# EXTENDING CONNECTIVITY FUNCTIONS ON $\mathbb{R}^{n}$ 

KRZYSZTOF CIESIELSKI, TOMASZ NATKANIEC, AND JERZY WOJCIECHOWSKI


#### Abstract

A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a connectivity function if for every connected subset $C$ of $\mathbb{R}^{n}$ the graph of the restriction $f \mid C$ is a connected subset of $\mathbb{R}^{n+1}$, and $f$ is an extendable connectivity function if $f$ can be extended to a connectivity function $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ with $\mathbb{R}^{n}$ imbedded into $\mathbb{R}^{n+1}$ as $\mathbb{R}^{n} \times\{0\}$. There exists a connectivity function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not extendable. We prove that for $n \geq 2$ every connectivity function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is extendable.


## 1. Introduction

Given functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ and $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$, we say that $g$ extends $f$ if $g$ extends the composition $f \circ \tau: \mathbb{R}^{n} \times\{0\} \rightarrow \mathbb{R}$, where $\tau: \mathbb{R}^{n} \times\{0\} \rightarrow \mathbb{R}^{n}$ and

$$
\begin{equation*}
\tau\left(\left\langle x_{1}, x_{2}, \ldots, x_{n}, 0\right\rangle\right)=\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \tag{1}
\end{equation*}
$$

for every $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle \in \mathbb{R}^{n}$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a connectivity function if for every connected subset $C$ of $\mathbb{R}^{n}$ the graph of the restriction $f \mid C$ is a connected subset of $\mathbb{R}^{n+1}$, and $f$ is an extendable connectivity function if there exists a connectivity function $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ extending $f$.

It follows immediately from the definition that every extendable connectivity function is a connectivity function. Cornette [3] and Roberts [9] proved that there exists a connectivity function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is not extendable. This result was surprising and sparked the interest in the family of extendable connectivity functions. Ciesielski and Wojciechowski [2] asked whether there exists a connectivity function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

1991 Mathematics Subject Classification. Primary 26B05; Secondary 54C30.
Key words and phrases. connectivity functions, extendable functions, Darboux-like functions.
This work was partially supported by NSF Cooperative Research Grant INT-9600548 with its Polish part being financed by Polish Academy of Science PAN.
with $n \geq 2$, that is not extendable. In this paper we will show that the answer to that question is negative.

Theorem 1. If $n \geq 2$ then every connectivity function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is extendable.
To prove Theorem 1 we will use ideas from Gibson and Roush [5] where is formulated a necessary and sufficient condition for a connectivity function $f:[0,1] \rightarrow[0,1]$ to be extendable to a connectivity function $f:[0,1]^{2} \rightarrow[0,1]$ (if one considers $[0,1]$ to be embedded in $[0,1]^{2}$ as $\left.[0,1] \times\{0\}\right)$.

Our basic terminology and notation is standard. (See [1] or [4].) In particular, if $A$ is a subset of a metric space $X$, then $\operatorname{bd} A, \operatorname{cl} A$ and $\operatorname{diam} A$ will denote the boundary, closure, and diameter of $A$ in $X$ respectively, and if $f$ is a function and $A$ is a subset of its domain, then $f[A]$ is the image of $A$ under $f$.

The following additional terminology will be useful in our proof. Given a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, a peripheral pair $($ for $f)$ is an ordered pair $\langle A, I\rangle$ with $I$ being a closed interval in $\mathbb{R}$ and $A$ being an open bounded subset of $\mathbb{R}^{n}$ with $f[\operatorname{bd} A] \subseteq I$. Given $\varepsilon>0$, an $\varepsilon$-peripheral pair is a peripheral pair $\langle A, I\rangle$ with $\operatorname{diam} A<\varepsilon$ and $\operatorname{diam} I<\varepsilon$. Given a point $x \in \mathbb{R}^{n}$, a peripheral pair for $f$ at $x$ is a peripheral pair $\langle A, I\rangle$ for $f$ with $x \in A$ and $f(x) \in I$. A function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is said to be peripherally continuous if for every $x \in \mathbb{R}^{n}$ and $\varepsilon>0$ there is an $\varepsilon$-peripheral pair for $f$ at $x$.

The class of peripherally continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$ is strictly larger than the class of connectivity functions. However, the following result holds.

Theorem 2. If $n \geq 2$ then a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is peripherally continuous if and only if it is a connectivity function.

The implication that a connectivity function is peripherally continuous in Theorem 2 was proved by Hamilton [7] and Stallings [10], and the opposite implication was proved by Hagan [6].

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and $\mathcal{P}$ be a family of peripheral pairs for $f$. We say that $\mathcal{P}$ locally converges to 0 if for every $\varepsilon>0$ and every bounded set $X \subseteq \mathbb{R}^{n}$ the set

$$
\{\langle A, I\rangle \in \mathcal{P}: A \cap X \neq \emptyset \text { and } \operatorname{diam} A \geq \varepsilon\}
$$

is finite, and that $\mathcal{P}$ has the intersection property provided $I \cap I^{\prime} \neq \emptyset$ for any $\langle A, I\rangle,\left\langle A^{\prime}, I^{\prime}\right\rangle \in \mathcal{P}$ such that each of the sets $A \cap A^{\prime}, A \backslash A^{\prime}$, and $A^{\prime} \backslash A$ is nonempty. Given $X \subseteq \mathbb{R}^{n}$, we say that $\mathcal{P}$ is an $f$-base for $X$ if for every $\varepsilon>0$ and $x \in X$ there exists an $\varepsilon$-peripheral pair for $f$ at $x$ that belongs to $\mathcal{P}$. Note that a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is peripherally continuous if and only if there exists an $f$-base for some set $X \subseteq \mathbb{R}^{n}$ that contains all points of discontinuity of $f$. A peripheral family for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a countable family of peripheral pairs for $f$ that locally converges to 0 , has the intersection property, and is an $f$-base for $\mathbb{R}^{n}$.

Theorem 1 follows from Theorem 2 and the following two results.
Theorem 3. If $n \geq 2$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a peripherally continuous function, then there exists a peripheral family for $f$.

If $\langle A, I\rangle$ is a peripheral pair (for some $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ ), then the cylindrical extension of $\langle A, I\rangle$ is a pair $\left\langle A^{\prime}, I\right\rangle$, where

$$
A^{\prime}=A \times(-\operatorname{diam} A, \operatorname{diam} A) \subseteq \mathbb{R}^{n+1}
$$

If $\mathcal{P}$ is a set of peripheral pairs, then the cylindrical extension of $\mathcal{P}$ is the set of cylindrical extensions of all the elements of $\mathcal{P}$.

The case $n=1$ of the following theorem is a modification of a result of Gibson and Roush [5].

Theorem 4. If $n \geq 1$ and $\mathcal{P}$ is a peripheral family for $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, then there exists a continuous function

$$
h: \mathbb{R}^{n+1} \backslash\left(\mathbb{R}^{n} \times\{0\}\right) \rightarrow \mathbb{R}
$$

such that every element of the cylindrical extension of $\mathcal{P}$ is a peripheral pair for the function

$$
g=h \cup(f \circ \tau): \mathbb{R}^{n+1} \rightarrow \mathbb{R}
$$

where $\tau: \mathbb{R}^{n} \times\{0\} \rightarrow \mathbb{R}^{n}$ is the bijection as in (1).
The proof of Theorem 3 is given in section 2, and the proof of Theorem 4 can be found in section 3. Now we shall give the proof of Theorem 1.

Proof of Theorem 1. Let $n \geq 2$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a connectivity function. Since $f$ is peripherally continuous, it follows from Theorem 3 that there exists a peripheral family $\mathcal{P}$ for $f$. Let $\mathcal{Q}$ be the cylindrical extension of $\mathcal{P}$. By Theorem 4 there exists a function $g: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$ such that $g$ extends $f$, the restriction of $g$ to $\mathbb{R}^{n+1} \backslash\left(\mathbb{R}^{n} \times\{0\}\right)$ is continuous, and every element of $\mathcal{Q}$ is a peripheral pair for $g$. The proof will be complete when we show that $\mathcal{Q}$ is a $g$-base for $\mathbb{R}^{n} \times\{0\}$ since then it will follow that $g$ is peripherally continuous and hence a connectivity function.

Let $\varepsilon>0$ and $x=\left\langle x_{1}, \ldots, x_{n}\right\rangle \in \mathbb{R}^{n}$. Since $\mathcal{P}$ is an $f$-base for $\mathbb{R}^{n}$, there is $\langle A, I\rangle \in$ $\mathcal{P}$ such that $\operatorname{diam} A<\varepsilon / \sqrt{5}$, $\operatorname{diam} I<\varepsilon, x \in A$, and $f(x) \in I$. Then the cylindrical extension $\left\langle A^{\prime}, I\right\rangle \in \mathcal{Q}$ of $\langle A, I\rangle$ is an $\varepsilon$-peripheral pair for $g$ at $\bar{x}=\left\langle x_{1}, \ldots, x_{n}, 0\right\rangle$ implying that $\mathcal{Q}$ is a $g$-base for $\mathbb{R}^{n} \times\{0\}$.

## 2. Peripheral families for connectivity functions

In this section we are going to prove Theorem 3. First, let us introduce some more terminology. Throughout this section we will assume that $n$ is a fixed integer and that $n \geq 2$.

Given $X, Y \subseteq \mathbb{R}^{n}$, the boundary of $X \cap Y$ in $X$ will be denoted by bd ${ }_{X} Y$. The inductive dimension ind $X$ of a subset $X \subseteq \mathbb{R}^{n}$ is defined inductively as follows. (See for example Engelking (4].)
(i) ind $X=-1$ if and only if $X=\emptyset$.
(ii) ind $X \leq m$ if for any $p \in X$ and any open neighborhood $W$ of $p$ there exists an open neighborhood $U \subseteq W$ of $p$ such that ind $\operatorname{bd}_{X} U \leq m-1$.
(iii) ind $X=m$ if ind $X \leq m$ and it is not true that ind $X \leq m-1$.

A fundamental result of dimension theory states that ind $\mathbb{R}^{n}=n$.
Given a set $A \subseteq \mathbb{R}^{n}$ and an integer $m \geq 1$, we say that $A$ is an $m$-dimensional Cantor manifold if $A$ is compact, ind $A=m$, and for every $X \subseteq A$ with ind $X \leq m-2$, the set $A \backslash X$ is connected. (See [8].) Given a subset $A$ of $\mathbb{R}^{n}$, we say that $A$ is a quasiball if $A$ is a bounded and connected open set, and $\operatorname{bd} A$ is an $(n-1)$ dimensional Cantor manifold. (See [2].) A peripheral pair $\langle A, I\rangle$ with $A$ being a quasiball will be called a nice peripheral pair. Given $\varepsilon, \delta>0$, an $\langle\varepsilon, \delta\rangle$-peripheral pair
is a peripheral pair $\langle A, I\rangle$ with $\operatorname{diam} A<\varepsilon$ and $\operatorname{diam} I<\delta$. The following theorem follows immediately from Corollary 5.5 in [2].

Theorem 5. If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a peripherally continuous function, then for any $\varepsilon, \delta>0$ and $x \in \mathbb{R}^{n}$ there exists a nice $\langle\varepsilon, \delta\rangle$-peripheral pair for $f$ at $x$.

We say that quasiballs $A$ and $A^{\prime}$ are independent if each of the sets $A \cap A^{\prime}, A \backslash A^{\prime}$, and $A^{\prime} \backslash A$ is nonempty. The following lemma is a restatement of Lemma 5.6 in [2].

Lemma 6. If $A$ and $A^{\prime}$ are independent quasiballs in $\mathbb{R}^{n}$, then $\operatorname{bd} A \cap \operatorname{bd} A^{\prime} \neq \emptyset$.
The following lemma follows immediately from Lemma 6.
Lemma 7. If $\mathcal{P}$ is a family of nice peripheral pairs, then $\mathcal{P}$ has the intersection property.

For every positive integer $i \in \mathbb{N}$, let

$$
D_{i}=\left\{\frac{-4 i^{2}}{4 i}, \frac{-4 i^{2}+1}{4 i}, \ldots, \frac{4 i^{2}}{4 i}\right\}
$$

and

$$
\mathcal{J}_{i}=\left\{J_{i, q}: q \in D_{i}\right\},
$$

where $J_{i, q}$ is the open interval

$$
J_{i, q}=\left(q-\frac{1}{4 i}, q+\frac{1}{4 i}\right),
$$

for each $q \in D_{i}$.
Lemma 8. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function and, for every $i \in \mathbb{N}$ and $q \in D_{i}$, let

$$
\mathcal{P}_{i, q}=\left\{\left\langle A_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma_{i, q}\right\}
$$

be a family of (1/i)-peripheral pairs for $f$ such that

$$
f^{-1}\left(J_{i, q}\right) \subseteq \bigcup_{\gamma \in \Gamma_{i, q}} A_{\gamma} \quad \text { and } \quad J_{i, q} \subseteq \bigcap_{\gamma \in \Gamma_{i, q}} I_{\gamma} .
$$

Then

$$
\mathcal{P}=\bigcup_{i \in \mathbb{N}} \bigcup_{q \in D_{i}} \mathcal{P}_{i, q}
$$

is an $f$-base for $\mathbb{R}^{n}$.

Proof. Let $\varepsilon>0$ and $x \in \mathbb{R}^{n}$. Then there are $i \in \mathbb{N}$ and $q \in D_{i}$ with $1 / i \leq \varepsilon$ and $f(x) \in J_{i, q}$. Since

$$
f^{-1}\left(J_{i, q}\right) \subseteq \bigcup_{\gamma \in \Gamma_{i, q}} A_{\gamma},
$$

there is $\delta \in \Gamma_{i, q}$ such that $x \in A_{\delta}$. Since

$$
J_{i, q} \subseteq \bigcap_{\gamma \in \Gamma_{i, q}} I_{\gamma},
$$

it follows that $\left\langle A_{\delta}, I_{\delta}\right\rangle$ is an $\varepsilon$-peripheral pair for $f$ at $x$.
Now we are ready to prove Theorem 3.
Proof of Theorem 3. Let $n \geq 2$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a peripherally continuous function. Fix $i \in \mathbb{N}$ and $q \in D_{i}$. By Theorem 5 for each $x \in f^{-1}\left(J_{i, q}\right)$ there exists a nice $\langle 1 / i, 1 / 4 i\rangle$-peripheral pair $\left\langle A_{i, q, x}, I_{i, q, x}\right\rangle$ for $f$ at $x$. Let

$$
\mathcal{T}_{i, q}=\left\{\left\langle A_{i, q, x}, \operatorname{cl}\left(I_{i, q, x} \cup J_{i, q}\right)\right\rangle: x \in f^{-1}\left(J_{i, q}\right)\right\} .
$$

Note that since

$$
f(x) \in I_{i, q, x} \cap J_{i, q} \neq \emptyset
$$

for every $x \in f^{-1}\left(J_{i, q}\right)$, the elements of $\mathcal{T}_{i, q}$ are $\langle 1 / i, 3 / 4 i\rangle$-peripheral pairs for $f$.
Let $j, k \in \mathbb{N}$ be any positive integers with $j>i$. Set

$$
\mathcal{T}_{i, q}^{k}=\left\{\langle A, I\rangle \in \mathcal{T}_{i, q}: A \cap B_{k} \neq \emptyset \text { and } A \cap B_{k^{\prime}}=\emptyset \text { for every } k^{\prime}<k\right\},
$$

where $B_{k}$ is the open ball of center $\langle 0,0, \ldots, 0\rangle$ and radius $k$, and

$$
\mathcal{T}_{i, q}^{k, j}=\left\{\langle A, I\rangle \in \mathcal{T}_{i, q}^{k}: \frac{1}{j} \leq \operatorname{diam} A<\frac{1}{j-1}\right\} .
$$

Moreover, let

$$
C_{i, q}^{k, j}=\operatorname{cl}\left(\bigcup_{\langle A, I\rangle \in \mathcal{T}_{i, q}^{k, j}} A\right),
$$

and

$$
E_{i, q}^{k, j}=C_{i, q}^{k, j} \backslash \bigcup_{\langle A, I\rangle \in \mathcal{T}_{i, q}^{k, j}} A .
$$

Fix $y \in E_{i, q}^{k, j}$. Let $\left\langle A_{y}, I_{y}^{\prime}\right\rangle$ be a nice $\langle 1 / j, 1 / 4 i\rangle$-peripheral pair for $f$ at $y$. Since

$$
E_{i, q}^{k, j} \subseteq \mathrm{cl}\left(\bigcup_{\langle A, I\rangle \in \mathcal{T}_{i, q}^{k, j}} \mathrm{bd} A\right),
$$

there is $\langle A, I\rangle \in \mathcal{T}_{i, q}^{k, j}$ such that

$$
A_{y} \cap \mathrm{bd} A \neq \emptyset .
$$

Since $\operatorname{diam} A_{y}<\operatorname{diam} A$, it follows that the quasiballs $A$ and $A_{y}$ are independent and so Lemma 6 implies that $I \cap I_{y}^{\prime} \neq \emptyset$. Let $I_{y}=I \cup I_{y}^{\prime}$ for every $y \in E_{i, q}^{k, j}$ and

$$
\mathcal{S}_{i, q}^{k, j}=\mathcal{T}_{i, q}^{k, j} \cup\left\{\left\langle A_{y}, I_{y}\right\rangle: y \in E_{i, q}^{k, j}\right\} .
$$

Note that $J_{i, q} \subseteq I$ for every $\langle A, I\rangle \in \mathcal{S}_{i, q}^{k, j}$. Since the set $C_{i, q}^{k, j}$ is compact and

$$
C_{i, q}^{k, j} \subseteq \bigcup_{\langle A, I\rangle \in \mathcal{S}_{i, q}^{k, j}} A
$$

there is a finite subset $\mathcal{P}_{i, q}^{k, j}$ of $\mathcal{S}_{i, q}^{k, j}$ such that

$$
C_{i, q}^{k, j} \subseteq \bigcup_{\langle A, I\rangle \in \mathcal{P}_{i, q}^{k, j}} A
$$

Let

$$
\mathcal{P}_{i, q}=\bigcup_{k \in \mathbb{N} j>i} \bigcup_{i, q} \mathcal{P}_{i, j}=\left\{\left\langle A_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma_{i, q}\right\} .
$$

It is clear that the elements of $\mathcal{P}_{i, q}$ are $(1 / i)$-peripheral pairs and

$$
J_{i, q} \subseteq \bigcap_{\gamma \in \Gamma_{i, q}} I_{\gamma} .
$$

Moreover,

$$
f^{-1}\left(J_{i, q}\right) \subseteq \bigcup_{\langle A, I\rangle \in \mathcal{T}_{i, q}} A \subseteq \bigcup_{\langle A, I\rangle \in \mathcal{T}_{i, q}} \operatorname{cl} A \subseteq \bigcup_{k \in \mathbb{N}} \bigcup_{j>i} C_{i, q}^{k, j} \subseteq \bigcup_{\gamma \in \Gamma_{i, q}} A_{\gamma},
$$

implying, by Lemma 8, that

$$
\mathcal{P}=\bigcup_{i \in \mathbb{N}} \bigcup_{q \in D_{i}} \mathcal{P}_{i, q}
$$

is an $f$-base for $\mathbb{R}^{n}$. Of course $\mathcal{P}$ is countable and since all peripheral pairs in $\mathcal{P}$ are nice, it follows from Lemma 7 that $\mathcal{P}$ has the intersection property. It remains to prove the following claim.

Claim. The family $\mathcal{P}$ locally converges to 0 .
We are going now to prove the claim. First note that if $\langle A, I\rangle \in \mathcal{T}_{i, q}^{k, j}$ and $k^{\prime}<k$, then $A \cap B_{k^{\prime}}=\emptyset$, implying that $y \notin B_{k^{\prime}}$ (and hence $A_{y} \nsubseteq B_{k^{\prime}}$ ) for any $y \in E_{i, q}^{k, j}$. Therefore

$$
\begin{equation*}
A \nsubseteq B_{k^{\prime}} \text { for any }\langle A, I\rangle \in \mathcal{S}_{i, q}^{k, j} \text { and } k^{\prime}<k \tag{2}
\end{equation*}
$$

Also note that

$$
\begin{equation*}
\operatorname{diam} A<\frac{1}{j^{\prime}} \text { for any }\langle A, I\rangle \in \mathcal{S}_{i, q}^{k, j} \text { and } j^{\prime}<j \tag{3}
\end{equation*}
$$

Now let $\varepsilon>0$ and $X \subseteq \mathbb{R}^{n}$ be a bounded set. Then there are $j^{\prime}, k^{\prime} \in \mathbb{N}$ such that $1 / j^{\prime}<\varepsilon$ and $X$ is a subset of the ball $B_{k^{\prime}-1}$. Let $\langle A, I\rangle \in \mathcal{P}$ be such that $A \cap X \neq \emptyset$ and $\operatorname{diam} A \geq \varepsilon$. Since $A \cap B_{k^{\prime}-1} \neq \emptyset$ and $\operatorname{diam} A<1$, it follows that $A \subseteq B_{k^{\prime}}$. Therefore, since $\operatorname{diam} A \geq 1 / j^{\prime}$, it follows from (2) and (3) that if $\langle A, I\rangle \in \mathcal{P}_{i, q}^{k, j} \subseteq \mathcal{S}_{i, q}^{k, j}$, then $k \leq k^{\prime}$ and $j \leq j^{\prime}$. Thus

$$
\langle A, I\rangle \in \mathcal{P}^{k^{\prime}, j^{\prime}}=\bigcup_{k \leq k^{\prime}} \bigcup_{j \leq j^{\prime}} \bigcup_{i<j<j} \bigcup_{q \in D_{i}} \mathcal{P}_{i, q}^{k, j} .
$$

Since the set $\mathcal{P}^{k^{\prime}, j^{\prime}}$ is finite, the proof of the claim, and hence of the theorem is complete.

## 3. Connectivity functions are extendable

In this section we are going to prove Theorem 4.
A partial order on a set $T$ is a binary relation $\preccurlyeq$ on $T$ that is reflexive, transitive and antisymmetric (that is, $t \preccurlyeq s$ and $s \preccurlyeq t$ imply $t=s$ for every $s, t \in T$ ). We say that $\preccurlyeq$ has the finite predecessor property if for every $t \in T$ the set $\{s \in T: s \preccurlyeq t\}$ of $\preccurlyeq$-predecessors of $t$ is finite. A partial order $\preccurlyeq^{*}$ on a set $T$ is an $\omega$-order if there is a bijection $f: \omega \rightarrow T$ (where $\omega=\{0,1, \ldots\}$ ) such that $f(t) \preccurlyeq^{*} f(s)$ if and only if
$t \leq s$. Given partial orders $\preccurlyeq$ and $\preccurlyeq^{*}$ on $T$, we say that $\preccurlyeq^{*}$ extends $\preccurlyeq$ if and only if $t \preccurlyeq s$ implies $t \preccurlyeq^{*} s$ for every $s, t \in T$.

Lemma 9. If $\preccurlyeq$ is a partial order on an infinite countable set $T$ with the finite predecessor property, then there is an $\omega$-order $\preccurlyeq *$ on $T$ that extends $\preccurlyeq$.

Proof. It is enough to show that there is a bijection $f: \omega \rightarrow T$ such that $f(i) \preccurlyeq f(j)$ implies $i \leq j$. Let $\lesssim$ be any fixed $\omega$-order on $T$. We shall define the value $f(i)$ by induction on $i$. Let $i \in \omega$ and assume that $f(j)$ has been defined for every $j<i$. Let

$$
T_{i}=T \backslash\{f(j): j<i\}
$$

and let $T_{i}^{\prime}$ consist of all $\preccurlyeq$-minimal elements in $T_{i}$. For every $t \in T_{i}$ the set of $\preccurlyeq-$ predecessors of $t$ is finite so there is $s \in T_{i}^{\prime}$ with $s \preccurlyeq t$. In particular, $T_{i}^{\prime}$ is nonempty. Let $f(i)$ be the $\lesssim$-minimal element of $T_{i}^{\prime}$.

It is obvious from the construction that $f$ is injective and that $f(i) \preccurlyeq f(j)$ implies $i \leq j$ for every $i, j \in \omega$. To see that $f$ is surjective note that for any $i \in \omega$ and $t \in T_{i}$ the set of $\preccurlyeq$-predecessors of $t$ is finite, so one of them is in $T_{i}^{\prime}$. This predecessor of $t$ will eventually become a value of $f$ since $\lesssim$ is an $\omega$-order. Then the number of unassigned $\preccurlyeq$-predecessors of $t$ becomes smaller and hence eventually $t$ itself must become a value of $f$.

A family $\mathcal{A}$ of subsets of a metric space $X$ is locally finite if for every $x \in X$ some open neighborhood of $x$ intersects only finitely many elements of $\mathcal{A}$. Let a Tietze family for a metric space $X$ be a countable family

$$
\mathcal{F}=\left\{\left\langle C_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma\right\}
$$

such that:
(1) $\mathcal{A}=\left\{C_{\gamma}: \gamma \in \Gamma\right\}$ is a locally finite closed cover of $X$ with any $C_{\gamma}$ intersecting only finitely many elements of $\mathcal{A}$;
(2) for every $\gamma \in \Gamma, I_{\gamma}$ is either equal to $\mathbb{R}$ or is a closed interval in $\mathbb{R}$;
(3) for every $\Phi \subseteq \Gamma$

$$
\text { if } \bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset \text { then } \bigcap_{\gamma \in \Phi} I_{\gamma} \neq \emptyset
$$

The following result will be the key step in our proof of Theorem 4.
Theorem 10. Let $X$ be a metric space and $\mathcal{F}=\left\{\left\langle C_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma\right\}$ be a Tietze family for $X$. Then there is a continuous function $h: X \rightarrow \mathbb{R}$ such that $h\left[C_{\gamma}\right] \subseteq I_{\gamma}$ for every $\gamma \in \Gamma$.

Proof. Let $\mathcal{A}=\left\{C_{\gamma}: \gamma \in \Gamma\right\}$, and

$$
T_{\mathcal{A}}=\left\{\Phi \subseteq \Gamma: \bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset\right\}
$$

Let $\preccurlyeq_{\mathcal{A}}$ be the partial order of reversed inclusion on $T_{\mathcal{A}}$, that is, let $\Phi_{1} \preccurlyeq_{\mathcal{A}} \Phi_{2}$ if and only if $\Phi_{2} \subseteq \Phi_{1}$. Since every element of $\mathcal{A}$ intersects only finitely many elements of $\mathcal{A}$, it follows that the elements of $T_{\mathcal{A}}$ are finite sets and that $\preccurlyeq \mathcal{A}$ has the finite predecessor property.

Let $\preccurlyeq_{\mathcal{A}}^{*}$ be an $\omega$-order extending $\preccurlyeq_{\mathcal{A}}$ and for every $\Phi \in T_{\mathcal{A}}$ let

$$
C_{\Phi}=\bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset .
$$

Take the enumeration $\Phi_{1}, \Phi_{2}, \ldots$ of $T_{\mathcal{A}}$ with

$$
\Phi_{1} \preccurlyeq_{\mathcal{A}}^{*} \Phi_{2} \preccurlyeq_{\mathcal{A}}^{*} \ldots
$$

and for every $i=1,2, \ldots$ let

$$
C_{i}=\bigcup_{j \leq i} C_{\Phi_{j}}, \quad C_{i}^{\prime}=C_{i} \cap C_{\Phi_{i+1}},
$$

and

$$
I_{i}=\bigcap_{\gamma \in \Phi_{i}} I_{\gamma} \neq \emptyset
$$

We are going to define a sequence $h_{1}, h_{2}, \ldots$ of continuous functions $h_{i}: C_{i} \rightarrow \mathbb{R}$ such that for every $i=1,2, \ldots$ the function $h_{i+1}$ is an extension of $h_{i}$ and

$$
\begin{equation*}
h_{i}\left[C_{\gamma} \cap C_{i}\right] \subseteq I_{\gamma} . \tag{4}
\end{equation*}
$$

for every $\gamma \in \Gamma$. Having defined such a sequence of functions our proof will be complete since it is easy to see that the function

$$
h=\bigcup_{i=1}^{\infty} h_{i}
$$

satisfies the required conditions. Indeed, (4) implies that $h\left(C_{\gamma}\right) \subseteq I_{\gamma}$ for every $\gamma \in \Gamma$, and since $\mathcal{F}$ is a locally finite closed cover of $X$ it follows that $h$ is a continuous function on $X$.

Let $h_{1}: C_{1} \rightarrow I_{1}$ be any continuous function. Suppose that $h_{i}$ has been defined in such a way that (4) is satisfied. Let $h_{i}^{\prime}$ be the restriction of $h_{i}$ to $C_{i}^{\prime}$. It follows from (4) that $h_{i}^{\prime}: C_{i}^{\prime} \rightarrow I_{i+1}$. Since $C_{i}^{\prime}$ is a closed subset of $C_{\Phi_{i+1}}$, it follows from Tietze Extension Theorem that $h_{i}^{\prime}$ can be extended to a continuous function $h_{i}^{\prime \prime}: C_{\Phi_{i+1}} \rightarrow$ $I_{i+1}$. Let $h_{i+1}=h_{i} \cup h_{i}^{\prime \prime}$. Since $C_{i}$ and $C_{\Phi_{i+1}}$ are closed subsets of $C_{i+1}$, the function $h_{i+1}: C_{i+1} \rightarrow \mathbb{R}$ is continuous. It remains to show that (4) is satisfied for $h_{i+1}$.

Suppose that $\gamma \in \Gamma$ and $x \in C_{\gamma} \cap C_{i+1}$. If $x \in C_{i}$, then $h_{i+1}(x)=h_{i}(x) \in I_{\gamma}$ by the inductive hypothesis. Otherwise $x \in C_{\Phi_{i+1}}$ and so $h_{i+1}(x)=h_{i}^{\prime \prime}(x) \in I_{i+1}$. It suffices to show that $\gamma \in \Phi_{i+1}$.

Indeed, since $C_{\gamma} \cap C_{\Phi_{i+1}} \neq \emptyset$, it follows that $\Phi_{i+1} \cup\{\gamma\} \in T_{\mathcal{A}}$. Since

$$
\Phi_{i+1} \cup\{\gamma\} \preccurlyeq_{\mathcal{A}} \Phi_{i+1}
$$

and since $\preccurlyeq_{\mathcal{A}}^{*}$ extends $\preccurlyeq_{\mathcal{A}}$, it follows that there is $j \leq i+1$ with

$$
\Phi_{i+1} \cup\{\gamma\}=\Phi_{j} .
$$

Since $x \in C_{\gamma} \cap C_{\Phi_{i+1}}=C_{\Phi_{j}}$ and $x \notin C_{i}$, it follows that $j=i+1$. Thus $\gamma \in \Phi_{i+1}$ and so the proof is complete.

Lemma 11. Let $n \geq 1, f: \mathbb{R}^{n} \rightarrow \mathbb{R}, \mathcal{P}$ be a peripheral family for $f$, and $\mathcal{Q}$ be the cylindrical extension of $\mathcal{P}$. If $\left\{\left\langle A_{j}, I_{j}\right\rangle: 1 \leq j \leq k\right\} \subseteq \mathcal{Q}$ and bd $A_{i} \cap \operatorname{bd} A_{j} \neq \emptyset$ for every $i, j \leq k$, then $\bigcap_{j=1}^{k} I_{j} \neq \emptyset$.

Proof. First we shall prove the lemma for $k=2$. Suppose, by way of contradiction, that there exist $\left\langle A_{1}, I_{1}\right\rangle,\left\langle A_{2}, I_{2}\right\rangle \in \mathcal{Q}$ with bd $A_{1} \cap$ bd $A_{2} \neq \emptyset$ and $I_{1} \cap I_{2}=\emptyset$. Let
$\left\langle A_{1}^{\prime}, I_{1}\right\rangle,\left\langle A_{2}^{\prime}, I_{2}\right\rangle \in \mathcal{P}$ be such that

$$
A_{1}=A_{1}^{\prime} \times\left(-a_{1}, a_{1}\right) \quad \text { and } \quad A_{2}=A_{2}^{\prime} \times\left(-a_{2}, a_{2}\right),
$$

where $a_{1}=\operatorname{diam} A_{1}^{\prime}$ and $a_{2}=\operatorname{diam} A_{2}^{\prime}$.
Since $f\left[\mathrm{bd} A_{1}^{\prime}\right] \subseteq I_{1}$ and $f\left[\mathrm{bd} A_{2}^{\prime}\right] \subseteq I_{2}$, we have

$$
\mathrm{bd} A_{1}^{\prime} \cap \mathrm{bd} A_{2}^{\prime}=\emptyset
$$

It follows that $A_{1}^{\prime} \cap A_{2}^{\prime} \neq \emptyset$ since otherwise we would have $\mathrm{cl} A_{1}^{\prime} \cap \operatorname{cl} A_{2}^{\prime}=\emptyset$ in contradiction with bd $A_{1} \cap \mathrm{bd} A_{2} \neq \emptyset$. Since $\mathcal{P}$ has the intersection property, one of $A_{1}^{\prime}, A_{2}^{\prime}$ is a subset of the other.

Assume that $A_{1}^{\prime} \subseteq A_{2}^{\prime}$. Since cl $A_{1}^{\prime} \subseteq \operatorname{cl} A_{2}^{\prime}$ and $\operatorname{bd} A_{1}^{\prime} \cap \operatorname{bd} A_{2}^{\prime}=\emptyset$, it follows that $\operatorname{cl} A_{1}^{\prime} \subseteq A_{2}^{\prime}$. Since the set cl $A_{1}^{\prime}$ is compact, there are $x_{1}, x_{2} \in \operatorname{cl} A_{1}^{\prime}$ with $\operatorname{diam} A_{1}^{\prime}$ equal to the distance from $x_{1}$ to $x_{2}$. Since $x_{1}, x_{2} \in A_{2}^{\prime}$ and $A_{2}^{\prime}$ is open, it follows that

$$
a_{1}=\operatorname{diam} A_{1}^{\prime}<\operatorname{diam} A_{2}^{\prime}=a_{2},
$$

and so

$$
\operatorname{bd} A_{1}=\operatorname{bd} A_{1}^{\prime} \times\left[-a_{1}, a_{1}\right] \cup A_{1}^{\prime} \times\left\{-a_{1}, a_{1}\right\} \subseteq A_{2}^{\prime} \times\left(-a_{2}, a_{2}\right)=A_{2}
$$

contradicting our assumption that bd $A_{1} \cap \mathrm{bd} A_{2} \neq \emptyset$.
Now for $k>2$ the assertion follows easily from the fact that if $\left\{I_{j}: 1 \leq j \leq k\right\}$ is a family of intervals in $\mathbb{R}$ and $I_{j} \cap I_{m} \neq \emptyset$ for every $j, m \leq k$, then $\bigcap_{j=1}^{k} I_{j} \neq \emptyset$.

Now we are ready to prove Theorem 4.
Proof of Theorem 4. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function, $\mathcal{P}$ be a peripheral family for $f, \mathcal{Q}$ be the cylindrical extension of $\mathcal{P}$, and

$$
X=\mathbb{R}^{n+1} \backslash\left(\mathbb{R}^{n} \times\{0\}\right)
$$

We need to construct a continuous function $h: X \rightarrow \mathbb{R}$ such that $h[\operatorname{bd} A] \subseteq I$ for every $\langle A, I\rangle \in \mathcal{Q}$. The existence of the function $h$ will follow from Theorem 10 after we have constructed a Tietze family

$$
\mathcal{F}=\left\{\left\langle C_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma\right\}
$$

for $X$ such that for every $\langle A, I\rangle \in \mathcal{Q}$ there is $\Phi \subseteq \Gamma$ with

$$
\begin{equation*}
X \cap \operatorname{bd} A \subseteq \bigcup_{\gamma \in \Phi} C_{\gamma} \text { and } I_{\gamma}=I \text { for every } \gamma \in \Phi \tag{5}
\end{equation*}
$$

Let $\mathcal{K}$ consist of all closed intervals of the following forms: $[i, i+1],[-i-1,-i]$, $[1 /(i+1), 1 / i]$, and $[-1 / i,-1 /(i+1)]$ for every $i=1,2, \ldots$ Set

$$
\mathcal{A}_{1}=\left\{\left(\operatorname{cl} B_{k}^{n} \backslash B_{k-1}^{n}\right) \times[a, b] \subseteq \mathbb{R}^{n+1}:[a, b] \in \mathcal{K} \text { and } k=1,2, \ldots\right\},
$$

where $B_{k}^{n} \subseteq \mathbb{R}^{n}$ is the open ball with center $\langle 0,0, \ldots, 0\rangle$ and radius $k$. Note that $\mathcal{A}_{1}$ is a locally finite closed cover of $X$.

Define

$$
\mathcal{F}_{1}=\left\{\langle C, \mathbb{R}\rangle: C \in \mathcal{A}_{1}\right\}
$$

and

$$
\mathcal{F}_{2}=\{\langle\operatorname{bd} A \cap L, I\rangle:\langle A, I\rangle \in \mathcal{Q} \text { and } L \in \mathcal{L}\}
$$

where

$$
\mathcal{L}=\left\{\mathbb{R}^{n} \times[a, b]:[a, b] \in \mathcal{K}\right\} .
$$

Let $\Gamma_{1}$ and $\Gamma_{2}$ be disjoint sets of indices such that

$$
\mathcal{F}_{1}=\left\{\left\langle C_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma_{1}\right\} \text { and } \mathcal{F}_{2}=\left\{\left\langle C_{\gamma}, I_{\gamma}\right\rangle: \gamma \in \Gamma_{2}\right\} .
$$

Obviously, for every $\langle A, I\rangle \in \mathcal{Q}$ there is $\Phi \subseteq \Gamma_{2}$ such that (5) holds. Thus to complete the proof it remains to prove the following claim.

Claim. The family $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a Tietze family for $X$.
Let

$$
\mathcal{A}_{2}=\left\{C_{\gamma}: \gamma \in \Gamma_{2}\right\}
$$

Obviously, $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is a closed cover of $X$. Since the family $\mathcal{P}$ is locally convergent to 0 , every bounded subset of an element of $\mathcal{L}$ intersects only finitely many elements of $\mathcal{A}_{2}$. Since each point $x \in X$ has an open neighborhood contained in at most two elements of $\mathcal{L}$, it follows that $\mathcal{A}_{2}$ is locally finite, and hence $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is locally finite.

Since every element $C$ of $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ is a bounded subset of an element of $\mathcal{L}$, it follows that $C$ intersects only finitely many elements in $\mathcal{A}_{2}$, and it is clear that $C$ intersects only finitely many elements of $\mathcal{A}_{1}$. Thus every element of $\mathcal{A}_{1} \cup \mathcal{A}_{2}$ intersects only finitely many elements in $\mathcal{A}_{1} \cup \mathcal{A}_{2}$.

Now suppose that

$$
\bigcap_{\gamma \in \Phi_{1} \cup \Phi_{2}} C_{\gamma} \neq \emptyset
$$

for some $\Phi_{1} \subseteq \Gamma_{1}$ and $\Phi_{2} \subseteq \Gamma_{2}$. Since $\bigcap_{\gamma \in \Phi_{2}} C_{\gamma} \neq \emptyset$, it follows from Lemma 11 that $\bigcap_{\gamma \in \Phi_{2}} I_{\gamma} \neq \emptyset$. Since $I_{\gamma}=\mathbb{R}$ for $\gamma \in \Phi_{2}$, we have

$$
\bigcap_{\gamma \in \Phi_{1} \cup \Phi_{2}} I_{\gamma}=\bigcap_{\gamma \in \Phi_{2}} I_{\gamma} \neq \emptyset
$$

Thus $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a Tietze family for $X$, and so the proof of the claim and hence of the theorem is complete.

## References

[1] K. Ciesielski, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997.
[2] K. Ciesielski and J. Wojciechowski, Sums of connectivity functions on $\mathbb{R}^{n}$, Proc. London Math. Soc. 76 (2) (1998), 406-426.
[3] J. L. Cornette, Connectivity functions and images on Peano continua, Fund. Math. 58 (1966), 183-192.
[4] R. Engelking, General Topology, Revised and Completed Edition, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin 1989.
[5] R. G. Gibson, and F. Roush, A characterization of extendable connectivity functions, Real Anal. Exchange 13 (1987-88), 214-222.
[6] M. HAgan, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175-177.
[7] O. H. Hamilton, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8 (1957), 750-756.
[8] W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1948.
[9] J. H. Roberts, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57 (1965), 173-179.
[10] J. R. Stallings, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249-263.
(K. Ciesielski and J. Wojciechowski) Department of Mathematics, West Virginia University, PO Box 6310, Morgantown, WV 26506-6310, USA

E-mail address, K. Ciesielski: kcies@wvnvms.wvnet.edu
(T. Natkaniec) Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 GDAŃSk, Poland

E-mail address, T. Natkaniec: mattn@ksinet.univ.gda.pl

E-mail address, J. Wojciechowski: jerzy@math.wvu.edu

