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Abstract

A finite latin square is ann × n matrix whose entries are elements of the set{1, . . . , n} and no
element is repeated in any row or column. Given equivalence relations on the set of rows, the set of
columns, and the set of symbols, respectively, we can use these relations to identify equivalent rows,
columns and symbols, and obtain an amalgamated latin square. There is a set of natural equations that
have to be satisfied by an amalgamated latin square. Using these equations we can define the notion
of an outline latin square and it follows easily that an amalgamated latin square is an outline latin
square. Hilton (Math. Programming Stud. 13 (1980) 68) proved that the opposite implication holds
as well, that is, every outline latin square is an amalgamated latin square. In this paper, we present
a generalization of that result to infinite latin squares with the sets of rows, columns and symbols of
arbitrary cardinality.
© 2005 Published by Elsevier B.V.
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1. Preamble

The study of amalgamations of various simple finite combinatorial structures has been
pursued by the present authors and others (see for example[1–3,5–13,15,16]). Hilton on
this theme concerned latin squares[5] (see[7] for a clearer account) and is the one that
we extend to the infinite case in this paper. The proof in the case of finite latin squares
is not particularly difficult, but the proofs for some of the other finite structures are most
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complicated, and the results themselves are quite deep. It may well be that, in the infinite
as well as in the finite case, the first relatively easy result is the precursor of a number of
deep and difficult results—perhaps only time will tell.
In the infinite case, the obvious analogueof the conditions in the finite latin square caseare

all there, but there is one further condition, “well-distributedness”, that has to be included.

2. Introduction

Let X, Y , Z be disjoint sets. Alatin systemcan be thought of as the complete tripartite
graphGwith sidesX,Y, andZwith partition of its edge-set into triangles. Anamalgamated
latin systemis then a tripartite multigraph together with a partition of its edge set into
triangles. For fixed partitions of each of the sidesX, Y, Z, we can define a multigraphG′
obtained fromG by identifying vertices in each part (for each of the sides) into a single
“big” vertex.We use the convention that anordinal number� is equal to the set of all ordinal
numbers smaller than� and that acardinal numberis an ordinal number� such that any
ordinal number smaller than� has a smaller cardinality. We denote by� the first infinite
ordinal number.
Let Card be the class of cardinal numbers,Card+ be the class of positive cardinal

numbers andCard∞ be the class of infinite cardinal numbers.
LetX,YandZbe sets. Given a subsetS ⊆ X ×Y ×Z, we say thatS is alatin systemif

|{x ∈ X : (x, y, z) ∈ S}| = 1 for everyy ∈ Y andz ∈ Z,

|{y ∈ Y : (x, y, z) ∈ S}| = 1 for everyx ∈ X andz ∈ Z,

|{z ∈ Z : (x, y, z) ∈ S}| = 1 for everyx ∈ X andy ∈ Y .

Note that for a fixedx ∈ X the condition that(x, y, z) ∈ S defines a bijection betweenY
andZ, implying that|Y | = |Z|, and similarly we can conclude that all the setsX,Y andZ
have the same cardinality. IfX = Y = Z = {1,2, . . . , n} for some positive integern and we
interpret the elements ofXas labels of the rows of an(n×n)-matrixA, the elements ofYas
the labels of the columns ofA and the elements ofZ as the entries ofA, then a latin system
S ⊆ X × Y × Z corresponds to the familiar notion of a latin square (see[7]). Another
way of looking at a latin systemS ⊆ X × Y × Z is to interpret it as a partition of the set
of edges of the complete tripartite graph with sidesX,Y, andZ of the same cardinality into
triangles.
In the finite case the notions discussed in this paper (of outline and amalgamated latin

systems) are considered in detail in[7], where some examples are given. This paper is self-
contained, but to understand it, it may help to look at[7] first. For set-theoretic concepts
see[14].
Using the tripartite graph interpretation, an amalgamated latin system (defined formally

later) can be thought of as being obtained froma latin systemS ⊆ X×Y ×Z by partitioning
each of its sides in some way (independently for each side) and then identifying the vertices
in each of the parts into a single “big” vertex.At the same timewe preserve each of the edges
and the partition of the edge-set into triangles; the new endpoints of an edge are the “big”
vertices that contain the old endpoints.A system that is obtained in thisway can be described
formally by considering setsX′, Y ′, andZ′ of “new” vertices that are obtained from the
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setsX,Y, andZ, respectively together with four functions. Three of these functions, with
domainsX′, Y ′, andZ′ respectively and with values inCard+, describe how “big” each of
the “new” vertices are, that is how many “old” vertices they contain. The fourth function
� : X′ × Y ′ × Z′ → Card describes the distribution of triangles so that�(a, b, c) gives
the cardinality of the set of triangles with verticesa, b, andc. There are obvious cardinality
conditions that have to be satisfied by these functions. A system defined by assuming these
conditionswill be called an outline latin system. Nowwewill present the formal definitions.
GivenasetA, aweight distributiononA is a functionf : A → Card+. If � : X×Y×Z →

Card, then the quadruple(X, Y, Z, �) will be called a 3-weighted systemand the map�
will be referred to as 3-weight.
Let f,g,hbeweight distributions on the setsX,Y,Z, respectively, and let�=(X, Y, Z, �)

be a 3-weighted system. We say that� is an(f, g, h)-outline latin systemif∑
x∈X

�(x, y, z) = g(y)h(z) for everyy ∈ Y andz ∈ Z,

∑
y∈Y

�(x, y, z) = f (x)h(z) for everyx ∈ X andz ∈ Z,

∑
z∈Z

�(x, y, z) = f (x)g(y) for everyx ∈ X andy ∈ Y .

Note that ifS ⊆ X × Y × Z is a latin system and� is the characteristic function ofS, i.e.
� : X ×Y ×Z → {0,1} with �(x, y, z)=1 if and only if(x, y, z) ∈ S, then(X, Y, Z, �)

is an(f, g, h)-outline latin system wheref ≡ 1, g ≡ 1 andh ≡ 1.
We will define the process of obtaining an outline latin system from a latin system more

generally, namely we will allow the original system to be an outline system as well. This
more general definition will be needed later in the proofs.
Let� = (X, Y, Z, �) be an(f, g, h)-outline latin system, and� : X → X′, � : Y → Y ′,

� : Z → Z′ be surjections. The(�, �, �)-amalgamationof � is the 3-weighted system
� = (X′, Y ′, Z′, �) where the 3-weight� is defined by

�(x, y, z) =
∑

a∈�−1(x)

∑
b∈�−1(y)

∑
c∈�−1(z)

�(a, b, c).

It is easy to see that the(�, �, �)-amalgamation� of� is an(f ′, g′, h′)-outline latin system
where

f ′(x) =
∑

a∈�−1(x)

f (a), g′(y) =
∑

b∈�−1(y)

g(b), h′(z) =
∑

c∈�−1(z)

h(c),

for everyx ∈ X′, y ∈ Y ′ andz ∈ Z′.
If S ⊆ X × Y × Z is a latin system and� : X → X′, � : Y → Y ′, � : Z → Z′

are surjections, then the(�, �, �)-amalgamationofS is the(�, �, �)-amalgamation of the
corresponding(1,1,1)-outline latin system�=(X, Y, Z, �), (where� is the characteristic
function ofS). Explicitly, the(�, �, �)-amalgamationofS is the 3-weighted system� =
(X′, Y ′, Z′, �) where the map� satisfies

�(x, y, z) = |S ∩ (�−1(x) × �−1(y) × �−1(z))|,
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for anyx ∈ X′, y ∈ Y ′ andz ∈ Z′. A 3-weighted system(X, Y, Z, �) is anamalgamated
latin systemif it is an amalgamation of a latin system.
As we remarked before, any amalgamation of an outline latin system is an outline latin

system itself, hence in particular, any amalgamated latin system is an outline latin system.
To be more precise, if� = (X′, Y ′, Z′, �) is the(�, �, �)-amalgamation of a latin system
S ⊆ X × Y × Z, then� is an (f, g, h)-outline latin system wheref (x) = |�−1(x)|,
g(y) = |�−1(y)| andh(z) = |�−1(z)| for anyx ∈ X′, y ∈ Y ′ andz ∈ Z′.
Hilton [5] (see[7] for a clearer account) proved that in the finite case the converse of

the above statement holds as well. Namely, he proved the following theorem about latin
squares.

Theorem 1. Let� = (X, Y, Z, �) be an(f, g, h)-outline latin system. If the sets X, Y, Z
are finite and the functions f, g, h take finite values, then� is an amalgamated latin system,
i.e. there are setsX′, Y ′, Z′, surjections� : X′ → X, � : Y ′ → Y , � : Z′ → Z and a latin
systemS ⊆ X′ × Y ′ × Z′ such that� is the(�, �, �)-amalgamation ofS.

In this paper, we are going to generalize Theorem 1. The following theorem is a special
case of our generalization.

Theorem 2. Let�=(X, Y, Z, �)bean(f, g, h)-outline latin system. If two of the functions
f, g, h take only finite values, then� is an amalgamated latin system.

Before we state the complete generalization of Theorem 1, let us remark that Theorem 2
becomes false if we allow two of the functionsf, g, h to take infinite values. Consider the
following examples.

Example 3. Let X = Y = Z = Z, and letf, g, h be the weight distributions on the sets
X, Y, Z, respectively, such thatf (x) = g(y) = � for anyx ∈ X andy ∈ Y , andh(z) = 1
for anyz ∈ Z. Define� : X × Y × Z → Card by

�(x, y, z) =
{

� if x + y = z,

0 otherwise.

Then� = (X, Y, Z, �) is an(f, g, h)-outline latin system, but it is easy to see that� is not
an amalgamated latin system.

The following example is a generalization of Example 3.

Example 4. Let	 be an infinite cardinal,X=Y =Z=	, andf, g, h beweight distributions
on the setsX, Y, Z, respectively, such thatf (x) = g(y) = 	 for any x ∈ X andy ∈ Y ,
andh(z) < 	 for anyz ∈ Z. Let 
 : 	 × 	 → 	 be a map such that for every�, � < 	 there
are�, � < 	 such that
(�, �) = � and
(�, �) = �. (It is easy to see that such a function

exists. At the end of this example we will give a construction of such a function.) Define a
3-weight� : X × Y × Z → Card by

�(x, y, z) =
{

	 if 
(x, y) = z,

0 otherwise.
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Then� = (X, Y, Z, �) is an(f, g, h)-outline latin system, but it is easy to see that� is not
an amalgamated latin system.
Now we will show one possible way of constructing the function
. Let {X1, X2} be a

partition of	 (that is, the set of all ordinals less than	) such that|X1| = |X2| = 	, and let
�1, �2 be bijections fromX1, X2, respectively, onto	. Define
 by


(�, �) =




�1(�) if �, � ∈ X1,

�2(�) if �, � ∈ X2,

�1(�) if � ∈ X2 and� ∈ X1,

�2(�) if � ∈ X1 and� ∈ X2.

Examples 3 and 4 show that in order to generalize Theorem 1 we need to add an extra
condition to the definition of an outline latin system.
Let � = (X, Y, Z, �) be a 3-weighted system andf, g, h be weight distributions on

X, Y, Z, respectively. We say that� iswell X-distributedif for everyy ∈ Y andz ∈ Z we
have

∑
x∈X

min(f (x), �(x, y, z))� max(g(y), h(z)). (1)

The notions ofwell Y-distributedandwell Z-distributed3-weighted systems are defined
in a similar way. A 3-weighted system� = (X, Y, Z, �) is well distributedif it is well
X-distributed, wellY-distributed and wellZ-distributed.
It is easy to see that any amalgamated latin system is well distributed. Indeed, let� =

(X, Y, Z, �) be an(f, g, h)-outline latin system that is an amalgamation of a latin system
S ⊆ A × B × C. We will show that� is well X-distributed. Given anyy ∈ Y and
z ∈ Z (assuming, say, thatg(y)�h(z)) let c be any element of�−1(z), that is an “old”
vertex that was amalgamated into the “new” vertexz. Consider all the triangles of the latin
systemS where one of the vertices isc and another was amalgamated intoy. There are
g(y) = max(g(y), h(z)) such triangles. Any two such triangles that are distinct must have
different vertices insideA. The number of such triangles with vertices amalgamated into
somex ∈ X is at most min(f (x), �(x, y, z)), implying that the required inequality is
satisfied.
Assume that� = (X, Y, Z, �) is an(f, g, h)-outline latin system.We can easily observe

that in such a case for� to be wellX-distributed it is enough to assume only that (1) is
satisfied for everyy ∈ Y andz ∈ Z such thatg(y) = h(z) ∈ Card∞ since in the remaining
cases the inequality is satisfied anyway. Indeed, ifg(y)�h(z), andh(z) is finite, then

f (x)� �(x, y, z)

h(z)
, for everyx ∈ X,

where	/n = 	 for any	 ∈ Card∞, implying that

∑
x∈X

min(f (x), �(x, y, z))�
∑
x∈X

�(x, y, z)

h(z)
= g(y) =max(g(y), h(z)).
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Now assume thatg(y) > h(z) ∈ Card∞ and, by way of contradiction, that
∑
x∈X

min(f (x), �(x, y, z)) =
∑
x∈X̄

min(f (x), �(x, y, z)) < g(y),

where

X̄ = {x ∈ X : �(x, y, z)�1}.
Let

X1 = {x ∈ X̄ : f (x)�h(z)} and X2 = {x ∈ X̄ : f (x) > h(z)}.
Since min(f (x), �(x, y, z))�1 for x ∈ X̄, it follows that

|X1|� |X̄| < g(y).

Moreoverf (x)h(z) = h(z) < g(y) for x ∈ X1, so∑
x∈X1

f (x)h(z) = |X1|h(z) < g(y).

Since�(x, y, z)�f (x)h(z) = f (x) for x ∈ X2, we conclude that

g(y) = g(y)h(z) =
∑
x∈X

�(x, y, z) =
∑
x∈X̄

�(x, y, z)

=
∑
x∈X1

�(x, y, z) +
∑
x∈X2

�(x, y, z)

�
∑
x∈X1

f (x)h(z) +
∑
x∈X

min(f (x), �(x, y, z))

< g(y) + g(y) = g(y)

which is a contradiction.
The outline latin systems in Examples 3 and 4 are not amalgamated latin systems since

they are not well distributed. The following theorem is the main result of our paper.

Theorem 5. Let�= (X, Y, Z, �) be a well-distributed(f, g, h)-outline latin system. Then
� is an amalgamated latin system.

Note that if� is an(f, g, h)-outline latin system and at least two of the functionsf, g, h

take only finite values, then� is well distributed. Hence, Theorem 2 is a special case of
Theorem 5; Theorem 2 could be proved more directly, but we omit such a proof.
ToproveTheorem5wewill be splitting eachof the vertices of awell-distributed(f, g, h)-

outline latin square one by one into the required number of verticesmaking sure that at each
intermediate step we have a well-distributed outline latin square. To split, say, a vertex
x ∈ X, we will be considering the bipartite multigraphD with sidesY andZ obtained
from the tripartite graph corresponding to our outline latin square by taking those edges
that belong to a triangle with vertexx. Since we want to replacex with f (x) vertices, we
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need to decide how to distribute the triangles that havex as a vertex between the copies of
x. There is a natural one-to-one correspondence between such triangles and the edges of
the bipartite multigraphD, so what we need to do is to colour the edges ofD with f (x)

colours in a suitable way. To get such a colouring we will first temporarily split each of
the vertices ofD to get af (x)-regular graph, apply an edge-colouring lemma, and finally
identify the vertices to get back the original vertices ofD. The main difficulty in this proof
will be in getting the proper splitting of the vertices ofD. That is where we will be using the
extra assumption that our outline latin square is well distributed. This splitting process will
follow from a general result, Theorem 6 in Section 3, about splitting vertices in bipartite
multigraphs.
The proof of Theorem 5 will be given in Section 5.

3. Vertex-splitting in bipartite multigraphs

A bipartite multigraphis a quintupleD = (Y, Z, L, , �) whereY, Z andL are disjoint
sets, and, � are maps fromL intoY, Z, respectively. The elements ofY ∪Z are thevertices
of D and the elements ofL are theedgesof D. We say that the edgeeof D is incidentwith
y ∈ Y (with z ∈ Z) if (e) = y (if �(e) = z), and that the edgese1, e2 of D areadjacentif
they are distinct and incident with the same vertex ofD. If y ∈ Y andz ∈ Z, then|−1(y)|
and|�−1(z)| are thedegreesof y andz, and

Lyz = {e ∈ L : (e) = y and�(e) = z}.
If |Lyz|�1 for everyy ∈ Y andz ∈ Z, then we say thatD is abipartite graph. Given
	 ∈ Card, we say that a bipartite graph is	-regular if every vertex has degree	.
Assume thatD=(Y, Z, L, , �) is a bipartitemultigraph, and thatg is a functionY ∪Z →

Card+. We say thatD has ag-splittingG = (M, W, L, ′, �′) if G is a bipartite graph such
that

M =
⋃
v∈Y

�v, W =
⋃
v∈Z

�v

with |�v| = g(v) where�v ∩ �w = ∅ for every distinctv, w ∈ Y ∪ Z, and′(e) ∈ �(e),
�′(e) ∈ ��(e) for everye ∈ L.
Now we will state and prove our main auxiliary result on bipartite multigraphs.

Theorem 6. LetD = (Y, Z, L, , �) be a bipartite multigraph, g : Y ∪ Z → Card+, and
	 ∈ Card+ be such that the degree of everyv ∈ Y ∪Z is	g(v).Then there exists a	-regular
g-splitting of D if and only if the following two conditions are satisfied.

1. For everyy ∈ Y andz ∈ Z we have|Lyz|�g(y)g(z).
2. If 	 ∈ Card∞, then for everyv ∈ Y ∪ Z with g(v) = 	 we have

∑
z∈Z

min(g(z), |Lvz|) = 	
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whenv ∈ Y , and∑
y∈Y

min(g(y), |Lyv|) = 	

whenv ∈ Z.

Proof. Let us first prove that the two conditions are necessary forD to have a	-regular
g-splitting. Assume thatG = (M, W, L, ′, �′) is ag-splitting ofD with

M =
⋃
v∈Y

�v, W =
⋃
v∈Z

�v.

Since the first condition is obviously satisfied, we are only going to prove the second
condition. Ify ∈ Y andv ∈ �y , thenv is adjacent inG to 	 vertices inW sinceG has no
multiple edges. On the other hand, for eachz ∈ Z, the number of vertices in�z adjacent
to v cannot be larger than eitherg(z) or |Lyz|. Therefore∑

z∈Z

min(g(z), |Lyz|)�	.

If 	 ∈ Card∞ andg(y) = 	, then

	 = g(y)	 =
∑
z∈Z

|Lyz|�
∑
z∈Z

min(g(z), |Lyz|)�	,

and so we have equality.
Now we are going to prove that the two conditions are sufficient forD to have a	-regular

g-splitting. Let us assume that the conditions are satisfied. To prove the existence of a	-
regularg-splitting ofD we can do the splitting in two stages, splitting the vertices inYfirst
and the vertices inZ later. Note that it is enough to show that it is possible to split each
vertex inY so that if we think of the obtained setM as a new version ofYwith g(y) = 1
for everyy ∈ Y , then eachy ∈ Y will have degree	 = g(y)	 and both conditions will be
still satisfied. Since, by symmetry, the splitting operation can be applied to the vertices in
Z (with g(y) = 1 for everyy ∈ Y ), it will follow that we can do both stages of the splitting
obtaining a	-regular bipartite multigraph with the value ofgbeing 1 for every vertex. Since
this multigraph will satisfy the first condition, it will be a graph.
Let us now show that the splitting ofY described above is possible. Since there are no

interactions between vertices, it is enough to define the splitting for one vertex inY .We shall
need only to make sure that the multigraph we obtain is	-regular on theY-side, satisfies the
first condition, and satisfies the second condition on theZ-side. The second condition will
be satisfied on theY-side since the functiongwill take the value 1 only, and thus the second
condition will be satisfied vacuously on theY-side. To ensure that the second condition
is satisfied on theZ-side, we note first that it is satisfied on theZ-side at the beginning.
Therefore it will be satisfied at the end provided that, in case	 ∈ Card∞, when splitting
y ∈ Y we ensure that:

(∗) everyz ∈ Z with g(z) = 	 is joined to min{|Lyz|, g(y)} of the new vertices replacingy.
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Fix y ∈ Y and let� = g(y). Our general strategy to obtain a splitting ofy satisfying the
required conditions will be to distribute the edges inLyv, for eachv ∈ Z, as equally as
possible between the new vertices replacingy. Let�y be a set of cardinality�. We want to
redefine the values of on

⋃
z∈Z Lyz replacing the old valueywith elements of�y .

First assume that	 > � ∈ Card∞. Let

Z′ = {z ∈ Z : |Lyz|��} and Z′′ = {z ∈ Z : 1� |Lyz| < �}.
For eachz ∈ Z′ define onLyz so that its inverse image on every element of�y is a set
of the same cardinality�z �g(z). This is possible since|Lyz|��g(z). If |⋃z∈Z′′ Lyz|��,
then |Z′′|�� and we can partitionZ′′ into setsZi , i ∈ I , of cardinality�. Define on⋃

z∈Z′′ Lyz so that its restriction to
⋃

z∈Zi
Lyz is a bijection onto�y for every i ∈ I . If

|⋃z∈Z′′ Lyz| < �, then define so that its restriction to
⋃

z∈Z′′ Lyz is an injection, and set
I = ∅. Then the degree of eachv ∈ �y is equal to

∑
z∈Z′ �z + |I |. This number must equal

	 since	 > � and the degree ofy was equal to	g(v) = �	. Moreover, for eachz ∈ Z′
we have at mostg(z) edges betweenv andzand for eachz ∈ Z′′ we have at most 1 edge
betweenv andz. It is clear that condition(∗) also holds so the splitting ofy satisfies all the
required conditions.
Now assume that both	 and� are finite. Let

Z̄ = {z ∈ Z : |Lyz|�1}.
Then ∣∣∣∣∣∣

⋃
z∈Z̄

Lyz

∣∣∣∣∣∣ =
∣∣∣∣∣
⋃
z∈Z

Lyz

∣∣∣∣∣ = 	�

is finite, implying thatZ̄ is finite. Let Z̄ = {z0, z1, . . . , zr}, and lete0, e1, . . . , e	�−1 be
an enumeration of the set

⋃
z∈Z Lyz such that all the elements ofLyz0 are listed first, then

all the elements ofLyz1, and so on. Define on
⋃

z∈Z Lyz by setting(ej ) = ajmod� for
everyj ∈ {0,1, . . . , �	−1}, where�y ={a0, a1, . . . , a�−1}. Then every vertex of�y has
degree	. It is clear that the required conditions are satisfied.
Next assume that	 ∈ Card∞ and� is finite. Let

Z′ = {z ∈ Z : |Lyz| ∈ Card∞} and Z′′ = {z ∈ Z : 1� |Lyz| < �}.
For eachz ∈ Z′ define onLyz so that its inverse image on every element of�y is a set
of cardinality|Lyz|. If |⋃z∈Z′′ Lyz| is infinite, thenZ′′ is infinite and we can partitionZ′′
into setsZi , i ∈ I , of cardinality�. Giveni ∈ I , let

Zi = {zi,0, zi,1, . . .}, Li =
∞⋃

j=0

Lyzi,j
.

Let ei,0, ei,1, . . . be an enumeration of the setLi such that all the elements ofLyzi,0 are
listed first, then all the elements ofLyzi,1, and so on. Define on

⋃
z∈Z′′ Lyz by setting

(ei,j )=ajmod� for everyi ∈ I andj < �, where�y ={a0, a1, . . . , a�−1}. If |⋃z∈Z′′ Lyz|
is finite, then letZ′′ = {z0, z1, . . . , zr}, and lete0, e1, . . . , ep be an enumeration of the set
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⋃
z∈Z′′ Lyz such that all the elements ofLyz0 are listed first, then all the elements ofLyz1,

and so on. Define on
⋃

z∈Z′′ Lyz by setting(ej ) = ajmod� for everyj ∈ {0,1, . . . , p}.
SetI = ∅. Then the degree of eachv ∈ �y is the same and is equal to

∑
z∈Z′ |Lyz| + �|I |.

This numbermust be equal to	 since	 is infinite and� is finite and the degree ofywas equal
to �	 = 	.Moreover, for eachz ∈ Z′ we have|Lyz|��g(z) = g(z) edges betweenv andz
(sinceg(z) ∈ Card∞ for z ∈ Z′) and for eachz ∈ Z′′ we have at most�|Lyz|/���g(z)

edges betweenv andz (where�|Lyz|/�� = |Lyz| if |Lyz| ∈ Card∞, and is the smallest
integer that is greater or equal to|Lyz|/� if |Lyz| is finite). It is clear that condition(∗) also
holds so the splitting ofy satisfies all the required conditions.
Finally consider the case when��	 and� ∈ Card∞. Let �z = min{|Lyz|, g(z)} for

everyz ∈ Z. We will show first that
∑

z∈Z �z = �. It follows from the second condition
that we need only to prove that equality when� > 	 (the argument will be similar to the
argument preceding Theorem 5 in the introduction). Since the degree ofy is

∑
z∈Z |Lyz|

and is also	g(y) = 	� = �, the inequality
∑

z∈Z �z �� clearly follows. Therefore it is
enough to show that

∑
z∈Z �z ��. If 	 is finite, theng(z)� |Lyz|/	 for everyz ∈ Z (where

�/	 = � for � ∈ Card∞) since the degree ofz is g(z)	. Therefore

∑
z∈Z

�z �
∑
z∈Z

|Lyz|
	

=
∑

z∈Z |Lyz|
	

= 	�
	

= �.

Now assume that	 ∈ Card∞, and suppose, by way of contradiction, that
∑

z∈Z �z < �.
Let

Z̄ = {z ∈ Z : |Lyz|�1 andg(z)�	} and Ẑ = {z ∈ Z : g(z) > 	}.
Then|Z̄| < � andg(z)	 = 	 < � for z ∈ Z̄ implying that

∑
z∈Z̄

g(z)	 = |Z̄|	 < �.

Since|Lyz|�g(z)	 = g(z) for z ∈ Ẑ, we have|Lyz|��z for z ∈ Ẑ and so

� = �	 =
∑
z∈Z

|Lyz| =
∑
z∈Z̄

|Lyz| +
∑
z∈Ẑ

|Lyz|

�
∑
z∈Z̄

g(z)	 +
∑
z∈Ẑ

�z < � + � = �

which is a contradiction proving that
∑

z∈Z �z = �.
Now we will complete the proof of this last case. If	 = 1, then define on

⋃
z∈Z Lyz so

that it is a bijection onto�y . This will clearly satisfy all the required conditions. Otherwise,
let

Z1 = {z ∈ Z : �z ∈ Card∞} and Z2 = {z ∈ Z : 1��z < �}.
Since

∑
z∈Z �z = � ∈ Card∞, either

∑
z∈Z1

�z = � or
∑

z∈Z2
�z = � (and then|Z2| = �).
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Suppose
⋃

z∈Z1
�z = �. For everyz ∈ Z1 the setLyz is infinite of cardinality at least�z,

so there is a partition{L′
yz, L′′

yz} of Lyz such that|L′
yz| = �z and|L′′

yz|��z. Let

L′ =
⋃

z∈Z1

L′
yz and L′′ =

⋃
z∈Z1

L′′
yz ∪

⋃
z∈Z2

Lyz.

Since|⋃z∈Z Lyz| = �, the cardinalities ofL′ andL′′ are at most�. Since⋃
z∈Z1

|L′′
yz|�

⋃
z∈Z1

|L′
yz| =

⋃
z∈Z1

�z = �

it follows that|L′| = |L′′| =�. Define onL′ ∪L′′ so that its inverse image on any element
of�y has	 − 1 elements fromL′ (where	 − 1= 	 for 	 ∈ Card∞) and one element from
L′′.
Let v ∈ �y . Then|−1(v)| = 	. Moreover, for eachz ∈ Z1, there are at most

|L′
yz| + 1= �z + 1= �z �g(z)

edges betweenv andz, and for eachz ∈ Z2 there is at most 1 edge betweenv andz. Thus
condition 1 is satisfied. To see that(∗) holds note that ifz ∈ Z1, then every edge ofL′′

yz

joinsz to a different vertex of�y , and ifz ∈ Z2, then every edge ofLyz joinsz to a different
vertex of�y . Since|L′′

yz| = |Lyz| for everyz ∈ Z1, eachz ∈ Z is joined to at least|Lyz|
of the new vertices replacingy. Thus the splitting ofy satisfies all the required conditions.
If |Z2| = �, then|Z1 ∪ Z2| = �. Let {Z̄� : � < 	} be a partition ofZ1 ∪ Z2 into 	 sets

of cardinality�. Then|⋃z∈Z̄�
Lyz| = � for every� < 	. Define on

⋃
z∈Z Lyz so that its

restriction to
⋃

z∈Z̄�
Lyz for every� < 	 is a bijection. Letv ∈ �y . Then|−1(v)| = 	 and,

for eachz ∈ Z, there is at most 1 edge betweenv andz (this in particular implies that(∗)

holds). Thus the splitting ofy satisfies all the required conditions and the proof is complete.
�

4. Perfect edge-colourings of	-regular bipartite graphs

Let 	 ∈ Card+. A (partial) edge	-colouringof D is a (partial) function
 : L → 	 such
that
(e1) �= 
(e2) for any adjacent edgese1 ande2 of D that are in the domain of
. Given
an edge	-colouring
 of D we say that
 is perfectif for any vertexv of D and any colour
c ∈ 	, there is an edgee of D which is incident tov and
(e) = c. The following lemma
follows easily from a result of Hall[4].

Lemma 7. LetD = (M, W, L, , �) be a bipartite multigraph. If D is n-regular, for some
positive integer n, then there is a perfect n-colouring of D.

Proof. It follows from the condition of Hall for the existence of a perfect matching in a
locally finite bipartite graph that ifD is ann-regular bipartitemultigraph, then it has a perfect
matching. The lemma now follows by induction onn. �

We actually only use Lemma 7 in the case whenD is a bipartite graph. We now give the
corresponding result for	-regular bipartite graphs, including in particular the case when
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	 ∈ Card∞. Perhaps, we might remark that Lemma 8 is not true for	-regular bipartite
multigraphs in general when	 ∈ Card∞. But it is true if the underlying bipartite graph is
also	-regular (essentially the same proof can be used to prove this).

Lemma 8. For any	 ∈ Card+, there is a perfect	-colouring of any	-regular bipartite
graph.

Proof. Let D = (M, W, L, , �) be a	-regular bipartite graph. Because of Lemma 7, we
can assume that	 ∈ Card∞.Without loss of generality, we can assume thatD is connected
(i.e. between any two vertices there is a finite path). Then the cardinalities ofM andW
are at most	 and |L| = 	. Let (x�)�<	 be a sequence enumerating the elements of the
set (M × 	) ∪ (W × 	) ∪ L such that ifx� = (y, �) andx�′ = (y, �′) are elements of
(M ×	)∪ (W ×	)with � < �′ < 	, then� < �′.We define, by induction on�, an increasing
sequence(
�)�<	 of partial edge	-colourings ofD such that the following conditions hold
for every� < 	:

(i) if x� ∈ L, thenx� ∈ dom
�,
(ii) if x�=(y, �) ∈ M×	, then the set of values of the restriction of
� to−1(y) contains�,
(iii) if x�=(y, �) ∈ W ×	, then the set of values of the restriction of
� to�−1(y) contains�.

Thus condition (i) ensures that each edge is coloured, and conditions (ii) and (iii) ensure
that each colour occurs on an edge incident with each vertex.
Let � < 	 and assume that
� is defined for every� < �. Let


′
� =

⋃
�<�


�.

Note that if� = �′ + 1 is a successor ordinal, then
′
� = 
�′ .

To define
� suppose first thatx� ∈ L. If x� ∈ dom
′
�, then let
� = 
′

�. If x� /∈dom
′
�,

then there is� ∈ 	such that� is not a valueof the restrictionof
′
� to−1((x�))∪�−1(�(x�)).

Then let


� = 
′
� ∪ {(x�, �)}.

It follows from the inductive hypothesis that
� is a partial edge	-colouring ofD satisfying
conditions (i)–(iii).
Now assume thatx� = (y, �) ∈ M × 	. If the set of values of the restriction of
′

� to
−1(y) contains�, then let
� = 
′

�. Otherwise, sinceD is regular, there ise ∈ −1(y) such
that� is not a value of the restriction of
′

� to �−1(�(e)). Thus� is not used to colour any
edge incident with either end vertex ofe. Then let


� = 
′
� ∪ {(e, �)}.

It follows from the inductive hypothesis that
� is a partial edge	-colouring ofD satisfying
conditions (i)–(iii). If x� = (y, �) ∈ W × 	, then the definition of
� is similar.
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It is clear that if(
�)�<	 satisfies conditions (i)–(iii), then


 =
⋃
�<	


� : L → 	

is a perfect edge	-colouring ofD, so the proof is complete.�

5. Proof of the main result

In this section we prove our main result, Theorem 5, that every well-distributed outline
latin system is an amalgamated latin system. Assume that� = (X, Y, Z, �) is a well-
distributed(f, g, h)-outline latin system. To show that� is an amalgamated latin system
we need to split each element ofX ∪ Y ∪ Z into a suitable number of elements given by
the functionsf, g, andh and distribute the triangles with verticesx, y, andzbetween all the
copies ofx, y, andz in a way to get a latin system. We will take care of the elements ofX
first, following withYandZ. It is enough to show how to split a single element ofX since
there are no interactions between the elements ofX.
Let x0 ∈ X. The function� determines a bipartite multigraph with sidesYandZ having

�(x0, y, z) edges incident toy ∈ Y andz ∈ Z (the setLyz). Since the vertexx0 will be
split intof (x0) vertices, we need to colour the edges of this multigraph withf (x0) colours;
each colour will correspond to one of the vertices, and the edges of a particular colour class
will be in triangles with the corresponding vertex. This colouring will be defined using a
(g ∪ h)-splitting of this multigraph called a bipartite presentation of� overx0. Thus the
splitting for f (x0) is found using a splitting of a corresponding multigraph. This latter
splitting is subsequently forgotten.
A bipartite presentation of� over x0 is an f (x0)-regular bipartite graphD =

(M, W, L, , �) such that

M =
⋃
y∈Y

My, W =
⋃
z∈Z

Wz, L =
⋃
y∈Y

⋃
z∈Z

Lyz,

where|My | = g(y), |Wz| = h(z), |Lyz| = �(x0, y, z), (e) ∈ My , and�(e) ∈ Wz for any
y ∈ Y , z ∈ Z ande ∈ Lyz, and all the setsMy , Wz, Lyz are mutually disjoint.
The following result follows immediately from Theorem 6.

Lemma 9. There exists a bipartite presentation of� overx0.

Proof. Let 	 = f (x0). LetD = (Y, Z, L, , �) be a bipartite multigraph such that

L =
⋃
y∈Y

⋃
z∈Z

Lyz,

where|Lyz| = �(x0, y, z), (e) = y, and�(e) = z for everyy ∈ Y , z ∈ Z, ande ∈ Lyz.
In particular, all the setsLyz are mutually disjoint. Note that the degree of everyy ∈ Y is
equal to

∑
z∈Z �(x0, y, z) = 	g(y) and, similarly, the degree of everyz ∈ Z is equal to
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	h(z). Since for everyy ∈ Y andz ∈ Z we have

�(x0, y, z)�
∑
x∈X

�(x, y, z) = g(y)h(z),

it follows that |Lyz|�g(y)h(z). Assume that	 ∈ Card∞. Then for everyy ∈ Y with
g(y) = 	 we have

∑
z∈Z

min(h(z), |Lyz|) =
∑
z∈Z

min(h(z), �(x0, y, z))� max(f (x0), g(y)) = 	

since� is well Z-distributed, and∑
z∈Z

min(h(z), |Lyz|)�
∑
z∈Z

�(x0, y, z) = 	g(y) = 	,

so ∑
z∈Z

min(h(z), |Lyz|) = 	.

Similarly
∑
y∈Y

min(g(y), |Lyz|) = 	

for everyz ∈ Z with g(z) = 	. By Theorem 6 there exists a	-regular(g ∪ h)-splitting of
D, hence a bipartite presentation of� overx0, and so the proof is complete.�

Proof of Theorem 5. For eachx ∈ X letXx be a set of cardinalityf (x), for eachy ∈ Y

let Yy be a set of cardinalityg(y), and for eachz ∈ Z let Zz be a set of cardinalityh(z).
Assume that all the setsXx, Yy, Zz are mutually disjoint. Let

X′ =
⋃
x∈X

Xx, Y ′ =
⋃
y∈Y

Yy, Z′ =
⋃
z∈Z

Zz.

ByLemmas9and8,givenx ∈ X, there isabipartitepresentationDx=(Mx, Wx, Lx, x, �x)

of � overx and a perfectf (x)-colouring
x : Lx → f (x) of Dx . Let�′ = (X′, Y, Z, �′)
be the 3-weighted system such that ifx ∈ X, ϑx : Xx → f (x) is a bijection anda ∈ Xx ,
then

�′(a, y, z) = |Lx
yz ∩ 
−1

x (ϑx(a))|.
Then�′ is a (1, g, h)-outline latin system such that� is the(�, iY , iZ)-amalgamation of
�′, whereiY andiZ are the identity functions onY andZ respectively and� : X′ → X is
defined by�(x′) = x if x′ ∈ Xx .
Repeating the same argument we get next a(1,1, h)-outline latin system�′′ =

(X′, Y ′, Z, �′′) such that�′ is the(iX′ , �, iZ)-amalgamation of�′′, whereiX′ andiZ are
the identity functions onX′ andZ, respectively, and� : Y ′ → Y is defined by�(y′) = y if
y′ ∈ Yy ; and then we get finally a(1,1,1)-outline latin system�′′′ = (X′, Y ′, Z′, �′′′) such
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that�′′ is the(iX′ , iY ′ , �)-amalgamation of�′′′ whereiX′ andiY ′ are the identity functions
onX′ andY ′, respectively, and� : Z′ → Z is defined by�(z′) = z if z′ ∈ Zz. Then� is
the(�, �, �)-amalgamation of�′′′, hence it is the(�, �, �)-amalgamation of the latin system
corresponding to�′′′. Therefore� is an amalgamated latin systemand the proof is complete.

�
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