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Abstract. A function f : Rn → R is a connectivity function if for every connected

subset C of Rn the graph of the restriction f |C is a connected subset of Rn+1,

and f is an extendable connectivity function if f can be extended to a connectivity

function g : Rn+1 → R with Rn imbedded into Rn+1 as Rn × {0}. There exists a

connectivity function f : R → R that is not extendable. We prove that for n ≥ 2

every connectivity function f : Rn → R is extendable.

1. Introduction

Given functions f : Rn → R and g : Rn+1 → R, we say that g extends f if g extends

the composition f ◦ τ : Rn × {0} → R, where τ : Rn × {0} → Rn and

(1) τ(〈x1, x2, . . . , xn, 0〉) = 〈x1, x2, . . . , xn〉 ,

for every 〈x1, x2, . . . , xn〉 ∈ Rn. A function f : Rn → R is a connectivity function if for

every connected subset C of Rn the graph of the restriction f |C is a connected subset

of Rn+1, and f is an extendable connectivity function if there exists a connectivity

function g : Rn+1 → R extending f .

It follows immediately from the definition that every extendable connectivity func-

tion is a connectivity function. Cornette [3] and Roberts [9] proved that there exists

a connectivity function f : R → R that is not extendable. This result was surprising

and sparked the interest in the family of extendable connectivity functions. Ciesielski

and Wojciechowski [2] asked whether there exists a connectivity function f : Rn → R,
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with n ≥ 2, that is not extendable. In this paper we will show that the answer to

that question is negative.

Theorem 1. If n ≥ 2 then every connectivity function f : Rn → R is extendable.

To prove Theorem 1 we will use ideas from Gibson and Roush [5] where is formu-

lated a necessary and sufficient condition for a connectivity function f : [0, 1] → [0, 1]

to be extendable to a connectivity function f : [0, 1]2 → [0, 1] (if one considers [0, 1]

to be embedded in [0, 1]2 as [0, 1]× {0}).
Our basic terminology and notation is standard. (See [1] or [4].) In particular, if A

is a subset of a metric space X, then bd A, cl A and diam A will denote the boundary,

closure, and diameter of A in X respectively, and if f is a function and A is a subset

of its domain, then f [A] is the image of A under f .

The following additional terminology will be useful in our proof. Given a function

f : Rn → R, a peripheral pair (for f) is an ordered pair 〈A, I〉 with I being a closed

interval in R and A being an open bounded subset of Rn with f [bd A] ⊆ I. Given

ε > 0, an ε-peripheral pair is a peripheral pair 〈A, I〉 with diam A < ε and diam I < ε.

Given a point x ∈ Rn, a peripheral pair for f at x is a peripheral pair 〈A, I〉 for f

with x ∈ A and f(x) ∈ I. A function f : Rn → R is said to be peripherally continuous

if for every x ∈ Rn and ε > 0 there is an ε-peripheral pair for f at x.

The class of peripherally continuous functions f : R → R is strictly larger than the

class of connectivity functions. However, the following result holds.

Theorem 2. If n ≥ 2 then a function f : Rn → R is peripherally continuous if and

only if it is a connectivity function.

The implication that a connectivity function is peripherally continuous in Theo-

rem 2 was proved by Hamilton [7] and Stallings [10], and the opposite implication

was proved by Hagan [6].

Let f : Rn → R be a function and P be a family of peripheral pairs for f . We say

that P locally converges to 0 if for every ε > 0 and every bounded set X ⊆ Rn the

set

{〈A, I〉 ∈ P : A ∩X 6= ∅ and diam A ≥ ε}
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is finite, and that P has the intersection property provided I ∩ I ′ 6= ∅ for any

〈A, I〉 , 〈A′, I ′〉 ∈ P such that each of the sets A∩A′, A \A′, and A′ \A is nonempty.

Given X ⊆ Rn, we say that P is an f -base for X if for every ε > 0 and x ∈ X

there exists an ε-peripheral pair for f at x that belongs to P . Note that a function

f : Rn → R is peripherally continuous if and only if there exists an f -base for some

set X ⊆ Rn that contains all points of discontinuity of f . A peripheral family for

f : Rn → R is a countable family of peripheral pairs for f that locally converges to

0, has the intersection property, and is an f -base for Rn.

Theorem 1 follows from Theorem 2 and the following two results.

Theorem 3. If n ≥ 2 and f : Rn → R is a peripherally continuous function, then

there exists a peripheral family for f .

If 〈A, I〉 is a peripheral pair (for some f : Rn → R), then the cylindrical extension

of 〈A, I〉 is a pair 〈A′, I〉, where

A′ = A× (− diam A, diam A) ⊆ Rn+1.

If P is a set of peripheral pairs, then the cylindrical extension of P is the set of

cylindrical extensions of all the elements of P .

The case n = 1 of the following theorem is a modification of a result of Gibson and

Roush [5].

Theorem 4. If n ≥ 1 and P is a peripheral family for f : Rn → R, then there exists

a continuous function

h : Rn+1 \ (Rn × {0}) → R

such that every element of the cylindrical extension of P is a peripheral pair for the

function

g = h ∪ (f ◦ τ) : Rn+1 → R,

where τ : Rn × {0} → Rn is the bijection as in (1).

The proof of Theorem 3 is given in section 2, and the proof of Theorem 4 can be

found in section 3. Now we shall give the proof of Theorem 1.



4 KRZYSZTOF CIESIELSKI, TOMASZ NATKANIEC, AND JERZY WOJCIECHOWSKI

Proof of Theorem 1. Let n ≥ 2 and f : Rn → R be a connectivity function. Since

f is peripherally continuous, it follows from Theorem 3 that there exists a peripheral

family P for f . Let Q be the cylindrical extension of P . By Theorem 4 there exists a

function g : Rn+1 → R such that g extends f , the restriction of g to Rn+1 \(Rn × {0})
is continuous, and every element of Q is a peripheral pair for g. The proof will be

complete when we show that Q is a g-base for Rn ×{0} since then it will follow that

g is peripherally continuous and hence a connectivity function.

Let ε > 0 and x = 〈x1, . . . , xn〉 ∈ Rn. Since P is an f -base for Rn, there is 〈A, I〉 ∈
P such that diam A < ε/

√
5, diam I < ε, x ∈ A, and f(x) ∈ I. Then the cylindrical

extension 〈A′, I〉 ∈ Q of 〈A, I〉 is an ε-peripheral pair for g at x̄ = 〈x1, . . . , xn, 0〉
implying that Q is a g-base for Rn × {0}.

2. Peripheral families for connectivity functions

In this section we are going to prove Theorem 3. First, let us introduce some more

terminology. Throughout this section we will assume that n is a fixed integer and

that n ≥ 2.

Given X,Y ⊆ Rn, the boundary of X ∩ Y in X will be denoted by bdX Y . The

inductive dimension ind X of a subset X ⊆ Rn is defined inductively as follows. (See

for example Engelking [4].)

(i) ind X = −1 if and only if X = ∅.
(ii) ind X ≤ m if for any p ∈ X and any open neighborhood W of p there exists

an open neighborhood U ⊆ W of p such that ind bdX U ≤ m− 1.

(iii) ind X = m if ind X ≤ m and it is not true that ind X ≤ m− 1.

A fundamental result of dimension theory states that ind Rn = n.

Given a set A ⊆ Rn and an integer m ≥ 1, we say that A is an m-dimensional

Cantor manifold if A is compact, ind A = m, and for every X ⊆ A with ind X ≤ m−2,

the set A \ X is connected. (See [8].) Given a subset A of Rn, we say that A

is a quasiball if A is a bounded and connected open set, and bd A is an (n− 1)-

dimensional Cantor manifold. (See [2].) A peripheral pair 〈A, I〉 with A being a

quasiball will be called a nice peripheral pair. Given ε, δ > 0, an 〈ε, δ〉-peripheral pair
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is a peripheral pair 〈A, I〉 with diam A < ε and diam I < δ. The following theorem

follows immediately from Corollary 5.5 in [2].

Theorem 5. If f : Rn → R is a peripherally continuous function, then for any

ε, δ > 0 and x ∈ Rn there exists a nice 〈ε, δ〉-peripheral pair for f at x.

We say that quasiballs A and A′ are independent if each of the sets A∩A′, A \A′,

and A′ \ A is nonempty. The following lemma is a restatement of Lemma 5.6 in [2].

Lemma 6. If A and A′ are independent quasiballs in Rn, then bd A ∩ bd A′ 6= ∅.

The following lemma follows immediately from Lemma 6.

Lemma 7. If P is a family of nice peripheral pairs, then P has the intersection

property.

For every positive integer i ∈ N, let

Di =

{
−4i2

4i
,
−4i2 + 1

4i
, . . . ,

4i2

4i

}
and

Ji = {Ji,q : q ∈ Di} ,

where Ji,q is the open interval

Ji,q =

(
q − 1

4i
, q +

1

4i

)
,

for each q ∈ Di.

Lemma 8. Let f : Rn → R be a function and, for every i ∈ N and q ∈ Di, let

Pi,q = {〈Aγ, Iγ〉 : γ ∈ Γi,q}

be a family of (1/i)-peripheral pairs for f such that

f−1(Ji,q) ⊆
⋃

γ∈Γi,q

Aγ and Ji,q ⊆
⋂

γ∈Γi,q

Iγ.

Then

P =
⋃
i∈N

⋃
q∈Di

Pi,q

is an f -base for Rn.



6 KRZYSZTOF CIESIELSKI, TOMASZ NATKANIEC, AND JERZY WOJCIECHOWSKI

Proof. Let ε > 0 and x ∈ Rn. Then there are i ∈ N and q ∈ Di with 1/i ≤ ε and

f(x) ∈ Ji,q. Since

f−1(Ji,q) ⊆
⋃

γ∈Γi,q

Aγ,

there is δ ∈ Γi,q such that x ∈ Aδ. Since

Ji,q ⊆
⋂

γ∈Γi,q

Iγ,

it follows that 〈Aδ, Iδ〉 is an ε-peripheral pair for f at x.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let n ≥ 2 and f : Rn → R be a peripherally continuous

function. Fix i ∈ N and q ∈ Di. By Theorem 5 for each x ∈ f−1(Ji,q) there exists a

nice 〈1/i, 1/4i〉-peripheral pair 〈Ai,q,x, Ii,q,x〉 for f at x. Let

Ti,q =
{
〈Ai,q,x, cl(Ii,q,x ∪ Ji,q)〉 : x ∈ f−1(Ji,q)

}
.

Note that since

f(x) ∈ Ii,q,x ∩ Ji,q 6= ∅

for every x ∈ f−1(Ji,q), the elements of Ti,q are 〈1/i, 3/4i〉-peripheral pairs for f .

Let j, k ∈ N be any positive integers with j > i. Set

T k
i,q = {〈A, I〉 ∈ Ti,q : A ∩Bk 6= ∅ and A ∩Bk′ = ∅ for every k′ < k} ,

where Bk is the open ball of center 〈0, 0, . . . , 0〉 and radius k, and

T k,j
i,q =

{
〈A, I〉 ∈ T k

i,q :
1

j
≤ diam A <

1

j − 1

}
.

Moreover, let

Ck,j
i,q = cl

 ⋃
〈A,I〉∈T k,j

i,q

A

 ,

and

Ek,j
i,q = Ck,j

i,q \
⋃

〈A,I〉∈T k,j
i,q

A.
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Fix y ∈ Ek,j
i,q . Let

〈
Ay, I

′
y

〉
be a nice 〈1/j, 1/4i〉-peripheral pair for f at y. Since

Ek,j
i,q ⊆ cl

 ⋃
〈A,I〉∈T k,j

i,q

bd A

 ,

there is 〈A, I〉 ∈ T k,j
i,q such that

Ay ∩ bd A 6= ∅.

Since diam Ay < diam A, it follows that the quasiballs A and Ay are independent and

so Lemma 6 implies that I ∩ I ′y 6= ∅. Let Iy = I ∪ I ′y for every y ∈ Ek,j
i,q and

Sk,j
i,q = T k,j

i,q ∪
{
〈Ay, Iy〉 : y ∈ Ek,j

i,q

}
.

Note that Ji,q ⊆ I for every 〈A, I〉 ∈ Sk,j
i,q . Since the set Ck,j

i,q is compact and

Ck,j
i,q ⊆

⋃
〈A,I〉∈Sk,j

i,q

A,

there is a finite subset Pk,j
i,q of Sk,j

i,q such that

Ck,j
i,q ⊆

⋃
〈A,I〉∈Pk,j

i,q

A.

Let

Pi,q =
⋃
k∈N

⋃
j>i

Pk,j
i,q = {〈Aγ, Iγ〉 : γ ∈ Γi,q} .

It is clear that the elements of Pi,q are (1/i)-peripheral pairs and

Ji,q ⊆
⋂

γ∈Γi,q

Iγ.

Moreover,

f−1(Ji,q) ⊆
⋃

〈A,I〉∈Ti,q

A ⊆
⋃

〈A,I〉∈Ti,q

cl A ⊆
⋃
k∈N

⋃
j>i

Ck,j
i,q ⊆

⋃
γ∈Γi,q

Aγ,

implying, by Lemma 8, that

P =
⋃
i∈N

⋃
q∈Di

Pi,q
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is an f -base for Rn. Of course P is countable and since all peripheral pairs in P are

nice, it follows from Lemma 7 that P has the intersection property. It remains to

prove the following claim.

Claim. The family P locally converges to 0.

We are going now to prove the claim. First note that if 〈A, I〉 ∈ T k,j
i,q and k′ < k,

then A ∩ Bk′ = ∅, implying that y /∈ Bk′ (and hence Ay * Bk′) for any y ∈ Ek,j
i,q .

Therefore

(2) A * Bk′ for any 〈A, I〉 ∈ Sk,j
i,q and k′ < k.

Also note that

(3) diam A <
1

j′
for any 〈A, I〉 ∈ Sk,j

i,q and j′ < j.

Now let ε > 0 and X ⊆ Rn be a bounded set. Then there are j′, k′ ∈ N such that

1/j′ < ε and X is a subset of the ball Bk′−1. Let 〈A, I〉 ∈ P be such that A∩X 6= ∅ and

diam A ≥ ε. Since A∩Bk′−1 6= ∅ and diam A < 1, it follows that A ⊆ Bk′ . Therefore,

since diam A ≥ 1/j′, it follows from (2) and (3) that if 〈A, I〉 ∈ Pk,j
i,q ⊆ Sk,j

i,q , then

k ≤ k′ and j ≤ j′. Thus

〈A, I〉 ∈ Pk′,j′
=

⋃
k≤k′

⋃
j≤j′

⋃
i<j

⋃
q∈Di

Pk,j
i,q .

Since the set Pk′,j′
is finite, the proof of the claim, and hence of the theorem is

complete.

3. Connectivity functions are extendable

In this section we are going to prove Theorem 4.

A partial order on a set T is a binary relation 4 on T that is reflexive, transitive

and antisymmetric (that is, t 4 s and s 4 t imply t = s for every s, t ∈ T ). We say

that 4 has the finite predecessor property if for every t ∈ T the set {s ∈ T : s 4 t}
of 4-predecessors of t is finite. A partial order 4∗ on a set T is an ω-order if there

is a bijection f : ω → T (where ω = {0, 1, . . . }) such that f(t) 4∗ f(s) if and only if
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t ≤ s. Given partial orders 4 and 4∗ on T , we say that 4∗ extends 4 if and only if

t 4 s implies t 4∗ s for every s, t ∈ T .

Lemma 9. If 4 is a partial order on an infinite countable set T with the finite

predecessor property, then there is an ω-order 4∗ on T that extends 4.

Proof. It is enough to show that there is a bijection f : ω → T such that f(i) 4 f(j)

implies i ≤ j. Let . be any fixed ω-order on T . We shall define the value f(i) by

induction on i. Let i ∈ ω and assume that f(j) has been defined for every j < i. Let

Ti = T \ {f(j) : j < i} ,

and let T ′
i consist of all 4-minimal elements in Ti. For every t ∈ Ti the set of 4-

predecessors of t is finite so there is s ∈ T ′
i with s 4 t. In particular, T ′

i is nonempty.

Let f(i) be the .-minimal element of T ′
i .

It is obvious from the construction that f is injective and that f(i) 4 f(j) implies

i ≤ j for every i, j ∈ ω. To see that f is surjective note that for any i ∈ ω and t ∈ Ti

the set of 4-predecessors of t is finite, so one of them is in T ′
i . This predecessor of

t will eventually become a value of f since . is an ω-order. Then the number of

unassigned 4-predecessors of t becomes smaller and hence eventually t itself must

become a value of f .

A family A of subsets of a metric space X is locally finite if for every x ∈ X some

open neighborhood of x intersects only finitely many elements of A. Let a Tietze

family for a metric space X be a countable family

F = {〈Cγ, Iγ〉 : γ ∈ Γ}

such that:

(1) A = {Cγ : γ ∈ Γ} is a locally finite closed cover of X with any Cγ intersecting

only finitely many elements of A;

(2) for every γ ∈ Γ, Iγ is either equal to R or is a closed interval in R;

(3) for every Φ ⊆ Γ

if
⋂
γ∈Φ

Cγ 6= ∅ then
⋂
γ∈Φ

Iγ 6= ∅.
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The following result will be the key step in our proof of Theorem 4.

Theorem 10. Let X be a metric space and F = {〈Cγ, Iγ〉 : γ ∈ Γ} be a Tietze family

for X. Then there is a continuous function h : X → R such that h[Cγ] ⊆ Iγ for every

γ ∈ Γ.

Proof. Let A = {Cγ : γ ∈ Γ}, and

TA =

{
Φ ⊆ Γ :

⋂
γ∈Φ

Cγ 6= ∅

}
.

Let 4A be the partial order of reversed inclusion on TA, that is, let Φ1 4A Φ2 if and

only if Φ2 ⊆ Φ1. Since every element of A intersects only finitely many elements of A,

it follows that the elements of TA are finite sets and that 4A has the finite predecessor

property.

Let 4∗
A be an ω-order extending 4A and for every Φ ∈ TA let

CΦ =
⋂
γ∈Φ

Cγ 6= ∅.

Take the enumeration Φ1, Φ2, . . . of TA with

Φ1 4∗
A Φ2 4∗

A · · ·

and for every i = 1, 2, . . . let

Ci =
⋃
j≤i

CΦj
, C ′

i = Ci ∩ CΦi+1
,

and

Ii =
⋂

γ∈Φi

Iγ 6= ∅.

We are going to define a sequence h1, h2, . . . of continuous functions hi : Ci → R such

that for every i = 1, 2, . . . the function hi+1 is an extension of hi and

(4) hi[Cγ ∩ Ci] ⊆ Iγ.
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for every γ ∈ Γ. Having defined such a sequence of functions our proof will be

complete since it is easy to see that the function

h =
∞⋃
i=1

hi

satisfies the required conditions. Indeed, (4) implies that h(Cγ) ⊆ Iγ for every γ ∈ Γ,

and since F is a locally finite closed cover of X it follows that h is a continuous

function on X.

Let h1 : C1 → I1 be any continuous function. Suppose that hi has been defined in

such a way that (4) is satisfied. Let h′i be the restriction of hi to C ′
i. It follows from

(4) that h′i : C ′
i → Ii+1. Since C ′

i is a closed subset of CΦi+1
, it follows from Tietze

Extension Theorem that h′i can be extended to a continuous function h′′i : CΦi+1
→

Ii+1. Let hi+1 = hi ∪ h′′i . Since Ci and CΦi+1
are closed subsets of Ci+1, the function

hi+1 : Ci+1 → R is continuous. It remains to show that (4) is satisfied for hi+1.

Suppose that γ ∈ Γ and x ∈ Cγ ∩Ci+1. If x ∈ Ci, then hi+1(x) = hi(x) ∈ Iγ by the

inductive hypothesis. Otherwise x ∈ CΦi+1
and so hi+1(x) = h′′i (x) ∈ Ii+1. It suffices

to show that γ ∈ Φi+1.

Indeed, since Cγ ∩ CΦi+1
6= ∅, it follows that Φi+1 ∪ {γ} ∈ TA. Since

Φi+1 ∪ {γ} 4A Φi+1

and since 4∗
A extends 4A, it follows that there is j ≤ i + 1 with

Φi+1 ∪ {γ} = Φj.

Since x ∈ Cγ ∩CΦi+1
= CΦj

and x /∈ Ci, it follows that j = i + 1. Thus γ ∈ Φi+1 and

so the proof is complete.

Lemma 11. Let n ≥ 1, f : Rn → R, P be a peripheral family for f , and Q be the

cylindrical extension of P. If {〈Aj, Ij〉 : 1 ≤ j ≤ k} ⊆ Q and bd Ai ∩ bd Aj 6= ∅ for

every i, j ≤ k, then
⋂k

j=1 Ij 6= ∅.

Proof. First we shall prove the lemma for k = 2. Suppose, by way of contradiction,

that there exist 〈A1, I1〉 , 〈A2, I2〉 ∈ Q with bd A1 ∩ bd A2 6= ∅ and I1 ∩ I2 = ∅. Let
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〈A′
1, I1〉 , 〈A′

2, I2〉 ∈ P be such that

A1 = A′
1 × (−a1, a1) and A2 = A′

2 × (−a2, a2) ,

where a1 = diam A′
1 and a2 = diam A′

2.

Since f [bd A′
1] ⊆ I1 and f [bd A′

2] ⊆ I2, we have

bd A′
1 ∩ bd A′

2 = ∅.

It follows that A′
1 ∩ A′

2 6= ∅ since otherwise we would have cl A′
1 ∩ cl A′

2 = ∅ in

contradiction with bd A1 ∩ bd A2 6= ∅. Since P has the intersection property, one of

A′
1, A′

2 is a subset of the other.

Assume that A′
1 ⊆ A′

2. Since cl A′
1 ⊆ cl A′

2 and bd A′
1 ∩ bd A′

2 = ∅, it follows that

cl A′
1 ⊆ A′

2. Since the set cl A′
1 is compact, there are x1, x2 ∈ cl A′

1 with diam A′
1 equal

to the distance from x1 to x2. Since x1, x2 ∈ A′
2 and A′

2 is open, it follows that

a1 = diam A′
1 < diam A′

2 = a2,

and so

bd A1 = bd A′
1 × [−a1, a1] ∪ A′

1 × {−a1, a1} ⊆ A′
2 × (−a2, a2) = A2,

contradicting our assumption that bd A1 ∩ bd A2 6= ∅.
Now for k > 2 the assertion follows easily from the fact that if {Ij : 1 ≤ j ≤ k} is

a family of intervals in R and Ij ∩ Im 6= ∅ for every j, m ≤ k, then
⋂k

j=1 Ij 6= ∅.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let f : Rn → R be a function, P be a peripheral family for

f , Q be the cylindrical extension of P , and

X = Rn+1 \ (Rn × {0}) .

We need to construct a continuous function h : X → R such that h[bd A] ⊆ I for

every 〈A, I〉 ∈ Q. The existence of the function h will follow from Theorem 10 after

we have constructed a Tietze family

F = {〈Cγ, Iγ〉 : γ ∈ Γ}
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for X such that for every 〈A, I〉 ∈ Q there is Φ ⊆ Γ with

(5) X ∩ bd A ⊆
⋃
γ∈Φ

Cγ and Iγ = I for every γ ∈ Φ.

Let K consist of all closed intervals of the following forms: [i, i + 1], [−i− 1,−i],

[1/ (i + 1) , 1/i], and [−1/i,−1/ (i + 1)] for every i = 1, 2, . . . . Set

A1 =
{(

cl Bn
k \Bn

k−1

)
× [a, b] ⊆ Rn+1 : [a, b] ∈ K and k = 1, 2, . . .

}
,

where Bn
k ⊆ Rn is the open ball with center 〈0, 0, . . . , 0〉 and radius k. Note that A1

is a locally finite closed cover of X.

Define

F1 = {〈C, R〉 : C ∈ A1}

and

F2 = {〈bd A ∩ L, I〉 : 〈A, I〉 ∈ Q and L ∈ L} ,

where

L = {Rn × [a, b] : [a, b] ∈ K} .

Let Γ1 and Γ2 be disjoint sets of indices such that

F1 = {〈Cγ, Iγ〉 : γ ∈ Γ1} and F2 = {〈Cγ, Iγ〉 : γ ∈ Γ2} .

Obviously, for every 〈A, I〉 ∈ Q there is Φ ⊆ Γ2 such that (5) holds. Thus to complete

the proof it remains to prove the following claim.

Claim. The family F1 ∪ F2 is a Tietze family for X.

Let

A2 = {Cγ : γ ∈ Γ2} .

Obviously, A1 ∪ A2 is a closed cover of X. Since the family P is locally convergent

to 0, every bounded subset of an element of L intersects only finitely many elements

of A2. Since each point x ∈ X has an open neighborhood contained in at most two

elements of L, it follows that A2 is locally finite, and hence A1 ∪ A2 is locally finite.
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Since every element C of A1∪A2 is a bounded subset of an element of L, it follows

that C intersects only finitely many elements in A2, and it is clear that C intersects

only finitely many elements of A1. Thus every element of A1 ∪ A2 intersects only

finitely many elements in A1 ∪ A2.

Now suppose that ⋂
γ∈Φ1∪Φ2

Cγ 6= ∅

for some Φ1 ⊆ Γ1 and Φ2 ⊆ Γ2. Since
⋂

γ∈Φ2
Cγ 6= ∅, it follows from Lemma 11 that⋂

γ∈Φ2
Iγ 6= ∅. Since Iγ = R for γ ∈ Φ2, we have⋂

γ∈Φ1∪Φ2

Iγ =
⋂

γ∈Φ2

Iγ 6= ∅.

Thus F1 ∪F2 is a Tietze family for X, and so the proof of the claim and hence of the

theorem is complete.
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