ON THE LENGTH OF SNAKES IN POWERS OF COMPLETE GRAPHS

JERZY WOJCIECHOWSKI

ABSTRACT. We prove the conjecture stated in [10] that there is a constant λ (independent from both n and k) such that $S(K_n^d) \geq \lambda n^{d-1}$ holds for every $n \geq 2$ and $d \geq 2$, where $S(K_n^d)$ is the length of the longest snake (cycle without chords) in the Cartesian product K_n^d of d copies of the complete graph K_n .

1. INTRODUCTION

By a *path* in a graph G we mean a sequence of (at least two) distinct vertices of G with every pair of consecutive vertices being adjacent. A path will be called *closed* if its first vertex is adjacent to the last one. By a *chord* of a path P in a graph G we mean an edge of G joining two nonconsecutive vertices of P. If e is a chord in a closed path P, then e is called *proper* if it is not the edge joining the first vertex of P to its last vertex. Note that a proper chord of a closed path corresponds to the standard notion of a chord in a cycle. A *snake* in a graph G is a closed path in G with at least three vertices and without proper chords, and an *open snake* in G is a path in G without chords.

If G and H are graphs, then the Cartesian product of G and H is the graph $G \times H$ with $V(G) \times V(H)$ as the vertex set and (g_1, h_1) adjacent to (g_2, h_2) if either $g_1g_2 \in E(G)$ and $h_1 = h_2$, or else $g_1 = g_2$ and $h_1h_2 \in E(H)$. Let K_n^d be the product of d copies of the complete graph K_n , $n \geq 2$, $d \geq 2$. It is convenient to think of the vertices of K_n^d as d-tuples of n-ary digits, that is, as the d-tuples of the elements

Date: May 27, 2003.

¹⁹⁹¹ Mathematics Subject Classification. Primary 05C38; Secondary 05C35.

Key words and phrases. snake-in-the-box problem, powers of complete graphs, induced cycle.

of the set $\{0, 1, \ldots, n-1\}$, with edges between two *d*-tuples differing at exactly one coordinate. Let $S(K_n^d)$ be the length of the longest snake in K_n^d .

The problem of finding a good lower bound for the value of $S(K_n^d)$ has a long history. It was first met by Kautz [7] in the case of n = 2 (known in the literature as the *snake-in-the-box problem*) in constructing a type of error-checking code for a certain analog-to-digital conversion systems. He showed that

$$S(K_2^d) \ge \lambda \sqrt{2^d},$$

for some positive constant λ . Several authors improved the lower bound for $S(K_2^d)$ (see the list of references in the papers [2], [8]) until Evdokimov [6], as the first one, obtained a lower bound that is linear in 2^d , that is, he showed that

$$S(K_2^d) \ge \lambda 2^d,$$

where λ is a positive constant. Other shorter proofs of such a bound were given by Abbott and Katchalski [2] and in [8]. The largest value of the constant

$$\lambda = \frac{77}{256} = 0.300781\dots$$

was obtained by Abbott and Katchalski [4].

The general case of the problem, with an arbitrary value of n, was introduced by Abbott and Dierker [1]. Abbott and Katchalski [5] extended the linear lower bound for $S(K_n^d)$ to all even n, that is, they proved that for every even positive integer nthere is a positive constant λ_n such that

$$S(K_n^d) \ge \lambda_n n^d.$$

In [9] it is proved that a similar linear lower bound holds for every odd $n \ge 3$ as well. Therefore, for every integer $n \ge 2$ there is a positive constant λ_n such that

$$S(K_n^d) \ge \lambda_n n^d.$$

In the results above, the constant λ_n is dependent on n and approaches 0 as $n \longrightarrow \infty$. For example, the result proved in [9] says that for any odd integer $n \ge 3$, and any $d \geq 5$

$$S(K_n^d) \ge 2(n-1)n^{d-4},$$

 \mathbf{SO}

$$\lambda_n = \frac{2\left(n-1\right)}{n^4}.$$

Actually, obtaining a linear lower bound with the coefficient independent from both n and d is not possible since Abbott and Katchalski [3] proved the following upper bound

$$S(K_n^d) \le \left(1 + \frac{1}{d-1}\right) n^{d-1}.$$

A natural question is whether there is a positive constant λ , that is independent from both n and d, such that

$$S(K_n^d) \ge \lambda n^{d-1}$$

In [10] it is conjectured that the answer to the above question is positive and the following partial result is proved.

Theorem 1. Let P be a finite set of primes. Then there is a positive constant λ_P such that

$$S(K_n^d) \ge \lambda_P n^{d-1}$$

for any integer n that is divisible by an element of P.

However, the constant λ_P approaches 0 as max $P \longrightarrow \infty$, so the conjecture remains open. In this paper we prove the following result that affirms the conjecture.

Theorem 2. There is a positive constant λ such that

$$S(K_n^d) \ge \lambda n^{d-1}$$

holds for every $n \ge 2$ and $d \ge 2$.

Since $S(K_n^2) = 2n$ (see Abbott and Dierker [1]) and

$$S(K_n^3) = \frac{3}{2}n^2 + O(n)$$

as proved by Abbott and Katchalski in [3], it is enough to prove Theorem 2 for $d \ge 4$. Because of Theorem 1, it is enough to consider the case of n being odd. Theorem 2 will follow after we prove the following result.

Theorem 3. Assume that $n \ge 9$ is odd and $d \ge 4$. Then

$$S(K_n^d) \ge 4 \lfloor n/4 \rfloor \lfloor n/2 \rfloor n^{d-3}$$

The proof of Theorem 3 will be given in section 5.

2. Basic Definitions

An *m*-path in a graph is a path containing *m* vertices, that is, it is a path of length m-1. If *P* is an *m*-path, then we will write m = |P|. A chain *C* in a graph *G* is a sequence $\mathcal{C} = (P_1, \ldots, P_m)$ of (at least two) paths in *G* such that the last vertex of P_i is equal to the first vertex of P_{i+1} , $i = 1, 2, \ldots, m-1$. When the number *m* of paths in a chain needs to be specified, we shall refer to it as an *m*-chain. An *m*-chain $(P_i)_{i=1}^m$ will be called *closed* if the first vertex of P_1 is equal to the last vertex of P_m .

Now we are going to define an important operation that will be used throughout the paper. Given an *m*-path $P = (g_i)_{i=1}^m$ in a graph *G* and an *m*-chain $\mathcal{C} = (P_i)_{i=1}^m$ in a graph *H*, let $P \otimes \mathcal{C}$ be the $(\sum_{i=1}^m |P_i|)$ -path in $G \times H$ obtained as follows. For each $i = 1, \ldots, m$, if $P_i = (h_1, h_2, \ldots, h_k)$, then let P'_i be the $|P_i|$ -path in $G \times H$ given by

$$P'_{i} = ((g_{i}, h_{1}), (g_{i}, h_{2}), \dots, (g_{i}, h_{k})).$$

Note that for each i = 1, ..., m - 1 the last vertex of the path P'_i is adjacent in $G \times H$ to the first vertex of the path P'_{i+1} . Let $P \otimes C$ be the path obtained by joining together (juxtaposing) the paths $P'_1, P'_2, ..., P'_m$. We will say that $P \otimes C$ is the path generated by P and C. Note that the path generated by a closed path and a closed chain is a closed path.

If \mathcal{D} is a *km*-chain in a graph H, with $k, m \geq 2$, then the *m*-splitting of \mathcal{D} is the sequence $(\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m)$ of *k*-chains in H which joined together (juxtaposed) give \mathcal{D} . The above definition of the operation \otimes can be generalized to the following

situation. Let $\mathcal{C} = (P_i)_{i=1}^m$ be an *m*-chain of *k*-paths in a graph *G*, let \mathcal{D} be a *km*chain in *H*, and let $(\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_m)$ be the *m*-splitting of \mathcal{D} . Note that for each $i \in \{1, 2, \ldots, m-1\}$ the last vertex of the path $P_i \otimes \mathcal{D}_i$ in the graph $G \times H$ is equal to the first vertex of the path $P_{i+1} \otimes \mathcal{D}_{i+1}$. Let $\mathcal{C} \otimes \mathcal{D}$ be the chain in $G \times H$ given by

$$\mathcal{C} \otimes \mathcal{D} = (P_1 \otimes \mathcal{D}_1, P_2 \otimes \mathcal{D}_2, \dots, P_m \otimes \mathcal{D}_m)$$

We will say that $\mathcal{C} \otimes \mathcal{D}$ is the chain generated by \mathcal{C} and \mathcal{D} . Note that the chain generated by two closed chains is also a closed chain. It is straightforward to verify that the operation \otimes is associative in the following sense.

Proposition 4. If P is an m-path in a graph G, C is an m-chain of k-paths in a graph H, and D is a km-chain in a graph J, then

$$(P \otimes \mathcal{C}) \otimes \mathcal{D} = P \otimes (\mathcal{C} \otimes \mathcal{D})$$

When we refer to a pair s_i and s_j of elements of a sequence (s_1, s_2, \ldots, s_t) , we say that they are *consecutive* if $j = i \pm 1$, and that they are *cyclically consecutive* if either $j = i \pm 1$ or $\{i, j\} = \{1, t\}$.

Let $\mathcal{C} = (P_i)_{i=1}^m$ be a chain in a graph G. We say that \mathcal{C} is *openly separated* if any two paths of \mathcal{C} have exactly one vertex in common when they are consecutive, and they are vertex disjoint otherwise. We say that \mathcal{C} is *closely separated* if \mathcal{C} is closed, any two paths of \mathcal{C} have exactly one vertex in common when they are cyclically consecutive, and they are vertex disjoint otherwise.

The following statement is an easy consequence of the definitions.

Proposition 5. Let P be a path in a graph G and C be a |P|-chain of open snakes in a graph H.

- (1) If C is openly separated, then $P \otimes C$ is an open snake in $G \times H$.
- (2) If P is closed and C is closely separated, then $P \otimes C$ is a snake in $G \times H$.

If P is a path, then let -P be the path obtained from P by reversing the order of vertices, and if $\mathcal{C} = (P_i)_{i=1}^m$ is a chain, then let

$$-\mathcal{C} = (-P_m, -P_{m-1}, \dots, -P_1)$$

be the chain obtained from \mathcal{C} by reversing the order of paths and reversing every path. The expression $(-1)^i X$, where X is a path or a chain, will mean X for *i* even and -X for *i* odd. Obviously, the following statement is true.

Proposition 6. If P is an m-path in a graph G and C is an m-chain in a graph H, then

$$(-P) \otimes \mathcal{C} = -(P \otimes (-\mathcal{C})).$$

Let \mathcal{C} be a *km*-chain of paths, and let $\mathcal{S} = (\mathcal{C}_1, \mathcal{C}_2, \dots, \mathcal{C}_m)$ be the *m*-splitting of \mathcal{C} . Consider the following $(m \times k)$ -matrix of paths:

$$\mathcal{A} = \begin{pmatrix} \mathcal{C}_{1} \\ -\mathcal{C}_{2} \\ \vdots \\ (-1)^{m-1} \mathcal{C}_{m} \end{pmatrix} = \begin{pmatrix} Q_{1}^{1} & Q_{1}^{2} & \dots & Q_{1}^{k} \\ Q_{2}^{1} & Q_{2}^{2} & \dots & Q_{2}^{k} \\ \vdots & \vdots & & \vdots \\ Q_{m}^{1} & Q_{m}^{2} & \dots & Q_{m}^{k} \end{pmatrix}$$

where $(Q_i^1, Q_i^2, \ldots, Q_i^k)$ is the sequence of paths forming the k-chain $(-1)^{i-1}C_i$. We will call \mathcal{A} the alternating matrix of \mathcal{S} . The splitting \mathcal{S} will be called openly alternating if for any $\ell \in \{1, 2, \ldots, k\}$ and for any two distinct paths Q_i^{ℓ}, Q_j^{ℓ} appearing in the ℓ -th column of \mathcal{A} , the paths Q_i^{ℓ}, Q_j^{ℓ} have exactly one vertex in common when they are consecutive in \mathcal{C} and they are vertex disjoint otherwise.

Assume now that the *km*-chain \mathcal{C} is closed and *m* is even. Then, we say that the splitting \mathcal{S} is *closely alternating* if for any $\ell \in \{1, 2, ..., k\}$ and for any two distinct paths Q_i^{ℓ} , Q_j^{ℓ} appearing in the ℓ -th column of \mathcal{A} , the paths Q_i^{ℓ} , Q_j^{ℓ} have exactly one vertex in common when they are cyclically consecutive in \mathcal{C} and they are vertex disjoint otherwise. The following statement is an easy consequence of the definitions.

Proposition 7. Let P be a k-path in a graph G, and let \mathcal{D} be a km-chain in a graph H.

(1) If \mathcal{C} is the m-chain $(P, -P, \dots, (-1)^{m-1}P)$, and the m-splitting of \mathcal{D} is openly alternating, then the m-chain $\mathcal{C} \otimes \mathcal{D}$ in $G \times H$ is openly separated.

(2) If m is even, C is the closed m-chain (P, −P, P, −P, ..., −P), and the m-splitting of D is closely alternating, then the closed m-chain C ⊗ D in G × H is closely separated.

Let $n \geq 3$ be an odd integer. Let H be a graph, $r \geq 1$ be an integer, \mathcal{C} be an n^r -chain of paths in H, and \mathcal{D} be an $(n-1)n^r$ -chain of paths in H. We say that \mathcal{C} is openly well distributed if either r = 1 and \mathcal{C} is an openly separated chain of open snakes, or $r \geq 2$, every chain \mathcal{C}_i in the *n*-splitting $\mathcal{S} = (\mathcal{C}_1, \mathcal{C}_2, \ldots, \mathcal{C}_n)$ of \mathcal{C} is openly well distributed and \mathcal{S} is openly alternating. We also say that \mathcal{D} is closely well distributed if every chain \mathcal{D}_i in the (n-1)-splitting $\mathcal{S}' = (\mathcal{D}_1, \mathcal{D}_2, \ldots, \mathcal{D}_n)$ of \mathcal{D} is openly well distributed and \mathcal{S}' is closely alternating. The following property can be proved by a straightforward induction with respect to r.

Proposition 8. If C is an openly well distributed n^r -chain of paths in a graph H, then the chain -C is also openly well distributed.

We are going now to define inductively, for each d = 1, 2, ..., an n^r -path π_n^d in K_n^r and a closed $(n-1) n^r$ -path γ_n^{r+1} in K_n^{r+1} . Let

$$\pi_n^1 = (0, 1, \dots, n-1),$$

$$\pi_n^{r+1} = \pi_n^1 \otimes (\pi_n^r, -\pi_n^r, \pi_n^r, -\pi_n^r, \dots, \pi_n^r)$$

and

$$\gamma_n^{r+1} = \gamma_n \otimes \left(\pi_n^r, -\pi_n^r, \pi_n^r, -\pi_n^r, \dots, -\pi_n^r\right),$$

where γ_n is the closed (n-1)-path $(0, 1, \ldots, n-2)$ in K_n .

The following lemmas are proved in [9].

Lemma 9. If $r \ge 1$ and C is an openly well distributed n^r -chain in a graph H, then the path $\pi_n^r \otimes C$ is an open snake in the graph $K_n^r \times H$.

Lemma 10. If $r \ge 1$ and C is a closely well distributed $(n-1)n^r$ -chain in a graph H, then the path $\gamma_n^{r+1} \otimes C$ is a snake in the graph $K_n^{r+1} \times H$.

3. A Family of Snakes in K_n^2

Assume that $n \ge 9$ is odd. Let m = (n+1)/2 and $k = \lfloor n/4 \rfloor - 1$. For each $t \in \{0, 1, \dots, n-1\}$, each $i \in \{n-3, n-2, n-1\}$, and each

 $\alpha,\beta\in\{0,1\}$

let $C_i^{\alpha t \beta}$ be the open snake in K_n^2 , with $2k + 2 = 2 \lfloor n/4 \rfloor$ vertices, defined by

$$\begin{split} C_i^{\alpha t\beta} &= \left(\left(\overline{t-\alpha}, i\right), \left(\overline{t-\alpha}, \overline{1-t}\right), \left(\overline{t+1}, \overline{\overline{1-t}}\right), \left(\overline{t+1}, \overline{\overline{2-t}}\right), \left(\overline{t+2}, \overline{\overline{2-t}}\right), \\ &\left(\overline{t+2}, \overline{\overline{3-t}}\right), \left(\overline{t+3}, \overline{\overline{3-t}}\right), \dots, \left(\overline{t+k-3}, \overline{\overline{k-2-t}}\right), \\ &\left(\overline{t+k-2}, \overline{\overline{k-2-t}}\right), \left(\overline{t+k-2}, \overline{\overline{k-1-t}}\right), \left(\overline{t+k-1}, \overline{\overline{k-1-t}}\right), \\ &\left(\overline{t+k-1}, \overline{\overline{k-t}}\right), \left(\overline{t+k+\beta}, \overline{\overline{k-t}}\right), \left(\overline{t+k+\beta}, n-4\right) \right), \end{split}$$

where $\overline{x} = x \mod n$ and $\overline{\overline{x}} = x \mod m$.

For example, if n = 17, then m = 9, k = 3,

$$\begin{split} C^{0\,0\,0}_{14} &= & \left(\left(0,14 \right), \left(0,1 \right), \left(1,1 \right), \left(1,2 \right), \left(2,2 \right), \left(2,3 \right), \left(3,3 \right), \left(3,13 \right) \right), \\ C^{0\,10}_{14} &= & \left(\left(1,14 \right), \left(1,0 \right), \left(2,0 \right), \left(2,1 \right), \left(3,1 \right), \left(3,2 \right), \left(4,2 \right), \left(4,13 \right) \right), \\ C^{0\,20}_{14} &= & \left(\left(2,14 \right), \left(2,8 \right), \left(3,8 \right), \left(3,0 \right), \left(4,0 \right), \left(4,1 \right), \left(5,1 \right), \left(5,13 \right) \right), \\ &\vdots \\ C^{0\,160}_{14} &= & \left(\left(16,14 \right), \left(16,2 \right), \left(0,2 \right), \left(0,3 \right), \left(1,3 \right), \left(1,4 \right), \left(2,4 \right), \left(2,13 \right) \right), \end{split}$$

and

$$C_{14}^{0\,2\,1} = ((2,14), (2,7), (3,7), (3,0), (4,0), (4,1), (6,1), (6,13)),$$

$$C_{14}^{1\,2\,0} = ((1,14), (1,7), (3,7), (3,0), (4,0), (4,1), (5,1), (5,13)),$$

$$C_{14}^{1\,2\,1} = ((1,14), (1,7), (3,7), (3,0), (4,0), (4,1), (6,1), (6,13)).$$

Lemma 11. Let $t, s \in \{0, 1, ..., n-1\}$ with t < s, let $i, j \in \{n-3, n-2, n-1\}$, and let

$$\alpha, \beta, \gamma, \delta \in \{0, 1\}$$
.

If u is a vertex of $C_i^{\alpha t\beta}$ and v is a vertex of $C_j^{\gamma s\delta}$, then $u \neq v$ except in the following cases:

- (1) s = t + 1, $\alpha = 0$, $\gamma = 1$, i = j, and u, v are the first vertices of $C_i^{\alpha t \beta}$ and $C_j^{\gamma s \delta}$, respectively:
- (2) t = 0, s = n 1, $\alpha = 1$, $\gamma = 0$, i = j, and u, v are the first vertices of $C_i^{\alpha t \beta}$ and $C_i^{\gamma s \delta}$, respectively;
- (3) s = t + 1, $\beta = 1$, $\delta = 0$, and u, v are the last vertices of $C_i^{\alpha t\beta}$ and $C_j^{\gamma s\delta}$, respectively:
- (4) $t = 0, s = n 1, \beta = 0, \delta = 1, and u, v$ are the last vertices of $C_i^{\alpha t \beta}$ and $C_j^{\gamma s \delta}$, respectively.

Proof. Assume that u = v = (a, b). Since $m \le n - 4$, exactly one of the following conditions holds

- (a) $b \in \{n 3, n 2, n 1\};$ (b) b = n - 4;
- (b) 0 = n = 4,
- (c) $b \in \{0, 1, \dots, m-1\}.$

If (a) holds, then u is the first vertex of $C_i^{\alpha t\beta}$ and v is the first vertex of $C_j^{\gamma s\delta}$. Since both i and j are equal to b, we have i = j. It is clear that $s = t \pm 1 \mod n$, and since t < s, we must have either s = t + 1 or (t, s) = (0, n - 1). Since

$$a = (t - \alpha) \mod n = (s - \gamma) \mod n,$$

we must have $\alpha = 0$, $\gamma = 1$ when s = t + 1 and $\alpha = 1$, $\gamma = 0$ when (t, s) = (0, n - 1). Thus one of the conditions 1 or 2 above must hold.

If (b) holds, then u is the last vertex of $C_i^{\alpha t\beta}$ and v is the last vertex of $C_j^{\gamma s\delta}$ and similar analysis as above shows that one of the conditions 3 or 4 above holds.

If (c) holds, then neither u nor v is the first or the last vertex of the corresponding path. We will show that this assumption leads to a contradiction. From the definition

of $C_i^{\alpha t\beta}$ we have

$$a \in \{\overline{t-\alpha}, \overline{t+k+\beta}\} \cup \{\overline{t+1}, \overline{t+2}, \dots, \overline{t+k-1}\}$$
$$\subseteq \{\overline{t-1}, t, \overline{t+1}, \overline{t+2}, \dots, \overline{t+k-1}, \overline{t+k}, \overline{t+k+1}\}$$

Therefore

$$t \in \left\{\overline{a+1}, a, \overline{a-1}, \dots, \overline{a-k-1}\right\}.$$

Let us consider how the value of b depends on the value of t. Notice that

- $b = \overline{\overline{1-t}}$ when $a = \overline{t-\alpha}$, that is when $t \in \{\overline{a+1}, a\}$;
- $b = \overline{\overline{k-t}}$ when $a = \overline{t+k+\beta}$, that is when $t \in \{\overline{a-k}, \overline{a-k-1}\}$; and $b = \overline{\overline{\ell-t}}$ or $b = \overline{\overline{\ell+1-t}}$ when $a = \overline{t+\ell}$, that is when $t = \overline{a-\ell}$ for any $\ell = 1, 2, \dots, k - 1.$

Therefore, given the value of t, the value of b is as in the following table:

For example, take a = 1 and consider how the above table looks when n = 25 (m = 13, k = 5) — table on the left below, and n = 27 (m = 14, k = 5) — table on the right

10

below.

t	b	t	b
2	12	2	13
1	0	1	0
0	1 or 2	0	1 or 2
24	$4 \mid 4 \text{ or } 5$	26	4 or 5
23	6 or 7	25	6 or 7
22	$2 \mid 8 \text{ or } 9$	24	8 or 9
21	. 10	23	10
20) 11	22	11

If a is such that the set $\{\overline{a+1}, a, \overline{a-1}, \dots, \overline{a-k-1}\}$ does not contain both 0 and n-1, then the possible values of b in the table above range from $\overline{\overline{1-\overline{a+1}}}$ to $\overline{\overline{k-a-k-1}}$ through consecutive numbers modulo m. There are 2k+2 numbers in such a sequence. Since $2k+2 \leq m$, they are all distinct.

If the set $\{\overline{a+1}, a, \overline{a-1}, \dots, \overline{a-k-1}\}$ contains both 0 and n-1, then the possible values of b in the table above range from $\overline{\overline{1-a+1}}$ to $\overline{\overline{k-a-k-1}}$ through consecutive numbers modulo m except for one. Since $2k+2 \leq m-1$, again all the possible values for b in the table above are distinct.

It follows that the values of a and b determine the value t in a unique way. It follows that s = t contradicting the assumption. Thus the proof is complete.

4. An Openly Well Distributed $n^r\mbox{-}{\rm Chain}$ in K^2_n

Let $n \geq 9$ be an odd integer and \mathcal{M} be the set of all open snakes $C_i^{\alpha t\beta}$ as defined in the previous section. For any $s \in \{0, 1, \ldots, n-1\}$, let $\sigma^s : \mathcal{M} \to \mathcal{M}$ be defined by

$$\sigma^s(C_i^{\alpha t\beta}) = C_i^{\alpha \overline{t+s}\,\beta},$$

where $\overline{x} = x \mod n$. Let

$$-\mathcal{M} = \{-P : P \in \mathcal{M}\}$$

and

$$\overline{\mathcal{M}} = \mathcal{M} \cup (-\mathcal{M})$$
 .

We can extend σ^s to be a map $\sigma^s : \overline{\mathcal{M}} \to \overline{\mathcal{M}}$ by setting $\sigma^s(-P) = -\sigma^s(P)$.

If \mathcal{C} is a chain in K_n^2 consisting of paths from $\overline{\mathcal{M}}$, then we will say that \mathcal{C} is $\overline{\mathcal{M}}$ -built. If \mathcal{C} is $\overline{\mathcal{M}}$ -built, then let $\sigma^s(\mathcal{C})$ be the chain obtained by applying σ^s to each path of \mathcal{C} . The following proposition can be proved by a straightforward induction on the length of \mathcal{C} using Lemma 11.

Proposition 12. If C is an $\overline{\mathcal{M}}$ -built openly well distributed chain and $s \in \{0, 1, \ldots, n-1\}$, then the chains $\sigma^{s}(C)$ and $-\sigma^{s}(C)$ are also openly well distributed.

We say that α is the upper begin (upper end) and *i* is the lower begin (lower end) of the path $C_i^{\alpha t\beta}$ (the path $-C_i^{\alpha t\beta}$), and that β is the upper end (upper begin) and n-4 is the lower end (lower begin) of $C_i^{\alpha t\beta}$ (of $-C_i^{\alpha t\beta}$). Given an $\overline{\mathcal{M}}$ -built chain \mathcal{C} , the upper begin (lower begin) of \mathcal{C} is the upper begin (lower begin) of the first path of \mathcal{C} and the upper end (lower end) of \mathcal{C} is the upper end (lower end) of the last path of \mathcal{C} .

Let \mathcal{C} and \mathcal{D} be $\overline{\mathcal{M}}$ -built ℓ -chains. We say that \mathcal{C} and \mathcal{D} are *internally compatible* if they are the same except possibly for the upper begin and the upper end, that is, if the following conditions hold:

- (1) for every $p \in \{2, \ldots, \ell 1\}$ the *p*-th path of C is the same as the *p*-th path of D;
- (2) if the first path of C is $C_i^{\alpha t \beta}$, then the first path of D is $C_i^{\alpha' t \beta}$ for some $\alpha' \in \{0,1\}$;
- (3) if the first path of C is $-C_i^{\alpha t\beta}$, then the first path of D is $-C_i^{\alpha t\beta'}$ for some $\beta' \in \{0, 1\};$
- (4) if the last path of \mathcal{C} is $C_i^{\alpha t\beta}$, then the last path of \mathcal{D} is $C_i^{\alpha t\beta'}$ for some $\beta' \in \{0, 1\}$;
- (5) if the last path of C is $-C_i^{\alpha t\beta}$, then the last path of \mathcal{D} is $-C_i^{\alpha' t\beta}$ for some $\alpha' \in \{0, 1\}.$

The following lemma, together with Lemma 9 will allow for a construction of long open snakes in powers of K_n .

Lemma 13. For every integer $r \geq 1$, there is an $\overline{\mathcal{M}}$ -built n^r -chain \mathcal{N}_r such that:

- (1) any chain that is internally compatible with \mathcal{N}_r is openly well distributed;
- (2) the first path of \mathcal{N}_r is C_{n-1}^{001} ;
- (3) if P is the p-th path of \mathcal{N}_r then $P \in (-1)^{p-1} \mathcal{M}$.

Proof. Let

$$\mathcal{N}_{1} = \left(C_{n-1}^{0\,0\,1}, -C_{n-1}^{0\,1\,0}, C_{n-1}^{1\,2\,1}, -C_{n-1}^{0\,3\,0}, C_{n-1}^{1\,4\,1}, -C_{n-1}^{0\,5\,0}, \dots, C_{n-1}^{1\,(n-3)\,1}, -C_{n-1}^{0\,(n-2)\,0}, C_{n-1}^{1\,(n-1)\,0}\right).$$

It is straightforward to verify, using Lemma 11, that any chain that is internally compatible with \mathcal{N}_1 is openly separated and so it is openly well distributed. It is clear that the remaining conditions are also satisfied.

Assume that $r \geq 2$, and that \mathcal{N}_{r-1} is an $\overline{\mathcal{M}}$ -built n^{r-1} -chain satisfying the required conditions. For any $\alpha, \beta \in \{0, 1\}$ let $\mathcal{N}_{r-1}^{\alpha\beta}$ be the chain that is internally compatible with \mathcal{N}_{r-1} and has upper begin α and upper end β . Let \mathcal{N}_r be the $\overline{\mathcal{M}}$ -built n^r -chain with the following *n*-splitting

$$\mathcal{S}_{r} = \left(\sigma^{0}\left(\mathcal{N}_{r-1}^{0\,1}\right), -\sigma^{1}\left(\mathcal{N}_{r-1}^{0\,0}\right), \sigma^{2}\left(\mathcal{N}_{r-1}^{1\,1}\right), -\sigma^{3}\left(\mathcal{N}_{r-1}^{0\,0}\right), \dots, -\sigma^{n-2}\left(\mathcal{N}_{r-1}^{0\,0}\right), \sigma^{n-1}\left(\mathcal{N}_{r-1}^{1\,0}\right)\right).$$

Let $\mathcal{N}_r^{\alpha\beta}$ be the chain that is internally compatible with \mathcal{N}_r and has upper begin α and upper end β . Let $\mathcal{S}_r^{\alpha\beta}$ be the *n*-splitting of $\mathcal{N}_r^{\alpha\beta}$. By the inductive hypothesis and Proposition 12, every chain of $\mathcal{S}_r^{\alpha\beta}$ is openly well distributed. To prove that $\mathcal{N}_r^{\alpha\beta}$ is openly well distributed, it remains to show that $\mathcal{S}_r^{\alpha\beta}$ is openly alternating.

Let

$$\mathcal{A}_{r}^{\alpha\beta} = \begin{pmatrix} \sigma^{0} \left(\mathcal{N}_{r-1}^{\alpha 1}\right) \\ \sigma^{1} \left(\mathcal{N}_{r-1}^{0 0}\right) \\ \sigma^{2} \left(\mathcal{N}_{r-1}^{1 1}\right) \\ \vdots \\ \sigma^{n-2} \left(\mathcal{N}_{r-1}^{0 0}\right) \\ \sigma^{n-1} \left(\mathcal{N}_{r-1}^{1 \beta}\right) \end{pmatrix} = \begin{pmatrix} Q_{0}^{1} & Q_{0}^{2} & \dots & Q_{0}^{n^{r-1}} \\ Q_{1}^{1} & Q_{1}^{2} & \dots & Q_{1}^{n^{r-1}} \\ Q_{2}^{1} & Q_{2}^{2} & \dots & Q_{2}^{n^{r-1}} \\ \vdots & \vdots & \vdots \\ Q_{n-2}^{1} & Q_{n-2}^{2} & \dots & Q_{n-2}^{n^{r-1}} \\ Q_{n-1}^{1} & Q_{n-1}^{2} & \dots & Q_{n-1}^{n^{r-1}} \end{pmatrix}$$

be the alternating matrix of $S_r^{\alpha\beta}$. Let $\ell \in \{2, 3, \ldots, n^{r-1} - 1\}$ and Q_t^{ℓ}, Q_s^{ℓ} be distinct paths appearing in the ℓ -th column of $\mathcal{A}_r^{\alpha\beta}$. If $Q_t^{\ell} = \pm C_i^{\gamma t\delta}$ then $Q_s^{\ell} = \pm C_i^{\gamma s\delta}$, so it follows from Lemma 11 that the paths Q_t^{ℓ}, Q_s^{ℓ} are vertex disjoint. If $\ell \in \{1, n^{r-1}\}$

and t, s are not cyclically consecutive in the sequence $\{0, 1, \ldots, n-1\}$, then again it follows from Lemma 11 that the paths Q_t^{ℓ} , Q_s^{ℓ} are vertex disjoint.

Assume now that $\ell = 1$ and $s = (t+1) \mod n$. Then $Q_t^{\ell}, Q_s^{\ell} \in \mathcal{M}$. If t is even with $t \neq n-1$, then the upper begin of Q_s^{ℓ} is 0 while the upper ends of Q_t^{ℓ} and Q_s^{ℓ} are the same. It follows from Lemma 11 that the paths Q_t^{ℓ}, Q_s^{ℓ} are vertex disjoint. If t = n-1, then the upper begin of Q_t^{ℓ} is 1 while the upper ends of Q_t^{ℓ} and Q_s^{ℓ} are the same. It follows again from Lemma 11 that the paths Q_t^{ℓ}, Q_s^{ℓ} are vertex disjoint. If t is odd, then the upper begin of Q_t^{ℓ} is 0, the upper begin of Q_s^{ℓ} is 1, and the upper ends of Q_t^{ℓ} and Q_s^{ℓ} are the same. It follows from Lemma 11 that the paths Q_t^{ℓ}, Q_s^{ℓ} have exactly one vertex in common which is the first vertex of both of them.

If $\ell = n^{r-1}$ and $s = (t+1) \mod n$, then a similar argument shows that the paths Q_t^{ℓ} , Q_s^{ℓ} have exactly one vertex in common when they are consecutive in $\mathcal{N}_r^{\alpha\beta}$ and they are vertex disjoint otherwise.

It is clear that the remaining required conditions are satisfied, so the proof is complete. \blacksquare

5. Proof of Theorem 3

We need to extend our definition of the path $C_i^{\alpha t\beta}$ to the case when $\alpha = 2, t = 0$, $\beta = 1$, and i = n - 2. Recall that m = (n + 1)/2 and $k = \lfloor n/4 \rfloor - 1$. Let C_{n-2}^{201} be the open snake in K_n^2 with $2k + 2 = 2 \lfloor n/4 \rfloor$ vertices defined by

$$C_{n-2}^{201} = ((n-2, n-2), (n-2, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), \dots, (k-2, k-2), (k-2, k-1), (k-1, k-1), (k-1, k), (k+1, k), (k+1, n-4)).$$

Note that this definition is exactly what you get taking $\alpha = 2, t = 0, \beta = 1, i = n - 2$ and using the general formula defining $C_i^{\alpha t \beta}$.

Since we have m > 2k + 2, the following modification of Lemma 11 holds.

Lemma 14. Let $s \in \{1, 2, ..., n-1\}$, let $j \in \{n-3, n-2, n-1\}$, and let $\gamma, \delta \in \{0, 1\}$. If u is a vertex of C_{n-2}^{201} and v is a vertex of $C_j^{\gamma s \delta}$, then $u \neq v$ except in the following cases:

- (1) s = n 2, $\gamma = 0$, j = n 2, and u, v are the first vertices of C_{n-2}^{200} and $C_j^{\gamma s \delta}$, respectively:
- (2) s = n 1, $\gamma = 1$, j = n 2, and u, v are the first vertices of C_{n-2}^{200} and $C_j^{\gamma s \delta}$, respectively;
- (3) $s = 1, \ \delta = 0, \ and \ u, v \ are the last vertices of C_{n-2}^{200} \ and C_j^{\gamma s \delta}$, respectively.

Let \mathcal{N}_{d-3} be an $\overline{\mathcal{M}}$ -built n^{d-3} -chain satisfying Lemma 13. For any $\alpha, \beta \in \{0, 1\}$ let $\mathcal{N}_{d-3}^{\alpha\beta}$ be the chain that is internally compatible with \mathcal{N}_{d-3} and has upper begin α and upper end β . We also need to define two extra chains. Let \mathcal{N}'_{d-3} be obtained from \mathcal{N}_{d-3}^{01} by replacing its first path C_{n-1}^{001} with the path C_{n-2}^{201} , and let \mathcal{N}''_{d-3} be the chain obtained from \mathcal{N}_{d-3}^{00} by replacing its first path C_{n-1}^{001} with the path C_{n-2}^{001} . Let \mathcal{C} be the $\overline{\mathcal{M}}$ -built n^{d-2} -chain with the following n-splitting

$$\mathcal{S} = \left(\mathcal{N}_{d-3}^{\prime}, -\sigma^{1}\left(\mathcal{N}_{d-3}^{0\,0}\right), \sigma^{2}\left(\mathcal{N}_{d-3}^{1\,1}\right), -\sigma^{3}\left(\mathcal{N}_{d-3}^{0\,0}\right), \dots, \sigma^{n-3}\left(\mathcal{N}_{d-3}^{1\,1}\right), -\sigma^{n-2}\left(\mathcal{N}_{d-3}^{\prime\prime}\right)\right).$$

Since none of the paths of \mathcal{N}_{d-3} has n-2 as a lower begin or a lower end, and since Lemma 13 implies that \mathcal{N}_{d-3}^{01} and \mathcal{N}_{d-3}^{00} are openly well distributed, it follows that both \mathcal{N}_{d-3}' and \mathcal{N}_{d-3}'' are openly well distributed. By Lemma 13 and Proposition 12, it follows that every chain of \mathcal{S} is openly well distributed. An argument similar to the argument used in the proof of Lemma 13 (using additionally Lemma 14) shows that \mathcal{S} is closely alternating. Therefore \mathcal{C} is closely well distributed and it follows from Lemma 10 that the path $\gamma_n^{d-2} \otimes \mathcal{C}$ is a snake in the graph $K_n^{d-2} \times K_n^2 = K_n^d$. Since the paths in $\overline{\mathcal{M}}$ have length $2 \lfloor n/4 \rfloor$, and γ_n^{d-2} has length $2 \lfloor n/2 \rfloor n^{d-3}$, it follows that $\gamma_n^{d-2} \otimes \mathcal{C}$ has length $4 \lfloor n/4 \rfloor \lfloor n/2 \rfloor n^{d-3}$. Thus the proof is complete.

References

- ABBOTT, H. L., DIERKER, P. F. Snakes in powers of complete graphs SIAM J. Appl. Math. 32 (1977), 347–355.
- [2] ABBOTT, H. L., KATCHALSKI, M. On the snake in the box problem, J. Combinatorial Theory (B) 45 (1988), 13–24.
- [3] ABBOTT, H. L., KATCHALSKI, M. Snakes and pseudo snakes in powers of complete graphs, Discrete Math. 68 (1988) 1–8.

- [4] ABBOTT, H. L., KATCHALSKI, M. On the construction of snake in the box codes, Utilitas Mathematica 40 (1991), 97–116.
- [5] ABBOTT, H. L., KATCHALSKI, M. Further results on snakes in powers of complete graphs, Discrete Math. 91 (1991), 111–120.
- [6] EVDOKIMOV, A. A. The maximal length of a chain in the unit n-dimensional cube, Mat. Zametki 6 (1969), 309–319, English translation in Math. Notes 6 (1969), 642–648.
- [7] KAUTZ, W. H. Unit-distance error-checking codes, *IRE Trans. Electronic Computers* 3 (1958), 179–180.
- [8] WOJCIECHOWSKI, J., A new lower bound for snake-in-the-box codes, Combinatorica 9, (1989) 91–99.
- [9] WOJCIECHOWSKI, J., Long snakes in powers of the complete graph with an odd number of vertices, J. London Math. Soc. (2) 50 (1994), 465–476.
- [10] WOJCIECHOWSKI, J., On constructing snakes in powers of complete graphs, *Discrete Math.* 181 (1998) 239–254.

DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNIVERSITY, PO Box 6310, Morgantown, WV 26506-6310

E-mail address: jerzy@math.wvu.edu