in M, we have

µ(f ∗ t) ≤ µ(f)− 1 < 0.



MATROIDAL VERSION OF HALL’S THEOREM 15

Since Γ is µ-admissible, it follows that f ∗ t is not saturated. Since f is saturated,

there is

a ∈ rgeM t \ rgeW f = A \ rgeW f.

Let

E1 = rgeW f = rgeM f

and

E2 = E \ (E1 ∪ {a}) .

Then a is not spanned by E1 in W , since it follows from the maximality of f

that f ∗ [(a, 1)] /∈ R′. In particular {a} is independent in W . Since a ∈ A, {a} is

independent in M.

Let g be a saturated string in

Γ1 = (M.E1, (W/ {a}) |E1) .

Then g is a saturated string in Γ so µ(g) ≥ 0. Since a is not spanned by E1 in W and

rgeW g ⊆ E1, it follows that for any β < dom g, if g(β) ∈ W , then g(β) is spanned by

rgeW gβ in (W/ {a}) |E1 if and only if it is spanned by the same set in W . Moreover,

for any β < dom g, if g(β) ∈ M , then it is spanned by E1 \ rgeM gβ+1 in M.E1 if

and only if it is spanned by E \ rgeM gβ+1 in M. It follows that an argument by

transfinite induction can be used to prove that if µ1 is the µ-function of the pair Γ1,

then µ1(gβ) = µ(gβ) for every β ≤ dom g. In particular µ1(g) = µ(g) ≥ 0, so Γ1 is

µ-admissible.

It remains to show that

Γ2 = ((M/ {a}) |E2,W .E2)

is µ-admissible. Suppose, by way of contradiction, that it is not. Let g be a saturated

string in Γ2 with µ2(g) < 0, where µ2 is the µ-function of the pair Γ2. Without loss

of generality, we can assume that µ2(g) = −1 and µ2(gβ) ≥ 0 for every β < dom g.

Then

h = f ∗ [(a, 1)] ∗ g
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is a saturated string in Γ. Note that if β < dom g and g(β) ∈ W , then g(β) is spanned

by rgeW gβ in W .E2 if and only if it is spanned by

E1 ∪ {a} ∪ rgeW gβ = rgeW (f ∗ [(a, 1)] ∗ gβ)

in W . Moreover, if β < dom g and g(β) ∈ M , then g(β) is spanned by E2 \ rgeM gβ

in (M/ {a}) |E2 if and only if it is spanned by

(E2 \ rgeM gβ) ∪ {a} = E \ rgeM (f ∗ [(a, 1)] ∗ gβ)

in M. It follows that an argument by transfinite induction can be used to prove that

µ(f ∗ [(a, 1)] ∗ gβ) = µ(f) + 1 + µ2(gβ)

for every β ≤ dom g. In particular

µ(h) = µ(f ∗ [(a, 1)] ∗ g) = µ(f) + 1 + µ2(g) = µ(f) + 1− 1 = 0.

Therefore h ∈ R′ contradicting the definition of f as a maximal element in R′ with

respect to ¹. Therefore Γ2 is µ-admissible and the proof is complete.

4.2. Tree decomposition of Γ. Now we are ready for the proof of Theorem 2.4. We

need some more terminology. By a binary tree we will mean a finite set N of finite

0−1 sequences (including the empty sequence) such that if n ≥ 1 and a1a2 . . . an ∈ N ,

then a1a2 . . . an−1 ∈ N and a1a2 . . . an−1a
′
n ∈ N , where a′n = 1− an. An element of a

tree N will be called a vertex of N . A leaf of a tree N is a sequence a1a2 . . . an ∈ N

such that a1a2 . . . anan+1 /∈ N for any an+1 ∈ {0, 1}. An internal vertex of a tree N

is a vertex of N that is not a leaf.

If s = a1a2 . . . an and s′ = a′1a
′
2 . . . a′m are in N , then we say that s is to the left of

s′ (s′ is to the right of s) if there is i with 1 ≤ i ≤ min (n, m) such that ai = 0, a′i = 1,

and aj = a′j for every j with 1 ≤ j < i. If s′, s ∈ N are as above with n < m and

ai = a′i for every i = 1, 2, . . . , n, then we say that s is above s′ (s′ is below s).

A tree partition of a set A is a function τ : N → 2A where N is a binary tree,

τ(s1) ∩ τ(s2) = ∅ whenever s1 6= s2, and

⋃
s∈N

τ(s) = A.
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Note that we allow the values of τ to be empty sets.

Suppose τ : N → 2A is a tree partition. If s is a vertex of N , then let Ls be the

union of all τ(s′) with s′ to the left of s, let Rs be the union of all τ(s′) with s′ to the

right of s, Us be the union of all τ(s′) with s′ above s, and Ds be the union of τ(s)

and all τ(s′) with s′ below s. Note that the sets Ls, Rs, Us, Ds are pairwise disjoint

and

Ls ∪Rs ∪ Us ∪Ds = A.

Let τ be a tree partition of the set E. With each vertex s of N we associate a pair

of matroids Γs = (Ms,Ws) with

Ms = (M\ Ls) .Ds and Ws = (W \Rs) .Ds.

We say that τ is a tree decomposition of Γ if for every internal vertex s of N , τ(s) is a

singleton that is independent in both Ms and Ws. We say that a tree decomposition

τ of Γ is µ-admissible if for every vertex s of N the pair Γs is µ-admissible. Note

that if τ : N → 2E is the trivial decomposition with N containing only the empty

sequence and τ(∅) = E, then τ is µ-admissible if and only if Γ is µ-admissible.

The internal set of a tree decomposition τ : N → 2E is the set

Iτ = {a ∈ E : τ(s) = {a} for some internal vertex s of N} .

Lemma 4.3. If τ : N → 2E is a tree decomposition of Γ, then the internal set of τ

is independent in both M and W.

Proof. Without loss of generality we can assume that the set N̄ of internal vertices is

nonempty. Let < be the ordering of N̄ defined by s < s′ if and only if s is above or

to the left of s′, and let s ≤ s′ if and only if s < s′ or s = s′. It is easy to see that ≤
is a linear ordering of N̄ . Let

N̄ = {s1, s2, . . . , sk} ,

with

s1 < s2 < · · · < sk.
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Let i ∈ {1, . . . , k}. Since τ is a tree decomposition, τ(si) is independent in

Wsi
= (W \Rsi

) .Dsi
,

which implies that τ(si) is not spanned Usi
∪ Lsi

in W . Since

τ(s1) ∪ τ(s2) ∪ · · · ∪ τ(si−1) ⊆ Usi
∪ Lsi

,

it follows that τ(si) is not spanned by the set τ(s1)∪ τ(s2)∪ · · · ∪ τ(si−1) in W . This

implies that

Iτ = τ(s1) ∪ τ(s2) ∪ · · · ∪ τ(sk)

is independent in W since otherwise there would be a circuit C in W|Iτ , and taking

the largest possible i with τ(si) ⊆ C we would get τ(si) that is spanned by the set

τ(s1) ∪ τ(s2) ∪ · · · ∪ τ(si−1) in W .

The proof that Iτ is independent in M is similar with the ordering < of N̄ defined

by s < s′ if and only if s is above or to the right of s′.

Assume thatM is the sum of matroidsM′ andM′′ (on sets E ′ and E ′′ respectively)

with M′ having finite rank. If τ : N → 2E is a tree decomposition of Γ, then for each

vertex s of N , let L′s = Ls ∩E ′, L′′s = Ls ∩E ′′, let R′
s, R′′

s , U ′
s, U ′′

s , D′
s, D′′

s be defined

similarly, and let

M′
s = (M′ \ L′s) .D′

s, M′′
s = (M′′ \ L′′s) .D′′

s .

It follows then from Lemma 1.1 that for each vertex s of N , the matroid Ms is the

sum of M′
s and M′′

s . Moreover, let

I ′τ = Iτ ∩ E ′ I ′′τ = Iτ ∩ E ′′

Lemma 4.4. Let τ : N → 2E be a tree decomposition of Γ. Then

r (M′) = |I ′τ |+
∑
s∈V

r (M′
s) ,

where V is the set of leaves of N .
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Proof. Let < be the ordering on N defined by s < s′ if and only if s is above or to

the right of s′, and let s ≤ s′ if and only if s < s′ or s = s′. Let τ ′ : N → 2E be

defined by

τ ′(s) = τ(s) ∩ E ′

if s is an internal vertex of N and let ξ(s) be a base of M′
s if s is a leaf of N . We

claim that
⋃

s∈N τ ′(s) is a base of M′. Since

I ′τ =
⋃

s∈N̄

τ ′(s),

where N̄ is the set of internal vertices of N , the claim implies that

r (M′) = |I ′τ |+
∑
s∈V

r (M′
s) .

It remains to prove the claim. Let

N = {s1, s2, . . . , sk} ,

with

s1 < s2 < · · · < sk.

We will show, by induction on j, that for every j with 1 ≤ j ≤ k the set
⋃j

i=1 τ ′(sj)

is a base of

M|
(
R′

sj
∪ U ′

sj
∪ τ ′ (sj)

)
.

Since s1 = ∅ and τ(∅) is independent in M′
∅ = M′, it follows that τ ′(s1) is a base

of M′| (R′
s1
∪ U ′

s1
∪ τ ′ (s1)

)
. Assume that 1 ≤ j < k and that

⋃j
i=1 τ ′(si) is a base of

M′|
(
R′

sj
∪ U ′

sj
∪ τ ′ (sj)

)
.

Since

R′
sj
∪ U ′

sj
∪ τ ′ (sj) = R′

sj+1
∪ U ′

sj+1

and τ ′(sj+1) is a base of

M′
sj+1

|τ ′ (sj+1) =
(
M′|

(
R′

sj+1
∪ U ′

sj+1
∪ τ ′ (sj+1)

))
.τ ′ (sj+1)
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it follows that
⋃j+1

i=1 τ ′(si) is a base of

M′|
(
R′

sj+1
∪ U ′

sj+1
∪ τ ′ (sj+1)

)
.

Thus the proof is complete.

Let τ : N → 2E and τ ′ : N ′ → 2E be tree decompositions of Γ with

N ′ = N ∪ {a1a2 . . . an0, a1a2 . . . an1}

where a1a2 . . . an is a fixed leaf of N , and τ ′(s) = τ(s) for every s ∈ N \ {a1a2 . . . an}.
Then τ ′ will be called a one step refinement of τ . If τ ′ = τ or τ ′ can be obtained

from τ by a finite sequence of one step refinements, then τ ′ will be called a refinement

of τ . Note that if τ : N → 2E is a tree decomposition of Γ and τ ′ : N ′ → 2E is a

refinement of τ , then for every s ∈ N , the matroids Ms and Ws do not change when

we replace τ with τ ′.

Lemma 4.5. Assume that M is the sum of matroids M′ and M′′ (on sets E ′ and

E ′′ respectively) with M′ having finite rank. If τ : N → 2E is a µ-admissible tree

decomposition of Γ, then there is a µ-admissible refinement τ ′ of τ such that the

internal set Iτ ′ of τ ′ contains a base of M′.

Proof. We will prove the lemma by induction on the number

`τ = r (M′)− |I ′τ | ,

where

I ′τ = Iτ ∩ E ′.

If `τ = 0, then I ′τ is a base of M′ and τ ′ = τ satisfies the requirements. Assume that

`τ > 0. Then it follows from Lemma 4.4 that there is a leaf s = a1a2 . . . an of N with

r (M′
s) > 0. Since the pair (Ms,Ws) is µ-admissible, it follows from Lemma 4.2 that

there is

a ∈ D′
s = τ(s) ∩ E ′
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and disjoint sets E1, E2 with E1 ∪ E2 = D′
s \ {a}, such that {a} is independent in

both Ms and Ws, and both pairs

Γ1 = (Ms.E1, (Ws/ {a}) |E1) Γ2 = ((Ms/ {a}) |E2,Ws.E2)

are µ-admissible. Let s0 = a1a2 . . . an0, s1 = a1a2 . . . an1, N ′ = N ∪ {s0, s1} and

τ ′ : N ′ → 2E be such that τ ′(s′) = τ(s′) for every s′ ∈ N \ {s}, τ ′(s) = {a},
τ ′(s0) = E1, and τ ′(s1) = E2. Note that

Ls0 = Ls Ls1 = Ls ∪ E1 Rs0 = Rs ∪ E2 Rs1 = Rs Ds0 = E1 Ds1 = E2

so

Ms0 = (M\ Ls0) .Ds0 = (M\ Ls) .Ds0 = ((M\ Ls) .Ds) .E1

and

Ws0 = (W \Rs0) .Ds0 = (((W \Rs) .Ds) / {a}) \ E2 = (Ws/ {a}) |E1.

Thus

Γ1 = (Ms0 ,Ws0) .

Similarly,

Γ2 = (Ms1 ,Ws1) .

Since both Γ1 and Γ2 are µ-admissible and τ is µ-admissible, it follows that τ ′ is

µ-admissible. Since

a ∈ I ′τ ′ = Iτ ′ ∩ E ′,

it follows that `τ ′ < `τ so the inductive hypothesis implies that τ ′ has a µ-admissible

refinement τ ′′ with Iτ ′′ containing a base of M′. Thus the proof is complete.

4.3. Proof of Theorem 2.4. Let M be the sum of finite rank matroids M1, M2,

. . . . Let τ 0 be the trivial tree decomposition of Γ. Suppose that we have a µ-admissible

tree decomposition τ i of Γ. It follows from Lemma 4.5 that there is a µ-admissible

tree decomposition τ i+1 of Γ that is a refinement of τ i such that Iτ i+1
contains a base

of Mi+1. Let

I =
∞⋃
i=1

Iτ i
.
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Then I is spanning in M, and it follows from Lemma 4.3 that any finite subset of I

is independent in W . Since W is finitary, I is independent in W .

5. Remarks

If we remove the restrictions on M and W in Theorem 2.4, it becomes obviously

false. For example, if both M and W are equal to the matroid from Example 1.1,

then Γ = (M,W) is µ-admissible, since µ(f) = ‖rgeW f‖ for any saturated string f

in Γ. However, Γ is not matchable as any matching in Γ would be a base of M, and

M has no bases. It is natural to ask, how much the restrictions on M and W can be

relaxed for Theorem 2.4 to remain valid.

Another natural question to ask is whether the nonexistence of a hindrance in

Γ = (M,W) implies its µ-admissibility. This implication clearly holds for every

pair Γ with M being SCF and W being finitary, or more generally, whenever the

nonexistence of a hindrance in Γ implies its matchability, since matchability always

implies µ-admissibility.

On the other hand, without any restrictions on M and W , the nonexistence of a

hindrance does not imply µ-admissibility. For example, let W be as in Example 1.1

and M be discrete, that is, let all subsets of Z be independent in M. Then there

are no hindrances in Γ = (M,W), since if H is independent in W , then it is finite,

so ∂̄W(H) = H and H is spanning in M.
(
∂̄W(H)

)
. However, Γ is not µ-admissible.

Indeed, let f be the (ω + 2)-string in Γ defined as follows. Let M = Z × {0},
W = Z × {1} and consider M and W as matroids on M and W respectively. Let

f(i) = (i, 1) for i = 0, 2, 4, . . . , f(i) = (i− 1, 0) for i = 1, 3, 5, . . . , f(ω) = (1, 1), and

f(ω + 1) = (1, 0). Then f is saturated, µ(fω) = µ(fω+1) = 0, and µ(f) = −1.

It would be interesting to know whether the nonexistence of a hindrance implies

µ-admissibility when M and W are finitary, and if so, then how much this restriction

can be relaxed for the implication to remain valid.
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