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Abstract. We prove the conjecture stated in [10] that there is a constant λ (in-

dependent from both n and k) such that S(Kd
n) ≥ λnd−1 holds for every n ≥ 2 and

d ≥ 2, where S(Kd
n) is the length of the longest snake (cycle without chords) in the

Cartesian product Kd
n of d copies of the complete graph Kn.

1. Introduction

By a path in a graph G we mean a sequence of (at least two) distinct vertices of

G with every pair of consecutive vertices being adjacent. A path will be called closed

if its first vertex is adjacent to the last one. By a chord of a path P in a graph G

we mean an edge of G joining two nonconsecutive vertices of P . If e is a chord in a

closed path P , then e is called proper if it is not the edge joining the first vertex of

P to its last vertex. Note that a proper chord of a closed path corresponds to the

standard notion of a chord in a cycle. A snake in a graph G is a closed path in G

with at least three vertices and without proper chords, and an open snake in G is a

path in G without chords.

If G and H are graphs, then the Cartesian product of G and H is the graph

G×H with V (G)× V (H) as the vertex set and (g1, h1) adjacent to (g2, h2) if either

g1g2 ∈ E(G) and h1 = h2, or else g1 = g2 and h1h2 ∈ E(H). Let Kd
n be the product

of d copies of the complete graph Kn, n ≥ 2, d ≥ 2. It is convenient to think of

the vertices of Kd
n as d-tuples of n-ary digits, that is, as the d-tuples of the elements
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of the set {0, 1, . . . , n − 1}, with edges between two d-tuples differing at exactly one

coordinate. Let S(Kd
n) be the length of the longest snake in Kd

n.

The problem of finding a good lower bound for the value of S(Kd
n) has a long

history. It was first met by Kautz [7] in the case of n = 2 (known in the literature

as the snake-in-the-box problem) in constructing a type of error-checking code for a

certain analog-to-digital conversion systems. He showed that

S(Kd
2 ) ≥ λ

√
2d,

for some positive constant λ. Several authors improved the lower bound for S(Kd
2 )

(see the list of references in the papers [2], [8]) until Evdokimov [6], as the first one,

obtained a lower bound that is linear in 2d, that is, he showed that

S(Kd
2 ) ≥ λ2d,

where λ is a positive constant. Other shorter proofs of such a bound were given by

Abbott and Katchalski [2] and in [8]. The largest value of the constant

λ =
77

256
= 0.300781 . . .

was obtained by Abbott and Katchalski [4].

The general case of the problem, with an arbitrary value of n, was introduced by

Abbott and Dierker [1]. Abbott and Katchalski [5] extended the linear lower bound

for S(Kd
n) to all even n, that is, they proved that for every even positive integer n

there is a positive constant λn such that

S(Kd
n) ≥ λnn

d.

In [9] it is proved that a similar linear lower bound holds for every odd n ≥ 3 as well.

Therefore, for every integer n ≥ 2 there is a positive constant λn such that

S(Kd
n) ≥ λnn

d.

In the results above, the constant λn is dependent on n and approaches 0 as n −→∞.

For example, the result proved in [9] says that for any odd integer n ≥ 3, and any
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d ≥ 5

S(Kd
n) ≥ 2 (n− 1) nd−4,

so

λn =
2 (n− 1)

n4
.

Actually, obtaining a linear lower bound with the coefficient independent from both

n and d is not possible since Abbott and Katchalski [3] proved the following upper

bound

S(Kd
n) ≤

(
1 +

1

d− 1

)
nd−1.

A natural question is whether there is a positive constant λ, that is independent from

both n and d, such that

S(Kd
n) ≥ λnd−1.

In [10] it is conjectured that the answer to the above question is positive and the

following partial result is proved.

Theorem 1. Let P be a finite set of primes. Then there is a positive constant λP

such that

S(Kd
n) ≥ λP nd−1

for any integer n that is divisible by an element of P .

However, the constant λP approaches 0 as max P −→∞, so the conjecture remains

open. In this paper we prove the following result that affirms the conjecture.

Theorem 2. There is a positive constant λ such that

S(Kd
n) ≥ λnd−1

holds for every n ≥ 2 and d ≥ 2.

Since S(K2
n) = 2n (see Abbott and Dierker [1]) and

S(K3
n) =

3

2
n2 + O(n)
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as proved by Abbott and Katchalski in [3], it is enough to prove Theorem 2 for d ≥ 4.

Because of Theorem 1, it is enough to consider the case of n being odd. Theorem 2

will follow after we prove the following result.

Theorem 3. Assume that n ≥ 9 is odd and d ≥ 4. Then

S(Kd
n) ≥ 4 bn/4c bn/2cnd−3.

The proof of Theorem 3 will be given in section 5.

2. Basic Definitions

An m-path in a graph is a path containing m vertices, that is, it is a path of length

m − 1. If P is an m-path, then we will write m = |P |. A chain C in a graph G is a

sequence C = (P1, . . . , Pm) of (at least two) paths in G such that the last vertex of

Pi is equal to the first vertex of Pi+1, i = 1, 2, . . . ,m − 1. When the number m of

paths in a chain needs to be specified, we shall refer to it as an m-chain. An m-chain

(Pi)
m
i=1 will be called closed if the first vertex of P1 is equal to the last vertex of Pm.

Now we are going to define an important operation that will be used throughout

the paper. Given an m-path P = (gi)
m
i=1 in a graph G and an m-chain C = (Pi)

m
i=1 in

a graph H, let P ⊗C be the (
∑m

i=1 |Pi|)-path in G×H obtained as follows. For each

i = 1, . . . , m, if Pi = (h1, h2, . . . , hk), then let P ′
i be the |Pi|-path in G×H given by

P ′
i = ((gi, h1) , (gi, h2) , . . . , (gi, hk)) .

Note that for each i = 1, . . . , m − 1 the last vertex of the path P ′
i is adjacent in

G×H to the first vertex of the path P ′
i+1. Let P ⊗C be the path obtained by joining

together (juxtaposing) the paths P ′
1, P ′

2, . . . , P ′
m. We will say that P ⊗ C is the path

generated by P and C. Note that the path generated by a closed path and a closed

chain is a closed path.

If D is a km-chain in a graph H, with k, m ≥ 2, then the m-splitting of D is

the sequence (D1,D2, . . . ,Dm) of k-chains in H which joined together (juxtaposed)

give D. The above definition of the operation ⊗ can be generalized to the following
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situation. Let C = (Pi)
m
i=1 be an m-chain of k-paths in a graph G, let D be a km-

chain in H, and let (D1,D2, . . . ,Dm) be the m-splitting of D. Note that for each

i ∈ {1, 2, . . . , m− 1} the last vertex of the path Pi ⊗Di in the graph G×H is equal

to the first vertex of the path Pi+1⊗Di+1. Let C ⊗D be the chain in G×H given by

C ⊗ D = (P1 ⊗D1, P2 ⊗D2, . . . , Pm ⊗Dm) .

We will say that C ⊗ D is the chain generated by C and D. Note that the chain

generated by two closed chains is also a closed chain. It is straightforward to verify

that the operation ⊗ is associative in the following sense.

Proposition 4. If P is an m-path in a graph G, C is an m-chain of k-paths in a

graph H, and D is a km-chain in a graph J , then

(P ⊗ C)⊗D = P ⊗ (C ⊗ D) .

When we refer to a pair si and sj of elements of a sequence (s1, s2, . . . , st), we say

that they are consecutive if j = i±1, and that they are cyclically consecutive if either

j = i± 1 or {i, j} = {1, t}.
Let C = (Pi)

m
i=1 be a chain in a graph G. We say that C is openly separated if any

two paths of C have exactly one vertex in common when they are consecutive, and

they are vertex disjoint otherwise. We say that C is closely separated if C is closed,

any two paths of C have exactly one vertex in common when they are cyclically

consecutive, and they are vertex disjoint otherwise.

The following statement is an easy consequence of the definitions.

Proposition 5. Let P be a path in a graph G and C be a |P |-chain of open snakes

in a graph H.

(1) If C is openly separated, then P ⊗ C is an open snake in G×H.

(2) If P is closed and C is closely separated, then P ⊗ C is a snake in G×H.

If P is a path, then let −P be the path obtained from P by reversing the order of

vertices, and if C = (Pi)
m
i=1 is a chain, then let

−C = (−Pm,−Pm−1, . . . ,−P1)
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be the chain obtained from C by reversing the order of paths and reversing every

path. The expression (−1)iX, where X is a path or a chain, will mean X for i even

and −X for i odd. Obviously, the following statement is true.

Proposition 6. If P is an m-path in a graph G and C is an m-chain in a graph H,

then

(−P )⊗ C = − (P ⊗ (−C)) .

Let C be a km-chain of paths, and let S = (C1, C2, . . . , Cm) be the m-splitting of C.

Consider the following (m× k)-matrix of paths:

A =




C1

−C2

...

(−1)m−1 Cm




=




Q1
1 Q2

1 . . . Qk
1

Q1
2 Q2

2 . . . Qk
2

...
...

...

Q1
m Q2

m . . . Qk
m




where (Q1
i , Q

2
i , . . . , Q

k
i ) is the sequence of paths forming the k-chain (−1)i−1Ci. We will

call A the alternating matrix of S. The splitting S will be called openly alternating

if for any ` ∈ {1, 2, . . . , k} and for any two distinct paths Q`
i , Q`

j appearing in the

`-th column of A, the paths Q`
i , Q`

j have exactly one vertex in common when they

are consecutive in C and they are vertex disjoint otherwise.

Assume now that the km-chain C is closed and m is even. Then, we say that the

splitting S is closely alternating if for any ` ∈ {1, 2, . . . , k} and for any two distinct

paths Q`
i , Q`

j appearing in the `-th column of A, the paths Q`
i , Q`

j have exactly

one vertex in common when they are cyclically consecutive in C and they are vertex

disjoint otherwise. The following statement is an easy consequence of the definitions.

Proposition 7. Let P be a k-path in a graph G, and let D be a km-chain in a

graph H.

(1) If C is the m-chain (P,−P, . . . , (−1)m−1P ), and the m-splitting of D is openly

alternating, then the m-chain C ⊗ D in G×H is openly separated.
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(2) If m is even, C is the closed m-chain (P,−P, P,−P, . . . ,−P ), and the m-

splitting of D is closely alternating, then the closed m-chain C ⊗ D in G×H

is closely separated.

Let n ≥ 3 be an odd integer. Let H be a graph, r ≥ 1 be an integer, C be an

nr-chain of paths in H, and D be an (n− 1) nr-chain of paths in H. We say that

C is openly well distributed if either r = 1 and C is an openly separated chain of

open snakes, or r ≥ 2, every chain Ci in the n-splitting S = (C1, C2, . . . , Cn) of C is

openly well distributed and S is openly alternating. We also say that D is closely

well distributed if every chain Di in the (n− 1)-splitting S ′ = (D1,D2, . . . ,Dn̄) of D
is openly well distributed and S ′ is closely alternating. The following property can

be proved by a straightforward induction with respect to r.

Proposition 8. If C is an openly well distributed nr-chain of paths in a graph H,

then the chain −C is also openly well distributed.

We are going now to define inductively, for each d = 1, 2, . . . , an nr-path πd
n in Kr

n

and a closed (n− 1) nr-path γr+1
n in Kr+1

n . Let

π1
n = (0, 1, . . . , n− 1),

πr+1
n = π1

n ⊗ (πr
n,−πr

n, π
r
n,−πr

n, . . . , πr
n)

and

γr+1
n = γn ⊗ (πr

n,−πr
n, π

r
n,−πr

n, . . . ,−πr
n) ,

where γn is the closed (n− 1)-path (0, 1, . . . , n− 2) in Kn.

The following lemmas are proved in [9].

Lemma 9. If r ≥ 1 and C is an openly well distributed nr-chain in a graph H, then

the path πr
n ⊗ C is an open snake in the graph Kr

n ×H.

Lemma 10. If r ≥ 1 and C is a closely well distributed (n− 1) nr-chain in a graph

H, then the path γr+1
n ⊗ C is a snake in the graph Kr+1

n ×H.
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3. A Family of Snakes in K2
n

Assume that n ≥ 9 is odd. Let m = (n + 1) /2 and k = bn/4c − 1. For each

t ∈ {0, 1, . . . , n− 1}, each i ∈ {n− 3, n− 2, n− 1}, and each

α, β ∈ {0, 1}

let Cαtβ
i be the open snake in K2

n, with 2k + 2 = 2 bn/4c vertices, defined by

Cαtβ
i =

((
t− α, i

)
,
(
t− α, 1− t

)
,
(
t + 1, 1− t

)
,
(
t + 1, 2− t

)
,
(
t + 2, 2− t

)
,

(
t + 2, 3− t

)
,
(
t + 3, 3− t

)
, . . . ,

(
t + k − 3, k − 2− t

)
,

(
t + k − 2, k − 2− t

)
,
(
t + k − 2, k − 1− t

)
,
(
t + k − 1, k − 1− t

)
,

(
t + k − 1, k − t

)
,
(
t + k + β, k − t

)
,
(
t + k + β, n− 4

))
,

where x = x mod n and x = x mod m.

For example, if n = 17, then m = 9, k = 3,

C0 0 0
14 = ((0, 14) , (0, 1) , (1, 1) , (1, 2) , (2, 2) , (2, 3) , (3, 3) , (3, 13)) ,

C0 1 0
14 = ((1, 14) , (1, 0) , (2, 0) , (2, 1) , (3, 1) , (3, 2) , (4, 2) , (4, 13)) ,

C0 2 0
14 = ((2, 14) , (2, 8) , (3, 8) , (3, 0) , (4, 0) , (4, 1) , (5, 1) , (5, 13)) ,

...

C0 16 0
14 = ((16, 14) , (16, 2) , (0, 2) , (0, 3) , (1, 3) , (1, 4) , (2, 4) , (2, 13)) ,

and

C0 2 1
14 = ((2, 14) , (2, 7) , (3, 7) , (3, 0) , (4, 0) , (4, 1) , (6, 1) , (6, 13)) ,

C1 2 0
14 = ((1, 14) , (1, 7) , (3, 7) , (3, 0) , (4, 0) , (4, 1) , (5, 1) , (5, 13)) ,

C1 2 1
14 = ((1, 14) , (1, 7) , (3, 7) , (3, 0) , (4, 0) , (4, 1) , (6, 1) , (6, 13)) .

Lemma 11. Let t, s ∈ {0, 1, . . . , n− 1} with t < s, let i, j ∈ {n− 3, n− 2, n− 1},
and let

α, β, γ, δ ∈ {0, 1} .
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If u is a vertex of Cαtβ
i and v is a vertex of Cγsδ

j , then u 6= v except in the following

cases:

(1) s = t+1, α = 0, γ = 1, i = j, and u, v are the first vertices of Cαtβ
i and Cγsδ

j ,

respectively;

(2) t = 0, s = n − 1, α = 1, γ = 0, i = j, and u, v are the first vertices of Cαtβ
i

and Cγsδ
j , respectively;

(3) s = t + 1, β = 1, δ = 0, and u, v are the last vertices of Cαtβ
i and Cγsδ

j ,

respectively;

(4) t = 0, s = n− 1, β = 0, δ = 1, and u, v are the last vertices of Cαtβ
i and Cγsδ

j ,

respectively.

Proof. Assume that u = v = (a, b). Since m ≤ n − 4, exactly one of the following

conditions holds

(a) b ∈ {n− 3, n− 2, n− 1};
(b) b = n− 4;

(c) b ∈ {0, 1, . . . , m− 1}.

If (a) holds, then u is the first vertex of Cαtβ
i and v is the first vertex of Cγsδ

j . Since

both i and j are equal to b, we have i = j. It is clear that s = t± 1 mod n, and since

t < s, we must have either s = t + 1 or (t, s) = (0, n− 1). Since

a = (t− α) mod n = (s− γ) mod n,

we must have α = 0, γ = 1 when s = t + 1 and α = 1, γ = 0 when (t, s) = (0, n− 1).

Thus one of the conditions 1 or 2 above must hold.

If (b) holds, then u is the last vertex of Cαtβ
i and v is the last vertex of Cγsδ

j and

similar analysis as above shows that one of the conditions 3 or 4 above holds.

If (c) holds, then neither u nor v is the first or the last vertex of the corresponding

path. We will show that this assumption leads to a contradiction. From the definition
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of Cαtβ
i we have

a ∈ {
t− α, t + k + β

} ∪ {
t + 1, t + 2, . . . , t + k − 1

}

⊆ {
t− 1, t, t + 1, t + 2, . . . , t + k − 1, t + k, t + k + 1

}
.

Therefore

t ∈ {
a + 1, a, a− 1, . . . , a− k − 1

}
.

Let us consider how the value of b depends on the value of t. Notice that

• b = 1− t when a = t− α, that is when t ∈ {
a + 1, a

}
;

• b = k − t when a = t + k + β, that is when t ∈ {
a− k, a− k − 1

}
; and

• b = `− t or b = ` + 1− t when a = t + `, that is when t = a− ` for any

` = 1, 2, . . . , k − 1.

Therefore, given the value of t, the value of b is as in the following table:

t b

a + 1 1− a + 1

a 1− a

a− 1 1− a− 1 or 2− a− 1

a− 2 2− a− 2 or 3− a− 2
...

...

a− k + 1 k − 1− a− k + 1 or k − a− k + 1

a− k k − a− k

a− k − 1 k − a− k − 1

For example, take a = 1 and consider how the above table looks when n = 25 (m = 13,

k = 5) — table on the left below, and n = 27 (m = 14, k = 5) — table on the right
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below.

t b

2 12

1 0

0 1 or 2

24 4 or 5

23 6 or 7

22 8 or 9

21 10

20 11

t b

2 13

1 0

0 1 or 2

26 4 or 5

25 6 or 7

24 8 or 9

23 10

22 11

If a is such that the set
{
a + 1, a, a− 1, . . . , a− k − 1

}
does not contain both 0

and n − 1, then the possible values of b in the table above range from 1− a + 1 to

k − a− k − 1 through consecutive numbers modulo m. There are 2k + 2 numbers in

such a sequence. Since 2k + 2 ≤ m, they are all distinct.

If the set
{
a + 1, a, a− 1, . . . , a− k − 1

}
contains both 0 and n− 1, then the pos-

sible values of b in the table above range from 1− a + 1 to k − a− k − 1 through

consecutive numbers modulo m except for one. Since 2k + 2 ≤ m − 1, again all the

possible values for b in the table above are distinct.

It follows that the values of a and b determine the value t in a unique way. It

follows that s = t contradicting the assumption. Thus the proof is complete.

4. An Openly Well Distributed nr-chain in K2
n

Let n ≥ 9 be an odd integer and M be the set of all open snakes Cαtβ
i as defined

in the previous section. For any s ∈ {0, 1, . . . , n− 1}, let σs : M→M be defined by

σs(Cαtβ
i ) = Cα t+s β

i ,

where x = x mod n. Let

−M = {−P : P ∈M}
and

M = M∪ (−M) .
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We can extend σs to be a map σs : M→M by setting σs(−P ) = −σs(P ).

If C is a chain in K2
n consisting of paths from M, then we will say that C is M-built.

If C is M-built, then let σs(C) be the chain obtained by applying σs to each path

of C. The following proposition can be proved by a straightforward induction on the

length of C using Lemma 11.

Proposition 12. If C is anM-built openly well distributed chain and s ∈ {0, 1, . . . , n−
1}, then the chains σs(C) and −σs(C) are also openly well distributed.

We say that α is the upper begin (upper end) and i is the lower begin (lower end)

of the path Cαtβ
i (the path −Cαtβ

i ), and that β is the upper end (upper begin) and

n− 4 is the lower end (lower begin) of Cαtβ
i (of −Cαtβ

i ). Given an M-built chain C,

the upper begin (lower begin) of C is the upper begin (lower begin) of the first path

of C and the upper end (lower end) of C is the upper end (lower end) of the last path

of C.

Let C and D be M-built `-chains. We say that C and D are internally compatible

if they are the same except possibly for the upper begin and the upper end, that is,

if the following conditions hold:

(1) for every p ∈ {2, . . . , `− 1} the p-th path of C is the same as the p-th path of

D;

(2) if the first path of C is Cαtβ
i , then the first path of D is Cα′tβ

i for some α′ ∈
{0, 1};

(3) if the first path of C is −Cαtβ
i , then the first path of D is −Cαtβ′

i for some

β′ ∈ {0, 1};
(4) if the last path of C is Cαtβ

i , then the last path ofD is Cαtβ′
i for some β′ ∈ {0, 1};

(5) if the last path of C is −Cαtβ
i , then the last path of D is −Cα′tβ

i for some

α′ ∈ {0, 1}.
The following lemma, together with Lemma 9 will allow for a construction of long

open snakes in powers of Kn.

Lemma 13. For every integer r ≥ 1, there is an M-built nr-chain Nr such that:
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(1) any chain that is internally compatible with Nr is openly well distributed;

(2) the first path of Nr is C0 0 1
n−1;

(3) if P is the p-th path of Nr then P ∈ (−1)p−1M.

Proof. Let

N1 =
(
C0 0 1

n−1,−C0 1 0
n−1, C

1 2 1
n−1,−C0 3 0

n−1, C
1 4 1
n−1,−C0 5 0

n−1, . . . , C
1 (n−3) 1
n−1 ,−C

0 (n−2) 0
n−1 , C

1 (n−1) 0
n−1

)
.

It is straightforward to verify, using Lemma 11, that any chain that is internally

compatible with N1 is openly separated and so it is openly well distributed. It is

clear that the remaining conditions are also satisfied.

Assume that r ≥ 2, and that Nr−1 is an M-built nr−1-chain satisfying the required

conditions. For any α, β ∈ {0, 1} let N αβ
r−1 be the chain that is internally compatible

with Nr−1 and has upper begin α and upper end β. Let Nr be the M-built nr-chain

with the following n-splitting

Sr =
(
σ0

(N 0 1
r−1

)
,−σ1

(N 0 0
r−1

)
, σ2

(N 1 1
r−1

)
,−σ3

(N 0 0
r−1

)
, . . . ,−σn−2

(N 0 0
r−1

)
, σn−1

(N 1 0
r−1

))
.

Let N αβ
r be the chain that is internally compatible with Nr and has upper begin

α and upper end β. Let Sαβ
r be the n-splitting of N αβ

r . By the inductive hypothesis

and Proposition 12, every chain of Sαβ
r is openly well distributed. To prove that N αβ

r

is openly well distributed, it remains to show that Sαβ
r is openly alternating.

Let

Aαβ
r =




σ0
(N α 1

r−1

)

σ1
(N 0 0

r−1

)

σ2
(N 1 1

r−1

)
...

σn−2
(N 0 0

r−1

)

σn−1
(
N 1 β

r−1

)




=




Q1
0 Q2

0 . . . Qnr−1

0

Q1
1 Q2

1 . . . Qnr−1

1

Q1
2 Q2

2 . . . Qnr−1

2

...
...

...

Q1
n−2 Q2

n−2 . . . Qnr−1

n−2

Q1
n−1 Q2

n−1 . . . Qnr−1

n−1




be the alternating matrix of Sαβ
r . Let ` ∈ {2, 3, . . . , nr−1 − 1} and Q`

t, Q`
s be distinct

paths appearing in the `-th column of Aαβ
r . If Q`

t = ±Cγtδ
i then Q`

s = ±Cγsδ
i , so it

follows from Lemma 11 that the paths Q`
t, Q`

s are vertex disjoint. If ` ∈ {1, nr−1}
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and t, s are not cyclically consecutive in the sequence {0, 1, . . . , n− 1}, then again it

follows from Lemma 11 that the paths Q`
t, Q`

s are vertex disjoint.

Assume now that ` = 1 and s = (t + 1) mod n. Then Q`
t, Q

`
s ∈ M. If t is even

with t 6= n − 1, then the upper begin of Q`
s is 0 while the upper ends of Q`

t and Q`
s

are the same. It follows from Lemma 11 that the paths Q`
t, Q`

s are vertex disjoint. If

t = n− 1, then the upper begin of Q`
t is 1 while the upper ends of Q`

t and Q`
s are the

same. It follows again from Lemma 11 that the paths Q`
t, Q`

s are vertex disjoint. If

t is odd, then the upper begin of Q`
t is 0, the upper begin of Q`

s is 1, and the upper

ends of Q`
t and Q`

s are the same. It follows from Lemma 11 that the paths Q`
t, Q`

s

have exactly one vertex in common which is the first vertex of both of them.

If ` = nr−1 and s = (t + 1) mod n, then a similar argument shows that the paths

Q`
t, Q`

s have exactly one vertex in common when they are consecutive in N αβ
r and

they are vertex disjoint otherwise.

It is clear that the remaining required conditions are satisfied, so the proof is

complete.

5. Proof of Theorem 3

We need to extend our definition of the path Cαtβ
i to the case when α = 2, t = 0,

β = 1, and i = n − 2. Recall that m = (n + 1) /2 and k = bn/4c − 1. Let C2 0 1
n−2 be

the open snake in K2
n with 2k + 2 = 2 bn/4c vertices defined by

C2 0 1
n−2 = ((n− 2, n− 2) , (n− 2, 1) , (1, 1) , (1, 2) , (2, 2) , (2, 3) , (3, 3) , . . . , (k − 2, k − 2) ,

(k − 2, k − 1) , (k − 1, k − 1) , (k − 1, k) , (k + 1, k) , (k + 1, n− 4)) .

Note that this definition is exactly what you get taking α = 2, t = 0, β = 1, i = n−2

and using the general formula defining Cαtβ
i .

Since we have m > 2k + 2, the following modification of Lemma 11 holds.

Lemma 14. Let s ∈ {1, 2, . . . , n− 1}, let j ∈ {n− 3, n− 2, n− 1}, and let γ, δ ∈
{0, 1}. If u is a vertex of C2 0 1

n−2 and v is a vertex of Cγsδ
j , then u 6= v except in the

following cases:
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(1) s = n− 2, γ = 0, j = n− 2, and u, v are the first vertices of C2 0 0
n−2 and Cγsδ

j ,

respectively;

(2) s = n− 1, γ = 1, j = n− 2, and u, v are the first vertices of C2 0 0
n−2 and Cγsδ

j ,

respectively;

(3) s = 1, δ = 0, and u, v are the last vertices of C2 0 0
n−2 and Cγsδ

j , respectively.

Let Nd−3 be an M-built nd−3-chain satisfying Lemma 13. For any α, β ∈ {0, 1}
let N αβ

d−3 be the chain that is internally compatible with Nd−3 and has upper begin

α and upper end β. We also need to define two extra chains. Let N ′
d−3 be obtained

from N 0 1
d−3 by replacing its first path C0 0 1

n−1 with the path C2 0 1
n−2, and let N ′′

d−3 be the

chain obtained from N 0 0
d−3 by replacing its first path C0 0 1

n−1 with the path C0 0 1
n−2. Let C

be the M-built nd−2-chain with the following n-splitting

S =
(N ′

d−3,−σ1
(N 0 0

d−3

)
, σ2

(N 1 1
d−3

)
,−σ3

(N 0 0
d−3

)
, . . . , σn−3

(N 1 1
d−3

)
,−σn−2

(N ′′
d−3

))
.

Since none of the paths of Nd−3 has n− 2 as a lower begin or a lower end, and since

Lemma 13 implies that N 0 1
d−3 and N 0 0

d−3 are openly well distributed, it follows that

both N ′
d−3 and N ′′

d−3 are openly well distributed. By Lemma 13 and Proposition 12,

it follows that every chain of S is openly well distributed. An argument similar to the

argument used in the proof of Lemma 13 (using additionally Lemma 14) shows that

S is closely alternating. Therefore C is closely well distributed and it follows from

Lemma 10 that the path γd−2
n ⊗ C is a snake in the graph Kd−2

n ×K2
n = Kd

n. Since

the paths in M have length 2 bn/4c, and γd−2
n has length 2 bn/2cnd−3, it follows that

γd−2
n ⊗ C has length 4 bn/4c bn/2cnd−3. Thus the proof is complete.
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