ON THE LENGTH OF SNAKES IN POWERS OF COMPLETE GRAPHS

JERZY WOJCIECHOWSKI

Abstract

We prove the conjecture stated in [10] that there is a constant λ (independent from both n and k) such that $S\left(K_{n}^{d}\right) \geq \lambda n^{d-1}$ holds for every $n \geq 2$ and $d \geq 2$, where $S\left(K_{n}^{d}\right)$ is the length of the longest snake (cycle without chords) in the Cartesian product K_{n}^{d} of d copies of the complete graph K_{n}.

1. Introduction

By a path in a graph G we mean a sequence of (at least two) distinct vertices of G with every pair of consecutive vertices being adjacent. A path will be called closed if its first vertex is adjacent to the last one. By a chord of a path P in a graph G we mean an edge of G joining two nonconsecutive vertices of P. If e is a chord in a closed path P, then e is called proper if it is not the edge joining the first vertex of P to its last vertex. Note that a proper chord of a closed path corresponds to the standard notion of a chord in a cycle. A snake in a graph G is a closed path in G with at least three vertices and without proper chords, and an open snake in G is a path in G without chords.

If G and H are graphs, then the Cartesian product of G and H is the graph $G \times H$ with $V(G) \times V(H)$ as the vertex set and $\left(g_{1}, h_{1}\right)$ adjacent to $\left(g_{2}, h_{2}\right)$ if either $g_{1} g_{2} \in E(G)$ and $h_{1}=h_{2}$, or else $g_{1}=g_{2}$ and $h_{1} h_{2} \in E(H)$. Let K_{n}^{d} be the product of d copies of the complete graph $K_{n}, n \geq 2, d \geq 2$. It is convenient to think of the vertices of K_{n}^{d} as d-tuples of n-ary digits, that is, as the d-tuples of the elements

Date: May 27, 2003.
1991 Mathematics Subject Classification. Primary 05C38; Secondary 05C35.
Key words and phrases. snake-in-the-box problem, powers of complete graphs, induced cycle.
of the set $\{0,1, \ldots, n-1\}$, with edges between two d-tuples differing at exactly one coordinate. Let $S\left(K_{n}^{d}\right)$ be the length of the longest snake in K_{n}^{d}.

The problem of finding a good lower bound for the value of $S\left(K_{n}^{d}\right)$ has a long history. It was first met by Kautz [7] in the case of $n=2$ (known in the literature as the snake-in-the-box problem) in constructing a type of error-checking code for a certain analog-to-digital conversion systems. He showed that

$$
S\left(K_{2}^{d}\right) \geq \lambda \sqrt{2^{d}}
$$

for some positive constant λ. Several authors improved the lower bound for $S\left(K_{2}^{d}\right)$ (see the list of references in the papers [2], [8]) until Evdokimov [6], as the first one, obtained a lower bound that is linear in 2^{d}, that is, he showed that

$$
S\left(K_{2}^{d}\right) \geq \lambda 2^{d},
$$

where λ is a positive constant. Other shorter proofs of such a bound were given by Abbott and Katchalski [2] and in [8]. The largest value of the constant

$$
\lambda=\frac{77}{256}=0.300781 \ldots
$$

was obtained by Abbott and Katchalski [4].
The general case of the problem, with an arbitrary value of n, was introduced by Abbott and Dierker [1]. Abbott and Katchalski [5] extended the linear lower bound for $S\left(K_{n}^{d}\right)$ to all even n, that is, they proved that for every even positive integer n there is a positive constant λ_{n} such that

$$
S\left(K_{n}^{d}\right) \geq \lambda_{n} n^{d} .
$$

In [9] it is proved that a similar linear lower bound holds for every odd $n \geq 3$ as well. Therefore, for every integer $n \geq 2$ there is a positive constant λ_{n} such that

$$
S\left(K_{n}^{d}\right) \geq \lambda_{n} n^{d} .
$$

In the results above, the constant λ_{n} is dependent on n and approaches 0 as $n \longrightarrow \infty$. For example, the result proved in [9] says that for any odd integer $n \geq 3$, and any
$d \geq 5$

$$
S\left(K_{n}^{d}\right) \geq 2(n-1) n^{d-4},
$$

so

$$
\lambda_{n}=\frac{2(n-1)}{n^{4}} .
$$

Actually, obtaining a linear lower bound with the coefficient independent from both n and d is not possible since Abbott and Katchalski [3] proved the following upper bound

$$
S\left(K_{n}^{d}\right) \leq\left(1+\frac{1}{d-1}\right) n^{d-1} .
$$

A natural question is whether there is a positive constant λ, that is independent from both n and d, such that

$$
S\left(K_{n}^{d}\right) \geq \lambda n^{d-1}
$$

In [10] it is conjectured that the answer to the above question is positive and the following partial result is proved.

Theorem 1. Let P be a finite set of primes. Then there is a positive constant λ_{P} such that

$$
S\left(K_{n}^{d}\right) \geq \lambda_{P} n^{d-1}
$$

for any integer n that is divisible by an element of P.
However, the constant λ_{P} approaches 0 as max $P \longrightarrow \infty$, so the conjecture remains open. In this paper we prove the following result that affirms the conjecture.

Theorem 2. There is a positive constant λ such that

$$
S\left(K_{n}^{d}\right) \geq \lambda n^{d-1}
$$

holds for every $n \geq 2$ and $d \geq 2$.
Since $S\left(K_{n}^{2}\right)=2 n$ (see Abbott and Dierker [1]) and

$$
S\left(K_{n}^{3}\right)=\frac{3}{2} n^{2}+O(n)
$$

as proved by Abbott and Katchalski in [3], it is enough to prove Theorem 2 for $d \geq 4$. Because of Theorem 1, it is enough to consider the case of n being odd. Theorem 2 will follow after we prove the following result.

Theorem 3. Assume that $n \geq 9$ is odd and $d \geq 4$. Then

$$
S\left(K_{n}^{d}\right) \geq 4\lfloor n / 4\rfloor\lfloor n / 2\rfloor n^{d-3} .
$$

The proof of Theorem 3 will be given in section 5.

2. Basic Definitions

An m-path in a graph is a path containing m vertices, that is, it is a path of length $m-1$. If P is an m-path, then we will write $m=|P|$. A chain \mathcal{C} in a graph G is a sequence $\mathcal{C}=\left(P_{1}, \ldots, P_{m}\right)$ of (at least two) paths in G such that the last vertex of P_{i} is equal to the first vertex of $P_{i+1}, i=1,2, \ldots, m-1$. When the number m of paths in a chain needs to be specified, we shall refer to it as an m-chain. An m-chain $\left(P_{i}\right)_{i=1}^{m}$ will be called closed if the first vertex of P_{1} is equal to the last vertex of P_{m}.

Now we are going to define an important operation that will be used throughout the paper. Given an m-path $P=\left(g_{i}\right)_{i=1}^{m}$ in a graph G and an m-chain $\mathcal{C}=\left(P_{i}\right)_{i=1}^{m}$ in a graph H, let $P \otimes \mathcal{C}$ be the $\left(\sum_{i=1}^{m}\left|P_{i}\right|\right)$-path in $G \times H$ obtained as follows. For each $i=1, \ldots, m$, if $P_{i}=\left(h_{1}, h_{2}, \ldots, h_{k}\right)$, then let P_{i}^{\prime} be the $\left|P_{i}\right|$-path in $G \times H$ given by

$$
P_{i}^{\prime}=\left(\left(g_{i}, h_{1}\right),\left(g_{i}, h_{2}\right), \ldots,\left(g_{i}, h_{k}\right)\right) .
$$

Note that for each $i=1, \ldots, m-1$ the last vertex of the path P_{i}^{\prime} is adjacent in $G \times H$ to the first vertex of the path P_{i+1}^{\prime}. Let $P \otimes \mathcal{C}$ be the path obtained by joining together (juxtaposing) the paths $P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{m}^{\prime}$. We will say that $P \otimes \mathcal{C}$ is the path generated by P and \mathcal{C}. Note that the path generated by a closed path and a closed chain is a closed path.

If \mathcal{D} is a $k m$-chain in a graph H, with $k, m \geq 2$, then the m-splitting of \mathcal{D} is the sequence $\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{m}\right)$ of k-chains in H which joined together (juxtaposed) give \mathcal{D}. The above definition of the operation \otimes can be generalized to the following
situation. Let $\mathcal{C}=\left(P_{i}\right)_{i=1}^{m}$ be an m-chain of k-paths in a graph G, let \mathcal{D} be a $k m$ chain in H, and let $\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{m}\right)$ be the m-splitting of \mathcal{D}. Note that for each $i \in\{1,2, \ldots, m-1\}$ the last vertex of the path $P_{i} \otimes \mathcal{D}_{i}$ in the graph $G \times H$ is equal to the first vertex of the path $P_{i+1} \otimes \mathcal{D}_{i+1}$. Let $\mathcal{C} \otimes \mathcal{D}$ be the chain in $G \times H$ given by

$$
\mathcal{C} \otimes \mathcal{D}=\left(P_{1} \otimes \mathcal{D}_{1}, P_{2} \otimes \mathcal{D}_{2}, \ldots, P_{m} \otimes \mathcal{D}_{m}\right)
$$

We will say that $\mathcal{C} \otimes \mathcal{D}$ is the chain generated by \mathcal{C} and \mathcal{D}. Note that the chain generated by two closed chains is also a closed chain. It is straightforward to verify that the operation \otimes is associative in the following sense.

Proposition 4. If P is an m-path in a graph G, \mathcal{C} is an m-chain of k-paths in a graph H, and \mathcal{D} is a km-chain in a graph J, then

$$
(P \otimes \mathcal{C}) \otimes \mathcal{D}=P \otimes(\mathcal{C} \otimes \mathcal{D}) .
$$

When we refer to a pair s_{i} and s_{j} of elements of a sequence $\left(s_{1}, s_{2}, \ldots, s_{t}\right)$, we say that they are consecutive if $j=i \pm 1$, and that they are cyclically consecutive if either $j=i \pm 1$ or $\{i, j\}=\{1, t\}$.

Let $\mathcal{C}=\left(P_{i}\right)_{i=1}^{m}$ be a chain in a graph G. We say that \mathcal{C} is openly separated if any two paths of \mathcal{C} have exactly one vertex in common when they are consecutive, and they are vertex disjoint otherwise. We say that \mathcal{C} is closely separated if \mathcal{C} is closed, any two paths of \mathcal{C} have exactly one vertex in common when they are cyclically consecutive, and they are vertex disjoint otherwise.

The following statement is an easy consequence of the definitions.
Proposition 5. Let P be a path in a graph G and \mathcal{C} be a $|P|$-chain of open snakes in a graph H.
(1) If \mathcal{C} is openly separated, then $P \otimes \mathcal{C}$ is an open snake in $G \times H$.
(2) If P is closed and \mathcal{C} is closely separated, then $P \otimes \mathcal{C}$ is a snake in $G \times H$.

If P is a path, then let $-P$ be the path obtained from P by reversing the order of vertices, and if $\mathcal{C}=\left(P_{i}\right)_{i=1}^{m}$ is a chain, then let

$$
-\mathcal{C}=\left(-P_{m},-P_{m-1}, \ldots,-P_{1}\right)
$$

be the chain obtained from \mathcal{C} by reversing the order of paths and reversing every path. The expression $(-1)^{i} X$, where X is a path or a chain, will mean X for i even and $-X$ for i odd. Obviously, the following statement is true.

Proposition 6. If P is an m-path in a graph G and \mathcal{C} is an m-chain in a graph H, then

$$
(-P) \otimes \mathcal{C}=-(P \otimes(-\mathcal{C}))
$$

Let \mathcal{C} be a $k m$-chain of paths, and let $\mathcal{S}=\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{m}\right)$ be the m-splitting of \mathcal{C}. Consider the following ($m \times k$) -matrix of paths:

$$
\mathcal{A}=\left(\begin{array}{c}
\mathcal{C}_{1} \\
-\mathcal{C}_{2} \\
\vdots \\
(-1)^{m-1} \mathcal{C}_{m}
\end{array}\right)=\left(\begin{array}{cccc}
Q_{1}^{1} & Q_{1}^{2} & \ldots & Q_{1}^{k} \\
Q_{2}^{1} & Q_{2}^{2} & \ldots & Q_{2}^{k} \\
\vdots & \vdots & & \vdots \\
Q_{m}^{1} & Q_{m}^{2} & \ldots & Q_{m}^{k}
\end{array}\right)
$$

where $\left(Q_{i}^{1}, Q_{i}^{2}, \ldots, Q_{i}^{k}\right)$ is the sequence of paths forming the k-chain $(-1)^{i-1} \mathcal{C}_{i}$. We will call \mathcal{A} the alternating matrix of \mathcal{S}. The splitting \mathcal{S} will be called openly alternating if for any $\ell \in\{1,2, \ldots, k\}$ and for any two distinct paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ appearing in the ℓ-th column of \mathcal{A}, the paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ have exactly one vertex in common when they are consecutive in \mathcal{C} and they are vertex disjoint otherwise.

Assume now that the $k m$-chain \mathcal{C} is closed and m is even. Then, we say that the splitting \mathcal{S} is closely alternating if for any $\ell \in\{1,2, \ldots, k\}$ and for any two distinct paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ appearing in the ℓ-th column of \mathcal{A}, the paths $Q_{i}^{\ell}, Q_{j}^{\ell}$ have exactly one vertex in common when they are cyclically consecutive in \mathcal{C} and they are vertex disjoint otherwise. The following statement is an easy consequence of the definitions.

Proposition 7. Let P be a k-path in a graph G, and let \mathcal{D} be a km-chain in a graph H.
(1) If \mathcal{C} is the m-chain $\left(P,-P, \ldots,(-1)^{m-1} P\right)$, and the m-splitting of \mathcal{D} is openly alternating, then the m-chain $\mathcal{C} \otimes \mathcal{D}$ in $G \times H$ is openly separated.
(2) If m is even, \mathcal{C} is the closed m-chain $(P,-P, P,-P, \ldots,-P)$, and the m splitting of \mathcal{D} is closely alternating, then the closed m-chain $\mathcal{C} \otimes \mathcal{D}$ in $G \times H$ is closely separated.

Let $n \geq 3$ be an odd integer. Let H be a graph, $r \geq 1$ be an integer, \mathcal{C} be an n^{r}-chain of paths in H, and \mathcal{D} be an $(n-1) n^{r}$-chain of paths in H. We say that \mathcal{C} is openly well distributed if either $r=1$ and \mathcal{C} is an openly separated chain of open snakes, or $r \geq 2$, every chain \mathcal{C}_{i} in the n-splitting $\mathcal{S}=\left(\mathcal{C}_{1}, \mathcal{C}_{2}, \ldots, \mathcal{C}_{n}\right)$ of \mathcal{C} is openly well distributed and \mathcal{S} is openly alternating. We also say that \mathcal{D} is closely well distributed if every chain \mathcal{D}_{i} in the $(n-1)$-splitting $\mathcal{S}^{\prime}=\left(\mathcal{D}_{1}, \mathcal{D}_{2}, \ldots, \mathcal{D}_{\bar{n}}\right)$ of \mathcal{D} is openly well distributed and \mathcal{S}^{\prime} is closely alternating. The following property can be proved by a straightforward induction with respect to r.

Proposition 8. If \mathcal{C} is an openly well distributed n^{r}-chain of paths in a graph H, then the chain $-\mathcal{C}$ is also openly well distributed.

We are going now to define inductively, for each $d=1,2, \ldots$, an n^{r}-path π_{n}^{d} in K_{n}^{r} and a closed $(n-1) n^{r}$-path γ_{n}^{r+1} in K_{n}^{r+1}. Let

$$
\begin{aligned}
\pi_{n}^{1} & =(0,1, \ldots, n-1) \\
\pi_{n}^{r+1} & =\pi_{n}^{1} \otimes\left(\pi_{n}^{r},-\pi_{n}^{r}, \pi_{n}^{r},-\pi_{n}^{r}, \ldots, \pi_{n}^{r}\right)
\end{aligned}
$$

and

$$
\gamma_{n}^{r+1}=\gamma_{n} \otimes\left(\pi_{n}^{r},-\pi_{n}^{r}, \pi_{n}^{r},-\pi_{n}^{r}, \ldots,-\pi_{n}^{r}\right),
$$

where γ_{n} is the closed $(n-1)$-path $(0,1, \ldots, n-2)$ in K_{n}.
The following lemmas are proved in [9].
Lemma 9. If $r \geq 1$ and \mathcal{C} is an openly well distributed n^{r}-chain in a graph H, then the path $\pi_{n}^{r} \otimes \mathcal{C}$ is an open snake in the graph $K_{n}^{r} \times H$.

Lemma 10. If $r \geq 1$ and \mathcal{C} is a closely well distributed $(n-1) n^{r}$-chain in a graph H, then the path $\gamma_{n}^{r+1} \otimes \mathcal{C}$ is a snake in the graph $K_{n}^{r+1} \times H$.

3. A Family of Snakes in K_{n}^{2}

Assume that $n \geq 9$ is odd. Let $m=(n+1) / 2$ and $k=\lfloor n / 4\rfloor-1$. For each $t \in\{0,1, \ldots, n-1\}$, each $i \in\{n-3, n-2, n-1\}$, and each

$$
\alpha, \beta \in\{0,1\}
$$

let $C_{i}^{\alpha t \beta}$ be the open snake in K_{n}^{2}, with $2 k+2=2\lfloor n / 4\rfloor$ vertices, defined by

$$
\begin{aligned}
C_{i}^{\alpha t \beta}= & ((\overline{t-\alpha}, i),(\overline{t-\alpha}, \overline{\overline{1-t}}),(\overline{t+1}, \overline{\overline{1-t}}),(\overline{t+1}, \overline{\overline{2-t}}),(\overline{t+2}, \overline{\overline{2-t}}), \\
& (\overline{t+2}, \overline{\overline{3-t}}),(\overline{t+3}, \overline{\overline{3-t}}), \ldots,(\overline{t+k-3}, \overline{\overline{k-2-t}}) \\
& (\overline{t+k-2}, \overline{\overline{k-2-t}}),(\overline{t+k-2}, \overline{\overline{k-1-t}}),(\overline{t+k-1}, \overline{\overline{k-1-t}}) \\
& (\overline{t+k-1}, \overline{\overline{k-t}}),(\overline{t+k+\beta}, \overline{\overline{k-t}}),(\overline{t+k+\beta}, n-4))
\end{aligned}
$$

where $\bar{x}=x \bmod n$ and $\overline{\bar{x}}=x \bmod m$.
For example, if $n=17$, then $m=9, k=3$,

$$
\begin{aligned}
C_{14}^{000}= & ((0,14),(0,1),(1,1),(1,2),(2,2),(2,3),(3,3),(3,13)) \\
C_{14}^{010}= & ((1,14),(1,0),(2,0),(2,1),(3,1),(3,2),(4,2),(4,13)) \\
C_{14}^{020}= & ((2,14),(2,8),(3,8),(3,0),(4,0),(4,1),(5,1),(5,13)) \\
& \vdots \\
C_{14}^{0160}= & ((16,14),(16,2),(0,2),(0,3),(1,3),(1,4),(2,4),(2,13)),
\end{aligned}
$$

and

$$
\begin{aligned}
& C_{14}^{021}=((2,14),(2,7),(3,7),(3,0),(4,0),(4,1),(6,1),(6,13)), \\
& C_{14}^{120}=((1,14),(1,7),(3,7),(3,0),(4,0),(4,1),(5,1),(5,13)), \\
& C_{14}^{121}=((1,14),(1,7),(3,7),(3,0),(4,0),(4,1),(6,1),(6,13))
\end{aligned}
$$

Lemma 11. Let $t, s \in\{0,1, \ldots, n-1\}$ with $t<s$, let $i, j \in\{n-3, n-2, n-1\}$, and let

$$
\alpha, \beta, \gamma, \delta \in\{0,1\}
$$

If u is a vertex of $C_{i}^{\alpha t \beta}$ and v is a vertex of $C_{j}^{\gamma s \delta}$, then $u \neq v$ except in the following cases:
(1) $s=t+1, \alpha=0, \gamma=1, i=j$, and u, v are the first vertices of $C_{i}^{\alpha t \beta}$ and $C_{j}^{\gamma s \delta}$, respectively;
(2) $t=0, s=n-1, \alpha=1, \gamma=0, i=j$, and u, v are the first vertices of $C_{i}^{\alpha t \beta}$ and $C_{j}^{\gamma s \delta}$, respectively;
(3) $s=t+1, \beta=1, \delta=0$, and u, v are the last vertices of $C_{i}^{\alpha t \beta}$ and $C_{j}^{\gamma s \delta}$, respectively;
(4) $t=0, s=n-1, \beta=0, \delta=1$, and u, v are the last vertices of $C_{i}^{\alpha t \beta}$ and $C_{j}^{\gamma s \delta}$, respectively.

Proof. Assume that $u=v=(a, b)$. Since $m \leq n-4$, exactly one of the following conditions holds
(a) $b \in\{n-3, n-2, n-1\}$;
(b) $b=n-4$;
(c) $b \in\{0,1, \ldots, m-1\}$.

If (a) holds, then u is the first vertex of $C_{i}^{\alpha t \beta}$ and v is the first vertex of $C_{j}^{\gamma s \delta}$. Since both i and j are equal to b, we have $i=j$. It is clear that $s=t \pm 1 \bmod n$, and since $t<s$, we must have either $s=t+1$ or $(t, s)=(0, n-1)$. Since

$$
a=(t-\alpha) \bmod n=(s-\gamma) \bmod n,
$$

we must have $\alpha=0, \gamma=1$ when $s=t+1$ and $\alpha=1, \gamma=0$ when $(t, s)=(0, n-1)$. Thus one of the conditions 1 or 2 above must hold.

If (b) holds, then u is the last vertex of $C_{i}^{\alpha t \beta}$ and v is the last vertex of $C_{j}^{\gamma s \delta}$ and similar analysis as above shows that one of the conditions 3 or 4 above holds.

If (c) holds, then neither u nor v is the first or the last vertex of the corresponding path. We will show that this assumption leads to a contradiction. From the definition
of $C_{i}^{\alpha t \beta}$ we have

$$
\begin{aligned}
a & \in\{\overline{t-\alpha}, \overline{t+k+\beta}\} \cup\{\overline{t+1}, \overline{t+2}, \ldots, \overline{t+k-1}\} \\
& \subseteq\{\overline{t-1}, t, \overline{t+1}, \overline{t+2}, \ldots, \overline{t+k-1}, \overline{t+k}, \overline{t+k+1}\} .
\end{aligned}
$$

Therefore

$$
t \in\{\overline{a+1}, a, \overline{a-1}, \ldots, \overline{a-k-1}\}
$$

Let us consider how the value of b depends on the value of t. Notice that

- $b=\overline{\overline{1-t}}$ when $a=\overline{t-\alpha}$, that is when $t \in\{\overline{a+1}, a\}$;
- $b=\overline{\overline{k-t}}$ when $a=\overline{t+k+\beta}$, that is when $t \in\{\overline{a-k}, \overline{a-k-1}\}$; and
- $b=\overline{\overline{\ell-t}}$ or $b=\overline{\overline{\ell+1-t}}$ when $a=\overline{t+\ell}$, that is when $t=\overline{a-\ell}$ for any $\ell=1,2, \ldots, k-1$.

Therefore, given the value of t, the value of b is as in the following table:

t	b
$\begin{aligned} & \overline{a+1} \\ & \bar{a} \\ & \overline{a-1} \\ & \overline{a-2} \end{aligned}$	
$\begin{aligned} & \overline{a-k+1} \\ & \overline{a-k} \\ & \overline{a-k-1} \end{aligned}$	$\begin{gathered} \overline{k-1-\overline{a-k+1} \text { or }} \overline{\overline{k-\overline{a-k+1}}} \\ \overline{\overline{k-\overline{a-k-1}}} \end{gathered}$

For example, take $a=1$ and consider how the above table looks when $n=25$ ($m=13$, $k=5)$ - table on the left below, and $n=27(m=14, k=5)$ - table on the right
below.

t	b
2	12
1	0
0	1 or 2
24	4 or 5
23	6 or 7
22	8 or 9
21	10
20	11

t	b
2	13
1	0
0	1 or 2
26	4 or 5
25	6 or 7
24	8 or 9
23	10
22	11

If a is such that the set $\{\overline{a+1}, a, \overline{a-1}, \ldots, \overline{a-k-1}\}$ does not contain both 0 and $n-1$, then the possible values of b in the table above range from $\overline{\overline{1-\overline{a+1}}}$ to $\overline{\overline{k-\overline{a-k-1}}}$ through consecutive numbers modulo m. There are $2 k+2$ numbers in such a sequence. Since $2 k+2 \leq m$, they are all distinct.

If the set $\{\overline{a+1}, a, \overline{a-1}, \ldots, \overline{a-k-1}\}$ contains both 0 and $n-1$, then the possible values of b in the table above range from $\overline{\overline{1-\overline{a+1}}}$ to $\overline{\overline{k-\overline{a-k-1}}}$ through consecutive numbers modulo m except for one. Since $2 k+2 \leq m-1$, again all the possible values for b in the table above are distinct.

It follows that the values of a and b determine the value t in a unique way. It follows that $s=t$ contradicting the assumption. Thus the proof is complete.

4. An Openly Well Distributed n^{r}-chain in K_{n}^{2}

Let $n \geq 9$ be an odd integer and \mathcal{M} be the set of all open snakes $C_{i}^{\alpha t \beta}$ as defined in the previous section. For any $s \in\{0,1, \ldots, n-1\}$, let $\sigma^{s}: \mathcal{M} \rightarrow \mathcal{M}$ be defined by

$$
\sigma^{s}\left(C_{i}^{\alpha t \beta}\right)=C_{i}^{\alpha \overline{t+s} \beta}
$$

where $\bar{x}=x \bmod n$. Let

$$
-\mathcal{M}=\{-P: P \in \mathcal{M}\}
$$

and

$$
\overline{\mathcal{M}}=\mathcal{M} \cup(-\mathcal{M}) .
$$

We can extend σ^{s} to be a map $\sigma^{s}: \overline{\mathcal{M}} \rightarrow \overline{\mathcal{M}}$ by setting $\sigma^{s}(-P)=-\sigma^{s}(P)$.
If \mathcal{C} is a chain in K_{n}^{2} consisting of paths from $\overline{\mathcal{M}}$, then we will say that \mathcal{C} is $\overline{\mathcal{M}}$-built. If \mathcal{C} is $\overline{\mathcal{M}}$-built, then let $\sigma^{s}(\mathcal{C})$ be the chain obtained by applying σ^{s} to each path of \mathcal{C}. The following proposition can be proved by a straightforward induction on the length of \mathcal{C} using Lemma 11.

Proposition 12. IfC is an $\overline{\mathcal{M}}$-built openly well distributed chain and $s \in\{0,1, \ldots, n-$ $1\}$, then the chains $\sigma^{s}(\mathcal{C})$ and $-\sigma^{s}(\mathcal{C})$ are also openly well distributed.

We say that α is the upper begin (upper end) and i is the lower begin (lower end) of the path $C_{i}^{\alpha t \beta}$ (the path $-C_{i}^{\alpha t \beta}$), and that β is the upper end (upper begin) and $n-4$ is the lower end (lower begin) of $C_{i}^{\alpha t \beta}$ (of $-C_{i}^{\alpha t \beta}$). Given an $\overline{\mathcal{M}}$-built chain \mathcal{C}, the upper begin (lower begin) of \mathcal{C} is the upper begin (lower begin) of the first path of \mathcal{C} and the upper end (lower end) of \mathcal{C} is the upper end (lower end) of the last path of \mathcal{C}.

Let \mathcal{C} and \mathcal{D} be $\overline{\mathcal{M}}$-built ℓ-chains. We say that \mathcal{C} and \mathcal{D} are internally compatible if they are the same except possibly for the upper begin and the upper end, that is, if the following conditions hold:
(1) for every $p \in\{2, \ldots, \ell-1\}$ the p-th path of \mathcal{C} is the same as the p-th path of D;
(2) if the first path of \mathcal{C} is $C_{i}^{\alpha t \beta}$, then the first path of \mathcal{D} is $C_{i}^{\alpha^{\prime} t \beta}$ for some $\alpha^{\prime} \in$ $\{0,1\} ;$
(3) if the first path of \mathcal{C} is $-C_{i}^{\alpha t \beta}$, then the first path of \mathcal{D} is $-C_{i}^{\alpha t \beta^{\prime}}$ for some $\beta^{\prime} \in\{0,1\} ;$
(4) if the last path of \mathcal{C} is $C_{i}^{\alpha t \beta}$, then the last path of \mathcal{D} is $C_{i}^{\alpha t \beta^{\prime}}$ for some $\beta^{\prime} \in\{0,1\}$;
(5) if the last path of \mathcal{C} is $-C_{i}^{\alpha t \beta}$, then the last path of \mathcal{D} is $-C_{i}^{\alpha^{\prime} t \beta}$ for some $\alpha^{\prime} \in\{0,1\}$.

The following lemma, together with Lemma 9 will allow for a construction of long open snakes in powers of K_{n}.

Lemma 13. For every integer $r \geq 1$, there is an $\overline{\mathcal{M}}$-built n^{r}-chain \mathcal{N}_{r} such that:
(1) any chain that is internally compatible with \mathcal{N}_{r} is openly well distributed;
(2) the first path of \mathcal{N}_{r} is C_{n-1}^{001};
(3) if P is the p-th path of \mathcal{N}_{r} then $P \in(-1)^{p-1} \mathcal{M}$.

Proof. Let
$\mathcal{N}_{1}=\left(C_{n-1}^{001},-C_{n-1}^{010}, C_{n-1}^{121},-C_{n-1}^{030}, C_{n-1}^{141},-C_{n-1}^{050}, \ldots, C_{n-1}^{1(n-3) 1},-C_{n-1}^{0(n-2) 0}, C_{n-1}^{1(n-1) 0}\right)$.
It is straightforward to verify, using Lemma 11, that any chain that is internally compatible with \mathcal{N}_{1} is openly separated and so it is openly well distributed. It is clear that the remaining conditions are also satisfied.

Assume that $r \geq 2$, and that \mathcal{N}_{r-1} is an $\overline{\mathcal{M}}$-built n^{r-1}-chain satisfying the required conditions. For any $\alpha, \beta \in\{0,1\}$ let $\mathcal{N}_{r-1}^{\alpha \beta}$ be the chain that is internally compatible with \mathcal{N}_{r-1} and has upper begin α and upper end β. Let \mathcal{N}_{r} be the $\overline{\mathcal{M}}$-built n^{r}-chain with the following n-splitting
$\mathcal{S}_{r}=\left(\sigma^{0}\left(\mathcal{N}_{r-1}^{01}\right),-\sigma^{1}\left(\mathcal{N}_{r-1}^{00}\right), \sigma^{2}\left(\mathcal{N}_{r-1}^{11}\right),-\sigma^{3}\left(\mathcal{N}_{r-1}^{00}\right), \ldots,-\sigma^{n-2}\left(\mathcal{N}_{r-1}^{00}\right), \sigma^{n-1}\left(\mathcal{N}_{r-1}^{10}\right)\right)$.
Let $\mathcal{N}_{r}^{\alpha \beta}$ be the chain that is internally compatible with \mathcal{N}_{r} and has upper begin α and upper end β. Let $\mathcal{S}_{r}^{\alpha \beta}$ be the n-splitting of $\mathcal{N}_{r}^{\alpha \beta}$. By the inductive hypothesis and Proposition 12, every chain of $\mathcal{S}_{r}^{\alpha \beta}$ is openly well distributed. To prove that $\mathcal{N}_{r}^{\alpha \beta}$ is openly well distributed, it remains to show that $\mathcal{S}_{r}^{\alpha \beta}$ is openly alternating.

Let

$$
\mathcal{A}_{r}^{\alpha \beta}=\left(\begin{array}{c}
\sigma^{0}\left(\mathcal{N}_{r-1}^{\alpha 1}\right) \\
\sigma^{1}\left(\mathcal{N}_{r-1}^{00}\right) \\
\sigma^{2}\left(\mathcal{N}_{r-1}^{11}\right) \\
\vdots \\
\sigma^{n-2}\left(\mathcal{N}_{r-1}^{00}\right) \\
\sigma^{n-1}\left(\mathcal{N}_{r-1}^{1 \beta}\right)
\end{array}\right)=\left(\begin{array}{cccc}
Q_{0}^{1} & Q_{0}^{2} & \ldots & Q_{0}^{n^{r-1}} \\
Q_{1}^{1} & Q_{1}^{2} & \ldots & Q_{1}^{n^{r-1}} \\
Q_{2}^{1} & Q_{2}^{2} & \ldots & Q_{2}^{n^{r-1}} \\
\vdots & \vdots & & \vdots \\
Q_{n-2}^{1} & Q_{n-2}^{2} & \ldots & Q_{n-2}^{n^{r-1}} \\
Q_{n-1}^{1} & Q_{n-1}^{2} & \ldots & Q_{n-1}^{n^{r-1}}
\end{array}\right)
$$

be the alternating matrix of $\mathcal{S}_{r}^{\alpha \beta}$. Let $\ell \in\left\{2,3, \ldots, n^{r-1}-1\right\}$ and $Q_{t}^{\ell}, Q_{s}^{\ell}$ be distinct paths appearing in the ℓ-th column of $\mathcal{A}_{r}^{\alpha \beta}$. If $Q_{t}^{\ell}= \pm C_{i}^{\gamma t \delta}$ then $Q_{s}^{\ell}= \pm C_{i}^{\gamma s \delta}$, so it follows from Lemma 11 that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ are vertex disjoint. If $\ell \in\left\{1, n^{r-1}\right\}$
and t, s are not cyclically consecutive in the sequence $\{0,1, \ldots, n-1\}$, then again it follows from Lemma 11 that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ are vertex disjoint.

Assume now that $\ell=1$ and $s=(t+1) \bmod n$. Then $Q_{t}^{\ell}, Q_{s}^{\ell} \in \mathcal{M}$. If t is even with $t \neq n-1$, then the upper begin of Q_{s}^{ℓ} is 0 while the upper ends of Q_{t}^{ℓ} and Q_{s}^{ℓ} are the same. It follows from Lemma 11 that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ are vertex disjoint. If $t=n-1$, then the upper begin of Q_{t}^{ℓ} is 1 while the upper ends of Q_{t}^{ℓ} and Q_{s}^{ℓ} are the same. It follows again from Lemma 11 that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ are vertex disjoint. If t is odd, then the upper begin of Q_{t}^{ℓ} is 0 , the upper begin of Q_{s}^{ℓ} is 1 , and the upper ends of Q_{t}^{ℓ} and Q_{s}^{ℓ} are the same. It follows from Lemma 11 that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ have exactly one vertex in common which is the first vertex of both of them.

If $\ell=n^{r-1}$ and $s=(t+1) \bmod n$, then a similar argument shows that the paths $Q_{t}^{\ell}, Q_{s}^{\ell}$ have exactly one vertex in common when they are consecutive in $\mathcal{N}_{r}^{\alpha \beta}$ and they are vertex disjoint otherwise.

It is clear that the remaining required conditions are satisfied, so the proof is complete.

5. Proof of Theorem 3

We need to extend our definition of the path $C_{i}^{\alpha t \beta}$ to the case when $\alpha=2, t=0$, $\beta=1$, and $i=n-2$. Recall that $m=(n+1) / 2$ and $k=\lfloor n / 4\rfloor-1$. Let C_{n-2}^{201} be the open snake in K_{n}^{2} with $2 k+2=2\lfloor n / 4\rfloor$ vertices defined by

$$
\begin{aligned}
C_{n-2}^{201}= & ((n-2, n-2),(n-2,1),(1,1),(1,2),(2,2),(2,3),(3,3), \ldots,(k-2, k-2), \\
& (k-2, k-1),(k-1, k-1),(k-1, k),(k+1, k),(k+1, n-4)) .
\end{aligned}
$$

Note that this definition is exactly what you get taking $\alpha=2, t=0, \beta=1, i=n-2$ and using the general formula defining $C_{i}^{\alpha t \beta}$.

Since we have $m>2 k+2$, the following modification of Lemma 11 holds.
Lemma 14. Let $s \in\{1,2, \ldots, n-1\}$, let $j \in\{n-3, n-2, n-1\}$, and let $\gamma, \delta \in$ $\{0,1\}$. If u is a vertex of C_{n-2}^{201} and v is a vertex of $C_{j}^{\gamma s \delta}$, then $u \neq v$ except in the following cases:
(1) $s=n-2, \gamma=0, j=n-2$, and u, v are the first vertices of C_{n-2}^{200} and $C_{j}^{\gamma s \delta}$, respectively;
(2) $s=n-1, \gamma=1, j=n-2$, and u, v are the first vertices of C_{n-2}^{200} and $C_{j}^{\gamma s \delta}$, respectively;
(3) $s=1, \delta=0$, and u, v are the last vertices of C_{n-2}^{200} and $C_{j}^{\gamma s \delta}$, respectively.

Let \mathcal{N}_{d-3} be an $\overline{\mathcal{M}}$-built n^{d-3}-chain satisfying Lemma 13. For any $\alpha, \beta \in\{0,1\}$ let $\mathcal{N}_{d-3}^{\alpha \beta}$ be the chain that is internally compatible with \mathcal{N}_{d-3} and has upper begin α and upper end β. We also need to define two extra chains. Let $\mathcal{N}_{d-3}^{\prime}$ be obtained from \mathcal{N}_{d-3}^{01} by replacing its first path C_{n-1}^{001} with the path C_{n-2}^{201}, and let $\mathcal{N}_{d-3}^{\prime \prime}$ be the chain obtained from \mathcal{N}_{d-3}^{00} by replacing its first path C_{n-1}^{001} with the path C_{n-2}^{001}. Let \mathcal{C} be the $\overline{\mathcal{M}}$-built n^{d-2}-chain with the following n-splitting

$$
\mathcal{S}=\left(\mathcal{N}_{d-3}^{\prime},-\sigma^{1}\left(\mathcal{N}_{d-3}^{00}\right), \sigma^{2}\left(\mathcal{N}_{d-3}^{11}\right),-\sigma^{3}\left(\mathcal{N}_{d-3}^{00}\right), \ldots, \sigma^{n-3}\left(\mathcal{N}_{d-3}^{11}\right),-\sigma^{n-2}\left(\mathcal{N}_{d-3}^{\prime \prime}\right)\right) .
$$

Since none of the paths of \mathcal{N}_{d-3} has $n-2$ as a lower begin or a lower end, and since Lemma 13 implies that \mathcal{N}_{d-3}^{01} and \mathcal{N}_{d-3}^{00} are openly well distributed, it follows that both $\mathcal{N}_{d-3}^{\prime}$ and $\mathcal{N}_{d-3}^{\prime \prime}$ are openly well distributed. By Lemma 13 and Proposition 12, it follows that every chain of \mathcal{S} is openly well distributed. An argument similar to the argument used in the proof of Lemma 13 (using additionally Lemma 14) shows that \mathcal{S} is closely alternating. Therefore \mathcal{C} is closely well distributed and it follows from Lemma 10 that the path $\gamma_{n}^{d-2} \otimes \mathcal{C}$ is a snake in the graph $K_{n}^{d-2} \times K_{n}^{2}=K_{n}^{d}$. Since the paths in $\overline{\mathcal{M}}$ have length $2\lfloor n / 4\rfloor$, and γ_{n}^{d-2} has length $2\lfloor n / 2\rfloor n^{d-3}$, it follows that $\gamma_{n}^{d-2} \otimes \mathcal{C}$ has length $4\lfloor n / 4\rfloor\lfloor n / 2\rfloor n^{d-3}$. Thus the proof is complete.

References

[1] Abbott, H. L., Dierker, P. F. Snakes in powers of complete graphs SIAM J. Appl. Math. 32 (1977), 347-355.
[2] Abbott, H. L., Katchalski, M. On the snake in the box problem, J. Combinatorial Theory (B) 45 (1988), 13-24.
[3] Abbott, H. L., Katchalski, M. Snakes and pseudo snakes in powers of complete graphs, Discrete Math. 68 (1988) 1-8.
[4] Abbott, H. L., Katchalski, M. On the construction of snake in the box codes, Utilitas Mathematica 40 (1991), 97-116.
[5] Abbott, H. L., Katchalski, M. Further results on snakes in powers of complete graphs, Discrete Math. 91 (1991), 111-120.
[6] Evdokimov, A. A. The maximal length of a chain in the unit n-dimensional cube, Mat. Zametki 6 (1969), 309-319, English translation in Math. Notes 6 (1969), 642-648.
[7] Kautz, W. H. Unit-distance error-checking codes, IRE Trans. Electronic Computers 3 (1958), 179-180.
[8] Wojciechowski, J., A new lower bound for snake-in-the-box codes, Combinatorica 9, (1989) 91-99.
[9] Wojciechowski, J., Long snakes in powers of the complete graph with an odd number of vertices, J. London Math. Soc. (2) 50 (1994), 465-476.
[10] Wojciechowski, J., On constructing snakes in powers of complete graphs, Discrete Math. 181 (1998) 239-254.

Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV 26506-6310

E-mail address: jerzy@math.wvu.edu

