EXTENDING CONNECTIVITY FUNCTIONS ON \mathbb{R}^n

KRZYSZTOF CIESIELSKI, TOMASZ NATKANIEC, AND JERZY WOJCIECHOWSKI

ABSTRACT. A function $f : \mathbb{R}^n \to \mathbb{R}$ is a *connectivity function* if for every connected subset C of \mathbb{R}^n the graph of the restriction f|C is a connected subset of \mathbb{R}^{n+1} , and f is an *extendable connectivity function* if f can be extended to a connectivity function $g : \mathbb{R}^{n+1} \to \mathbb{R}$ with \mathbb{R}^n imbedded into \mathbb{R}^{n+1} as $\mathbb{R}^n \times \{0\}$. There exists a connectivity function $f : \mathbb{R} \to \mathbb{R}$ that is not extendable. We prove that for $n \geq 2$ every connectivity function $f : \mathbb{R}^n \to \mathbb{R}$ is extendable.

1. INTRODUCTION

Given functions $f : \mathbb{R}^n \to \mathbb{R}$ and $g : \mathbb{R}^{n+1} \to \mathbb{R}$, we say that g extends f if g extends the composition $f \circ \tau : \mathbb{R}^n \times \{0\} \to \mathbb{R}$, where $\tau : \mathbb{R}^n \times \{0\} \to \mathbb{R}^n$ and

(1)
$$\tau(\langle x_1, x_2, \dots, x_n, 0 \rangle) = \langle x_1, x_2, \dots, x_n \rangle,$$

for every $\langle x_1, x_2, \ldots, x_n \rangle \in \mathbb{R}^n$. A function $f : \mathbb{R}^n \to \mathbb{R}$ is a connectivity function if for every connected subset C of \mathbb{R}^n the graph of the restriction f|C is a connected subset of \mathbb{R}^{n+1} , and f is an extendable connectivity function if there exists a connectivity function $g : \mathbb{R}^{n+1} \to \mathbb{R}$ extending f.

It follows immediately from the definition that every extendable connectivity function is a connectivity function. Cornette [3] and Roberts [9] proved that there exists a connectivity function $f : \mathbb{R} \to \mathbb{R}$ that is not extendable. This result was surprising and sparked the interest in the family of extendable connectivity functions. Ciesielski and Wojciechowski [2] asked whether there exists a connectivity function $f : \mathbb{R}^n \to \mathbb{R}$,

¹⁹⁹¹ Mathematics Subject Classification. Primary 26B05; Secondary 54C30.

Key words and phrases. connectivity functions, extendable functions, Darboux-like functions.

This work was partially supported by NSF Cooperative Research Grant INT-9600548 with its Polish part being financed by Polish Academy of Science PAN.

with $n \ge 2$, that is not extendable. In this paper we will show that the answer to that question is negative.

Theorem 1. If $n \geq 2$ then every connectivity function $f : \mathbb{R}^n \to \mathbb{R}$ is extendable.

To prove Theorem 1 we will use ideas from Gibson and Roush [5] where is formulated a necessary and sufficient condition for a connectivity function $f : [0, 1] \rightarrow [0, 1]$ to be extendable to a connectivity function $f : [0, 1]^2 \rightarrow [0, 1]$ (if one considers [0, 1]to be embedded in $[0, 1]^2$ as $[0, 1] \times \{0\}$).

Our basic terminology and notation is standard. (See [1] or [4].) In particular, if A is a subset of a metric space X, then bd A, cl A and diam A will denote the boundary, closure, and diameter of A in X respectively, and if f is a function and A is a subset of its domain, then f[A] is the image of A under f.

The following additional terminology will be useful in our proof. Given a function $f: \mathbb{R}^n \to \mathbb{R}$, a peripheral pair (for f) is an ordered pair $\langle A, I \rangle$ with I being a closed interval in \mathbb{R} and A being an open bounded subset of \mathbb{R}^n with $f[\operatorname{bd} A] \subseteq I$. Given $\varepsilon > 0$, an ε -peripheral pair is a peripheral pair $\langle A, I \rangle$ with diam $A < \varepsilon$ and diam $I < \varepsilon$. Given a point $x \in \mathbb{R}^n$, a peripheral pair for f at x is a peripheral pair $\langle A, I \rangle$ for f with $x \in A$ and $f(x) \in I$. A function $f: \mathbb{R}^n \to \mathbb{R}$ is said to be peripherally continuous if for every $x \in \mathbb{R}^n$ and $\varepsilon > 0$ there is an ε -peripheral pair for f at x.

The class of peripherally continuous functions $f : \mathbb{R} \to \mathbb{R}$ is strictly larger than the class of connectivity functions. However, the following result holds.

Theorem 2. If $n \ge 2$ then a function $f : \mathbb{R}^n \to \mathbb{R}$ is peripherally continuous if and only if it is a connectivity function.

The implication that a connectivity function is peripherally continuous in Theorem 2 was proved by Hamilton [7] and Stallings [10], and the opposite implication was proved by Hagan [6].

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and \mathcal{P} be a family of peripheral pairs for f. We say that \mathcal{P} locally converges to 0 if for every $\varepsilon > 0$ and every bounded set $X \subseteq \mathbb{R}^n$ the set

$$\{\langle A, I \rangle \in \mathcal{P} : A \cap X \neq \emptyset \text{ and } \operatorname{diam} A \ge \varepsilon\}$$

is finite, and that \mathcal{P} has the *intersection property* provided $I \cap I' \neq \emptyset$ for any $\langle A, I \rangle, \langle A', I' \rangle \in \mathcal{P}$ such that each of the sets $A \cap A', A \setminus A'$, and $A' \setminus A$ is nonempty. Given $X \subseteq \mathbb{R}^n$, we say that \mathcal{P} is an *f*-base for X if for every $\varepsilon > 0$ and $x \in X$ there exists an ε -peripheral pair for f at x that belongs to \mathcal{P} . Note that a function $f : \mathbb{R}^n \to \mathbb{R}$ is peripherally continuous if and only if there exists an *f*-base for some set $X \subseteq \mathbb{R}^n$ that contains all points of discontinuity of f. A peripheral family for $f : \mathbb{R}^n \to \mathbb{R}$ is a countable family of peripheral pairs for f that locally converges to 0, has the intersection property, and is an *f*-base for \mathbb{R}^n .

Theorem 1 follows from Theorem 2 and the following two results.

Theorem 3. If $n \ge 2$ and $f : \mathbb{R}^n \to \mathbb{R}$ is a peripherally continuous function, then there exists a peripheral family for f.

If $\langle A, I \rangle$ is a peripheral pair (for some $f : \mathbb{R}^n \to \mathbb{R}$), then the *cylindrical extension* of $\langle A, I \rangle$ is a pair $\langle A', I \rangle$, where

$$A' = A \times (-\operatorname{diam} A, \operatorname{diam} A) \subseteq \mathbb{R}^{n+1}.$$

If \mathcal{P} is a set of peripheral pairs, then the *cylindrical extension* of \mathcal{P} is the set of cylindrical extensions of all the elements of \mathcal{P} .

The case n = 1 of the following theorem is a modification of a result of Gibson and Roush [5].

Theorem 4. If $n \ge 1$ and \mathcal{P} is a peripheral family for $f : \mathbb{R}^n \to \mathbb{R}$, then there exists a continuous function

$$h: \mathbb{R}^{n+1} \setminus (\mathbb{R}^n \times \{0\}) \to \mathbb{R}$$

such that every element of the cylindrical extension of \mathcal{P} is a peripheral pair for the function

$$g = h \cup (f \circ \tau) : \mathbb{R}^{n+1} \to \mathbb{R},$$

where $\tau : \mathbb{R}^n \times \{0\} \to \mathbb{R}^n$ is the bijection as in (1).

The proof of Theorem 3 is given in section 2, and the proof of Theorem 4 can be found in section 3. Now we shall give the proof of Theorem 1. **Proof of Theorem 1.** Let $n \geq 2$ and $f : \mathbb{R}^n \to \mathbb{R}$ be a connectivity function. Since f is peripherally continuous, it follows from Theorem 3 that there exists a peripheral family \mathcal{P} for f. Let \mathcal{Q} be the cylindrical extension of \mathcal{P} . By Theorem 4 there exists a function $g : \mathbb{R}^{n+1} \to \mathbb{R}$ such that g extends f, the restriction of g to $\mathbb{R}^{n+1} \setminus (\mathbb{R}^n \times \{0\})$ is continuous, and every element of \mathcal{Q} is a peripheral pair for g. The proof will be complete when we show that \mathcal{Q} is a g-base for $\mathbb{R}^n \times \{0\}$ since then it will follow that g is peripherally continuous and hence a connectivity function.

Let $\varepsilon > 0$ and $x = \langle x_1, \ldots, x_n \rangle \in \mathbb{R}^n$. Since \mathcal{P} is an f-base for \mathbb{R}^n , there is $\langle A, I \rangle \in \mathcal{P}$ such that diam $A < \varepsilon/\sqrt{5}$, diam $I < \varepsilon$, $x \in A$, and $f(x) \in I$. Then the cylindrical extension $\langle A', I \rangle \in \mathcal{Q}$ of $\langle A, I \rangle$ is an ε -peripheral pair for g at $\overline{x} = \langle x_1, \ldots, x_n, 0 \rangle$ implying that \mathcal{Q} is a g-base for $\mathbb{R}^n \times \{0\}$.

2. Peripheral families for connectivity functions

In this section we are going to prove Theorem 3. First, let us introduce some more terminology. Throughout this section we will assume that n is a fixed integer and that $n \ge 2$.

Given $X, Y \subseteq \mathbb{R}^n$, the boundary of $X \cap Y$ in X will be denoted by $\mathrm{bd}_X Y$. The inductive dimension ind X of a subset $X \subseteq \mathbb{R}^n$ is defined inductively as follows. (See for example Engelking [4].)

- (i) ind X = -1 if and only if $X = \emptyset$.
- (ii) ind $X \leq m$ if for any $p \in X$ and any open neighborhood W of p there exists an open neighborhood $U \subseteq W$ of p such that ind $\operatorname{bd}_X U \leq m - 1$.
- (iii) ind X = m if ind $X \le m$ and it is not true that ind $X \le m 1$.

A fundamental result of dimension theory states that $\operatorname{ind} \mathbb{R}^n = n$.

Given a set $A \subseteq \mathbb{R}^n$ and an integer $m \ge 1$, we say that A is an *m*-dimensional Cantor manifold if A is compact, ind A = m, and for every $X \subseteq A$ with ind $X \le m-2$, the set $A \setminus X$ is connected. (See [8].) Given a subset A of \mathbb{R}^n , we say that A is a quasiball if A is a bounded and connected open set, and bd A is an (n-1)dimensional Cantor manifold. (See [2].) A peripheral pair $\langle A, I \rangle$ with A being a quasiball will be called a *nice* peripheral pair. Given $\varepsilon, \delta > 0$, an $\langle \varepsilon, \delta \rangle$ -peripheral pair is a peripheral pair $\langle A, I \rangle$ with diam $A < \varepsilon$ and diam $I < \delta$. The following theorem follows immediately from Corollary 5.5 in [2].

Theorem 5. If $f : \mathbb{R}^n \to \mathbb{R}$ is a peripherally continuous function, then for any $\varepsilon, \delta > 0$ and $x \in \mathbb{R}^n$ there exists a nice $\langle \varepsilon, \delta \rangle$ -peripheral pair for f at x.

We say that quasiballs A and A' are *independent* if each of the sets $A \cap A'$, $A \setminus A'$, and $A' \setminus A$ is nonempty. The following lemma is a restatement of Lemma 5.6 in [2].

Lemma 6. If A and A' are independent quasiballs in \mathbb{R}^n , then $\operatorname{bd} A \cap \operatorname{bd} A' \neq \emptyset$.

The following lemma follows immediately from Lemma 6.

Lemma 7. If \mathcal{P} is a family of nice peripheral pairs, then \mathcal{P} has the intersection property.

For every positive integer $i \in \mathbb{N}$, let

$$D_i = \left\{\frac{-4i^2}{4i}, \frac{-4i^2+1}{4i}, \dots, \frac{4i^2}{4i}\right\}$$

and

$$\mathcal{J}_i = \{J_{i,q} : q \in D_i\},\$$

where $J_{i,q}$ is the open interval

$$J_{i,q} = \left(q - \frac{1}{4i}, q + \frac{1}{4i}\right),$$

for each $q \in D_i$.

Lemma 8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function and, for every $i \in \mathbb{N}$ and $q \in D_i$, let

$$\mathcal{P}_{i,q} = \{ \langle A_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma_{i,q} \}$$

be a family of (1/i)-peripheral pairs for f such that

$$f^{-1}(J_{i,q}) \subseteq \bigcup_{\gamma \in \Gamma_{i,q}} A_{\gamma} \quad and \quad J_{i,q} \subseteq \bigcap_{\gamma \in \Gamma_{i,q}} I_{\gamma}.$$

Then

$$\mathcal{P} = \bigcup_{i \in \mathbb{N}} \bigcup_{q \in D_i} \mathcal{P}_{i,q}$$

is an f-base for \mathbb{R}^n .

Proof. Let $\varepsilon > 0$ and $x \in \mathbb{R}^n$. Then there are $i \in \mathbb{N}$ and $q \in D_i$ with $1/i \leq \varepsilon$ and $f(x) \in J_{i,q}$. Since

$$f^{-1}(J_{i,q}) \subseteq \bigcup_{\gamma \in \Gamma_{i,q}} A_{\gamma},$$

there is $\delta \in \Gamma_{i,q}$ such that $x \in A_{\delta}$. Since

$$J_{i,q} \subseteq \bigcap_{\gamma \in \Gamma_{i,q}} I_{\gamma},$$

it follows that $\langle A_{\delta}, I_{\delta} \rangle$ is an ε -peripheral pair for f at x.

Now we are ready to prove Theorem 3.

Proof of Theorem 3. Let $n \geq 2$ and $f : \mathbb{R}^n \to \mathbb{R}$ be a peripherally continuous function. Fix $i \in \mathbb{N}$ and $q \in D_i$. By Theorem 5 for each $x \in f^{-1}(J_{i,q})$ there exists a nice $\langle 1/i, 1/4i \rangle$ -peripheral pair $\langle A_{i,q,x}, I_{i,q,x} \rangle$ for f at x. Let

$$\mathcal{T}_{i,q} = \left\{ \langle A_{i,q,x}, \operatorname{cl}(I_{i,q,x} \cup J_{i,q}) \rangle : x \in f^{-1}(J_{i,q}) \right\}.$$

Note that since

$$f(x) \in I_{i,q,x} \cap J_{i,q} \neq \emptyset$$

for every $x \in f^{-1}(J_{i,q})$, the elements of $\mathcal{T}_{i,q}$ are $\langle 1/i, 3/4i \rangle$ -peripheral pairs for f.

Let $j, k \in \mathbb{N}$ be any positive integers with j > i. Set

$$\mathcal{T}_{i,q}^k = \{ \langle A, I \rangle \in \mathcal{T}_{i,q} : A \cap B_k \neq \emptyset \text{ and } A \cap B_{k'} = \emptyset \text{ for every } k' < k \},\$$

where B_k is the open ball of center (0, 0, ..., 0) and radius k, and

$$\mathcal{T}_{i,q}^{k,j} = \left\{ \langle A, I \rangle \in \mathcal{T}_{i,q}^k : \frac{1}{j} \le \operatorname{diam} A < \frac{1}{j-1} \right\}$$

Moreover, let

$$C_{i,q}^{k,j} = \operatorname{cl}\left(\bigcup_{\langle A,I\rangle\in\mathcal{T}_{i,q}^{k,j}}A\right),$$

and

$$E_{i,q}^{k,j} = C_{i,q}^{k,j} \setminus \bigcup_{\langle A,I \rangle \in \mathcal{T}_{i,q}^{k,j}} A.$$

Fix $y \in E_{i,q}^{k,j}$. Let $\langle A_y, I'_y \rangle$ be a nice $\langle 1/j, 1/4i \rangle$ -peripheral pair for f at y. Since

$$E_{i,q}^{k,j} \subseteq \operatorname{cl}\left(\bigcup_{\langle A,I\rangle\in\mathcal{T}_{i,q}^{k,j}}\operatorname{bd}A\right),$$

there is $\langle A, I \rangle \in \mathcal{T}^{k,j}_{i,q}$ such that

$$A_y \cap \operatorname{bd} A \neq \emptyset.$$

Since diam $A_y < \text{diam } A$, it follows that the quasiballs A and A_y are independent and so Lemma 6 implies that $I \cap I'_y \neq \emptyset$. Let $I_y = I \cup I'_y$ for every $y \in E^{k,j}_{i,q}$ and

$$\mathcal{S}_{i,q}^{k,j} = \mathcal{T}_{i,q}^{k,j} \cup \left\{ \langle A_y, I_y \rangle : y \in E_{i,q}^{k,j} \right\}$$

Note that $J_{i,q} \subseteq I$ for every $\langle A, I \rangle \in \mathcal{S}_{i,q}^{k,j}$. Since the set $C_{i,q}^{k,j}$ is compact and

$$C_{i,q}^{k,j} \subseteq \bigcup_{\langle A,I \rangle \in \mathcal{S}_{i,q}^{k,j}} A,$$

there is a finite subset $\mathcal{P}_{i,q}^{k,j}$ of $\mathcal{S}_{i,q}^{k,j}$ such that

$$C_{i,q}^{k,j} \subseteq \bigcup_{\langle A,I\rangle \in \mathcal{P}_{i,q}^{k,j}} A.$$

Let

$$\mathcal{P}_{i,q} = \bigcup_{k \in \mathbb{N}} \bigcup_{j > i} \mathcal{P}_{i,q}^{k,j} = \{ \langle A_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma_{i,q} \}.$$

It is clear that the elements of $\mathcal{P}_{i,q}$ are (1/i)-peripheral pairs and

$$J_{i,q} \subseteq \bigcap_{\gamma \in \Gamma_{i,q}} I_{\gamma}.$$

Moreover,

$$f^{-1}(J_{i,q}) \subseteq \bigcup_{\langle A,I \rangle \in \mathcal{T}_{i,q}} A \subseteq \bigcup_{\langle A,I \rangle \in \mathcal{T}_{i,q}} \operatorname{cl} A \subseteq \bigcup_{k \in \mathbb{N}} \bigcup_{j > i} C_{i,q}^{k,j} \subseteq \bigcup_{\gamma \in \Gamma_{i,q}} A_{\gamma},$$

implying, by Lemma 8, that

$$\mathcal{P} = \bigcup_{i \in \mathbb{N}} \bigcup_{q \in D_i} \mathcal{P}_{i,q}$$

is an *f*-base for \mathbb{R}^n . Of course \mathcal{P} is countable and since all peripheral pairs in \mathcal{P} are nice, it follows from Lemma 7 that \mathcal{P} has the intersection property. It remains to prove the following claim.

Claim. The family \mathcal{P} locally converges to 0.

We are going now to prove the claim. First note that if $\langle A, I \rangle \in \mathcal{T}_{i,q}^{k,j}$ and k' < k, then $A \cap B_{k'} = \emptyset$, implying that $y \notin B_{k'}$ (and hence $A_y \nsubseteq B_{k'}$) for any $y \in E_{i,q}^{k,j}$. Therefore

(2)
$$A \not\subseteq B_{k'}$$
 for any $\langle A, I \rangle \in \mathcal{S}_{i,q}^{k,j}$ and $k' < k$.

Also note that

(3)
$$\operatorname{diam} A < \frac{1}{j'} \text{ for any } \langle A, I \rangle \in \mathcal{S}_{i,q}^{k,j} \text{ and } j' < j.$$

Now let $\varepsilon > 0$ and $X \subseteq \mathbb{R}^n$ be a bounded set. Then there are $j', k' \in \mathbb{N}$ such that $1/j' < \varepsilon$ and X is a subset of the ball $B_{k'-1}$. Let $\langle A, I \rangle \in \mathcal{P}$ be such that $A \cap X \neq \emptyset$ and diam $A \ge \varepsilon$. Since $A \cap B_{k'-1} \neq \emptyset$ and diam A < 1, it follows that $A \subseteq B_{k'}$. Therefore, since diam $A \ge 1/j'$, it follows from (2) and (3) that if $\langle A, I \rangle \in \mathcal{P}_{i,q}^{k,j} \subseteq \mathcal{S}_{i,q}^{k,j}$, then $k \le k'$ and $j \le j'$. Thus

$$\langle A, I \rangle \in \mathcal{P}^{k', j'} = \bigcup_{k \le k'} \bigcup_{j \le j'} \bigcup_{i < j} \bigcup_{q \in D_i} \mathcal{P}^{k, j}_{i, q}$$

Since the set $\mathcal{P}^{k',j'}$ is finite, the proof of the claim, and hence of the theorem is complete.

3. Connectivity functions are extendable

In this section we are going to prove Theorem 4.

A partial order on a set T is a binary relation \preccurlyeq on T that is reflexive, transitive and antisymmetric (that is, $t \preccurlyeq s$ and $s \preccurlyeq t$ imply t = s for every $s, t \in T$). We say that \preccurlyeq has the *finite predecessor property* if for every $t \in T$ the set $\{s \in T : s \preccurlyeq t\}$ of \preccurlyeq -predecessors of t is finite. A partial order \preccurlyeq^* on a set T is an ω -order if there is a bijection $f : \omega \to T$ (where $\omega = \{0, 1, ...\}$) such that $f(t) \preccurlyeq^* f(s)$ if and only if $t \leq s$. Given partial orders \preccurlyeq and \preccurlyeq^* on T, we say that \preccurlyeq^* extends \preccurlyeq if and only if $t \preccurlyeq s$ implies $t \preccurlyeq^* s$ for every $s, t \in T$.

Lemma 9. If \preccurlyeq is a partial order on an infinite countable set T with the finite predecessor property, then there is an ω -order \preccurlyeq^* on T that extends \preccurlyeq .

Proof. It is enough to show that there is a bijection $f : \omega \to T$ such that $f(i) \preccurlyeq f(j)$ implies $i \le j$. Let \lesssim be any fixed ω -order on T. We shall define the value f(i) by induction on i. Let $i \in \omega$ and assume that f(j) has been defined for every j < i. Let

$$T_i = T \setminus \{f(j) : j < i\}$$

and let T'_i consist of all \preccurlyeq -minimal elements in T_i . For every $t \in T_i$ the set of \preccurlyeq -predecessors of t is finite so there is $s \in T'_i$ with $s \preccurlyeq t$. In particular, T'_i is nonempty. Let f(i) be the \leq -minimal element of T'_i .

It is obvious from the construction that f is injective and that $f(i) \preccurlyeq f(j)$ implies $i \le j$ for every $i, j \in \omega$. To see that f is surjective note that for any $i \in \omega$ and $t \in T_i$ the set of \preccurlyeq -predecessors of t is finite, so one of them is in T'_i . This predecessor of t will eventually become a value of f since \lesssim is an ω -order. Then the number of unassigned \preccurlyeq -predecessors of t becomes smaller and hence eventually t itself must become a value of f.

A family \mathcal{A} of subsets of a metric space X is *locally finite* if for every $x \in X$ some open neighborhood of x intersects only finitely many elements of \mathcal{A} . Let a *Tietze* family for a metric space X be a countable family

$$\mathcal{F} = \{ \langle C_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma \}$$

such that:

- (1) $\mathcal{A} = \{C_{\gamma} : \gamma \in \Gamma\}$ is a locally finite closed cover of X with any C_{γ} intersecting only finitely many elements of \mathcal{A} ;
- (2) for every $\gamma \in \Gamma$, I_{γ} is either equal to \mathbb{R} or is a closed interval in \mathbb{R} ;
- (3) for every $\Phi \subseteq \Gamma$

if
$$\bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset$$
 then $\bigcap_{\gamma \in \Phi} I_{\gamma} \neq \emptyset$

The following result will be the key step in our proof of Theorem 4.

Theorem 10. Let X be a metric space and $\mathcal{F} = \{\langle C_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma\}$ be a Tietze family for X. Then there is a continuous function $h : X \to \mathbb{R}$ such that $h[C_{\gamma}] \subseteq I_{\gamma}$ for every $\gamma \in \Gamma$.

Proof. Let $\mathcal{A} = \{C_{\gamma} : \gamma \in \Gamma\}$, and

$$T_{\mathcal{A}} = \left\{ \Phi \subseteq \Gamma : \bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset \right\}.$$

Let $\preccurlyeq_{\mathcal{A}}$ be the partial order of reversed inclusion on $T_{\mathcal{A}}$, that is, let $\Phi_1 \preccurlyeq_{\mathcal{A}} \Phi_2$ if and only if $\Phi_2 \subseteq \Phi_1$. Since every element of \mathcal{A} intersects only finitely many elements of \mathcal{A} , it follows that the elements of $T_{\mathcal{A}}$ are finite sets and that $\preccurlyeq_{\mathcal{A}}$ has the finite predecessor property.

Let $\preccurlyeq^*_{\mathcal{A}}$ be an ω -order extending $\preccurlyeq_{\mathcal{A}}$ and for every $\Phi \in T_{\mathcal{A}}$ let

$$C_{\Phi} = \bigcap_{\gamma \in \Phi} C_{\gamma} \neq \emptyset.$$

Take the enumeration Φ_1, Φ_2, \ldots of T_A with

$$\Phi_1 \preccurlyeq^*_{\mathcal{A}} \Phi_2 \preccurlyeq^*_{\mathcal{A}} \cdots$$

and for every $i = 1, 2, \ldots$ let

$$C_i = \bigcup_{j \le i} C_{\Phi_j}, \qquad C'_i = C_i \cap C_{\Phi_{i+1}},$$

and

$$I_i = \bigcap_{\gamma \in \Phi_i} I_\gamma \neq \emptyset$$

We are going to define a sequence h_1, h_2, \ldots of continuous functions $h_i : C_i \to \mathbb{R}$ such that for every $i = 1, 2, \ldots$ the function h_{i+1} is an extension of h_i and

(4)
$$h_i[C_\gamma \cap C_i] \subseteq I_\gamma.$$

for every $\gamma \in \Gamma$. Having defined such a sequence of functions our proof will be complete since it is easy to see that the function

$$h = \bigcup_{i=1}^{\infty} h_i$$

satisfies the required conditions. Indeed, (4) implies that $h(C_{\gamma}) \subseteq I_{\gamma}$ for every $\gamma \in \Gamma$, and since \mathcal{F} is a locally finite closed cover of X it follows that h is a continuous function on X.

Let $h_1: C_1 \to I_1$ be any continuous function. Suppose that h_i has been defined in such a way that (4) is satisfied. Let h'_i be the restriction of h_i to C'_i . It follows from (4) that $h'_i: C'_i \to I_{i+1}$. Since C'_i is a closed subset of $C_{\Phi_{i+1}}$, it follows from Tietze Extension Theorem that h'_i can be extended to a continuous function $h''_i: C_{\Phi_{i+1}} \to$ I_{i+1} . Let $h_{i+1} = h_i \cup h''_i$. Since C_i and $C_{\Phi_{i+1}}$ are closed subsets of C_{i+1} , the function $h_{i+1}: C_{i+1} \to \mathbb{R}$ is continuous. It remains to show that (4) is satisfied for h_{i+1} .

Suppose that $\gamma \in \Gamma$ and $x \in C_{\gamma} \cap C_{i+1}$. If $x \in C_i$, then $h_{i+1}(x) = h_i(x) \in I_{\gamma}$ by the inductive hypothesis. Otherwise $x \in C_{\Phi_{i+1}}$ and so $h_{i+1}(x) = h''_i(x) \in I_{i+1}$. It suffices to show that $\gamma \in \Phi_{i+1}$.

Indeed, since $C_{\gamma} \cap C_{\Phi_{i+1}} \neq \emptyset$, it follows that $\Phi_{i+1} \cup \{\gamma\} \in T_{\mathcal{A}}$. Since

$$\Phi_{i+1} \cup \{\gamma\} \preccurlyeq_{\mathcal{A}} \Phi_{i+1}$$

and since $\preccurlyeq^*_{\mathcal{A}}$ extends $\preccurlyeq_{\mathcal{A}}$, it follows that there is $j \leq i+1$ with

$$\Phi_{i+1} \cup \{\gamma\} = \Phi_j.$$

Since $x \in C_{\gamma} \cap C_{\Phi_{i+1}} = C_{\Phi_j}$ and $x \notin C_i$, it follows that j = i + 1. Thus $\gamma \in \Phi_{i+1}$ and so the proof is complete.

Lemma 11. Let $n \ge 1$, $f : \mathbb{R}^n \to \mathbb{R}$, \mathcal{P} be a peripheral family for f, and \mathcal{Q} be the cylindrical extension of \mathcal{P} . If $\{\langle A_j, I_j \rangle : 1 \le j \le k\} \subseteq \mathcal{Q}$ and $\operatorname{bd} A_i \cap \operatorname{bd} A_j \neq \emptyset$ for every $i, j \le k$, then $\bigcap_{i=1}^k I_j \neq \emptyset$.

Proof. First we shall prove the lemma for k = 2. Suppose, by way of contradiction, that there exist $\langle A_1, I_1 \rangle, \langle A_2, I_2 \rangle \in \mathcal{Q}$ with $\operatorname{bd} A_1 \cap \operatorname{bd} A_2 \neq \emptyset$ and $I_1 \cap I_2 = \emptyset$. Let

 $\langle A'_1, I_1 \rangle, \langle A'_2, I_2 \rangle \in \mathcal{P}$ be such that

$$A_1 = A'_1 \times (-a_1, a_1)$$
 and $A_2 = A'_2 \times (-a_2, a_2)$,

where $a_1 = \operatorname{diam} A'_1$ and $a_2 = \operatorname{diam} A'_2$.

Since $f[\operatorname{bd} A'_1] \subseteq I_1$ and $f[\operatorname{bd} A'_2] \subseteq I_2$, we have

$$\operatorname{bd} A_1' \cap \operatorname{bd} A_2' = \emptyset.$$

It follows that $A'_1 \cap A'_2 \neq \emptyset$ since otherwise we would have $\operatorname{cl} A'_1 \cap \operatorname{cl} A'_2 = \emptyset$ in contradiction with $\operatorname{bd} A_1 \cap \operatorname{bd} A_2 \neq \emptyset$. Since \mathcal{P} has the intersection property, one of A'_1 , A'_2 is a subset of the other.

Assume that $A'_1 \subseteq A'_2$. Since $\operatorname{cl} A'_1 \subseteq \operatorname{cl} A'_2$ and $\operatorname{bd} A'_1 \cap \operatorname{bd} A'_2 = \emptyset$, it follows that $\operatorname{cl} A'_1 \subseteq A'_2$. Since the set $\operatorname{cl} A'_1$ is compact, there are $x_1, x_2 \in \operatorname{cl} A'_1$ with diam A'_1 equal to the distance from x_1 to x_2 . Since $x_1, x_2 \in A'_2$ and A'_2 is open, it follows that

$$a_1 = \operatorname{diam} A_1' < \operatorname{diam} A_2' = a_2,$$

and so

$$\operatorname{bd} A_1 = \operatorname{bd} A'_1 \times [-a_1, a_1] \cup A'_1 \times \{-a_1, a_1\} \subseteq A'_2 \times (-a_2, a_2) = A_2,$$

contradicting our assumption that $\operatorname{bd} A_1 \cap \operatorname{bd} A_2 \neq \emptyset$.

Now for k > 2 the assertion follows easily from the fact that if $\{I_j : 1 \le j \le k\}$ is a family of intervals in \mathbb{R} and $I_j \cap I_m \ne \emptyset$ for every $j, m \le k$, then $\bigcap_{j=1}^k I_j \ne \emptyset$.

Now we are ready to prove Theorem 4.

Proof of Theorem 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function, \mathcal{P} be a peripheral family for f, \mathcal{Q} be the cylindrical extension of \mathcal{P} , and

$$X = \mathbb{R}^{n+1} \setminus (\mathbb{R}^n \times \{0\}).$$

We need to construct a continuous function $h : X \to \mathbb{R}$ such that $h[\operatorname{bd} A] \subseteq I$ for every $\langle A, I \rangle \in \mathcal{Q}$. The existence of the function h will follow from Theorem 10 after we have constructed a Tietze family

$$\mathcal{F} = \{ \langle C_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma \}$$

for X such that for every $\langle A, I \rangle \in \mathcal{Q}$ there is $\Phi \subseteq \Gamma$ with

(5)
$$X \cap \operatorname{bd} A \subseteq \bigcup_{\gamma \in \Phi} C_{\gamma} \text{ and } I_{\gamma} = I \text{ for every } \gamma \in \Phi.$$

Let \mathcal{K} consist of all closed intervals of the following forms: [i, i + 1], [-i - 1, -i], [1/(i+1), 1/i], and [-1/i, -1/(i+1)] for every $i = 1, 2, \ldots$ Set

$$\mathcal{A}_1 = \left\{ \left(\operatorname{cl} B_k^n \setminus B_{k-1}^n \right) \times [a, b] \subseteq \mathbb{R}^{n+1} : [a, b] \in \mathcal{K} \text{ and } k = 1, 2, \dots \right\},\$$

where $B_k^n \subseteq \mathbb{R}^n$ is the open ball with center $(0, 0, \dots, 0)$ and radius k. Note that \mathcal{A}_1 is a locally finite closed cover of X.

Define

$$\mathcal{F}_1 = \{ \langle C, \mathbb{R} \rangle : C \in \mathcal{A}_1 \}$$

and

$$\mathcal{F}_2 = \{ \langle \mathrm{bd}\, A \cap L, I \rangle : \langle A, I \rangle \in \mathcal{Q} \text{ and } L \in \mathcal{L} \},\$$

where

$$\mathcal{L} = \{\mathbb{R}^n \times [a, b] : [a, b] \in \mathcal{K}\}.$$

Let Γ_1 and Γ_2 be disjoint sets of indices such that

$$\mathcal{F}_1 = \{ \langle C_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma_1 \} \text{ and } \mathcal{F}_2 = \{ \langle C_{\gamma}, I_{\gamma} \rangle : \gamma \in \Gamma_2 \}$$

Obviously, for every $\langle A, I \rangle \in \mathcal{Q}$ there is $\Phi \subseteq \Gamma_2$ such that (5) holds. Thus to complete the proof it remains to prove the following claim.

Claim. The family $\mathcal{F}_1 \cup \mathcal{F}_2$ is a Tietze family for X.

Let

$$\mathcal{A}_2 = \{C_\gamma : \gamma \in \Gamma_2\}$$

Obviously, $\mathcal{A}_1 \cup \mathcal{A}_2$ is a closed cover of X. Since the family \mathcal{P} is locally convergent to 0, every bounded subset of an element of \mathcal{L} intersects only finitely many elements of \mathcal{A}_2 . Since each point $x \in X$ has an open neighborhood contained in at most two elements of \mathcal{L} , it follows that \mathcal{A}_2 is locally finite, and hence $\mathcal{A}_1 \cup \mathcal{A}_2$ is locally finite.

14 KRZYSZTOF CIESIELSKI, TOMASZ NATKANIEC, AND JERZY WOJCIECHOWSKI

Since every element C of $\mathcal{A}_1 \cup \mathcal{A}_2$ is a bounded subset of an element of \mathcal{L} , it follows that C intersects only finitely many elements in \mathcal{A}_2 , and it is clear that C intersects only finitely many elements of \mathcal{A}_1 . Thus every element of $\mathcal{A}_1 \cup \mathcal{A}_2$ intersects only finitely many elements in $\mathcal{A}_1 \cup \mathcal{A}_2$.

Now suppose that

$$\bigcap_{\gamma \in \Phi_1 \cup \Phi_2} C_{\gamma} \neq \emptyset$$

for some $\Phi_1 \subseteq \Gamma_1$ and $\Phi_2 \subseteq \Gamma_2$. Since $\bigcap_{\gamma \in \Phi_2} C_{\gamma} \neq \emptyset$, it follows from Lemma 11 that $\bigcap_{\gamma \in \Phi_2} I_{\gamma} \neq \emptyset$. Since $I_{\gamma} = \mathbb{R}$ for $\gamma \in \Phi_2$, we have

$$\bigcap_{\gamma \in \Phi_1 \cup \Phi_2} I_{\gamma} = \bigcap_{\gamma \in \Phi_2} I_{\gamma} \neq \emptyset$$

Thus $\mathcal{F}_1 \cup \mathcal{F}_2$ is a Tietze family for X, and so the proof of the claim and hence of the theorem is complete.

References

- K. CIESIELSKI, Set Theory for the Working Mathematician, London Math. Soc. Student Texts 39, Cambridge Univ. Press 1997.
- [2] K. CIESIELSKI and J. WOJCIECHOWSKI, Sums of connectivity functions on ℝⁿ, Proc. London Math. Soc. 76 (2) (1998), 406–426.
- [3] J. L. CORNETTE, Connectivity functions and images on Peano continua, Fund. Math. 58 (1966), 183–192.
- [4] R. ENGELKING, General Topology, Revised and Completed Edition, Sigma Series in Pure Mathematics, vol. 6, Heldermann Verlag, Berlin 1989.
- [5] R. G. GIBSON, and F. ROUSH, A characterization of extendable connectivity functions, Real Anal. Exchange 13 (1987-88), 214–222.
- M. HAGAN, Equivalence of connectivity maps and peripherally continuous transformations, Proc. Amer. Math. Soc. 17 (1966), 175–177.
- [7] O. H. HAMILTON, Fixed points for certain noncontinuous transformations, Proc. Amer. Math. Soc. 8 (1957), 750–756.
- [8] W. HUREWICZ and H. WALLMAN, Dimension Theory, Princeton University Press, 1948.
- [9] J. H. ROBERTS, Zero-dimensional sets blocking connectivity functions, Fund. Math. 57 (1965), 173–179.
- [10] J. R. STALLINGS, Fixed point theorems for connectivity maps, Fund. Math. 47 (1959), 249–263.

(K. Ciesielski and J. Wojciechowski) DEPARTMENT OF MATHEMATICS, WEST VIRGINIA UNI-VERSITY, PO Box 6310, Morgantown, WV 26506-6310, USA *E-mail address*, K. Ciesielski: kcies@wvnvms.wvnet.edu

(T. Natkaniec) Department of Mathematics, Gdańsk University, Wita Stwosza 57, 80-952 Gdańsk, Poland

E-mail address, T. Natkaniec: mattn@ksinet.univ.gda.pl

E-mail address, J. Wojciechowski: jerzy@math.wvu.edu